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ON CRITERIA OF #-HYPERELLIPTICITY

BY TAKAO KATO

I. Introduction. Let S be a compact Riemann surface of genus g^~2. 5 is
called ^-hyperelliptic provided that S is a two-sheeted covering of a surface
of genus g. O-hyperelliptic and 1-hyperelliptic are called hyperelliptic and
elliptic-hyperelliptic, respectively. Let P be an arbitrary point of S. Let
φi> "' > φg be a basis of the space of abelian differentials of the first kind on S.
Let kτ be the order of the zero of φ% at P. Then we can choose φu ••>, φg

such that Q=k1<k2< ••• <kg^2g-2. The sequence G(P)={k1+l, £ 2 + l , •••, kg

+1} is called the Weierstrass gap sequence at P. P is called a Weierstrass
point of S if kg^g. Denote N(P) the sequence {1, 2, •••, 2g}-G(P). If k is in
N(P), then there is a meromorphic function on 5 which is holomorphic except
for a pole of order k at P.

It is well known that if N(P)={2, 4, •••, 2g} for some P, then S is hyper-
elliptic and vice versa. If S is elliptic-hyperelliptic and P is a fixed point of
an elliptic-hyperelliptic involution, then N(P) contains {4, 6,8, ~-2g} and no
odd number less than 2g—3 can be contained in N(P). Moreover, if S is g-
-hyperelliptic, gl^ig— 1 and P is a fixed point of the ^-hyperelliptic involution,
then KP8'1) is equal to (g+ϊ)/2—g or g/2—g [6]. Here, /(P*"1) is the dimension
of the space of meromorphic functions on S whose divisors are multiples of
Pι~g. This is related directly with the vanishing property of the theta function
at K(P), the Riemann constant vector in the Jacobian variety.

In this paper we shall study some criteria of Jr-hyperellipticity in terms of
a property of the Weierstrass gap sequence, which is also reflected with a
vanishing property of the theta function. Accola [1] has treated a related
problem in terms of the vanishing property at half periods of the Jacobian
variety.

2. Statement of Theorems. We shall prove the following theorems.

THEOREM 1. Let S be a compact Riemann surface of odd genus g ^ l l . //
l(Pg-ι)—(g—l)/2 for some point P on S, then S is elliphc-hy per elliptic.

THEOREM 2. Let S be a compact Riemann surface of even genus g^lL If
l(Pg-ί)=g/2—l for some point P on S, then S is elliphc-hy per elliptic.
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THEOREM 3. Let S be a compact Riemann surface of odd genus g^l7. If
l(P8~1)=(g-3)/2 for some point P on S, then S is 2-hy per elliptic.

THEOREM 4. Let S be a compact Riemann surface of even genus g^20. //
l(Pg~1)=g/2-2 for some point P on S, then S is 2-hy per elliptic.

For g>3, we cannot obtain such a criterion as above. We, however, obtain
another criterion by a similar approach to Accola's [1, p. 70]. A sequence
N= {ιlf ι2f •••, ig}, 0<z 1 <z 2 < ••• <ιg=2g, is called admissible provided that for
ιm and ιn is N, ιmΛ-ιn also in N unless im

J

rin>2g. Then we have

THEOREM 5. Let S be a compact Riemann surface of genus g. Let {ιu •••, ig}
be an admissible sequence, where g ^ 8 g + 3 . Suppose that N(P)={jn}, for some
point P on S, where jn—2ιn for l^nSg, jn=2n-\-2g for g-{-l^n^5g-\-2 and
Jg = 2g Then S is g-hy per elliptic.

3. Lemmas. To prove Theorems we shall prepare some lemmas.

LEMMA 1. Give integers t^2, a^2, β^O, l^Si<s2< ••• <sn^a. Then the
number of integers ka+Sj (k=0, 1, 2, ••• , j = l, •••, n), satisfying 1 + βf^ka+Sj^
t + β, does not exceed ft(ί+α—n)/a. Equality occurs only if n — a or n—t—ma,
for some m.

