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UNICITY THEOREMS FOR ENTIRE FUNCTIONS

BY HIDEHARU UEDA

1. Ozawa has proved some unicity theorems for entire functions in [7].
His main interest lies in the following problem: How does the distribution of
zero-one sets affect the unicity in the case of entire functions ? In this paper
we shall be concerned with the same problem.

If two entire functions / and g have the same α-points with the same
multiplicities, we denote this by f=a^g=a for simplicity's sake. And we
denote the order of / by ρf.

With this notation, we may state two unicity theorems in [7] as in the
following manner.

THEOREM A. ([7, Theorem 4]) Let f and g be entire functions. Assume
that ρf, pg<oo, f=Q^g=zθ, / = 1 ^ £ = 1 and <5(0,/)>l/2. Then fg==l unless

THEOREM B. (7, Theorem 7]) Let f and g be entire functions. Assume that
f=l^±g=l, 5(0, / ) > 0 and 0 is lacunary for g. Then fg^l unless f=g.

In this paper we shall give four results on unicity which are related to
Theorem A and one depending on Theorem B. The detail is as follows.

As Ozawa pointed out in [7], the assumption " 5 ( 0 , / ) > l / 2 " in Theorem A
is best possible. Hence some additional conditions are needed in the case of
5(0,/)^ 1/2 in order to obtain the conclusion "f=g". With respect to this
point we prove the following two theorems.

THEOREM 1. Let f and g be entire functions. Assume that ρf, pg<
co, and

(A) / = 0 ; ± £ = 0 , f=l^g=l, (B) 0<5(0,/)^l/2 and further that (C) there exists
at least one zero w such that fcn\w)=gCn\w)Φθ and fa\w)=ga\ιu)=0 for
y=0, 1, .-., n-1. Then f=g.

THEOREM 2. Let f and g be entire functions. Assume that pf, ρg<
oc, and

(A) f=0^g=0, / = l ^ ^ = l , (BY 5(0,/)=0. Further assume that (C)r there exist
infinitely many zeros {w} of f for which the same condition is satisfied as w in
(C) of Theorem 1. Then f=g.

In the above Theorem 2, we cannot replace " infinitely many zeros" by
"Λfinitely many zeros". To see this, we may consider the following example.
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Let / and g be as follows:

I p2rΛL(z ) I ^2-iL(2)

J^' l — e2raz > £ W \_e<lrΛZ * >

where

L(z)=(n+1) \[ I I (t-k)dt ( n = l , 2, •••).
J O A = l

Then / and g satisfy the conditions (A) and (B)' in Theorem 2. However, there
exist only n zeros: {k}"^ of / for which the same condition is satisfied as w in
(C) of Theorem 1.

Now it is natural to ask whether the order restriction of / and g in Theo-
rem A can be removed or not. In this direction, we have the following fact:

THEOREM 3. Let f and g be entire functions. Assume that (A) / = 0;i!£=0,
/ = l ; ± g = l and (C) N(r,f, g)<k[m(R, f)+m(r, g)~] (0<£<l/6), where N(r, f, g)
is defined as follows :

fkr, f, 8)^^^^f^ d t + m f, g) log r ,

Then fg=l unless f=g.

From Theorem 3 we deduce the following two corollaries immediately.

COROLLARY 1. Let f and g be entire functions. Assume that pf—pg — 00,
f^O^g^O, f=zl^g=i and δ(0, /)>5/6. Then fg=l unless f==g.

COROLLARY 2. Let f and g be entire functions. Assume that pf—pg~vo,
f—O^g^Q and f=l^lg=A. Further assume that all zero-points excepting at
most finite number have multiplicities ^ 7 . Then fg = l unless f^g.

Thirdly as another application of the proof of Theorem A, we have

THEOREM 4. Let f and g be entire functions. Assume that ρf, ρg<oo} f^g,
and (A) f—0^1g=0, f—lϊ±g=l and that (B)' / has at least one zero and all of
thenCJie on the real axis. Then f and g are one of the following two forms:

y-— , a(Φ0), b, d: real constants,



214 HIDEHARU UEDA

2 ) f^

a(Φθ), b: real constants, m ( | m | ^ 2 ) : an integer.

