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ON THE FIRST BOUNDARY VALUE PROBLEMS FOR
SOME DEGENERATE SECOND ORDER ELLIPTIC
DIFFERENTIAL EQUATIONS

By HARUKI YAMADA

§1. Introduction.

Let 2CR™ be an bounded open domain with C*-boundary 3=02. We con-
sider the following so called “first boundary value problem”.

Lw)=(a"uz) ., +b*uz,+cu=f in 2,
[P]
u|s=0,
where wu,,=0u/0x,, etc., and the summation convention such as (a*7u, )z,
n
= kE 1(a”u;; )z, are used. Without loss of generality, we can assume that a*’=a’*
s J=

(see the following condition [A.17). Throughout this paper, we pose the follow-
ing assumptions :

[A.1] a®, bt ¢, feC=(2) and real valued.
[A.2] atiE ;20  for all (x, &) e 2 XR".
[A3] ¢<0, c—bt,<0 on Q2.

[A.4] abE,E,>0  for all (x, eI X(R™0).

Under some additional assumptions for the boundary behavior of the coefficients
replaced by [A.4], Kohn-Nirenberg [5], [6] and Oleinik [7], [8] proved several
existence, uniqueness and regularity theorems for the problem [P]. For example,
from their results we have the following theorem. (see e.g. [8] Chap. I, §5).

THEOREM 1.1. If wn addition to [A.l], [A.2], [A.3], we assume that
[A5] atyw,>0  for all x€X,

where vy=(vy, -+, v,) 1S the unit normal vector for X at x, then for any fEC=(2),
there is a uniquely determined weak solution weL* Q) of [P]. Moreover, there
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15 a constant C wndependent on f such that

lullo,e=Cll fllo.0 -

Here the weak solution of [P] is defined by the following manner: Let L*
be the adjoint of L, i.e.

L¥w)=(aM v, )e,— (0" 0), +cv.
Then

DEFINITION 1.2. ueL*{2) is called the weak solution of [P] if

E3 J—
SQuL (v)dx—SQvfdx
is verified for all veC™(2) with v|s=0.

Of course the weak solution equals the classical (strong) solution if ue
CHNCU(RQ).

The solution whose existence is guaranteed in Theorem 1.1 is known as the
weak limit of the solutions u.eC~(2) as e—-+0 of the following approximate
elliptic boundary value problems [P.]:

L{uw)=L(w)+edu=f in 2,
[P.] {
u l 2"—-"0 .

Several facts are known concerning the regularity of the weak solution u< L)
of [P] (see especially [6], [8]). Among those results it is remarkable that; in
order to assure that ueC"‘(Q), ¢ must sufficiently be small (i.e. ¢=—c¢, on 2 for
sufficiently large ¢,>0) and the modulus ¢, of the smoothness are determined by
m and the values of the derivatives of a”*’ (resp. b*) up to order 2 (resp. l).
Especially, in general, ¢, is an increasing function of m and we cannot assert
ueC=(2) for finite co.

EXAMPLE. Let 2={xeR"; |x|=1} and let L be given by

Lu=|x|*4du+cu=0.

By a result of [8] it is easy to see that for any m< N there is a constant ¢,=
co(m) such that

(1.1) if c<—¢, on £, then the weak solution uL¥) is in c™(Q).

But there are no ¢,>0 for which (1.1) is true for m=co. In fact, if we take
u=|x|*—1 (a>0), it is clear that u is the weak solution of [P] for c=—ala—2)
—an. Note that ue C**Y(Q) unless a= V.
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The aim of this paper is to find a sufficient condition for the weak solution
to be ueC”(Q_). In doing so, we use the L2-method which was used in [5] rather
than the maximum principle method used in [7]. Our main result is stated in
§3 as Theorem 3.1.

In §2 we shall prove some estimates for the solutions ueeC“’(.@) of the appro-
ximate problems [P.]. In §3, by using those estimates, we shall give a sufficient
condition for ueC=(£2). In §4, as applications, we show examples of smoothness
and non-smoothness of solutions of some simple boundary value problems. The
relations between regularity of solutions of boundary value problems and hypoel-
lipticity of operators will also be noted. Our examples contain a case where the
operator is not hypoelliptic but all the solutions of the boundary value problem
belong to C*(£2).