Proof. Let M be the number which we shall estimate. Put t—ma-\-tly

0^i<tf. Then we have M^ftm+min(^, n). If n ^ ί h then we have M^nm+n
= n(t—t1)/a-rn^n(t—n)/a+n. If n>tlf then we have M^nmJrt1=n(t-\-a—n)/

LEMMA 2 (Jenkins [5]). Let S be a compact Riemann surface of genus g and
let P be a point on S. If h and k are in N(P) and (h, k)=l i.e. h and k are
copnme, then g^(h-l)(k-l)/2.

Since N(P) is an admissible sequence, we have immediately the following:

LEMMA 3 (Hurwitz [4], Kusunoki [7]). Let S and P be as in Lemma 2. Let
k be the least number of N(P), i. e. k is the first non-gap. Then G{P) consists of

1, k + 1, •••, ra^ + 1

2, k+2, ~ ,m2k+2

k-i

where Σ (ntj + ϊ)=g and 0<?nJk
Jrj<2g.

J = l

To prove the following four lemmas, we shall use Lemma 3 frequently but
implicitly. Since all the proofs of these four lemmas are in similar ways, we
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shall only note the proof of Lemma 7. The proofs of the other lemmas are
simpler than that.

LEMMA 4. Let S and P be as in Theorem 1. Then N(P) is either {4, 6, 8,
- , 2#-4, 2#-3, 2g-2, 2g) or {4, 6, 8, - , 2^-4, 2g-2, 2g-l, 2g}.

LEMMA 5. Let S and P be as in Theorem 2. Then N(P) is either {4, 6, 8,
- , 2#-4, 2g-3, 2g-2, 2g} or {4, 6, 8, - , 2g-4, 2#-2, 2g-l, 2g}.

LEMMA β. Let S and P be as in Theorem 3. Then N(P) is one of the
following: {4, 8, 10, 12, - , 2^-8, 2^-6, 2g-4, 2#-3, 2^-2, 2^-1, 2g}, {4,8,10,
12, -. 2^-8, 2g-6, 2g-5, 2g-4, 2g-2, 2g-l, 2g), {4, 8, 10, 12, - , 2^-8, 2g-7,
2^—6, 2g-A, 2g-3, 2g-2, 2g}, {6, 8, 10, 12, •••, 2g-8, 2g-6, 2g-A,2g-?>,2g-2,
2g-l, 2g), {6, 8, 10, 12, - , 2#-8, 2^-6, 2g-5, 2^-4, 2^-2, 2^-1, 2g}, {6, 8,
10, 12, -. , 2^-8, 2g-6, 2g-5, 2g-4, 2g-3, 2g-2, 2g}, {6, 8, 10, 12, - , 2#-8,
2g-7, 2g-6, 2g-4, 2g-2, 2g-l, 2g}.

LEMMA 7. Let S and P be as in Theorem 4. Then N(P) is as in the preced-
ing lemma.

Proof Put N(P)={kj;j=l, 2, •••, 2r+β}. Here r=g/2-3^7, kt<kJf if ι<j
and k2r+6=2g. Since /(P ί~1)=r+1, we have kr^g-l<kr+1. Put M={kίf k2, •••,
&r, kr+ki, kr

J

Γk2, •••, kr+kr-!, 2kr, 2g). It is obvious that Mis included in ΛΓ(P).
Since *M=2r+l, there are at most five k's between kr and kr+kx. We shall
consider the following 16 cases.

Case I) k^3. Case II) k^i and kr+k1=kr+1. Case III) /?2=4, 5 and £r+&!
= kr+2. Case IV) ^i^6 and kr

Jrk1=kr+2. Case V) ^j=4 and kr

J

rk1=kr+z. Case
VI) 5 ^ ^ ^ 7 and &r+&1=&r+3. Case VII) fe^δ and kr+kx=kr+z. Case VIII) ^ 1 =

4, 5 and kr+kx=kr+A. Case IX) 6^kλ^9 and krΛ-k^k^. Case X) AJ^IO and
kr+k^kr+t. Case XI) 4 ^ ^ ^ 7 and ^ r + ^ 1 = ^ r + 6 . Case XII) 8^/^10 and ^ r +
k^kr+s. Case XIII) fc^ll and ^ r + ^ 1 = ^ r + 5 . Case XIV) 4 ^ ^ ^ 8 and kr-\-kx=
kr+&. Case XV) 9^6^12 and ^ r + ^ 1 = ^ r + e . Case XVI) 6^13 and kr+k^k^.