This theorem yields the following fact immediately.

COROLLARY 3. Let f and g satisfy the assumptions (A), (B)' and ρf,
of Theorem 3. Further assume either ( i ) / = 1 has at most one root, or (ii) not
all the roots of / = 1 lie on a straight line being parallel to the real axis. Then
f=g.

Finally as an application of Theorem B, we prove the following

THEOREM 5. Let f and g be entire functions. Assume that pf, pg<co, and
(A)' gΦO, /(0)=l, f=l^ϊg=l and that (B)' the roots of / = 0 exist and all of
them lie on the real axis. Then f and g are one of the following three forms:

1) f{z)=(X/2+ib)+{l/2-ib)exat

9 g(z)=eιaz,

a(Φθ), b: real constants,

2) f(z)=l-eιag+e2ιaz, g{z)=-eιaz,

a(Φθ); a real constant,

3) f(z)=l+ibe-ιa*-ibeta*(=l+2b sin(az)), g{z)=e2ιaz,

a(Φθ), b ( |/?|^l/2): real constants.

2. In order to prove our theorems, we need the following several lemmas.

LEMMA 1. ([1, Proposition 1]) Let Jl be the class of all entire functions
having only real zeros and real ones. If f is not a real entire function, then it
is necessarily one of the following two forms:

(i) f(z)=

ξ, η, ηλ: real constants,

πn f(ή

ξ, rj: real constants, p(Φ0, 1): an integer.

LEMMA 2. (c.f. [3, Theorem 1.11]) Let P(z) be a canonical product of genus
q. Then m(r, P)=o(rq+1) (r—oo).

LEMMA 3. ([2, Theorem 1., Corollary 1.]) Let f be an entire function of
finite order, all of whose zeros lie on the real axis. If the genus q of f is not
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less than two, then 3(0, / )>0. Further if all the zeros of f lie on the positive
(or negative) real axis, then 3(0, / ) > 0 unless q=0.

LEMMA 4. (c./.[3, Theorem 2.1.]) Assume that f is an entire function. Let
o-i, " , <2p ( ί ^ 2 ) be distinct finite complex numbers. Then

v
(p-l)m(r, f)J

Γλ
r

1(r)^ Σ N(r, av, f)JrS(r, j),

where S(r, f)=O(\ogr-m(r, /)) as r-^(χ> through all values if pf<co, and as
r—>co outside a set E of finite linear measure otherwise.

LEMMA 5. ([5, Theorem 4.]) Let fn (n = l, ••• , p) be non-constant entire
p

functions satisfying Σ tfn/π —1 with non-zero constants an. Then
71 = 1

P

Σ 3(0, fn)^ρ—l.
71 = 1

3. Proof of Theorems 1 and 2. We refer to Ozawa's argument in [7, p.
41β-p. 419]. Firstly, from ρf, pg<co and the assumption (A), we have

(3.1) f=gea , f-l=(g-l)eβ

with polynomials a and β. Next, we divide our argument into the following
three cases in accordance with Ozawa's.

Case 1. eβ = a constant c (ΦO)
Case 2. ea~β = a constant c (ΦO)
Case 3. ea^a constant and ea~βΞ^a constant
Now we start from the Case 1. In this case /— 1—c(g—1). Since / has

zeros, c must be one. This implies f^Ξg. Next we consider the Case 2. In
this case f=ceβg (cΦO), f—l = eβ(g—l). If c = l, we have f^g. If cφl, we
have

Since g is an entire function, (l — c)f+c=0 has no roots. This implies

δ(— - - - - - , / ) = 1 , so we have δ(0, / ) = 0 . Further from the fact that (\ — c)f+c
\ 1 — c /