Our assumption [A.4] in Theorem 3.1 seems to be too restrictive. In fact,
as will be indicated in § 4, without [A.4], one will be able to prove regularities
of solutions of the boundary value problem on a certain set containing the neigh-
bourhood of %, and 2, as long as we assume that %, %; and 2,UX; are dis-
joint. (For definitions of %, ---, 23 see e.g. [8]). One powerful method for the
proof of this fact will be the method of the stochastic differential equations (pro-
bability methods). In this connection, we refer to [2], [3] and [9]. In this paper,
however, we have used only the L*method. Hence our condition (3.2) for the
regularity of solutions may only be interesting on the set where all the vector
fields X,, X,, -+, X, degenerate. (For the definition of X,, :--, X, and the rela-
tions between X,, -+, X, and the regularity problem see [4], [8] and §4 of this
paper).

I would like to express my sincere gratitude to professor Yoshikazu Hirasawa
for his encouragements and advices.

§ 2. Inequalities.

In this section we shall prove some basic inequalities by using mainly the
technique used in [5]. Though, in [5], [6], it is proved that for any m& N, there
is a sufficiently large constant ¢,>0 such that if ¢<—c¢, on £, then [P] has a
unique solution uEC”‘(.Q), the modes of dependence of ¢, with respect to a*’, b*
are not clarified. Especially, it is not possible to decide whether the solution be-
longs to C*(2) or not. We shall somewhat clarify this situation by accurate
estimates. But in doing so, we have to pose rather strong restriction [A.4] for
the behavior of the coefficients a*’ near the boundary.

We shall use the following standard notations:

o Iluli%,g-:Sgu-ﬁix, (u, ©)=(u, b):;:SQu‘ﬁdx,

lulls, o= > ll0“ul}. o,
lalsp
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where 0*=0%!--- 03, 0;=0/0x,. 1f we write

Xj=a"’jak N onbkak ’
we have
L(wy=edu+0,X;u+Xou+cu.

As in [5], we introduce the following bilinear form Q. associated with L.:
2.1) Q.(u U)ES {ea u-B-ﬁ—I—Xu-BE—I—i(u.Xﬁ—X u‘ﬁ)—l(Zc—bf )u-ﬁ}dx
. e\Hy 0 J J J J 2 0 0 2 5 .

Note that when u, veC=(2), u|s=0, v|y=0, then by partial integrations, we have
2.2) Q:(u, V)=—(Le(), v).

Remark 1. In what follows, all the functions u, u. which appear as solutions
of the boundary value problems are real valued. But since, in §2, we have to
consider the functions Au. where A is a differential operator with a complex
coefficient, we use the above notation (*) instead of

(u, v)=SQu-v dx.

In the followings, when we use the roman letters u, u. to represent functions, it
always means that they are real valued functions.
By [A.2] and [A.3], we have

23) Cluli=(—5@e—b)u, 1)=Quu, 1) for any usC(D),

where C, is a positive constant. Further, if there are an open set UC £, some
positive constant C, and some m, 0=m=n—1, such that

n

(2.4) atiEE,=C, D €2 for all (x, &) eUXR",

J=m+1

then we have
25) Co 3 osultt(—52e—bt)u, u)Qulu, 0
for all ueC~(2).
Note that if L is elliptic on U (i.e. m=0), then
Collull2 y<Q.(u, u)  for all usC=(2).

Remark 2. If m=n, the condition (2.4) is meaningless. Then, by the condi-
tion (2.4), we shall understand that we do not impose any conditions at all.
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When we estimate [|u] ., o, it is convenient to introduce the following operators :
A=¢D*, A*:D“-go'zgoD“-l-ngjgo-D“"—(-
where ¢ is a real valued function in C5(£2) and D*=D%1--- Dgn, D;=1/10/0x,.
Further we have used the following abbreviations:
De=1=D¢1 ... D=1 ... Dan
and the sum f:':’x means that j are taken from all possible indices which appear

in a=(ay, -, a,) counting its multiplicities «,. Accordingly we have
n
2 ngo.Da‘J: 2 a'ijgD.D?I aee 1).171]"-1 “es Dgn .
JjEa J=1

In Lemma 2.5, it will also be used the following abbreviations:
Da—j+k=Da—JDk:D61¥1 D;rj-l ngﬂ Dgn .

