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i 0. Introduction

In this paper we study characteristic classes and exotic characteristic classes
[B] of foliations. We deal with a certain sort of Γ-foliations ((G, I)-foliations)
which is a generalization of Riemannian, projective and conformal foliations
[NS, P]. The main purpose of this paper is to prove vanishing theorems for
certain exotic characteristic classes of such /"-foliations. As a step toward this,
we obtain results which are relevant to strong vanishing theorems for charac-
teristic classes of the Γ-foliations. These generalize the result of Nishikawa
and Sato [NS]. In order to obtain these results, we use neither normal Cartan
connections nor classifying spaces, but a product formula for secondary in-
variants [CS] and a technique used by Kobayashi and Ochiai in [KO].

Throughout this paper, all manifolds and mappings are assumed to be
smooth (C°°). In § 1, Chern-Weil theory of characteristic classes are reviewed,
and the technique used in [KO] is slightly improved so that it may be applied
to the case of foliations. In § 2, certain automorphisms of G-structures are
specialized to /-automorphisms, which are generalized notions of affine, projective
and conformal transformations, and then (G, I)-foliations are defined. In § 3,
so-called strong vanishing theorems for characteristic classes of (G, ϊ)-foliations
are proved, where the results prepared in § 1 are applied. In § 4, we review
some notions about exotic characteristic classes [B, H] such as cochain complexes
WOq and Wq, generalized characteristic homomorphisms for foliations and Vey-
basis. In § 5, the vanishing theorems for certain exotic characteristic classes
of (G, I)-foliations are proved. In § 6, more detailed results are obtained in
the case of projective and conformal foliations. Especially we find that all of
the rigid exotic characteristic classes of conformal foliations vanish and the
rest of the exotic characteristic classes coincide with the Godbillon-Vey in-
variant up to scalar multiples. In §7, we prove the product formula and a
derivative formula [H] for secondary invariants in a simple and unified manner.

The author wishes to express his hearty thanks to Professor T. Otsuki for
his encouragement and valuable suggestions.
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§ 1. Characteristic homomorphism and (ϊ, /^equivalence

Let G be a Lie group, Q its Lie algebra and Γ(G) the space of all Ad(G)-
invariant symmetric multilinear functions on gX ••• Xg (r times). We will use
the convention that if φ^Ir(G) contains less than r arguments, the last one is
repeated a number of times to make ψ a function of r arguments. Let M be a
manifold and P a principal G-bundle over M. The space of all g-valued (resp.
real valued) s-forms on P (resp. M) is denoted by ΛS(P, g) (resp. ΛS(M)).

Let ω°, ωί^A\P, Q) be connection forms.

DEFINITION. Homomorphisms of modules

λ{ωλ): Γ(G) — > Λ2r(M)

and λ(ω°, ω1): Ir{G) — > A2r~KM)

are defined by

λiω^φ : = φ(Ωι)

and (̂α>°, ω > : = r^φ(ωι-ω\ Ωι)dt for

where β* is the curvature form of the connection ωt—tωljr(l— t)ω°.

We obtain the following (see § 7):

Fact 1.1. d{λ{ωι)φ) = 0

and d(λ(ω°, ω')φ) = λfa^φ-λίω^φ .

In other words, the closed form λiω^φ represents a de Rham cohomology
class [^(ω1)] e H2r(M), and the induced homomorphism

^(ω1)* : /r(G) — > H2r(M)

does not depend on the choice of connections on P. We call this homomorphism
the characteristic homomorphism of P and denote by λp.

In § 7, we prove the following product formula.

PROPOSITION 1.1. For φ, ψ^

λ{ω\ ωι)(φ ψ)~λ(ω\ ωι)φf\λ{ωι)ψ-\-λ{ω°)φ/\λ(ω\ ωι)φ,

where " ~ " means "cohomologous to".

Moreover we have the derivative formula:

Fact 1.2 (Heitsch [H]). For ^e/ r (G), and a smooth family of connections
( S G Λ ) ,
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where Ω\ is the curvature form of ω\ :=tωl+(l—t)ω°.

Integrating the both sides of this formula, we get

Fact 1.3. For φς=Ir(G),

λ(ω°, ω\)φ-λ(ω°, ωl)φ ~

We shall give simple proofs of Facts 1.1 and 1.2 in §7.

Let V be a vector space and GL{V) the general linear group. Hereafter we
assume that GaGL{V). Let ϊ be a Lie algebra which contains the Lie algebra
g + F of the semidirect product G V as a Lie subalgebra. Denote the space of
all ϊ-valued (resp. 7-valued) s-forms on P by AS(P, I) (resp. AS(P, V)). Let 0 e
A\P, V), Cθ(P):={ω^C(P)|dθ+ίω, ff}=0}, where C(P) denotes the set of all
G-connections on P. By the definition and the Jacobi identity in &+V, we get

LEMMA 1.1. [0, β ] = 0 /or ω e C / P ) .

DEFINITION. We say that ω°, α/eCCP) are (ϊ, 0)-equivalent if there exists
p^A\P, I) such that ω1-ω°=[θ, p}.

From the Jacobi identity in ϊ and the fact that [V, F]=0, we see the follow-
ing lemma is true.