ΦO, we see the existance of a polynomial P(z) satisfying (1 — c)/+c — ePiz\
Denote an arbitrary zero of / by u. If we expand / and g in power series
around the point z=u, we obtain

and
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where m is the least positive integer for which i/C7l)(iί) does not vanish. These
expansions show that the assumption (C)' in Theorem 2 is not satisfied. Finally,
we consider the Case 3. In this case, (3.1) implies

Since / is an entire function, we deduce from (3.2)

(3.3) β(z)=2πιL(y(z)), 2πιy{z)=β{z)-a{z)

with a polynomial L{z) of degree ^ 1 (See [7, p. 417]).
Assume first that the degree of L(z) is greater than one. Then Ozawa's

argument in [7, p. 417, p. 418] show (5(0, /)—0. Denote an arbitrary zero of /
which satisfies the condition described in (C) of Theorem 1 by iv. It is easy to
see from (3.3) that such w satisfies e

27Vlyίw)~l. Since w is a zero of /, the
order of 1-point of e

2r:UiyCz^ at z—w is higher than that of e2r:ιy(Z) at z—w.
This implies that the order of 1-point of e2τ:ίLOΛΌ) at z=ιv is at least two. If
we put H(z)=l~e27TiL(yCΌ\ we have H'(w)^-2niL'(y(iv))y'(iv)^0. However,
since L and y are polynomials in z, the number of such w'§ is at most finite.
Thus the assumption (C)' is not satisfied.

Assume next that the degree of L{z) is one. Then / and g are following
forms: (see [7, p. 418])

1 __ p2xιm y (.z)

On: an integer).

Suppose that mΦ— 1, 0, 1. This case can be handled quite similarly as the
above case, so that it is shown that there are no points {w} satisfying the
condition described in (C) of Theorem 1. Assume that m=0. Then f=g==0.
Assume that m~l. Then f=g=l. Assume that m — — 1. Then f— — β--ιv'z\
This is absurd.

This completes the proof.

4. Proof of Theorem 3. By assumption (A), there exist two entire functions

a and β such that

(4.1) f=eag, f-l=(g-Deβ.

Firstly, assume either eβ or ea~β is a constant c(-φθ). In such cases Ozawa's
argument in [7, p. 416, p. 417] and simple computations in the proof of Theorems
1 and 2 show that c must be one, otherwise the assumption (C) of Theorem 3
is not satisfied. This implies f=g.

Next, assume neither eβ nor ea~β are constants. In view of (4.1), we have
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1— aβ \—oβ

Since / is an entire function, (4.2) implies

(4.3) 0^N(r, 0, f)=n(r, 1, eβ)-N(r, 1, eβ~a)

^N1{r, 1, eβ)+N(r, 1, eβ)-N(r, 1,

gNi(r, 1, eβ)+N(r,f, g),

where used the following fact:

(4.4) N(r,f, g)=N(r, 1, eβ)—N(χ, 1, e ' 3 ~ Λ ) .

To see this, it is sufficient to prove

(4.4) #(r, /, g)~n{r, 1, eβ) — n(r, 1, g'5~ft).

However, (4.4) is an immediate consequence of (4.2).
Combining (4.3) and the assumption (C)", we have

(4.5) N(r, 0, f)^Nλ{r, 1, eβ)+k[m(r, f)+m(r, g)l .

To estimate the right hand side of (4.5), we proceed as follows. Applying
Lemma 4 with f—ββ, we have

(4.6) m{χ, eβ)JrN1(r, eβ)^Niχt 1, ^'θ)+(9(log r m(r, eβ)) (r$Eie β), r—->oo)

This yields that

(4.7) ΛΓi(r, 1, eβ)^Nx(r, e>3)=O(}ogr m(r, eβ)) {r&E(eβ), r—*°o).

Also (4.6) implies that

(4.8) Jim 'L~^~~ef\''^l'

In the same way we have

Mr 1 eβ"n)
(4.9) lim J 7 A ; _ a , ; - l .

It follows from (4.3), (4.8) and (4.9) that

(4.10) m(r, eβ)^(l — o(l))m(r, eβ~a) (r^E(eβ)^JE(Eβ~a)~E/

f r—>co).