LEMMA 2.1 (c.f. [8]). Let M and N be differential operators of order not
higher than 1 with real coefficients. Then for any ueC(2), we have

2{(MAu, NAu)—(Mu, NA*Au)}
=2(CM, Adu, [N, AJu)+({(A—A*)Mu, [N, AJu)+(Mu, [N, A—A*]Au)
@0 —(Mu, [[N, A], Alu)+(A—A*)Nu, [M, AJu)+(Nu, [M, A—A*]Au)
—(Nu, [[M, A], AJu)+(MA*Au, Nu)—(Mu, NA*Au),

where by definition [ X, Y1=XY—Y X for any two operators X and Y.
Proof. First note that by definition and partial integrations,

(Au, v)=(u, A*v).
By using further partial integrations,
2{(MAu, NAu)—(Mu, NA*Au)}
:(MAu, NAu)—(Mu, NA*Au)+-(MAu, NAu)
—(MA*Au, Nu)+-(MA*Au, Nu)—(Mu, NA*Au)
=([M, AJu, NAu)—(Mu, [N, A*JAu)+(MAu, [N, Alu)
—(CM, A¥]Au, Nu)+(MA*Au, Nu)—(Mu, NA*Au).

From the second and the third term in the right hand side, we have
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(MAu, [N, AJu)—(Mu, [N, A¥]Au)
=M, Adu, [N, AJu)+(A—A*)Mu, [N, Alu)
+(Mu, [N, A—A*JAu)—(Mu, [[N, A], Au).

From the first and the fourth term in the right we have a similar formula.
Combining these formulas we have (2.6).

LEMMA 2.2. Let (2.4) be true for some m, 0=m=n—1 and some uc. Then
for any a, |a|=y, e=CHU) and solutions u=u.cC(2) of [P.], there 1s a con-
stant C>0 such that

3 Ipoa,uls. 0=CUF 1.l )
Proof. By (2.5), it is sufficient to prove that
|Qupa“u, 93w | SCUf 1o+l 20
Let A=¢D?% Then Q.pd"u, pd°u)=Q.(Au, Au) and
Q:.(Au, Au)=Q.(Au, Au)—Q.(u, A¥Au)+Q.(u, A*Au)

=Q(Au, Au)—QIu, A*Au)—(f, A*Au).
Note that

I(f, A*Aw)|=|(Af, Auw)l é—l—(ﬂfllﬁ,quHuHﬁ,v)-
Next, we have to estimate the term
2.7 Q.(Au, Au)—Q.(u, A*Au).
This term can be decomposed into the several terms of the form
(2.8) (MAu, NAuw)—(Mu, NA*Au)
according to (2.1). Here the possible pairs of M and N are the followings:
M=N=94,; M=X, N=9,; M=X, N=1;
M=1, N=X,; M=@2c—-0b%,, N=1; j=1,2,-,n.

Thus it is enough to estimate these terms of the form (2.8) appearing in (2.7).
If we note that A=¢D?, |a|=y, p=C3(U) and the fact that M, N are opera-
tors of order not higher than 1, we have, by Lemma 2.1,

|(MAu, NAu)—(Mu, NA*Au)|

<Cllul} o+ 5 |(MA*Au, Nuy—(Mu, NA*Aw).
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In fact, in (2.6), each terms except the term (MA*Au, Nu)—(Mu, NA*Au) can
be estimated by Cllu]2 v by means of partial integration. Further, if we note
a*’=a’*, we have that, in (2.7), the term of the form (MA*Au, Nu)—(Mu, NA*Au)
may only appear when M=1, N=X, and M=X, N=1. But then, we have

[(Xou, A*Au)—(u, XoA*Au)| = |(CA*, XoJAu, u)|+|(CA, Xolu, Au)

=Cllullfv-
This proves the lemma.

