ON SUBORDINATION OF SUBHARMONIC FUNCTIONS

By Shōji Kobayashi and Nobuyuki Suita

Introduction. In the present paper we are concerned with analytic maps from a Riemann surface into another which preserve the least harmonic majorant of a subharmonic function.

Let R denote an open Riemann surface. Let S(R) be the class of all functions subharmonic on R which admit harmonic majorants on R and $S^+(R) = \{f \in S(R): f \text{ is bounded below on } R\}$. We denote by \hat{f} the least harmonic majorant of f for any $f \in S(R)$. Let R_j (j=1, 2) be open Riemann surfaces and ϕ be an analytic map from R_1 into R_2 . Littlewood's subordination theorem (see [3, p. 10]) shows that $f \circ \phi \in S(R_1)$ and

(1)
$$\hat{f} \cdot \phi \ge \hat{f} \cdot \phi$$

on R_1 for any $f \in S(R_2)$. In this paper we deal with the problem when equality holds in (1).

In the case where $R \in O_G$, it is well known that there exist no positive superharmonic functions but the constants on R (see for example [1, p. 204]). Therefore we easily see that $\hat{f} - f \equiv 0$ for any $f \in S(R)$, which means that S(R)reduces to the harmonic functions. It is easily verified that if $R_1 \in O_G$ and $R_2 \notin O_G$ there exist no nonconstant analytic maps from R_1 into R_2 . Hence, if one of R_j (j=1, 2) is of class O_G , equality always holds in (1) for any $f \in S(R_2)$.

From now on we assume that $R_j \notin O_G$ for j=1, 2. Let $G_j(z, t)$ denote the Green's function of R_j with pole at t. Following Heins [4], we say that ϕ is of type B1 when $G_2(\phi(z), t)$ majorates no positive bounded harmonic functions for some $t \in R_2$, or equivalently for every $t \in R_2$ (see Theorem 4.1 of [4, p. 446]), and we say that ϕ is of type B1 when $G_2(\phi(z), t)$ majorates no positive harmonic functions for every $t \in R_2$. Let U denote the open unit disc and π_j be a universal covering map of R_j . By applying the monodromy theorem, we can define an analytic function ϕ in U which is bounded by 1 such that

$$\phi \circ \pi_1 = \pi_2 \circ \phi \,.$$

An inner function is any function ψ analytic in U with the properties $|\psi(z)| \leq 1$ in U and $|\psi^*(e^{i\theta})|=1$ a.e. on ∂U , where ψ^* denotes the Fatou's boundary function of ψ .

Received May 28, 1979

1. Main results. First of all we state our results.

THEOREM 1. Let ϕ be an analytic map from R_1 into R_2 , then the following statements are equivalent:

(a) $\hat{f} \circ \phi = \hat{f} \circ \phi$ for every $f \in S^+(R_2)$.

- (b) $\hat{f} \circ \phi = f \circ \phi$ for some $f \in S(R_2)$ which is not harmonic on whole R_2 .
- (c) There exists an inner function ψ such that $\phi \circ \pi_1 = \pi_2 \circ \psi$.
- (d) ϕ is of type B1.

Remark. Theorem 1 is a generalization of a theorem of Ryff (Theorem 3 of [7, p. 351]) which states the invariance of H_p norm of an analytic function in U under composition by any inner function ϕ with $\phi(0)=0$.

THEOREM 2. Let ϕ be as in Theorem 1, then the following statements are equivalent:

- (a) $\hat{f} \circ \phi = \hat{f} \circ \phi$ for every $f \in S(R_2)$.
- (b) There exists an inner function ψ such that $(\psi(z)-\alpha)/(1-\bar{\alpha}\psi(z))$ is a Blaschke product for every $\alpha \in U$ and such that $\phi \circ \pi_1 = \pi_2 \circ \psi$.
- (c) ϕ is of type $B1_1$.

2. Proof of the theorems. First we need a lemma.

LEMMA 1. Let $R \notin O_G$ and π be a universal covering map of R, then $\hat{f} \circ \pi = \hat{f} \circ \pi$ holds for any $f \in S(R)$.