Hence evidently we have

and so,

(4.12) mir, g)^m{r, f)-\-tn(r, en)^m(r, f)-rm(r, eβ)Jrin{r, ep~a)

r, e**) (r&E', r—>oo).
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Substituting (4.7), (4.11) and (4.12) into (4.5), we obtain

(4.13) N{r, 0, f)<(6k+o(l))m(r, eβ) + O(logr) (r$E', r—oo).

To complete the proof, we may use a method of Nevanlinna [4]. If we
put φ1=eβ, φ2

:= — eβ~a'f, and φs=f, then (4.2) implies (p1

Jrφ2

J

Γφ-ό~Έl, so that
p ί n ) + $ n ) + $ n ) = 0 (n=l, 2). Further we put

(4.14)

Assume first that Δ^ΞO. Then

(4.15) φλ= —•

Direct computation shows that

1

ψl /ψl

From this we easily obtain Λr(r, Δ)̂ yV(7", 0, / ) . Combining this and (4.13) we
have

r&E\ r— oo).

, Δ"1)

(4.16) N(r, A)^(fik+o(l))m(r, eβ) + O(log r) (

On the other hand, from (4.15) we have

(4.17) m(r, eβ)=m(r, φi)=?n(r, ΔVΔ)^?n(r,

^m(r, Δ0+m(r, Δ)+7V(r, Δ).

Further, we have from (4.10) and (4.11)

(4.18) m{r, <p2)=m(r, eβ-a-f)^m{r, f) + m(r, e

and so

(4.19) m(r, φ3)=m(r, l — φ1 — φ2)ύm(r, φj+mir, φ

^(4+o(l))w(r, β'9) (r^Ξ^7, r—oo).

It follows from (4.14), (4.15), (4.17), (4.18) and (4.19) that

(4.20) ra(r, Δ)=O(logr m(r, e-9)) and ?n(r, Δ /)=O(logr m(r,

Substituting (4.16) and (4.20) into (4.17), we obtain
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m(r, e?)<O(\ogr m(r,

219

E', r—>oo). This is a contradic-

ψz

Since ^ < 1/6, (4.21) implies m(r, eβ)=O(logr)<
tion. Assume next that ΔΞΞO. This implies

ψi ψz <Ps 1 ψ2 φ<6
/ / / A / /

ψl ψ2 ψ'S —~ vJ ψi ψz

Hence we have φ2=CφΆ+D (where C and D are constants.), i.e.

(4.22) -et-« f=Cf+D.

If / has a zero, (4.22) implies D=0, so f=Q=g. if / has no zeros, (4.22) implies

D=0 and that f— r ,--TJ—j—r Since/is entire, c must vanish. Then/-— ~Derϊ~'\

This and the fact that ^i + ^ 2 + ^ 3 = β ' 3 — β(?"α / + / Ξ l imply

(4.23) eP-De«-P=l-D.

Assume that ,0=1. In this case we have / = — ea~β — ~eβ and g—e~nf~ — e~β+a

~ — e~β. Hence fg=l. Assume that DΦl. In this case, using Lemma 5, we
obtain 2=<5(O, eβ)-^δφ, ea~β)^l, which is impossible.

This completes the proof.

Remark. In the above Theorem 3, we consider the case of ρf, pίί<oo.
Then the same conclusion of Theorem 3 holds if we take the constant k between
zero and 1/4 (0<&<l/4). To see this, we may refer to [6, Theorem 3]. This
theorem and its proof show that m(r, f)^m(r, g)~m(r, eβ) (r—*oo) under our
assumptions. Taking this fact into consideration, the reasoning in the above
proof yields the fact stated as Remark. And we notice that this remark yields
Theorem A.