COROLLARY 2.3. Let a=(ay, ', Qm, Qpry, =+, Ay, v=k§ak. Then, for the
- =1
solution u=u.=C*(2) of [P.], we have

(2.9) oo ullf, e =Cl F1 2. v+ 1ullf o) -
Especially, 1f (2.4) is valid for m=0, then
(2.10) lpo“ull$, o=Cll fll ;v -

Proof. Easy by Lemma 2.2 and the induction arguments.

The following lemma, which is trivial from Corollary 2.3 when V&R, is a
well known fact in the theory of elliptic boundary value problems and we shall
omit the proof. (see e.g. [1] §9).

LEMMA 24. Let VC2 be an open subset (we may allow the case when VAZ
#0). Suppose L is elliptic on V. Then for the solution u=u.cC(2) of [P.], we
have

lulzv=Clflie,

where C is independent on e.

Let w2 be the maximal set on which L is not elliptic. In what follows,
we shall call this set the non-elliptic set of L in £. By the assumption [A.4],
we can take a sufficiently small neighbourhood @ of w such that @ \2'=0.

LEMMA 2.5. Suppose that (2.4) is valid for some m, 0=m=n, and for U=LQ.
Then for any ﬁiced (small) 6>0, any a=(ay, =+, &m, 0, ---, 0), || =p, and solu-
tions u=u.C(2) of [P.], we have the following inequality.

1
(—g@e—brpomu, o). <6 3 [ofuls

B=Br B0 0

@.11) +3

k

; (bisaa-x-l»ku’ aau)a

-
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1 = -
+?k;=1 s%a(agjsl‘zaa M, 007 Ru)g

+C( A o+l ull -1 0)

where the constant C>0 1s independent on e.

Remark 3. For the meaning of the condition of the above lemma when
m=n, see Remark 2 of this section.

Proof. Take and fix a real valued function p=C3(£2) with ¢=1 on & and
¢=0 on 2. Then from (2.3),

(—%(2c—béj)8“u, B“u)aé(—%@c—b@)goa“u, 9/;8%)9

=Q(pd*u, pd*u).
Let A=¢D* Then Q.¢0*u, po*u)=Q(Au, Au) and

Q(Au, Au)=Q(Au, Au)—Q.(u, A*Au)+Q(u, A*Au)
=Q.(Au, Au)—Q.(u, A*Au)—(f, A*Au).
Note that for any §>0,

1
[(f, A*Au)|=[(Af, Au)léf[!soaafllﬁ,g+5llso3“ullﬁ.g.
In what follows, the symbol d generically stands for a positive constant which
can be taken as small as we like. Further, by using (2.10) of Corollary 2.3, we
have

lpo*ulld o=llo“ull§.a+Cl fli.o-

Thus it is sufficient to estimate the term (2.7), i.e.
{Q(Au, Au)—Q.(u, A*Au)}.

This term can be decomposed into several terms of the form (2.8) where the
possible pairs of M and N are the same as in the proof of Lemma 2.2. Thus we
shall estimate each terms of the form (2.8) appearing in (2.7). Since ¢=1 on &,
we have A—A*=0 on & Combining this fact and Corollary 2.3, we can estimate
all the terms of (2.6) containing A—A* by C(| fl% o+lluli-1.0). (Integration by
parts was used in obtaining these estimates). Thus it is enough to estimate the
terms of the following form:

1,=[M, Alu, [N, Alu),  L,=(Mu, [[N, A], Au),
I,=(Nu, [[M, A, AJuw), L, =(MA*Au, Nu)—(Mu, NA*Au).
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i) Suppose M=0,. From 9,0=0 on &, we have [d,, AJu=0 on @ Thus
[ 1| =1([0,, AJu, [N, AJu)o|=1([3,, Adu, [N, AJu)o,s!
=Cliflze-

Here we have used the fact that [d,, A], [N, A] are operators of order |a|=pg
and we have used Corollary 2.3. The same estimates are true when M=9, is
replaced by N=4d,. Next, in the case N=1 or M=1, it is easy to see that

[LI=ClflZ.q.