In the following discussion we shall not write down that "this is a con-
tradiction". But it will be almost clear in the context.

Put N\P)=N{P)r\{l, 2, - . , g-l} and G/(P)=G(P)πte, g+h - , 2^-1}.
Case I) If £ 1 = 2, then S is hyperelliptic. Hence, /(P^ 1)=(^-2)/2=r+2.

Suppose k1=3. If k is in N(P) and (3, k)=l, then by Lemma 2, k^g+L Hence,

= 3

Here [s] denotes the integer part of s.
Case II) In this case kλ\k3 for j^r. Therefore,

Case III) Suppose kι—^>. If k is in N(P) and (5, k)=l, then by Lemma 2,
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k^r+4^11. Hence,

* N\P)=rg2[^~^-]-l and r^5.

Suppose kλ=4: and (4, &2)=1. Then by Lemma 2 we have k2^15. Substituting
n—2, α=4, β=14 and ί=^—15 in Lemma 1, we have

Suppose kλ=4: and (4, &2)^2. If &2Ξ 1̂0, then

If k2=6, then

If k2=S and &3=10, then iV(P) is one of the first three of the desired result.
If k2=8, &s=12, then

If &2=8 and &3 is odd, then by Lemma 2, &3^15. But 12 is in iV(P).
Case IV) Substituting 72=2, a=klf β=kχ—l and t—g—kx in Lemma 1, we

have

l ^ ^ λ a n d r^ 4.

Case V) Substituting n = l, a=4, β=g—l and ί=,g in Lemma 1, we have

and r ^ 2 .

Case VI) Since *(M\J {kr+1, ^ r + 2 })=2r+3, we shall consider the following
five subcases. Case VI-1) k2=2k» k4=3kx. Case VI-2) k2=2kly kB=3k1. Case
VI-3) ks=2klf ^5=3*!. Case VI-4) k3=2klf k^^k,. Case VI-5) k,=2klf k7=3kλ.

Case VI-1) Since k2=2ku by use of Lemma 1 we have

A ? 1 3 ) , and jfe1=5.

Since k2=2klf kά=3klf we have

2 ^ ! + ^ 6 , k4+k5, k4+k6, '" , k4+kr, k5+kr, k6+kr,

- . , kr+kr, 2g).

Hence, k5+k6=7klt If & 1 +£ 3 =£ 5 , then 2k3=kί

J

ΓkQ. Therefore, ?>k^=-lk1 and
&!=5. If k1+ks=k6, then 2k3=2k1+ki=5kί and ^!=5.
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Case VI-2) Since k2=2klf we have k1=5. Put

M'= {klf '" , k7, k2+k2, k2-{-k3, ••• , k2-{-kr, ks+kr, ••• , kr+kr, 2g) .

Then iVΓ is included in N(P) and # M ' = 2 r + 5 . If 2ks=k2+kA and ks+kA=k2+k6

=5klf then 3&8=7fci and ^ = 5 . If 2k3=k2+ki and k^k^Φk^k^, then neither
&3+&4 nor &3+&7 is in M' and *7V(P)^2r+7. If 2k3=k2