5. Proof of Theorem 4. We refer to Ozawa's argument in [7, p. 416-p.
419]. In this case we have

(5.1) f=eag, f-l = e

with polynomials a and β.
Case 1. Assume that eβ is a constant c(Φ0). Since / has at least one zero,

/— l=c(g—1) implies c=l. Hence f=g. This is a contradiction.
Case 2. Assume that ea~β is a constant c(Φθ). If c=l, (5.1) implies f^g,

a contradiction. If cΦl, (5.1) implies

(5.2) σ= tΛ

Since g is an entire function, (l — c)/+c=0 has no roots. This yields δ(0, /)=0.



220 HIDEHARU UEDA

It follows from this, the assumption (By, and Lemma 3, that the genus of /
must be zero or one. So, if we put f=Pey with some canonical product p and
polynomial γ, the degree of y is at most one. This and Lemma 2 imply m(r, f)
=o(r2) (r—>oo).

Now we set f+c/(l — c)=έr with some polynomial η. Since m(r, f)=o(r2)
(r—>oc) and / is not a constant, the degree of η must be one: η=a1z

Jrb1(aΦθ).
Using the assumption (B)' and the fact that <5(0, / ) = 0 , we easily see that ax

must be a purely imaginary number. So we have |c/(l — c)\=eRebl. All the
above results combine to show that / = | c/(l — c)\(e

ι{az+b'—etd) and £ = / / [ ( l — c)f+c\
(c(Φ0, 1): a constant, a(Φθ), b, d: real constants).

Case 3. Assume neither e*β nor ea~β are constants. From (5.1) we have

Since / is an entire function, we deduce from (5.3)

(5.4) β(z)=2πιL(y(z)), 2πιy(z)=β(z)-a(z)

with a polynomial L(z) of degree^ 1 (See [6, Theorem 3.]).
Now we assert that the degree of L must be one. Suppose contrary to

this assertion. Then simple computations give

(5.5) m(r, eβ)~m(r, f) (r->oo) and <5(0,/)=0.

Using (5.5) and the assumption (B)r, Lemma 3 implies

(5.6) m(r, e?)=o(r2) (r->oo).

On the other hand, since the degree of y(z) in (5.4) is not less than one, the
degree of β(z) in (5.4) is not less than two, so we deduce that

(5.7) m(r, e^O(r2) (r->oo).

(5.6) and (5.7) evidently contradict each other. Hence the degree of L must be
one.

Assume that the degree of L is one. Then f(z) must be of the following
form :

(5.8) /(*) = --i~^t7ciΓ (?n: a n

(See [6, Theorem 3]). First assume that | m | ^ 2 . In this case, the roots of
/ = 0 are the ones of y(z)=n/\m\ Φ an integer (n : an integer). We deduce
from this and the assumption (B)' that the degree of y{z) must be one : y(z)=
az+b (aΦO). Here a and b are clearly real. Substituting y(z)=az+b into
(5.4), we obtain

(5.9) β(z)-a(z)=2πi(az+b).

Comparing (5.3) with (5.8) and using (5.1), we have
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β(z)=m(β(z) — a(z))+2πil (I: an integer^

=2πιm(az+b)+2πil

and hence

(5.10) a(z)=2πi(m-iXaz+b)+2πil.

Thus we obtain from (5.8), (5.9), (5.10) and (5.1)

Finally we consider the case of m= — l, 0 and 1. Assume that m= —1.
Then from (5.8) we have /— — e~2zιyiz) Φ§, a contradiction. Assume that m=Q.
Then from (5.8) we have / = 0 . This is absurd. Assume that m=l. Then
from (5.8) we have / Ξ I , which is untenable.

This completes the proof.

6. Proof of Theorem 5. Firstly, making use of Theorem B, we have 5(0, f)
=0. Then the assumption (B)' implies that

(6.1) the genus o f / ^ l and m(r, f)—o(r2) (r~*oo).

Hence, in view of Lemma 4, we have

m(r, g)ύN(r, 0, g)+N(r, 1, g)+O(\ogr)=N(r, 1, /) + 0(logr)

^m(r, /)+0(log r)=o(r2) (r->oo).

