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EXOTIC CHARACTERISTIC CLASSES OF CERTAIN
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§0. Introduction

In this paper we study characteristic classes and exotic characteristic classes
[B] of foliations. We deal with a certain sort of I'-foliations ((G, !)-foliations)
which is a generalization of Riemannian, projective and conformal foliations
[NS, P]. The main purpose of this paper is to prove vanishing theorems for
certain exotic characteristic classes of such I'-foliations. As a step toward this,
we obtain results which are relevant to strong vanishing theorems for charac-
teristic classes of the I'-foliations. These generalize the result of Nishikawa
and Sato [NS]. In order to obtain these results, we use neither normal Cartan
connections nor classifying spaces, but a product formula for secondary in-
variants [CS] and a technique used by Kobayashi and Ochiai in [KO].

Throughout this paper, all manifolds and mappings are assumed to be
smooth (C*). In §1, Chern-Weil theory of characteristic classes are reviewed,
and the technique used in [KO] is slightly improved so that it may be applied
to the case of foliations. In §2, certain automorphisms of G-structures are
specialized to [-automorphisms, which are generalized notions of affine, projective
and conformal transformations, and then (G, l)-foliations are defined. In §3,
so-called strong vanishing theorems for characteristic classes of (G, !)-foliations
are proved, where the results prepared in §1 are applied. In §4, we review
some notions about exotic characteristic classes [B, H] such as cochain complexes
WO, and W,, generalized characteristic homomorphisms for foliations and Vey-
basis. In §5, the vanishing theorems for certain exotic characteristic classes
of (G, )-foliations are proved. In §6, more detailed results are obtained in
the case of projective and conformal foliations. Especially we find that all of
the rigid exotic characteristic classes of conformal foliations vanish and the
rest of the exotic characteristic classes coincide with the Godbillon-Vey in-
variant up to scalar multiples. In §7, we prove the product formula and a
derivative formula [H] for secondary invariants in a simple and unified manner.

The author wishes to express his hearty thanks to Professor T. Otsuki for
his encouragement and valuable suggestions.
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§1. Characteristic homomorphism and (I, f)-equivalence

Let G be a Lie group, g its Lie algebra and /7(G) the space of all Ad(G)-
invariant symmetric multilinear functions on gX -+ Xg (v times). We will use
the convention that if ¢=/["(G) contains less than » arguments, the last one is
repeated a number of times to make ¢ a function of r arguments. Let M be a
manifold and P a principal G-bundle over M. The space of all g-valued (resp.
real valued) s-forms on P (resp. M) is denoted by AP, g) (resp. AS(M)).

Let o°, w'e AP, g) be connection forms.

DEFINITION. Homomorphisms of modules
Aw?): IM(G) —> A¥™(M)
and A, @) : I'(G) —> A* (M)
are defined by
Nawp : = (29

and Ao, o) = rS:go(a)‘—w", 29dt for ¢el(G),

where £2° is the curvature form of the connection w'=tw'+(1—1)e".
We obtain the following (see §7):
Fact 1.1. d(A(@)g) = 0

and d(A(e°, ©)p) = A )e—2A")p .

In other words, the closed form A(w")¢ represents a de Rham cohomology
class [Aw')]e H*(M), and the induced homomorphism

Aw)*: I'(G) —> H*(M)

does not depend on the choice of connections on P. We call this homomorphism
the characteristic homomorphism of P and denote by 4,.
In §7, we prove the following product formula.

ProposITION 1.1. For ¢, ¢=I(G),
2, @)@+ g) ~ A, o)A @)Y+ AW, ),
where “~” means “cohomologous to”.

Moreover we have the derivative formula :

Fact 1.2 (Heitsch [H]). For ¢=I"(G), and a smooth family of connections
wieC(P) (sER),
1

7%,2(&)0, W) = go(%wé, Q§)+(r—1)d§2t¢(%w;, wi—a’, Q0)dt,
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where 2! is the curvature form of !:=tw!+(1—1)w’.
Integrating the both sides of this formula, we get

Fact 1.3. For ¢o=I"(G),
0 1\~ 0 1\n ~L ! i 1 1
A, 0)p—2Ae", wh)p rSogo( 55 9 .Qs)ds .
We shall give simple proofs of Facts 1.1 and 1.2 in §7.