J

Γk5, then 2kz=^)kι and
&!=5. If 2k3Φk2

Jrk4: and 2^ 3^5^!, then neither 2^3 nor kzΛ-kQ is in M/ and

Case VI-3) Applying Lemma 1, we have

If 2k3=k7, then k6=2k1+k2 and 2k2=?>k1. Since r ^ 7 , if 2k3>k7 and 2k2>3k1}

then k4=k2+k1} k6=2k2, kΊ=2k1

J

rk2, k8=4klf k9=2k2+klf klo=3k1+k2 and 3^2

> 3 ^ + ^ 2 Since 5̂ !==3/?2̂  k^k^ku. By use of Lemma 1, we have

9 « - and

Case VI-4) Since r ^ 7 , we have k1=k1+ki, ks=kλ+k5, k^~ikλ, klQ=k1+kΊ.
If k1

J

Γk2=ki and 2k2=k5, then k2

J

Γkδ<k2

J^kG==k1+k1~k10. Hence, k2+k5=k9

=4kί and 3^ 2=4^!, that is ^j=6, k2=8, kδ=16. This implies

If kx+k2—k± and 2k2=kG=3k1, then k2+k5<k2+kQ=k1Q. Hence, k2+k5~k2=
k2+k4. If kί

Jrk2=k5 and 2k2=k6, then k2+ki<k2+kδ=k9. Hence, k2+k4=kλ

+ k5 and k5=2k2. If k1

J

Γk2=k5 and 2k2=kΊ, then k2+k4<k2

J

Γk5=k10. In the
case of k2+k4=k8, we have k4—2k1. In the case of k2+kA—k9, since kA=2k2—klf

we have 3^ 2 =5^!. Hence,

Case VI-5) Since r ^ 7 , we have k5=k1

J

Γk2, kG=k1+k3f k8=2k1+k2 and
= 2 ^ ! + ^ 3 . If 2k2=kG, then ft2+^8=fe7=3ife1. Hence, 3fe2=4^!. Therefore,
is one of the last four of the desired result. If 2k2=kΊ, then kΊ<k2

Jrk3<2k1

-\rk2=k8.
Case VII) Substituting 7z = 3, a—kx, β=kλ—l and t—g—kλ in Lemma 1, we

have

^ ^ = ̂ t 3 1 and r^4.

Case VIII) Substituting n = kι—4, α=ifei, β=g—l and £=£ in Lemma 1, we
have
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and r ^ l .

Case IX) We shall divide this case into the following four subcases. Case
IX-1) 2k1=k3,3ki=k7. Case IX-2) 2k1=k4, 3k,= k7. Case IX-3) 2k1=kA,3k1=k8.
Case IX-4) 2k1=k5, 3k1=k9.

Case IX-1) Since kn=2k3, we have

N(P)= {ku •••, k10, 2k3, k3+kA, .- , k3+kr, k4+kr, - . , 2^r, 2g]

— \ h , ••• &»« 9 ^ ^ -\-h *?b. b.A-b ••• bι-^rh brA-h •••
l »v i /v n Q ̂  ^^ *v 3 ^ ^^ 3 f ^^ 4 y ^^ ^^ 4 ^ ^^ 4 I o^ ί *v ^ ι i y o ι ι y y

2kr, 2g}.

Therefore, ks+kδ=2k4, k3+k6=ki+k6, k3

J

Γk7=-ki

JrkGy ks=2kί and k7=3k1.
Hence, Ak4=9ku 2kδ=5kly 4£6=11&1 and fei=8, fe4=18, ^ 5=20, £6=22. Thus we
have

Case IX-2) Since k5=k1-{-k2, kG=k1

Jrks and ^11=4)fe1, one of k8, k9 and k10,
denoted by kf, is neither 2k1

J

Γk2 nor 2 ^ ! + ^ 3 . Then we have

N(P)={kl9 - , fen, &4+&5, ^4+^6, - , ^4+^r, ^5+^r,

kΛK, ~ , 2kr, 2g}U{k1+k', k'+kr-k,}

and k5<2k2<k2

Jrks<2k3<kΆ+kA<2ki=klί.
i) Suppose 2k2—kG and k^k^—k^ Then we have 4 ^ ! = 3 ^ 2 and fei=6, ^2

=-8, £8=10. If fea+fe^fes+Sfei, then ^ / = 2 0 = 2 ^ 1 + ^2. If fea+fe^δfei, then fe7=

ii) Suppose 2k2=k6, k2+ks=k8 and 2ks=k9. Since ks<k2-\-kiy we have &9

= ^ 2 + ^ 4 and k2=2(ks-k1). Therefore, 3k2=Uu 3kz=5kλ and k2+ks=3k1=k7.
iii) Suppose 2k2=k7, k2

Jrk3=k8, k2-\-k^—2k3—k9 and &3+&4=&io. Then we
have 2fe2=3fe!, Ak^lk, and fe^β, fe2=12, fe8=14. Therefore,

Case IX-3) Since r ^ 7 , k9=kδ+klf kί0=k6~\-k1 and kn=k1+k1.
i) Suppose kδ=k2+kly fe6=fe8+fei. Then k5<2k2<k2+k3<2k3^k2+k4=k9