Proof. Since $\hat{f} \circ \pi$ is a harmonic majorant of $f \circ \pi$, we easily see that $\hat{f} \circ \pi \geq \hat{f} \circ \pi$. We must show the inverse inequality. Let Γ be the cover transformation group under which π is invariant. Since $\hat{f} \circ \pi \circ T$ is a harmonic majorant of $f \circ \pi \circ T = f \circ \pi$ for every $T \in \Gamma$, we see that $\hat{f} \circ \pi \geq \hat{f} \circ \pi \circ T$. By composing T^{-1} from right, we obtain the inverse inequality $\hat{f} \circ \pi \geq \hat{f} \circ \pi \circ T$. Thus we see that $\hat{f} \circ \pi$ is invariant under Γ . Therefore we can define a single-valued harmonic function on R by $\hat{f} \circ \pi \circ \pi^{-1}$, which is a harmonic majorant of f. Then we see that $\hat{f} \circ \pi \geq \hat{f} \circ \pi \circ \pi^{-1} \geq \hat{f}$, and hence $\hat{f} \circ \pi \geq \hat{f} \circ \pi$ as desired.

Remark. Lemma 1 was essentially proved by Rudin [5, p. 48].

Proof of Theorem 1.

1. (a) implies (d). Suppose that (d) does not hold. Then there exists a positive bounded harmonic function u which is majorated by $G_2(\phi(z), t)$ on R_1 for some $t \in R_2$. Let $g(z) = -\min\{G_2(z, t), M\}$, where $M = \sup\{u(z): z \in R_1\}$, then $g \in S^+(R_2)$ and $g \circ \phi \leq -u$. On the other hand, we see by (a) that $g \circ \phi = \hat{g} \circ \phi \equiv 0$, since $\hat{g} \geq -\hat{G}_2 \equiv 0$. This is a contradiction.

316

2. (d) implies (b). For example, let $f = -\min\{G_2(z, t), 1\}$ for some $t \in R_2$, then we see by (d) that $\widehat{f \circ \phi} \equiv 0 \equiv \widehat{f \circ \phi}$.

3. (b) implies (c). Suppose that (c) does not hold, then every analytic function ψ in U bounded by 1 such that $\phi \circ \pi_1 = \pi_2 \circ \psi$ is not inner. Therefore the set $E = \{e^{i\theta} : |\psi^*(e^{i\theta})| \leq 1-2\delta\}$ is of positive measure for a sufficiently small positive number δ . By Egorov's theorem we can find a compact subset F of E of positive measure on which $\psi(re^{i\theta})$ converges uniformly to $\psi^*(e^{i\theta})$ as $r \to 1$. Then, we have $|\psi(re^{i\theta})| \leq 1-\delta$ for every $e^{i\theta} \in F$ and every $r \geq r_0$ for some r_0 with $0 < r_0 < 1$. Let f be as in (b), then we see that $\hat{f} > f$ on R_2 , since f is not harmonic on R_2 . Let $\varepsilon = \inf\{\hat{f}(\zeta) - f(\zeta) : \zeta \in \pi_2(\{|z| \leq 1-\delta\})\} > 0$, then we see that

(3)
$$(\hat{f} \circ \pi_2 \circ \psi)(re^{i\theta}) \ge (f \circ \pi_2 \circ \psi)(re^{i\theta}) + \varepsilon$$

if $r \ge r_0$ and $e^{i\theta} \in F$. Then, by (3), we see for $r \ge r_0$

(4)
$$(\hat{f} \circ \phi \circ \pi_1)(0) = (\hat{f} \circ \pi_2 \circ \phi)(0)$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} (\hat{f} \circ \pi_{2} \circ \phi)(re^{i\theta}) d\theta$$

$$= \frac{1}{2\pi} \left(\int_{F} + \int_{F^{c}} (\hat{f} \circ \pi_{2} \circ \phi)(re^{i\theta}) d\theta \right)$$

$$\ge \frac{1}{2\pi} \left(\int_{F} (f \circ \pi_{2} \circ \phi)(re^{i\theta}) + \varepsilon \right) d\theta$$

$$+ \int_{F^{c}} (f \circ \pi_{2} \circ \phi)(re^{i\theta}) d\theta$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} (f \circ \pi_{2} \circ \phi)(re^{i\theta}) d\theta + \varepsilon m(F) ,$$

where *m* denotes the normalized Lebesgue measure. Letting $r \to 1$, we see $(\hat{f} \circ \phi \circ \pi_1)(0) > (\widehat{f} \circ \pi_2 \circ \phi)(0)$. Then, using Lemma 1, we obtain $\hat{f} \circ \phi > \widehat{f} \circ \phi$, as desired. 4. (c) implies (a). Let $f \in S^+(R_2)$ and we assume that (c) holds. Without loss of generality, we may assume that *f* is nonnegative on R_2 . Let ρ be fixed with $0 < \rho < 1$ and let $M_\rho = \sup\{(f \circ \pi_2)(z) : |z| \le \rho\}$. By Egorov's theorem, for

every $\varepsilon > 0$, there exists an open subset O of the unit circle such that