Let V be a vector space and GL(V) the general linear group. Hereafter we
assume that GCGL(V). Let | be a Lie algebra which contains the Lie algebra
g-+V of the semidirect product G-V as a Lie subalgebra. Denote the space of
all -valued (resp. V-valued) s-forms on P by AP, ) (resp. AS(P, V)). Let 0=
AYP, V), Co(P) :={wsC(P)|df+[w, 6]1=0}, where C(P) denotes the set of all
G-connections on P. By the definition and the Jacobi identity in g+V, we get

LEMMA 1.1. [64, 21 =0 for wsCy(P).

DEFINITION. We say that o°, w'eC(P) are (I, f)-equivalent if there exists
p€ AP, 1) such that o'—w’=[0, p].

From the Jacobi identity in [ and the fact that [V, V]=0, we see the follow-
ing lemma is true.

LEMMA 1.2. If o°cC(P) and w*'<Cy(P) are (I, O)-equivalent, then w*<Cy(P).

We denote the set {Xe!(|[X, Y]eg+V for any YV} by {. It is obvious
that { is an ad(V)-invariant subspace of [ and contains g+V. From the defini-

tion of 1, we get

LEMMA 1.3. If 0,; T,P— V 1s surjectiwe for each peP, [0, pl=w'—o" for
o', @ =C(P) and p= AP, 1), then ps AP, I).

Hereafter we assume that = A'(P, V) satisfies the condition described in
Lemma 1.3. Note that the canonical form of the tangent frame bundle of a
manifold will do. Let S7(i*) be the space of all multilinear functions on {X ---
X1 (r times). For X&V, let the linear map ad(X)*: S7({*) — S"(i*) be defined
by, for ¢=S7(1%), X; =i,

(@dXP*NX,, -, Xp) = 3 ¢(X,, =, X, X, -+, X))
Set ST((*)" :={¢p=S7(1")] ad(V)*¢=0}, I",(G) :=(S"(I*)" |g)NI(G).
PROPOSITION 1.2. If o, @'€Cy(P) are (1, 0)-equivalent, then
A, )", (G) =0 for r=1.

Proof. Let pe AP, 1) satisfy o'—w’=[0, p]. Since w'=tw'+(1—t)w’=w’+
[0, tp], 0" and o° are (I, f)-equivalent. From Lemmas 1.1 and 1.2, we get [6, 2]
=0. For ¢=S7(1*)", XeV and X,€1, we see that



EXOTIC CHARACTERISTIC CLASSES 257

;219[,()(1, e IX, X, e, X =0.
Hence ¢([0, o], 29+(r—1)¢(p, [0, 2], £")=0, so that, we get
Plo'—a®, Q) = ¢([6, pl, 29 =0. Q.E.D.
This proposition and Fact 1.1 imply
COROLLARY 1.3. If o°, w'€C4(P) are (1, O)-equivalent, then
A" = A for pele(G).

Remark 1.1. Let S"(i1*)y :={p=S"(1%)" |1y¢=0}, where 15 : S7({*) — S™({*) is
the inner product operator for X&V. Then Proposition 1.2 and Corollary 1.3
hold for «°, w'€C(P) and o= (S"({*)y|g)NI(G) also.

Remark 1.2. Let L be a Lie group which contains G as a Lie subgroup
compatible with the inclusion g+ VCI, where | is the Lie algebra of L. Denote
the image of the restriction map I(L) — I(G) by I,(G). Since I,(G)CI(G), our
results in this section generalize the corresponding results in [KOJ.