If 2k2=k6, k2+kz=k7> 2k3=k8=3klf then 4 ^ 2 = 5 ^ ! and

If 2k2=kG, k2+k,= k8f then 3^ 2=4^ 2, 3^ 3 =5^! and ^ = 6 , ^ 2 = 8 , fes=10, fe7=17.
Thus every ^^23 is in iV(P). Therefore,
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If 2k2=kΊ, k2+k3=k8 and 2ks=2k1+k2, then 3^ 3 =5^! and 3k2=^k1. Thus 2k2

= k1-tk3<kΊ.
ii) Suppose kb=k1

J

rk2 and kΊ=k1

Jrk3. Then k2-{-k3=k8. If kΊ=2k2, then
3£2=4fc1 and 3^ 3 =5^!. Hence, ^ = 6 , £ 2 =8, fc8=10, &6=15. Thus every &^21 is
in N{P). If k9=2k3, then kΊ—2k2 which reduces to the above case. If kQ=2k2

and k9φ2k3, then klo=2k3 and &i=8, &2=10, £3=14. Hence,

iii) Suppose k^-=k1

Δrk2 and kΊ=k1-\-k3. If 2k2=k7, k^k^F^k^, then 3&2—
4^! and 3^ 8 =5^!. Therefore, ^ ! = 6 , ^ 2 = 8 , ^ 8=10, ^ δ =13 and k10<k2-{-kro<k11.
If2k2=k7 and k2+k3=k9, then 2k3=k2

J

Γk5 and k9=k1+k5<k2+k5<k2+kG=k11.
Hence, &2+&5:=&i+&6r::z2&1+&2 and k5=2k1. If 2k2=k8 and k2

Jrks=kd) then 2^3

= &io. Therefore, 2k2=?>ku ik3=Ίkι and ^ x = 8 , i^2=12, ^ 8=14, A?B=18. Hence,

Case IX-4) Since ^ = ^ i + ^ ^ 2 f e 2 < ^ + ^ < 2 ^ < i f e 3 + ^ < ^ 1 1 , we have ^ +
&2, ^ + ^ 8 = ^ ! + ^ and 2&3=3£1. Hence, ^ ^ 8 , ife2=10, fea=12, ^4=14 and

Case X) Substituting n=4, α = ^ ! , /3= ̂ x—1 and t—g—kλ in Lemma 1, we
have

^ F ^ ^ ± S and r^4.

Case XI) Substituting n = k1—5, a—kly β=g—l and t=g in Lemma 1, we
have

&=ψ±V2(*r+11) and
^i 7

Case XII) In this case we shall consider the following two subcases. Case
XII-1) 2k1=k5. Case XII-2) 2k1=k6.

Case XII-1) Since *{kl9 •••, kr, •••, kr+4, kr+klf kr+k2, •••, 2kr, 2g}=2r+5,
kj+δ—kj=k1 for every j , 5^j^g—5. Therefore, klo=3klf kn=k1+k6, kl2=kλ

Jτ

i) Suppose k6=k1

Jrk2, kΊ=k1-\-k3 and k8=k1

Jrki. Then we have kΊ^2k2<
k2+k3<2ks<ks+k4<2k4<k13. If 2k2=k7, k2-{-k3=k8 and 2k4=kn, then 5^2=6^i,
5k3=Ίkx and 5fe4=8fe!. Therefore, ^i=10, fe2=12, fes=14, kA=16 and ^ 9 = 2 8 ;
that is

If 2kz=kη, ki+k%—ks and 2&4=&12, then 4^ 2=5^i, 2^3=3^! and 4&4=7&i. Hence,
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£ 1 = 8 , fe2=10, fe8=12, ^4=14 and &9=23. Therefore, every £^31 is in JV(P). If
2k3Φk2

J

Γk4 or if 2k3=k2+k4=k9, then 2k2—kΊ and k2-\-k3=k8. U2k3=k2+k4=
k10, then k3+k4=kn and 2k4=k12. Hence, every &i^31 is in Λf(P).