(5)
$$m(O) < \varepsilon / M_{\rho}$$

and that $\phi(re^{i\theta})$ converges uniformly to $\phi^*(e^{i\theta})$ on O^c . Therefore there exists r with 0 < r < 1 such that

$$(6) \qquad \qquad |\psi(re^{i\theta})| > \rho$$

for $e^{i\theta} \in O$, since $|\psi^*(e^{i\theta})|=1$ a.e. on ∂U . Let u_{ρ} be the least harmonic majorant of $f \circ \pi_2$ in $\Delta_{\rho} = \{z : |z| < \rho\}$. Let $D_{\rho} = \psi^{-1}(\Delta_{\rho})$ and Ω_{ρ} be the connected component of $D_{\rho} \cap \Delta_r$ containing 0. Then, by (6), we see that SHŌJI KOBAYASHI AND NOBUYUKI SUITA

(7)
$$\partial \Omega_{\rho} \cap \Gamma_r \subset rO \equiv \{re^{i\theta} : e^{i\theta} \in O\}$$

Let ω be the harmonic measure of rO in Δ_r , then by (5)

(8)
$$w(0) \leq \varepsilon / M_{\rho}$$

Let $h_{\rho} = \widehat{f \circ \pi_2 \circ \phi} - u_{\rho} \circ \phi$, then we easily see that

(9)
$$h_{\rho} \ge 0$$
 on $\partial \Omega_{\rho} - \partial \Delta_r$,

(10)
$$h_{\rho} \ge -M_{\rho} \text{ on } \partial \Omega_{\rho} \cap \partial \Delta_r.$$

Therefore, by the maximum principle, we obtain

(11)
$$h_{\rho} \ge -M_{\rho} \omega$$
 in Ω_{ρ}

and hence $h_{\rho}(0) \ge -\varepsilon$. Since ε is arbitrary, we see that $h_{\rho}(0) \ge 0$. Letting $\rho \to 1$, we obtain

(12)
$$\widehat{f \circ \pi_2 \circ \psi} \cong \widehat{f \circ \pi_2 \circ \psi}$$

since $\lim_{\rho \to 1} u_{\rho} = \widehat{f \circ \pi_2}$. Using Lemma 1, we obtain $\widehat{f \circ \phi} \ge \widehat{f} \circ \phi$, as desired.

Proof of Theorem 2.

1. (a) implies (b). Suppose that (b) does not hold, then there exists $\alpha \in U$ such that $(\phi(z) - \alpha)/(1 - \bar{\alpha}\phi(z))$ is not a Blaschke product. Let S denote its singular part, then S is represented as

(13)
$$S(z) = \exp\left(-\int_{0}^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta)\right),$$

where μ is a positive singular measure on ∂U (see [3, p. 24]). Let $f(z) = -G_2(z, \pi_2(\alpha))$, then $f \in S(R_2)$ and

(14)
$$(f \circ \pi_2)(z) = \sum_{T \in \Gamma} \log \left| \frac{T(z) - \alpha}{1 - \bar{\alpha} T(z)} \right|$$

by Myrberg's theorem (see [8, p. 522]). Therefore

(15)
$$(f \circ \phi \circ \pi_{1})(z) = (f \circ \pi_{2} \circ \phi)(z)$$
$$= \sum_{T \in \Gamma} \log \left| \frac{(T \circ \phi)(z) - \alpha}{1 - \bar{\alpha}(T\phi)(z)} \right|$$
$$= \log \left| \frac{\phi(z) - \alpha}{1 - \bar{\alpha}\phi(z)} \right| + \sum_{\substack{T \in \Gamma \\ T \neq id}} \log \left| \frac{(T \circ \phi)(z) - \alpha}{1 - \bar{\alpha}(T \circ \phi)(z)} \right|$$
$$\leq \log |S(z)|$$
$$= -\int_{0}^{2\pi} \operatorname{Re} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta) ,$$

318

and hence

(16)
$$f \circ \phi \circ \pi_1 \leq -P[\mu] < 0,$$

where $P[\mu]$ denotes the Poisson integral of μ . Using Lemma 1, we have $\widehat{f \circ \phi} < \widehat{f \circ \phi}$ from which we see that (a) does not hold.

2. (b) implies (c). The following lemma is well known, for the proof, for example see [6, p. 335].

LEMMA 2. Let B be a Blaschke product, then

(17)
$$\lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} \log |B(re^{i\theta})| d\theta = 0.$$

Remark. (17) means

(18)
$$\widehat{\log |B|} \equiv 0$$

in our language, since the left-hand side of (17) is the value at 0 of the least harmonic majorant of $\log |B|$.