Remark 1.3. For a G-bundle P with < A(P, V) which satisfy the condi-
tion in Lemma 1.3, we can find a Lie algebra I such that any o°, o'eCy(P) are
(1, @)-equivalent. Let g» be the p-th prolongation of g, i.e., the vector space
{teSP*(V*)Q V| the linear map VX — (X, X, ---, X,)e€V belongs to ggli(V)
=V*Q YV for anyX,, ---, X,€V} where S(V*)®V is the space of all symmetric
multilinear functions on VX -+ XV (r times) with values in V. Note that g¢™?
=V and ¢=g. For t=g¢” and t'e¢®, we define [t, #’]=g"*® by, for X,&V,

1

[t; t/:l(Xo; Ty Xr+s) :mz t(t/(Xlo: Tty Xzs)’ Xls+1’ ] X13+r)
1 ,
’Wzt t( Xy s Xy Xppa X500

where the summations are taken over all permutations of (0, ---, 7+s). We ex-
plicitly set [g¢®, ¢¢"¥]=0. In particular, if 1=g¢®, p=0, and XV, then

t, XXy, -, Xp) =X, X, -+, Xp).
If is well-known that ¢ := Zlg”” becomes a Lie algebra. By the definition
pz-

of the bracket product, it is clear that ¢ contains the Lie algebra g+ V of the
semidirect product G-V as a Lie subalgebra. Let o°, o'€Cy(P), then [w'—
®’, 01=0. Fix a basis of V, and denote the components of & (resp. w'—w®) by
6" (resp. zi). Then tA#’=0 for each 1. Here we employ the Einstein summa-
tion convention. Since the form @ satisfies the condition in Lemma 1.3, 6" are
linearly independent at each point. Then there exist functions p?, such that }=
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05x+0% and pj,=p}, Clearly p}, define an element p of g satisfying o'—o’=
[p, @]. Thus any o°, 0'€Cy(P) are (g, 6)-equivalent.

Note that {C(g¢P+g@4gP)N! if [ is a Lie subalgebra of ¢ and contains
Vig=g"+g®.

§2. (G, D)-foliation

Let M be an n-dimensional manifold, TM the tangent bundle of M. An in-
tegrable subbundle E of TM is called a foliation of M. We call the quotient
bundle TM/E the normal bundle, and the frame bundle of TM/F the normal
frame bundle of E. We will take the following point of view toward [ '-folia-
tions (with coordinates) (cf. [BH], [NS] and [P]):

A TI'-foliation & of codimension ¢ (<n) on M is given by the following data :

(1) An open covering {U;} of M.

(2) An auxiliary ¢-dimensional manifold N with a pseudogroup I” of local
transformations on N.

(3) A system of maps A;: U; — N of rank q.

(4) A system of elements 7,;,€[" which satisfy h,=7,,°h; on U,;#¢ for
each 4, ¢, where U, :=U,NU,;.

Then the kernels of differentials (h;)« constitute an integrable subbundle F
of TM. Thus & defines a usual foliation as an underlying structure. The
quotient bundle TM/F is called the normal bundle of #. Of course, the fibre
dimension of TM/F is the codimension of &. Conversely Frobenius theorem
shows that an integrable subbundle of TM defines a I '-foliation with N=R? and
['={local diffeomorphisms on RY.

ExAMPLE 2.1. If N is a complex analytic manifold and I'= {complex analytic
local diffeomorphisms on N}, & is called a complex analytic foliation. If M
is a complex analytic manifold, then a holomorphic integrable subbundle of the
holomorphic tangent bundle of M defines a complex analytic foliation (see [B],
for example).

ExaMpLE 2.2. If N is a manifold with an affine connection w and I'=
{local affine transformations on N}, & is called an affine foliation.

ExaMpLE 2.3. If IV is a Riemannian manifold and I"=/{local isometries of
N}, & is called a Riemannian foliation [P]. If M admits a bundle-like metric
[R] with respect to a foliation on M, this foliation with the metric defines a
Riemannian foliation.

ExAMPLE 2.4. If Nis a Riemannian manifold and I"= {local projective trans-
formations on N}, & is called a projective foliation [NS]. A foliation of codimen-
sion one defines a projective foliation. We will also call & a projective folia-
tion when N is a manifold with an affine connection w and I"= {local projective
transformations on N}. This foliation is a generalization of an affine foliation.
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ExampLE 25. If N is a Riemannian manifold and I'={local conformal
transformations on N}, & is called a conformal foliation [NS]. Both a foliation
of codimension one and a complex analytic foliation of complex codimension one
define conformal foliations.