Thus the term 7, is harmless.

ii) The term I, is also harmless. In fact, when N=0, or N=1, the term
[N, AJu vanishes on @. Hence these terms can be estimated by C(|| 12, o+l ull 31, 0).
On the other hand, when N=JX,, we have M=1. So clearly this term can be
estimated by

C
B2 AL = p)
Sﬁylia ulld. o+ 5 -0,

for any small fixed §>0.
iii) The term I, can be easily estimated by C(l|l fI 2, o-+1llulli-1. ¢) except when
M=X, and N=9,, When M=X, N=d,, we have

(Nu, [[M, A, AJu)=(~1)@,u, [[a*3s, 0], p3"Tulo
=(=1)@,u, [~ 3 af,d*"**, ¢3"Ju)g+[*]
=@, |3 o+, 0% 9 u)g+[¥]

== 2 (0%, a5, 0" u)g .

Here [*] are the terms which can be estimated by the quantity C(|| fll2. o+ llullz-1 2).
Thus, when we note (2.1) and (2.6), the total contribution of I; in (2.7) is

__;_s Lzea(aa—H;u’ aé]sxlaa—s-kku)g)_l_[*] .

iv) If we note a*’=qa’* we have that, in (2.7), the term I, may only appear
when M=1, N=X, and M=X,, N=1. Thus when we note (2.1) and (2.6), the
total contribution of I, in (2.7) is

%{(A*Au, Xou)—(u, XoA*Au)} —%{(XOA*Au, u)—(Xou, A*Au)}

= T (Ko, 4% A0~ XA Aw)
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TACA*, X Au, w+{T4, XJu, Au)

1 ,
5{(—1)”([308“, b*0,Jpd%u, w)o+(Lpd®, b*0,Ju, ©0*u)o-+[*]

—;-{(—-1)“ gﬂ(gob’;saa'“’*-a“u, u)g—l-sg(gob’isa“'“’*u, 0%u)o} +[*]
= 2 (5,07 Fu, 0" u)s+ 1.

Here [*] are the terms which can be estimated by C(||fIlZ o+ull3-1. o).
Combining the above results, we have for any small §>0,

1
(—gee—trp0mu, ponu)=o 3 16%ulis

+ 35 3 (6h,07 7, 9t
k=1 s€a

+ L3 s (awaaet, ameethagg
2 1551 5, 2a
+CU fllZ ot llulli-1.0)

where the constant C may depends on ¢ but is finite for each fixed 6>0
that when m+1=j=<n or m+1=k=n, we can estimate the terms
0 X [0%ulls. s,
1Bi=p

Note
(b5, 0% *u, 0%u)s,

(a?sz[a“'l”u, aa-s+ku);’
by a quantity of the form

CU NG o+ lullz-1.2)+0 %y 0P ull3, 5,

ﬁ:<ﬁlv"'yﬂ;{li),~<-,o)
by using (2.9) of Corollary 2.3.

proves the lemma.

Thus we have the desired estimate and this

§3. A sufficient condition for regularity of solutions.

In this section we shall prove the following theorem.

THEOREM 3.1. Consider the problem [P] under the conditions [A.1.], [A.2],
[A.3] and [A4]. Further we assume that (2.4) 18 true jfor some m, 0Sm=n
and for U=R. If

a% . =0,
(3.1 { F

k
b‘tk§0 )
a}ys.‘cl:Oy

k} j:]" 27 ”.} m’
b, =0,

k,1=1,2, -, m, k#s,[; j#s, [,
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is valid on the non-elliptic set wC 2 of L, then the weak solution us L*2) of [P]
belongs to C*(2).

Proof. The weak solution ueL¥2) of [P] is given by the weak limit of the
solutions #.€C>(2) of [P.] in L*£2). Thus, if we prove for any sufficiently small
¢>0 and any p<N, that

luclz 0o=Cl flj e,

we have
lullZ o=lim {u.ll} o=Cl fl7 0,

e—0

and by the well known Sobolev’s lemma we have ueC‘”(Q). (see e.g. [17).
Now we shall take and fix a function ¢=C5(£2) such that ¢=1 on @, ¢=0
on 2, where @ is a small neighbourhood of w such that #"\0f2=0. Then we

have
lucllz e=Clloulz o+ lucll . 0,8)

and the second term of the right can be estimated by C| f|2 o by Lemma 2.4.
Next we shall prove that

loullz o =CAl fI 7 ot uel 1.0«

In doing so, by Lemma 2.2, it is sufficient to prove
%‘Ilgoa“uellﬁ,géc(llflli,ﬁlluEIIZ-l.g)

for a=(ay, =+, &m, 0, ==+, 0), |a|=p. Now, from the assumption (3.1) and Lemma

2.5, we have: For any small 0>0, we may take a neighbourhood & of w so
small that