Let $f(z) = -G_2(z, t)$ for arbitrarily fixed $t \in R_2$. Then, by Myrberg's theorem,

(19)
$$(f \circ \pi_2)(z) = \sum_{T \in \Gamma} \log \left| \frac{T(z) - \alpha}{1 - \bar{\alpha} T(z)} \right|,$$

where α is a point in U with $\pi_2(\alpha) = t$. Therefore we see

(20)

$$(f \circ \phi \circ \pi_{1})(z) = (f \circ \pi_{2} \circ \psi)(z)$$

$$= \sum_{T \in \Gamma} \log \left| \frac{(T \circ \psi)(z) - \alpha}{1 - \overline{\alpha}(T \circ \psi)(z)} \right|$$

$$= \sum_{T \in \Gamma} \log |B_{T}(z)|$$

$$= \log |B(z)|,$$

where $B_T = (T \circ \psi - \alpha)/(1 - \bar{\alpha}T \circ \psi)$, which is a Blaschke product by (b) for every $T \in \Gamma$, and $B = \prod_{T \in \Gamma} B_T$. Using Lemma 2, we obtain

(21)
$$\widehat{f \circ \phi \circ \pi_1} = \widehat{\log |B|} \equiv 0.$$

Then, by Lemma 1, we see that $\widehat{f \circ \phi} \equiv 0$, which means that ϕ is of type $B1_1$, as desired.

3. (c) implies (a). Any superharmonic function s on a Riemann surface $R \notin O_G$ which is represented as

(22)
$$s(z) = \int_{R} G(z, t) d\mu(t),$$

where G is the Green's function of R and μ is a nonnegative measure on R, is called a (Green's) potential. By Riesz's theorem (Satz 4.6 and Folgesatz 4.6 of

[2, pp. 41-42]), a nonnegative superharmonic function is a potential if and only if its greatest harmonic minorant is 0. Let $f \in S(R_2)$, then $\hat{f} - f$ is a potential on R_2 , i.e.

(23)
$$\hat{f}(w) - f(w) = \int_{R_2} G_2(w, \zeta) dm(\zeta) ,$$

where *m* is a nonnegative measure on R_2 . By (c) $G_2(\phi(z), t)$ is a potential on R_1 for any $t \in R_2$, i.e.

(24)
$$G_{2}(\phi(z), t) = \int_{R_{1}} G_{1}(z, \tau) d\nu_{t}(\tau) ,$$

where ν_t is a nonnegative measure on R_1 for every $t \in R_2$. It is known that ν_t is the sum of the point masses at points s such that $\phi(s)=t$ counting with multiplicity (see [4, p. 440]). Therefore we can easily see that for any compact $K \subset R_1$, $\nu_t(K)$ is upper semi-continuous as a function of t. Define a nonnegative measure ν on R_2 by

(25)
$$\nu(K) = \int_{R_2} \nu_t(K) dm(t) ,$$

for any compact $K \subseteq R_1$. From (23), (24) and (25) we obtain

(26)
$$(\hat{f} \circ \phi)(z) - (f \circ \phi)(z) = \int_{R_1} G_1(z, \tau) d\nu(\tau) ,$$

which means that $\hat{f} \circ \phi - f \circ \phi$ is a potential on R_1 , and hence its greatest harmonic minorant is 0 by Riesz's theorem cited above (cf. [4, pp. 449-451]). Therefore we obtain $\hat{f} \circ \phi = \widehat{f \circ \phi}$, as desired.

References

- [1] AHLFORS, L.V. AND L. SARIO, Riemann surfaces, Princeton university press, 1960.
- [2] CONSTANTINESCU, C. AND A. CORNEA, Ideale Ränder Riemannscher Flächen, Springer-Verlag, 1963.
- [3] DUREN, P.L. Theory of H^p spaces, Academic Press, New York, 1970.
- [4] HEINS, M. On the Lindelöf principle, Ann. of Math. 61 (1955), 440-473.
- [5] RUDIN, W. Analytic functions of class H_p, Trans. Amer. Math. Soc. 78 (1955), 46-66.
- [6] RUDIN, W. Real and complex analysis, MacGraw-Hill, New York, 1974.
- [7] RYFF, J.V. Subordinate H^p functions, Duke Math. J. 33 (1966), 347-354.
- [8] TSUJI, M. Potential theory in modern function theory, Maruzen, Tokyo, 1959.

DEPARTMENT OF MATHEMATICS, Tokyo Institute of Technology.