LEMMA 1.2. // ω°^C(P) and ωι^Cθ{P) are (I, θ)-equιvalent, then ω°^Cθ(P).

We denote the set { Z e ϊ | [ Z , F ] e g + F for any F G 7 } by ί. It is obvious
that I is an ad(V)-mvariant subspace of ϊ and contains β + F. From the defini-
tion of ί, we get

LEMMA 1.3. // θp; TpP-> V is surjective for each p^P, [θ, ρ~]=ωι—ω° for
and p^A\P, I), then p<=A\P, ϊ).

Hereafter we assume that Θ^A\P, V) satisfies the condition described in
Lemma 1.3. Note that the canonical form of the tangent frame bundle of a
manifold will do. Let Sr(ί*) be the space of all multilinear functions on IX •••
XΪ (r times). For X^V, let the linear map ad(X)* : Sr(ί*) -> Sr(ί*) be defined
by, for 0eS r(i*), X^i,

(ad(X)*ψ)(Xu - , Xr) := Σ ψ(Xlf - , ίX, Xx~]9 - , Xτ)
ι=--i

Set S"(i*r:={0eS r(i*) |arf(y)*^=O}, Ir

ω(G) :=(S r(i*)F |g)n/(G).

PROPOSITION 1.2. // ω°, ω1^Cβ(P) are (I, θ)-equιvalent, then

λ(ω\ω1)Ir

ω(G)=-0 for r ^ l .

Proof. Let ^ e ^ P , ί) satisfy ω1—α>°=[0, /?]. Since ω£=ί
[0, ί|θ], ωc and ω° are (ϊ, 0)-equivalent. From Lemmas 1.1 and 1.2, we get [0,
=0. For 0eS r (ί*) F , I G V and Z t e ϊ , we see that
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Hence ψ(£θ, p], Ω^+ir-tyψip, [θ, Ωι~], Ω')=0, so that, we get

ψiω'-ω0, Ωι) = ψ([β, p]f Ωι) = 0. Q. E. D.

This proposition and Fact 1.1 imply

COROLLARY 1.3. // ω°, ω1^Cθ(P) are (I, θ)-equιvalent, then

λ(ω°)φ = λ{ωι)φ for

Remark 1.1. Let S r(ϊ*V : = {ψ£:Sr(i*)v\ιvψ=0}, where ι x : Sr(i*)-» Sr~Ki*) is

the inner product operator for X^ V. Then Proposition 1.2 and Corollary 1.3
hold for ω°, ωλ^C{P) and ^ ( S r ( ϊ * ) 7 | g ) n / ( G ) also.

Remark 1.2. Let L be a Lie group which contains G as a Lie subgroup
compatible with the inclusion Q + V C Ϊ , where ϊ is the Lie algebra of L. Denote
the image of the restriction map J(L)-*J(G) by IL(G). Since IL{G)cIω{G), our
results in this section generalize the corresponding results in [KO].

Remark 1.3. For a G-bundle P with Θ^Λ\P, V) which satisfy the condi-
tion in Lemma 1.3, we can find a Lie algebra ϊ such that any ω°, ωι^Cθ{P) are
(ϊ, ^-equivalent. Let gcp) be the p-th. prolongation of Q, i. e., the vector space
{t<=Sp+\V*)<g)V\ the linear map V=sX^t(X, Xl9 - , Xp)e V belongs to gCβϊ(F)
= ^•(8)7 foranyAΊ, •-, Z p e y } where S r(F*)(g)F is the space of all symmetric
multilinear functions on Vx ••• X V (r times) with values in V. Note that ς c " υ

= F and g ( 0 )=g. For ίeg C r ) and ί ' e g ^ , we define [f, ^ e g ^ ^ by, for I ^ F ,

[ί, ^ ] (^o, ••*, Xr+s) '-=-yjvjj-jvγ Έ t(t'(XlQ, •••, Xls), Xls+1, •••, Xts+r)

where the summations are taken over all permutations of (0, •••, r-\-s). We ex-
plicitly set [g (-υ, g ( - 1 ) ]=0. In particular, if /eg ( p ) , ^ ^ 0 , and X^V, then

[ί,

If is well-known that gc^ : = Σ g ( p ) becomes a Lie algebra. By the definition

of the bracket product, it is clear that Q(*^ contains the Lie algebra g + F of the
semidirect product G F as a Lie subalgebra. Let ω°, ωι<^Cθ(P), then [ω1 —
ω°, 6^=0. Fix a basis of V, and denote the components of θ (resp. ω1—ω°) by
0 ι (resp. rj). Then ττjAθJ=0 for each z. Here we employ the Einstein summa-
tion convention. Since the form θ satisfies the condition in Lemma 1.3, θ% are
linearly independent at each point. Then there exist functions p)k such that τ)~
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ρ)k'θk and Pjk—plj' Clearly ρ)k define an element p of g(1) satisfying ω1—ω°=
lρ, 0]. Thus any ω\ ω1^Cd{P) are (gc*>, ^-equivalent.