ii) Suppose &6— &i+&2, kΊ=k1

Jrk3 and k9=k1+k4. Then we have k9<k2
Jrk4<kB

Jrk4<k12 and k9^2k3<k3-\-k4. If 2k3=k2

J

Γk4=k10 and k3+k4=kn, then
4fc 2=5*i, 2&3=3&1 and 4£ 4 =7& 1 . Hence, fci=8, •••, £ 4 = 1 4 , & 8=21 and every £ ^ 2 9
is in Af(P). If 2kB=k9, k2

J

rk4=k10 and ks

J

Γk4=kn, then 5^2=6^!, ^k3—Ίkx and
5&4=9&i. Hence,

iii) Suppose k^—k^k^ k8=k1

J

Γk3 and kQ=k1

Jrk4. Then we have k8<k2

+ k3<k2+k4<kn and kx,<kzΛ-k4<2k4<k14. U 2k3=k2+k4, then 4k2=5klf 2ks

=3kt and 4£4=7A?i. Hence, * ! = 8 , •••, fe4=14, ^ 7 = 1 9 and every ^ ^ 2 7 is in JV(P).
If 2k3>k2

Jrk4, then 2k3=2k1+k2. Hence, 5k2=§kly ^k3^^k1 and 5A?4=9fci.
Therefore,

iv) Suppose ^ 7 = ^ 1 + ^ 2 , ^g^^j+^g^ k9=k1

Jrk4. Then we have kΊ<2k2<
k2+k3<k2+k4<k3+k4<2k4<k14. If 2k2=k8, k2+k3=k9, k2+k4=k10, then 4£2

= 5 ^ ! , 2k3=-Zk1 and Ak^Ίk,. Hence, ^ = 8 , •••, ^ 4 = 1 4 , ^ c = 1 7 and every ^ ^ 2 5
is in iV(P). If k2+k3=k9, k3+k4=k12 and 2k4=kls, then 4^2=5*!, 2k3^?>kx

and 4k4=7k1. Hence, ^ i=8, •••, k4—H and &6=17. If k2

J

rk3=k10, ks+k4=k12

and 2k4—kl3> then 5k2—lkly 5k3=8k1 and 5&4=9&!. Hence,

Case XII-2) Since r ^ 7 , k12—k7—ki and ^ 1 2 = 2 / ? 1 + ^ 2 = ^ 2 + ^ 6 Hence, ^ 7 <
2k2<k2

Jrk3<k2+k4<k2+k5<k2+k6=k12. Therefore, 2k2=k1+k3, k2+ ^ 8 = &i+ ̂ 4,
^2+^4—^1+^5 and k2+k5=3k!. Hence, ^!=10, ^ 2=12, &3=14, ^ 4 = l β and ^ 5 = 1 8 ;
that is

Case XIII) Substituting n = 5 , a=klf β=kχ—l and t=g—kλ in Lemma 1, we
have

s(£=^i9r+5 a n d r ^ 5 .
11

Case XIV) Substituting n = kx—6, a=klf β=g—l and ί=,g in Lemma 1, we
have

( f e ' - y + 6 ) 4 6 - and r̂ 5.

Case XV) Since N(P)={klt •••, fer, fer+1, •••, kr+5, kr+kly •••, 2kr, 2g}, we
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have kΊ=2klf klz=^kλ and ku=2k1+k2. Therefore, k8<2k2<k2+ks<k2+ki<
k2+kδ<k2

J

rk6<k2-i-kΊ=k1^ Hence, h+ks=k!+kA, &2+&4—&1+&5, k2+k5=k1+k6

and fc2+feβ=3fti. Thus ki=\2, •••, £6=22 and

Case XVI) Substituting n=6, α=fci β~ kλ—1 and t—g—kί} we have

W ( P ) = r ^ ( j r - 6 ) <; J | : a n d r ^ 0 _

This completes the proof.

The following lemma is an analogy of a theorem of Castelnuovo (cf. Accola

Cl])

LEMMA 8. Under the same hypothesis as in Theorem 5, the linear series \P2r\
is composite for every r such that

Proof. This proof is also an analogy of that of Accola. Suppose that | P 2 r |
is simple. Since j5g+2—l2g+4^4r, \P2r\ and | P 4 r | are of dimension r—g and
2r—g, respectively.

Since | P 2 r | has no fixed point and is simple, there is a birational map of S
onto a curve C in Pr~g{C) of degree 2r. Fix a hyperplane H such that the
points of the hyperplane section, say {Pi, P2y •••, P2r}, are in general position
in H (cf. [2]).