We see that Example 2.2, 24 and 2.5 are generalizations of Example 2.3.
In each example, I' consists of local automorphisms of a certain G-structure,
that is, integrable GL(q/2, C)-structure (g: even) in Example 2.1, GL(g, R)-
structure with an affine connection in Example 2.2, O(g)-structure in Example
2.3, GL(g, R)-structure with a torsion free connection in Example 2.4 and CO(g)-
structure in Example 2.5, where CO(q):={aA|la=sR—{0}, A=0O(q)}. Thus we
will restrict ourselves to I '-foliations which are defined by G-structures on N
with connection.

Let By be the tangent frame bundle of N, GL,:=GL(q, R) its structure
group and 6y the canonical form. Let G be a subgroup of GL, and Py a G-
subbundle of By (a G-structure on N). The restriction of 8y to Py is also
denoted by 0y. For a local diffeomorphism 7 on A, the induced local bundle
isomorphism of By is denoted by 7. Let I'(Py) be the pseudogroup of all local
diffeomorphisms on N which preserve Py. Let [ be an auxiliary Lie algebra
which contains the Lie algebra g+ R? of the semidirect product G-R? as a Lie
subalgebra. Let w be a G-connection on Py.

DEFINITION. y<[I'(Py) is said to be a (local) [-automorphism of (Py, @) if
7*w is (I, Oy)-equivalent to w.

Remark 2.1. If { is a Lie subalgebra of a Lie algebra [ and y=I'(Py) is a
{-automorphism of (Py, w), then 7 is a !’-automorphism. For a torsion free con-
nection weC(Py), any yI'(Py) is a g®-automorphism, where g¢* is the Lie
algebra which was defined in Remark 1.3.

ExAMPLE 2.2’ (Affine case). Let N be a manifold with an affine connection
weC(By). Put G=GL, Py=By and 1=gl,,. For X-+veg-+R% the correspond-

. X . .
ing element is given by <0 g) If v is an affine transformation on N, then
P*o—w=0 or P*o—w=[0y, 0] in L

ExAaMPLE 2.4’ (Projective case [KOJ]). Let N be a Riemannian manifold, w
the Levi-Civita connection. Put G=GL,, Py=DBy and (=38l(¢+1, R)Cgl,.:, where
8l(g-+1, R) is the Lie algebra of the special linear group SL(¢+1, R). For X+v

. . A
g+ R% the corresponding element is given by (0 Z), where a :=— qil Tr X

and A:=X+al, If y is a projective transformation on [V, then there exists a
{(R9)-valued function p on Py such that P*o—w=0yo+(00y), or FFfo—w=

[0y, p] in I, where {(R?) is contained in !’ in the form (3 8) for ust(R9).
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ExampLE 2.5’ (Conformal case [KO]). Let N be a Riemannian manifold, o
the Levi-Civita connection. Put G=CO(g), Py= the CO(g)-extension of the
orthonormal frame bundle, and 1=0(¢+1, 1)Cgl,+,, where O(g+1, 1) is the Lie
algebra of O(g+1, 1). The Lie group O(g+1, 1) is defined to be {XeGL,;,|' XSX

00 —1
=S}, where S:( 01, O)EGLQH. For X+veg+R? the corresponding ele-
—-10 0
—a v 0 1
ment is given by( 0 A v), where a :=—?TrX and A:=X+al, Ifrisa
0 0 a
conformal transformation on N, then there exists a ‘(R?-valued function p on
Py such that P*o—ew=0yp+(p0x),—'p'0y or Ffo—w=[0y, p] in I, where ‘(R9)
0 00
is contained in ! in the form (‘u 0 0) for ue(R9).
0 u0
Now we get the following generalization of all the above foliations.

DEFINITION. If I consists of l-automorphisms of (Py, w) for a G-structure
Py and w=C(Py), then the [-foliation & is called a (G, l)-foliation.