1 1 k k a a ~
(3.2) <—~7(2c—b’;k)—(—2—k§)€ aaszz,+k§abzk)a i, 90 )s
SCIAZ et lluel i-r ) +0luel i s .

Further, we may assume that there is a positive constant d, such that
et )~ (5 3 abt T0)2d>0  on
2 Tk 2k,j€a TrT) kEa Tr)="T0 @

Of course it may be necessary to choose @ small enough for each fixed u but
such @ will exist. Thus if we take 0 so small and if we take the sum of (3.2)
all over «, |a|=y, we have

dol E#(a“ue, 0°u s =CU A2, o+l uall 2ov ) +ollul 2.5,

al=

where 6 can be taken so that d,—4>0. Note that, though the constant C depends
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on 0 and C—oo as 0—0, once we fix a small §>0, then C is determined as a
finite positive constant. Thus we have proved that

Ia%ﬂ!la“usll%.aéC(llfHZ,.rH-llugllﬁ_l,.o)

and by induction we have
3 19wl 0=Cl /0,

for some constant C not depending on e. This proves the theorem.

Remark. In the proof of the theorem, the condition [A.4] was used to get
the estimate

ludlz 0 =Cl fllzo-

Thus, if we can prove this inequality by one or other methods without supposing
[A.4], the proof of the theorem runs the same. Especially, this will be possible
if L can be written locally by the second order ordinary differential equations in
each neighbourhoods of the points in £2\w by taking appropriate local coordinates.

Finally we show a simple example which is an extension of the example in § 1.
Example. Let QCR", 02 and
Lu=a(x)du+c(x)u=f.

Suppose that i) a(x)>0 if x+#0, a(0)=0, ii) ¢(0)<0. Then _if iii) az,20)=0 for
all &, j=1, 2, ---, n, the weak solution of [P] belongs to C*(2). In fact L can be
written in the form

Lu=(a(x)ttz,)z,— 0z (X)tz,+c(x)u .
Note that from i) and iii), we can write

a(ﬁf)=m§4 aax*+0(]x1%).

Hence it is clear that a,,(0)=0 and hence the conditions of the theorem are
fulfilled.

§4. Examples and comments.

Before showing examples, we shall recall some results on the hypoellipticity
of operators of second order. Suppose

Lu=(a*uz,)e,+b*uz,+cu

=0,X;u+Xu+cu=s
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satisfies the conditions [A.1] and [A.2]. Where X;=a*9,, j=1, 2, -, n, Xo=
bkak. Let

L=1L(Xo, Xy, -, Xa)
=The Lie algebra with the Lie bracket [A, B]=AB—BA
generated by X,, X, -+, X».
Then it is known that:

Let x°= Q2 be a point. If we can take n elements
4.1 in .£ which are linearly independent at x°,

then L is hypoelliptic near x°.

(see e.g. [8] Chap. II, §6). If L satisfies [A.1], [A.2], [A.3], [A.5] and it is
hypoelliptic at each points on £, we can assure that the weak solution belongs
to C*(2) without any further conditions on the coefficients of L. But we must
distinguish the local regularity of solutions and the regularity of solutions of
boundary value problems. In fact they have both similar aspects and different
aspects. For example, on one hand, the condition (4.1) is related to the deriva-
tives of the coefficients a*’, b* up to any order, on the other hand, in the known
regularity theorems of the boundary value problems, the order of regularity is
measured by a constant which depends only on the derivatives of a*’, resp. b%,
up to order 2, resp. 1. Neverthless, there seems to be a similar aspects. That
is, it seems that, in the boundary value problems, the flow determined by the
vector fields X,, X;, -, X, have an essential role in the propagation of regularity
of the solutions. As have already been pointed out in [8] in connection with the
global hypoellipticity, it seems that the integral manifolds of X,, Xi, -+, X, and
the directions of X, (we have to distinguish positive and negative directions of
X,) have a certain role in the propagation of regularity (especially they will carry
the regularity of the boundary data to the interior regularity of solutions).
We conjecture that the following type of results will be valid:

Assume the conditions [A.17, [A.2], [A.3] and [A.5]. Further assume
that the following conditions are satisfied: For any x°€£ we can find a
curve C joining x° with some point x'€X such that

i) C can be constructed by joining finitely many integral curves [, -+, [,
of X,, Xy, -+, Xn.

[C] ii) If [, is an integral curve of X,, the direction of X, and the direction

of the curve C(x'—x°) must coincide.

iii) If there is a singular point x° of all the vector fields X,, X, -+, X,
then x° must be a limit point of the flow of X, of positive directions.

Then the weak solution u=L*2) of [P] belongs to C*(2).

Now we shall study some examples. For the simplicity we restrict our con-
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siderations to the two dimensional case.
Let

Q={(x, MER*; X*+y*°<4}, L2:={(x, y)eR?; x*+ <1},
QZ:Q\Q-I.

Take and fix a function goeC‘”(.@) such that ¢>0 on £, =0 on 2. Let NcQ
be the non-elliptic set of L.

Example 4.1. Let
Lu=(o+x*)uz)otuyy+b'us+bu,+cu=f.

Here X,=(¢p+x2%)0,, X;=0,, Xo=b"0,+0b%0, and N={(x, 3); x=0, | y|=1}. Sup-
pose_that b', b* and ¢ satisfy [A.3]. If b'+0 on N, we have that L is hypoelliptic
on 2. Thus we shall restrict to the case »*=0 on N. Then the sufficient con-
ditions for u to belongs to C*(2) in Theorem 3.1 is

(x°%),,=2k@2E—1)x**2=0, bL=0 on N.

The first condition is valid if £>1. Note that the second condition means that

b'(x, »)=—P(»)x+0(x*, B(»)=0 on N.

Further, for simplicity, consider the case when

bi(x, »)=b"(x)=—px+0(x*,  b%x, »)=0,

where f is a positive constant. Then in terms of the flows of the vector field
X,, it can be stated that:

Near N, all the flows determined by X, flow into N.

Note that if x°€£\N, x° can be joined with some point x'€2X by an integral
curve of X,=4,. Further, if x°€N, it can be joined with some x'€X by an
integral curve of X, such that the direction x'—x° coincides with the direction
of X, and x° is a limit point of the integral curve (c.f. our conjecture [C]).

In this case, L is not hypoelliptic on N. But by our theorem, the weak solu-
tion belongs to C“(Q).

Example 4.2. Let
Lu=((p+ y*")uz)s+uy,+b'us+b*u,+cu=f.

Here X,=(p+y*")0., X;=0,, X,=0'0,+b%), and N={(x, y); y=0, |x|=1}. Since
we have [ X, [ X, [+ [X,, X1 --]=(0%¢+(2k) )0, L is hypoelliptic on £. Hence

the weak solution is in C*(2). On the other hand, the condition of Theorem 3.1
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is b1=0 on N. Of course it is not necessary. Note that if our conjecture [C] is
true, the unnecessity of the condition 610 on N will follow.

Example 4.3. Let
Lu=(x*+y)*uzotuyy+b'us+b2u,+cu=rs.

We have N={(0, 0)}. If »%0, 0)=0, we cannot use the sufficient condition (4.1)
for hypoellipticity. On the other hand, the condition of Theorem 3.1 is bL(0, 0)
=<0, that is, b'(x, ¥)=—pB(¥)x+0(x%), B(»)=0 on N. For simplicity, if we con-
sider the case when b'(x, y)=—Fx+0(x2 |y]), b*(x, »)=0, in terms of the flow
determined by X,, this can be stated that:

Near the origin, all the flows of X, must flow into the y-axis.