Note that tc(g c - 1 ) +fi C 0 ) +Q c l ) )πϊ if I is a Lie subalgebra of Q(*> and contains

§ 2. (G, ϊ)-f oliation

Let M be an ^-dimensional manifold, TM the tangent bundle of M. An in-
tegrable subbundle E of TM is called a foliation of M. We call the quotient
bundle TM/E the normal bundle, and the frame bundle of TM/F the normal
frame bundle of E. We will take the following point of view toward /"'-folia-
tions (with coordinates) (cf. [BH], [NS] and [P]) :

A Γ-foliation £F of codimension q (^n) on Mis given by the following data :
(1) An open covering {Uχ} of M.
(2) An auxiliary ^-dimensional manifold N with a pseudogroup Γ of local

transformations on TV.
(3) A system of maps hλ\ Uλ —> TV of rank q.
(4) A system of elements γμλ^Γ which satisfy hμ=γμχ°hχ on Uμχφφ for

each λ, μ, where Uμλ :=Uμr\Uλ.

Then the kernels of differentials (/i O* constitute an integrable subbundle F
of TM. Thus £F defines a usual foliation as an underlying structure. The
quotient bundle TM/F is called the normal bundle of £F. Of course, the fibre
dimension of TM/F is the codimension of £F. Conversely Frobenius theorem
shows that an integrable subbundle of TM defines a /"'-foliation with N=Rq and
Γ— {local diffeomorphisms on Rq}.

EXAMPLE 2.1. If TV is a complex analytic manifold and Γ— {complex analytic
local diffeomorphisms on TV}, £F is called a complex analytic foliation. If M
is a complex analytic manifold, then a holomorphic integrable subbundle of the
holomorphic tangent bundle of M defines a complex analytic foliation (see [B],
for example).

EXAMPLE 2.2. If N is a manifold with an aίfine connection ω and Γ=
{local affine transformations on TV}, £F is called an aίfine foliation.

EXAMPLE 2.3. If N is a Riemannian manifold and Γ = {local isometries of
Λf}, £F is called a Riemannian foliation [P]. If M admits a bundle-like metric
[R] with respect to a foliation on M, this foliation with the metric defines a
Riemannian foliation.

EXAMPLE 2.4. If iV is a Riemannian manifold and Γ= {local projective trans-
formations on N}, £F is called a projective foliation [NS]. A foliation of codimen-
sion one defines a projective foliation. We will also call £F a projective folia-
tion when TV is a manifold with an affine connection ω and Γ= {local projective
transformations on N}. This foliation is a generalization of an affine foliation.
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EXAMPLE 2.5. If N is a Riemannian manifold and Γ— {local conformal
transformations on N], £F is called a conformal foliation [NS]. Both a foliation
of codimension one and a complex analytic foliation of complex codimension one
define conformal foliations.

We see that Example 2.2, 2.4 and 2.5 are generalizations of Example 2.3.
In each example, Γ consists of local automorphisms of a certain G-structure,
that is, integrable GL(q/2, C)-structure (q: even) in Example 2.1, GL(q, R)-
structure with an affine connection in Example 2.2, O(g)-structure in Example
2.3, GL(q, i?)-structure with a torsion free connection in Example 2.4 and CO{q)-
structure in Example 2.5, where CO(q) := {aΛ\ a^R— {0}, Λ^O(q)}. Thus we
will restrict ourselves to /"-foliations which are defined by G-structures on TV
with connection.

Let BN be the tangent frame bundle of N, GLq:=GL(q, R) its structure
group and ΘN the canonical form. Let G be a subgroup of GLq and PN a G-
subbundle of BN (a G-structure on N). The restriction of ΘN to PN is also
denoted by ΘN. For a local diffeomorphism γ on N, the induced local bundle
isomorphism of BN is denoted by f. Let Γ{PN) be the pseudogroup of all local
diffeomorphisms on N which preserve PN. Let ϊ be an auxiliary Lie algebra
which contains the Lie algebra Q+Rq of the semidirect product G-Rq as a Lie
subalgebra. Let ω be a G-connection on PN.

DEFINITION. γ^Γ(PN) is said to be a (local) l-automorphism of {PN, ώ) if
f*α> is (I, #iv)-equivalent to ω.

Remark 2.1. If ϊ is a Lie subalgebra of a Lie algebra V and γ^Γ(PN) is a
ΐ-automorphism of (PN, ω), then γ is a Γ-automorphism. For a torsion free con-
nection ω^C(PN), any γ^Γ(PN) is a g^-automorphism, where Q ^ is the Lie
algebra which was defined in Remark 1.3.

EXAMPLE 22f (Affine case). Let Af be a manifold with an affine connection

ω^C(BN). Put G=GLq, PN=BN and ϊ=gϊβ + 1. For X+ι;eQ+i?«, the correspond-

ing element is given by ( Y If y is an affine transformation on ΛΓ, then

f*ω—ω=0 or f*ω—ω=[βN, 0] in ϊ.