Remark 2.2. According to Remark 2.1, if the G-structure admits a torsion
free connection weC(Py) and I'CI'(Py), then the I'-foliation with (Py, ) is a
(G, g®)-foliation. Note that a (G, !)-foliation & is a (G, I’)-foliation if [ is a
Lie subalgebra of !I’. In order to study characteristic homomorphisms for (G, Y)-
foliations, we may take a larger Lie algebra '

§ 3. Characteristic classes of (G, [)-foliations

Let & be a I'-foliation on M as in §2, B the normal frame bundle. Each
hy: U,— N is covered by the canonical bundle map #,: B|U; — By which
satisfies ﬁﬂ:ﬁ,pﬁ;. Let Py be a G-reduction of By, I'CI'(Py) at first. Then
we have

LEMMA 3.1. h; and Py defines a canonical G-subbundle PCB on which €
AP, RY) satisfying ﬁ}kﬁNzﬂlP; exists, where P; 1s the restriction P|U,.

Such a reduction is a special case of F-reductions defined in [A]. We
assume that the covering {U;} in the definition of & is locally finite and admits
a partition of unity {f;}. Let m=: P — M be the projection, f;:=z*f;. Let »
be a connection form on P,. Define w'eC(P) by o' ::;f;-(ﬁ}“w). We also

denote the GL,-extension of w' to B by «'. Clearly this connection is a basic
connection defind by Bott [B].

Let F be the corresponding integrable subbundle of TM, F*:={ac A (M)|1xa
=0 for any XeI'F} and "A :=(A"F*)AA(M) an ideal of A(M), where I'F is the
space of all cross sections of F. Clearly "A=0 for »>¢. The following facts
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were proved by Bott, and are called the vanishing theorems for characteristic
classes of foliations.

Fact 3.1. ANHI(G) T TANA*(M),
and hence A)IT(G) =0 for r>g¢q.
For the GL,-extension of w' to B, we get
Fact 3.2. AW (GLy) CTANAY(M),
and hence A)I(GLy) =0 for r>gq.

In the rest of this section, we assume that & is a (G, I)-foliation. Then
we can find a basic connection which is convenient to study characteristic
homomorphisms.

ProposiTION 3.1. Let w‘::Ef#-(l;;‘jw) (eC(P)), then w'|P; and hfo are
(1, 8| P 1)-equivalent. g
Proof. The restriction is w‘lP1=2(f,,IP;)-(ﬁjw[PM), where P, :=P|U,,.
o
On the other hand, there is pNeA"(ﬁx(P#;), ) such that

Fui* (@ B (Pa2) = 0l Fy(P )+ [0x 1 7(P L), pril,
so that . . . .
REw| Py = (hKf75a0)| Py = hfw| Py +[0| P, hfpua].

Then we Obtain
o'|P; = #Z(f#lPz)~(51‘w\P,,z)+[0lPa, #E(f,,iPz)'(ﬁi“p,,x)]

= Kfo+[0) P, §<f,,1P1>-<ﬁ;*p,,z>. Q.E.D.

This proposition generalizes the converse version of the holonomy theorem
in [A] in the case of normal bundles of foliations.

Furthermore, we assume that weC(Py) is torsion free, then w'eCy(P) from
Lemma 1.2. We get the following generalizations of strong vanishing theorems
in [NS] and [P].

THEOREM 3.2. A, (G) T " ANAT (M),
and hence A" (G)=0  for r>gq/2.

Proof. It is clear that the form 6 in Lemma 3.1 satisfies the condition 1n
Lemma 1.3. By Corollary 1.3 and Proposition 3.1, we get
AU, = hflw)p for ol (G). Q.E.D.

Remark 3.1. According to Remark 2.2, we see that Theorem 3.2 is applicable
to any I'-foliation with I'CI'(Py) for a G-structure Py on N with a torsion
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free connection. Studying the relation between Is1,(G) and I,(G), we can
generalize vanishing theorems for I(GL,) as follows.

COROLLARY 3.3. If I(G) s generated by I,(G) and odd degree elements of
I(G), then
Ap(I7(G)) =0 for r>q/2.