Consequently the assumptions (A)' and (B)' imply

(6.2) g(z)=eaz (aΦO).

Now, from pf, p8<°° and the assumption (A)' we obtain

(6.3) f(z)=l+(g(z)-l)ea™.

with a polynomial a. (6.1), (6.2) and (6.3) imply that the degree of a must be
zero or one: a(z)~cz-\-d ((c, d)Φ(0, 0)). Therefore we have

(6.4) f(z)^ιjre(a+vz+d_ecz+d (a(Φ0), (c, d)Φ(0, 0))

Next we assert that both a and c are purely imaginary numbers. First we
note that (6.2) implies

(6.5) π(r, 1, g)~ 'a-'- r , N(r, 1, g)~ ' - ' r ( r - c o ) .
π π

Then, by the first fundamental theorem, we obtain

(6.6) m(r,f)^N(r, 1, f) + O(l)=N(r, 1, #) + O(l) (r-oo).

It follows from (6.1) and (6.6) that the genus of / must be one. Hence by
Lemma 3, wre see that the number of the roots of f=0 which lie on the posi-



222 HIDEHARU UEDA

tive real axis is infinite, and that the same is true for the zeros of / on the
negative real axis. From this we easily deduce that both a and c are purely
imaginary numbers. Therefore / must be of the following form :

(6.7) / ( z ) = l + I c I eiίίn+β:>z+n- I c | eιcβz+'n ,

c=\c\eιrΦQ, a, β, γ : real constants.

Case 1. Assume that / is a real entire function. In this case we have
sin([α:+/3]x + r)—sin(/3x+r)=0 for any real x. This implies that a+2β—0,
γ=(mJrl/2)π (in: an integer) and c = ±i\c\. Substituting these into (6.7) we
have f(z)=l±i\c\e-ιβzTi\c\etβ* (\c\Φ0, β=0). Here using the assumption (B)',
we have | c | ^ l / 2 .

Case 2. Assume that / is a non-real entire function. Since the roots of
g=l are {2nπι/a)t™-oo and a is purely imaginary number, we see that all the
roots of f=l lie on the real axis. This and the assumption (B)/ imply ftΞcJ.
Hence we can apply Lemma 1 to /. Firstly we rewrite the functions (i) and
(ii) in Lemma 1 in the following forms .

( i ) / ( * ) = --—
Δi

(p=2f 3,
(ϋ) /(*)=

(6.8)

Case 2.1. Assume that both a and β are positive in (6.7). Comparing (6.7)
with (ii) (the case of p=2) in (6.8), we deduce that | c | = l , (βz+r)+(2k + l)π =
2(ξzJ

rη) (k: an integer) and that ([a+βΊz+γ)+2mπ=4(ξz+η) (m : an integer).
These imply a=β, γ=2lπ (/: an integer) and c—1. Thus we have f(z)~

Case 2.2. Assume that α < 0 and β>0 in (6.7). Comparing (6.7; with (6.8),
we deduce that α+/3^0. If α+/3=0, we use (6.7) to obtain f(z)=l-rc — ceιβί.
However, the assumption (B)' requires that c= — 1/2+ib (b : a real constant). If
α+/3>0, we deduce from (6.7) and (ii) in (6.8) that | c | = l , ([α+#]z-f/')+2mπ =
2(^+37), and that (βz+r)+(2k+l)π=4(ξz+η). These imply that a—-β/2, γ—
(2/+l)ττ pnd c = - l . Hence we have f(z)=l-eιiβm*+eιβ\

Case 2.3. Assume that α > 0 and /3<0 in (6.7). Doing in the same way we
deduce that α+/3=0. Hence we have the same result as in the first half of
Case 2.2.

Case 2.4. Assume that both a and β are negative in (6.7). Doing in the
same way, we have the same result as in Case 2.1.

Case 2.5. Assume finally that β=0 in (6.7). In this case, from (6.7) we
have f(z)=l — c + ceιaz. Here using the assumption (B)', we have c—1/2+ib (/;:
a real constant)

This completes the proof.
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