EXAMPLE 2.4/ (Projective case [KO]). Let N be a Riemannian manifold, ω
the Levi-Civita connection. Put G=GLq, PN=BN and 1=§Ϊ(^+1, R)a$ίq+1, where

l, i?) is the Lie algebra of the special linear group SL(q+l, R). For X+v

3, the corresponding element is given by ( Y where a := --ΎrX

and Λ\=X-{-aIq. If γ is a projective transformation on N, then there exists a
*(/?*)-valued function (o on PN such that f*ω—ω=θNp+(pθN)Iq or γ*(o—ω=

[ON, p~] in ί, where ^i?5) is contained in V in the form ί Λ for u^ι(Rq).
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EXAMPLE 2.5' (Conformal case [KO]). Let N be a Riemannian manifold, ω
the Levi-Civita connection. Put G—CO{q), P N— the CO(g)-extension of the
orthonormal frame bundle, and l=O(q+l, l)CQΪg+2, where O(q+1, 1) is the Lie
algebra of O(q+1, 1). The Lie group O(q+1, 1) is defined to be { Z G GLq+2 \ ιXSX

I 0 0 -lv
=S}, where S = 0 Iq 0 eGL β + 2 . For X+v&$+Rq, the corresponding ele-

\ - l 0 0/

ment is given by ( 0 Λ v], where α :=—-ΎrX and A\=XJ

ΓαIq. If γ is a
0 0 al q

conformal transformation on N, then there exists a '(/^-valued function p on
PN such that f*ω-ω=θNp+(pθN)Iq-

tptθN or f*α>—α>=[^, /o] in I, where '(i?3)
/0 0 0\

is contained in I in the form yu 0 0 for u^\Rq).
\0 u 0/

Now we get the following generalization of all the above foliations.

DEFINITION. If Γ consists of ϊ-automorphisms of (PN, ω) for a G-structure
PN and ω^C(PN), then the Γ-foliation £F is called a (G, ϊ)-foliation.

Remark 2.2. According to Remark 2.1, if the G-structure admits a torsion
free connection ω^C(PN) and ΓdΓ{PN), then the /"-foliation with (PNf ω) is a
(G, QC!|O)-foliation. Note that a (G, ϊ)-foliation £F is a (G, Γ)-foliation if ϊ is a
Lie subalgebra of V. In order to study characteristic homomorphisms for (G, I)-
foliations, we may take a larger Lie algebra V.

§ 3. Characteristic classes of (G, ϊ)-f oliations

Let £F be a /^-foliation on M as in § 2, B the normal frame bundle. Each
hλ\ Uλ->N is covered by the canonical bundle map hλ\ B\Uλ->BN which
satisfies hμ=γμλ°hλ. Let PN be a G-reduction of BN, ΓdΓ(PN) at first. Then
we have

LEMMA 3.1. hλ and PN defines a canonical G-subbundle PdB on which #<Ξ
A\P, Rq) satisfying hfθN=θ\Pλ exists, where Pλ is the restriction P\Uλ.

Such a reduction is a special case of £F-reductions defined in [A]. We
assume that the covering {Uλ) in the definition of £F is locally finite and admits
a partition of unity {fλ}. Let π: P —• M be the projection, fχ:=π*fχ. Let ω
be a connection form on PN. Define ω1^C(P) by ω1 :=^Σifχ'(h*ω). We also

denote the GLQ-extension of ω1 to B by ω1. Clearly this connection is a basic
connection defind by Bott [B],

Let F be the corresponding integrable subbundle of TM, Fa ~{a<^A1(M)\ιxa
=0 for any X^ΓF) and rA : - ( Λ r F α ) Λ i ( M ) an ideal of A(M), where ΓF is the
space of all cross sections of F. Clearly rA=0 for r>q. The following facts
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were proved by Bott, and are called the vanishing theorems for characteristic
classes of foliations.

Fact 3.1. λ(ωι)Ir(G) C rΛr\Λ2r(M),

and hence λ(ωι)Ir{G) = 0 for r>q.

For the GZ^-extension of ω1 to B, we get

Fact 3.2. X^)Ir(GLq) C rΛr\Λ2r(M),

and hence λ(ώί)Ir(GL<ύ = b for r>q.

In the rest of this section, we assume that £F is a (G, ϊ)-foliation. Then
we can find a basic connection which is convenient to study characteristic
homomorphisms.

PROPOSITION 3.1. Let ω1 \=^ ϊ μ<h*ω) ( G C ( P ) ) , then ωι\Pλ and hfω are
μ

(I, Θ\Pχ)-equιvalent.

Proof. The restriction is ω1\Pλ = Σ(fμ\ P λ)-{h%ω\P μλ), where Pμλ:=P\Uμλ.

On the other hand, there is ρμλ^A\hλ{Pμλ), I) such that

?μΛω\hμ(Pμλ)) = ω| Λ ^ ^ + C ^ | hλ{Pμλ), Pμ{] ,
so that

h*ω\Pμλ

Then we obtain

μ / ) . Q. E. D.

This proposition generalizes the converse version of the holonomy theorem
in [A] in the case of normal bundles of foliations.

Furthermore, we assume that ω^C(PN) is torsion free, then ωι^Cθ(P) from
Lemma 1.2. We get the following generalizations of strong vanishing theorems
in [NS] and [P].

THEOREM 3.2. λ(ωι)Ir

ω(G) cz 2rA^A2r(M),

and hence ?W)I\0(G) = 0 for r>q/2.