Let {Plf Pi,—, Pr\ be a subset of {Plf P 2 , •••, P2r} satisfying l(P2rPr+1Pr+2

" P2r)=l(P2r). Then any quadric through {Plf P2, •••, Pr} passes through the
remaining r points {Pr+i, Pr+2> •••, P2r}

Since through any 2(r—g—1) points of {Pj, P 2, ••• P2r} we can find two
hyperplanes (that is a quadric) containing no further P's we have 2r—2g— l ^ r ,
which is a contradiction.

4. Proof of Theorems. It is evident that 8^+3=11 for g—1 and the con-
clusions of Lemmas 4 and 5 satisfy the hypothesis of Theorem 5. Hence, the
proofs of Theorems 1 and 2 are reduced to the proof of Theorem 5.

Proof of Theorems 3 and 4. We shall consider the following two cases.
Case I) N(P) contains {4, 8, 10, 12, 14, 16, 18, 20} and G(P) contains {1, 2,

3,5,6,7,9, 11, 13, 15, 17, 19}.
Case II) N(P) contains {6, 8, 10, 12, 14, 16, 18} and G(P) contains {1, 2, 3,

4,5,7,9, 11, 13, 15, 17}.
By virtue of Lemmas 6 and 7 and £^>17, it is sufficient to consider the

above two cases. In this proof we shall consider meromorphic functions on S
with pole only at P. For simplicity's sake, we call the order of the pole of
such a meromorphic function "the order of the function".

Case I) Let x be a function of order 4 and let y be a function of order 10.
Then x2 is of order 8, x% is of order 12, xy is of order 14, x4 is of order 16,
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x2y is of order 18 and both x5 and y2 are of order 20. Therefore, we have an
algebraic equation

where Qλ(x) is a polynomial of degree less than three and Q2(x) is a polynomial
of degree 5. This represents an algebraic plane curve S of genus at most two.
Hence, S is an n-sheeted covering of S for some n^2. Let P' be a point on S
which corresponds to x=oo. Since deg Q^2 and deg (?2=5, x is a meromorphic
function on S with pole at P' of order 2 and holomorphic elsewhere. Let π be
the projection map of S into S. Then π~\P')={P}. Thus n=2. If the genus
of S is zero or one, then there is a function of order 6 on S. Therefore, S is
of genus two.

Case II) Suppose that x is a function of order 6, y is a function of order
8 and that z is a function of order 10. Then x2 is of order 12, xy is of order
14, both xz and y2 are of order 16 and both xs and yz are of order 18. Con-
sidering xz and y2, we have

where άegQ1=l, degQ 2^l and deg Q3^2. Considering x\ yz and xz, we have

yz=QA(x)z+Qι(x)y+QB(x),

where degQ4^l, deg<35^l and deg QG—3. Eliminating z from the above two
equations, we have

That is

where degQ7^l, deg Q8t^2 and deg ζ?9=4. This represents an algebraic plane
curve S of degree 4. By the formula [3, p. 201], the genus of S is less than or
equal to 3. We know that the set of points corresponding to x=oo consists of
only one point. Denote it by P'. Since S is a three-sheeted covering of the
,τ-sphere, the polar divisor of x on S is Pn, As in the preceding case, we con-
clude that 5 is a two-sheeted covering of 3. Since x, y,z {=z{y2—Q2{x)y—Qz{x))/
Qiix)) are meromorphic functions on S whose polar divisors are P/3, Pn and P/δ.
respectively, the genus of S is two.

Proof of Theorem 5. By Lemma 8, \PGg+2\ is composite. Hence, there is a
Riemann surface S such that S is an n-sheeted covering of S for some n^2
and there is a complete linear series £2

(f~+2)M on S. If n^3, then 2g+l^(6g+2)/n
^(βg+2)/3. This is a contradiction. Therefore, S is a two-sheeted covering
of S. Hence, \P3g+1\ is a complete linear series on S. Observing that there
exists a function of order 2k on S if and only if there exists a function of
order k on S [6, p. 392], we know that *G(P) on S is g. Therefore, § is of
genus g.
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