Note that if our conjecture [C] is true, since X,=d,, all the weak solution
ue L¥(£2) will belong to C°(2) provided that the condition [A.3] is satisfied (and
no other conditions concerning b' and % will necessary).

In the same way we can treat the equation

Lu=(x4+y)*(uzotuy ) +b'u+b2u,+cu=7s.

In this case, if 5(0, 0)=0 or %0, 0)=0, the sufficient condition (4.1) cannot be
used. The condition of Theorem 3.1 is b1 =0, b1 =<0, bj=0b3=0 at (0, 0). Especially,
this condition is satisfied if b'=—ax+0(x*+y?%), b°=—By-+0(x*+»*) where a, S
are positive constants. Thus the vector field X, can be apploximated by —ax0,
—pBy0, and thus the above condition can be restated that:

Near the origin, all the flows of X, must flow into the origin.

Note that, in this case too, we can relate the above facts with the conjecture [C].

Example 4.4. Consider the equation
Lu=pdu-+b(x)u+cu=f.

By Theorem 3.1, if 5,<0 on 2,, all the weak solution is in C*(2) provided that
¢—b,=0 on Q. For example, this is valid if b=const. But it is not applicable if
e. g. b(x)=x%+1. It is quite likely that for this equation, all the weak solution is
in C=(2) provided that ¢<0 and ¢—b,<0 on Q.

Example 4.5. Consider the equation
Lu=gpdu+b'u+b*u,+cu=f.
First note that L is not hypoelliptic on £,. The condition of Theorem 3.1 is

(4.2) bL=0, b2<0, bi=b2=0 on 2,.
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Now, as the simplest case of the above equation, we shall consider the following
four equations:

Liu=pdu+xuz+yu,+cu=f,
Lyu=pdu—xu,—yu,+cu=f,
Lyu=pdu—xuz+yu,+cu=f,
Liu=pdutyu,+xu,+cu=fs.

i) L, does not satisfy the condition (4.2). In this case we can assure that
there are no ¢,>0 such that the following statement is true:

[W] If ¢c<—c,, all the weak solution u=L*R) of [P] belongs to C(2).

In fact, let us first consider L, on £,. Then 02=2 belongs to X; and 0£2,\%
=0f2, belongs to X, with respect to £, (for the definitions and properties of 2,
Y, 2, see e.g. [8] Chap I, §1). Thus the problem

(4.3) Liu=f on 2, uls=0

has a unique solution u€C=(2,). Since 92, belongs to X, if we consider L, on
£2,, we have to solve the problem

(44) LﬂZ:f on Ql, ﬁ]aglzg,

where g is defined by the solution u of (4.3) by g=ulse,. Now from [10], it is
known that in order that, for any geC=(02)), (44) has a unique solution in
C™(2), it is necessary and sufficient that ¢(0, 0)+m<0. (More precisely, we have
#eC(2,\0) but in general # is not C* at the origin). Thus for L,, the condition
[W] cannot be valid for any ¢. Note that the vector field X,=x0d,+yd, deter-
mines the flows which flow out from the origin.

ii) L, satisfies the condition of Theorem 3.1. Thus the weak solution is in
C=(2) provided that ¢<0 on 2. In this case, first consider L, in 2, Then =
2, 002,=2%, By [10],

Lou=f on 2,

has a unique solution ueC=(2,) without any boundary conditions. Now define
£eC=(092,) by g=ulso, and solve
Lou=f on 2, u|:=0, ulz,=45.

1

Thus we have a unique C®-solution of
Lou=f on £, ul|s=0.

Note that near the origin all the flows of X, flow into the origin.
iii) The operator L, does not satisfy the condition of Theorem 3.1, i.e. bl=
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—1<0, but b;=1>0. In this case, the degeneracy on the y-axis seems to be
essential and the set on which the solution is not C* is expected to coincide with
{(x, »); =0, |y[=1}.

iv) The operator L, also does not satisfy the condition of Theorem 3.1 since
bi=0, bi=0, bj==+1, bi==+1. By [10], it seems that since X, has periodic
orbits, some sorts of regularity of solutions will occur. But general pictures are
not clarified yet.
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