Proof. It is clear that the form θ in Lemma 3.1 satisfies the condition in
Lemma 1.3. By Corollary 1.3 and Proposition 3.1, we get

λ(ωι)φ\ Uλ = hfλ(ω)φ for φ^Ir

ω(G). Q. E. D.

Remark 3.1. According to Remark 2.2, we see that Theorem 3.2 is applicable
to any /'-foliation with ΓdΓ(PN) for a G-structure PN on Â  with a torsion
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free connection. Studying the relation between IGLq(G) and / ( 1 )(G), we can
generalize vanishing theorems for I(GLq) as follows.

COROLLARY 3.3. // I(G) is generated by ho(G) and odd degree elements of
I(G), then

λP(ΠG)) = 0 for r>q/2.

COROLLARY 3.4. // IGLq(G) is generated by /(;>(G) and odd degree elements of
IGLq(G), then

λB(I\GLq)) = 0 for r>q/2,

where IGLq(G):=I(GLq)\q.

For example, IGLq(G)=IiD(G) in the case of affine foliations. IGLQ(G) is
generated by IW(G) and the first Chern polynomial c 1 |ge/ 1

G L g (G) in the case of
projective or conformal foliations (see § 6).

Remark 3.2. The subring λB(I(GLq))czH*(M) is generated by the Pontryagin
classes of TM/F. Corollary 3.4 was obtained by Nishikawa and Sato [NS] in
the case of projective (resp. conformal) foliations provided that q^2 (resp.g^3).
Since they used the normal Cartan connections in their paper, the restriction on
the codimension was not avoidable. In a recent paper [NT], Nishikawa and
Takeuchi generalized the theorem in [NS] to Γ'-foliations which relate to flat
homogeneous spaces of order two, using the normal Cartan connections.

§ 4. Exotic characteristic classes

In [BH], Bott and Haefliger constructed cochain complexes denoted by WOq

and Wq. We recall their construction [B]. Let R\_cu •••, cq~] be the polynomial
ring over R in variables clf ••• , cq with dimensions dim Cj=2j for j=l, 2, •••, q,
I2q the ideal generated by monomials whose dimensions are greater than 2q.
Denote the quotient ring R\_C\, "'Cql/hq by Rq[_clf •••, cq~]. Let E(hlf •••) be the
exterior algebra over R generated by indicated h's with dim hι—2ι—1.

As a graded algebra,

:= E(hlf h3, •••, Λ2cc«+i)/2]-i)®^βCci, — cq~\ .

On WOq, a unique differential dw : WOq —• WOq is defined by requiring

dwcj=θ, l^j^q, and dwhi=cι> ι=l, 3, ••• 2[($ + l ) / 2 ] - l .

The cochain complex Wq is defined similarly, that is,

Wq : = E ( h u h 2 , •••, hq)0Rqlclf c2, •••, cq~] .

with the differential dw: Wq-^Wq defined by requiring

dwcj=θ, l^j^q, and dwhi=clf l^iSq

Clearly dw

2—0. Denote the cohomology ring of the cochain complex WOq
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(resp. Wq) by H*(WOq) (resp. H*(Wq)). Let £F be a Γ-foliation, B the normal
frame bundle, and ωι^C{B) be a basic connection [B]. From Fact 3.2, the
following homomorphism defined by Bott is well-defined.

DEFINITION. A homomorphism of graded algebras λs : WOq-*A(M) is defined
by requiring

and λc,(ht) : = Jl(ω0, ωι)ct, i = l , 3, •••

where ω° is a fixed metric connection on B and c ; in the right hand side is the
-th Chern polynomial defined in the following fact.

Fact 4.1. I(GLq)=Rίclf •••, c j , where d^I%GLq) are defined by

β — ^ - ^ ) for

From Fact 1.1, it is clear that λs is a cochain homomorphism, that is,
λ^dw = dλ<3. Bott proved the following:

Fact 4.2. The induced homomorphism λs* : //*(T^OS) — H*(M) does not de-
pend on the choice of basic connections and metric connections.

This homomorphism is called the generalized characteristic homomorphism
for £F. The elements of λs*(H*(WOq)—ίRqlclf — , cqΊJ) are called exotic char-
acteristic classes of £F, where [ ] denotes the cohomology class. J. Vey de-
termined a basis for H*(WOq).

Fact 4.3. A basis for exotic classes of H*(WOq) is given by the classes of

Λ / Θ θ = htlΛ ••• Λhιι®cJl ~cJm,

where I=(ιu •••, U) and J=(ju •••, jm) satisfy

- ^7m^g with I/I :=7i+ +./m^<7, and

1) Z i + | / | ^ ^ + 1 (condition to be cocycle),

2) i^f,

where / is the smallest odd integer in / or j° :=oo.

For the proof, see [H]. The cohomology classes Lhi^Cj] are called Vey-
basis for exotic classes.

When there exists a flat connection ω° on B, Bott defined the following
homomorphism :

DEFINITION. A homomorphism of graded algebras ?3,ωo\ Wq^> A(M) is de-
fined by requiring

Λ f f.ωo(c,):=Λ(ω%,

and λ^,ωo(hι):=λ(ω°,ω1)cι>
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Remark 4.1. This homomorphism is originaly deίind only for foliations with
trivialized normal bundles [B].

From Fact 1.1, it is clear that λcp>ωo is a cochain homomorphism.

Fact 4.4. The induced homomorphism λ^.ωoi H*(Wq) — J7*(M) does not de-
pend on the choice of basic connections.

Remark 4.2. In contrast to the case of WOq, λ%,ωo depends also on the 3"-
equivalence class [TM/F with ω 0 ]^ which was defined in [A]. The flat connec-
tion ω° is not reducible to P in general for a G-subbundle P defined in § 3.

Following to the method of Vey [H], we get

Fact 4.5. A basis for H*(Wq) is given by the classes of h^Cj as in Fact
4.3, provided that the odd integer restriction on ilf •••, it is deleted and j° :=j\.

§ 5. Exotic characteristic classes of (G, ϊ)-f oliations

In this section, we study exotic characteristic classes, using Theorem 3.2.
Let £F be a TVfoliation, B the normal frame bundle, ωι^C(B) a basic connection.
Let Kr := {^e/ r(GL ί)|^(α>1)^c2M}, and K:= Σ F i s a subring of I(GLq). There

exist integers slf — , sk ( l^Si< ••• <sk^q) satisfying I(GLq)=K[cSl, •••, cSk].
It is clear that

LEMMA 5.1. / / slf •••, sk are odd, then

λ{ωyr{GLq)^^ for r>q/2.

Hereafter in this paper we will deal with only the cocycles h^cj as in
Facts 4.3 and 4.5. Fixing a basic connection ω1^C(B), we use the convention
that φ '.—λiω^φ for φ^I(GLq) and hI:=λcFhI (or λ&.ωohj).

PROPOSITION 5.1. // slf —, sk are odd, \J\>q/2 and z Ί + l / l ^ + s * for
hi<g)Cj^WOq, then

h ^ d j ^ bivjhSkAhIlA(cSk)
q/Sk for ι±+ \J\ =q+sk, sk\q and sk\ilf

~ 0 otherwise,

where I1:=(i2, * # , iι) and bivj is a real number.

Proof There exist φ$ΛeKiJ*-U] such that

Cj= Σ ΨJA CA,

where A:=(alf •••) with {aly •• }c{s1, •••, sk} and a^a2^ ~ . Since \J\>q/2
and a1 is odd, we get

^ ^ J Λ ^ Έ ( a i ) Λ c A l Λ φ ! ί A = Σ d ( h i l

where A1:=(a2, •••)• The condition Zi-j-1/| ̂ g + s f e and Fact 3.2 imply
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It follows from the definition of K and Fact 3.2 that

C Ac Aφκ £Ξ

Since ΰ + l / l ^ ^ + s * and sk^alf

iί+\A\-a1+2(\J\-\A\)^q+(sk-a1)H\J\-\A\)^q,

where the equality holds if and only if ι1+\J\=q-\-sk, |^4| = | / | and a1=sk. As
fli is the smallest in A, the condition sk\(q—zΊ) is necessary. If the equality
holds, then

Apply the same method as above to the cocycle hSkAhIl®cll (cSkY
q-ι^/Sk

instead of hj0cj. Then we get

hskAhIlAcllA(cSkY
q-^/s^ ~ bilhikAΪιIlA(csy

ιl'k for s* |?,

~ 0 otherwise. Q. E. D.

Remark 5.1. If fφco, that is, / contains an odd integer, then the condition
\J\>q/2 is automatically satisfied.

In the case of a foliation with a flat connection, the assumption that slt •••, sk

are odd and \J\>q/2 is avoidable, that is,

PROPOSITION 5.2. Let £F be a foliation with a flat connection, sk as above.
If h+\J\^q+Sk for hj®Cj^Wq, then

hiACj~ bivjhSkAhIlA(cSk)
q/sk for i1+\J\=q+sk, sk\q and sk\ιlf

~ 0 otherwise.

Proof Since h+ \J\ ̂ q+l and hSj\, 2\J\^i1+\J\^q+l, that is, the as-
sumption \J\>q/2 in Proposition 5.1 is satisfied. The same method as in the
proof of Proposition 5.1 completes the proof. Q. E. D.

Let £F be a (G, ϊ)-foliation, ω1 as in Theorem 3.2. Let IiGtΌ :={φ^I(GLq)
\φ\Q=φ\$ for some ψ^Iw(G)}, then I(G,oaK for this basic connection by
Theorem 3.2. If I(GLq) is generated by hG,o and cSl, •••, cSk, then I(GLq)—
K[_cSl, •••, cSk~]. Thus Propositions 5.1 and 5.2 are applicable to (G, ϊ)-foliations.

§ 6. Exotic characteristic classes of projective and conformal foliations

Let £F be a projective (resp. conformal) foliation of codimension q on M, G
= GLq (resp. CO{q)) and L=SL(q+l, R) (resp. Ofa+1, 1)) as in Example 2.4' (resp.
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2.50. The subring {φeI(GLq)\φ\$=ψ\$ for some ψ^I(L)} in I(GLq) is denoted
by /(CD. Note that Iω.DCJω.o- We now study the relation between I(GLq)
and I(G,D> Let cfG/*(GLβ) be defined by

;=o

LEMMA 6.1. c£ e IkaG,L^.

Proof. For I G G, let F be the corresponding element in /, see Example 2.4'
(resp. 2.50- A direct calculation shows

where I=Iq+1 (resp. / ί + 2 ) . Q. E. D.

Obviously c% = c0 = 1 and cf = 0.

LEMMA 6.2. In the conformal case, we have

cίΊfl = 0 for k: odd.

Rearranging the expression in the definition, we obtain

LEMMA 6.3. c% = Σ Bi\c1)
%-kcϊ+cϊ,

where B» := (_1 γ-Y*+ 1 -*)( r « ί . ( 1 ) - ' Σ ( ί + 2 T * ) ( - 2 ) - ) .

Thus I(GLq) is generated by / ( G > D and Ci^P(GLq). From now on, we will
consider only the cocycles described in Facts 4.3 and 4.5. We may assume, as
is allowable from Facts 4.2 and 4.4, ω1 is the basic connection defined in Proposi-
tion 3.1. We will use the same notations as in § 5.

First we study the homomorphism λ3: WOq —* Λ(M). We may assume that
ω° is a metric connection which is reducible to P. Since I(G,L)CZl(G,oCΞ.K and
I(GLq)=K\ic1~], Proposition 5.1 implies

PROPOSITION 6.1 // \J\>q/2 for hI<g>cJeWOq, then

ί/Λc^^AΛA//^)3 for ιx+1/1=4+1,

-0 for %1+\j\^q+2.

m

Remark 6.1. We find that blλ j = Bι^° Π BJ*>\ by chasing the proof of Pro-

position 5.1 with Lemma 6.3.
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Especially when £F is a conformal foliation, we obtain the following theorem
in which the condition \J\>q/2 is avoidable by Lemma 6.2.

THEOREM 6.2. For ^

hiΛcj^b^j^Λic^ for 7=(z1) and ι1+\J\=q + l,

~ 0 otherwise.

Proof. Lemma 6.3 and Proposition 1.1 imply

λ{ω\ ω1)cι ~ λ{ω\ ωι)cL

h

for certain φ^I^^GLq), that is, hi^h\+h\Aφl9 where h^ :=λcFc
τ

ι;. It follows
from Fact 3.2 that

Since ω° is reducible to P, Lemma 6.2 imply hϊAcj=0, and then hjAcj^O for
hΦφ or ι1+\J\'^q+2. In the same way as the proof of Proposition 5.1, we get
φllACj=bivj(ciγ for vH/Ntf+l. Q.E.D.

The classes h^Cj^WOq with zΊ+|/ |^<7+2 are said to be rigid [H]. The
class of /2i®(ci)5 is called the Godbillon-Vey invariant of foliations of codimen-
sion q.

Next we study the homomorphism λ%,ωo: Wq —> A(M). Ler £F be a projective
or conformal foliation with a flat connection ω° on the normal frame bundle B.
Proposition 5.2 implies

P R O P O S I T I O N 6 . 3 . F o r i & j q f

hiAcJ^bivjh1AhJlA{ciγ for

~0 for

Hereafter we assume that 2ί is a conformal foliation.

THEOREM 6.4. If the flat connection ω° is reducible to P and lλ contains an
odd integer, then /i/Λcj^O.

The proof is almost the same as that of Theorem 6.2.

COROLLARY 6.5. // the flat connection ω° is given by a triviahzation of B
and h contains an odd integer, then hjAcj^O.

For the proof of this corollary, we need the following lemma which is
derived from Fact 1.3.

LEMMA 6.4. Jf {ωS|0^s^l} is a smooth family of flat connections on B, then

λ(ω°l9 ω1)cι ~ λ(ωl ω1)cι for z^2 .

Remark 6.2. This lemma also shows exotic characteristic classes of hi
depends on the £Γ-homotopy class [A] of [TM/F with ω0!^ if ιλ>l.
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Proof of Corollary 6.5. Since O(q)(ZCO(q), any trivialization of B is homo-
topic to one of P. Then there is a smooth family ω°s of flat connections such
that ωl is reducible to P. Lemma 6.4 completes the proof. Q. E. D.

Remark 6.3. In the case of projective or conformal foliations with trivialized
normal bundles, Proposition 6.3 and Corollary 6.5 were proved by Morita [M]
and Yamato [Y], where they used the normal Cartan connections as in [NS].

§ 7. Appendix

In this section, we apply the method of integration along fibre to the case
of secondary invariants, that is, exotic characteristic classes [B] and Chern-
Simons classes [CS]. By this method, certain formulae for secondary invariants
(derivation formulae, especially) can be proved in a simple manner.

Let G be a Lie group, Q and Ir(G) as in § 1. Let P be a smooth manifold.
We denote the space of Q-valued (resp. real-valued) r-forms on P by Ar(P, g)
(resp. Λr(P)). Denote RxP by P, where R is the real numbers field. Let π:
P —> P be the canonical projection, j t : P —> P the inclusion map defined by

Jt(p) :=(/, p)eP. For the interval / :=[0, 1]C#, a linear map π1: Ar(P)-> Ar~\P)
is defined by

ττ7(α) := [\ιτa)dt for αG Ar(P),
Jo

where T is the vector field on P whicn is the canonical extension of d/dt on R.
We can easily get the following:

LEMMA 7.1. dπ^^d — jt—j* -

For ω<=AKP, g), define Ω=Ω(ω)^A\Pf g) by Ω(ω) :=dω+l/2[ω, ω]eΛ2(P, g).
When ω is a connection form on a principal G-bundle P, Ω is the curvature form
of ω. Let φ^Ir(G). From ^4ί/(G)-invariancy of φ, we obtain

LEMMA 7.2. dφ(Ω) = 0.

For a smooth family of α-valued l-formsωβ= {ω^AKP, $)\t^R},ώR^A\P, g)
is defined by (ώΛ)C ί > p ) :=ττ*(ω% for (f, P

DEFINITION. A linear map

μ{ωR): Ir{G) — > A2r~KP)

is defined by μ(ωR)φ :=ττ7(^(i3Λ)) for φs=Ir(G), where ΩR:=Ω(ώR).

LEMMA 7.3. μ{ωR)φ = r l φ(-^-ω\ Ωι\dt,

where Ωι :=Ω(ω%
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Note that μ{ωR)ψ can be regarded as a form on M when each ωι is a con-
nection form on a principal G-bundle P over M. From Lemma 7.1 and 7.2, we
get

PROPOSITION 7.1. d(μ(ωR)φ) = φ^Ω^-φiΩ").

Especially when ωt=tωίJ

Γ(l—t)ω°, we denote μ(α>β) by λ(ω°, ω1), and T(α>) :—
λ(0, α>).

COROLLARY 7.2.

COROLLARY 7.3. d(T(ω)φ) = φ(Ω).

If each ωι is a connection form on a principal G-bundle P over M, Proposi-
tion 7.1 shows that the characteristic homomorphism Γ(G)^φ->[_φ(Ω)~]^H2r(M)
is independent of the choice of connections (cf. [C]).

PROPOSITION 7.4 (Product formula). For φ, ψ(Ξl(G),

μ(ωR)(φ ψ) = (μ(ωR)φ)Aψ(Ω1)Jr(p(Ω°)A(λ(ω0, o)ι)ψ)

— d 7Γz(φ(ΩR) A (λ(τr^co1, ώR)φ)).

Proof. It follows from Lemma 7.1 and Corollary 7.2 that

dπ1 {φ(ΩR)A(λ(π*ωι, ώR)ψ))

= -πI(φ(ΩR)Ad(λ(π*ω1, ώR)ψ))

+j*(φ(ΩR)Aλ(π*ω\ ώR)ψ))~j%(φ(ΩR)A(λ{π*ω\ ώR)ψ))

= -π\φ(ΩR)A(ψ(ΩR)-ψ(π*Ωί)))-<p(Ωo)Aλ(ω\ω°)ψ

=—μ((ϋR)(φ'ψ)-\-μ(<jϋR)<pAψ(Ω1)Jr(p(Ω0)Aλ(a)°, w^φ . Q. E. D.

COROLLARY 7.5.

λ(ω°, w^iψ-ψ) = (λ(ω°, o)ι)ψ)Aφ(Ω1)Jrψ(Ω°)A(λ(ω°, o)ι)φ)

— dπ^φΦ^Aiλiπ^ω1, ώR)ψ)).

COROLLARY 7.6 (Chern and Simons [CS]).

T(ω)(ψ'φ) = {T(ω)φ)Aψ(Ω)+exact.

We need a lemma to prove derivation formulae. Let φ^Ir(G), {ωs<=A\P, g)
a smooth family.

1 3
LEMMA 7.4. — -=-φ(Ωs) = dφ(-r-ω8, Ωs) .

r as τ \os /

Proof. For a family ω(s)β := {ω(5)£ :=ω s ί | sei?} for fixed 5E/?, Proposition
7.1 implies

) - φ(Ω,)-φ(Ω0),
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where Ω(s)1 :=β(ω(s)ί). On the other hand, we have

μ(ω{s)R)φ = r^φ^φY, Ω{sγ)dt=r^φ(^ωt, Ωt)dt,

so that, the proof is completed. Q. E. D.

Let {aή^A\P, cfi\t<^R, s^R} be a smooth two-parameters family on RxR
xP—RxP. Denote the smooth one-parameter family {ωllt^R} on P by ωf for
each

PROPOSITION 7.7 (Generalized derivation formula). For φtΞlr(G),

where Ω*:=Ω(βf) and Ωl:=Ω(ωϊ).

Proof. Applying Lemma 7.4 to the one-parameter family {ώf^A^P, g)|
we get

= ~dπI(φ(~ώf, δfy + jtyζ-jLω*, Qή-ftφ^ωϊ, flf) .

Q. E. D.
For ω°^A\P, g) and a smooth family {ω\^A\P, g)| s^R}, we get the fol-

lowing :

COROLLARY 7.8 (Heitsch [H]). For

« < l ) ) d

Note that each term in this corollary can be regarded as a form on M if ω°
and α>3 are connection forms on a principal G-bundle P over M. Putting ω°=0
in this corollary, we obtain

COROLLARY 7.9. (Chern and Simons [CS, KO]).
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