COROLLARY 34. If Is1,(G) 15 generated by 1,(G) and odd degree elements of
]GLq(G): then
ABU(GLY))=0  for r>q/2,
where g1 (G):=I(GLy)lg.
For example, /4., (G)=1,(G) in the case of affine foliations. Is1(G) is

generated by /,(G) and the first Chern polynomial c11g€ %6, (G) in the case of
projective or conformal foliations (see §6).

Remark 3.2. The subring A(/(GLp))CH*(M) is generated by the Pontryagin
classes of TM/F. Corollary 3.4 was obtained by Nishikawa and Sato [NS] in
the case of projective (resp. conformal) foliations provided that ¢=2 (resp.g=3).
Since they used the normal Cartan connections in their paper, the restriction on
the codimension was not avoidable. In a recent paper [NT], Nishikawa and
Takeuchi generalized the theorem in [NS] to ['-foliations which relate to flat
homogeneous spaces of order two, using the normal Cartan connections.

§4. Exotic characteristic classes

In [BH], Bott and Haefliger constructed cochain complexes denoted by WO,
and W,. We recall their construction [B]. Let R[c,, -+, ¢o] be the polynomial
ring over R in variables ¢, -+, ¢, with dimensions dim ¢;=2; for j=1, 2, -, ¢,
I,, the ideal generated by monomials whose dimensions are greater than 2g.
Denote the quotient ring R[cy, -++cgl/Isq bY Rolcy, =+, ¢col. Let E(h,, --+) be the
exterior algebra over R generated by indicated A’s with dim h;=2:—1.

As a graded algebra,

WO, := E(hy, hs, -+, harcgrnyre-1) Q Rolcq, -+ ¢l -
On WO,, a unique differential dw: WO, — WO, is defined by requiring
dwe,=0, 1=3=q, and d,h;=c,, 1=1,3, - 2[(¢g+1)/2]—1.
The cochain complex W, is defined similarly, that is,
W= E(hy, hyy -+, hg) @ Ryl c1, Cay -+ 5 €ql -
with the differential d, : W,— W, defined by requiring
dpe;=0, 1=;=¢, and d,h;=c,, 1=1=q.

Clearly d,*=0. Denote the cohomology ring of the cochain complex WO,
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(resp. W,) by H*(WO,) (resp. H¥(W,). Let & be a I'-foliation, B the normal
frame bundle, and w'=C(B) be a basic connection [B]. From Fact 3.2, the
following homomorphism defined by Bott is well-defined.

DEFINITION. A homomorphism of graded algebras Ag: WO,— A(M) is defined
by requiring

Ag(cy) = Aw)c,, 1=,=g,
and ]ﬂ'(hl) = Z(G)O’ wl)ct ) Z:]-; 3’ Tty 2[(q+1)/2]_1 )

where «° is a fixed metric connection on B and ¢, in the right hand side is the
j-th Chern polynomial defined in the following fact.

Fact 41. I(GL)=R[cy, -+, ¢g], where ¢,€I'(GL,) are defined by
. — _t
St X) 1= det(1, =X)  for Xegl,.
From Fact 1.1, it is clear that Ag is a cochain homomorphism, that is,
Agd,=dAg. Bott proved the following :

Fact 4.2. The induced homomorphism 2g*: H¥(WO,) — H*(M) does not de-
pend on the choice of basic connections and metric connections.

This homomorphism is called the generalized characteristic homomorphism
for ¥. The elements of Ag*(H*(WO,)—[R,[cs, -+, ¢g)]) are called exotic char-
acteristic classes of &, where [ ] denotes the cohomology class. J. Vey de-
termined a basis for H¥(WO,).

Fact 4.3. A basis for exotic classes of H¥(WO,) is given by the classes of
hi@cy = hy /N Nhoy @y Chs
where [=(,, -+, 1,) and J=(yy, ==+, Jn) satisfy
Iy < <y=q (=D,
l=p=-=m=q with |J|=5+ - +m=¢, and
1) u+1Jl=¢+1 (condition to be cocycle),
2) u=j°,
where j° is the smallest odd integer in J or j°:=oco.

For the proof, see [H]. The cohomology classes [h;&c,] are called Vey-
basis for exotic classes.

When there exists a flat connection @° on B, Bott defined the following
homomorphism :

DEFINITION. A homomorphism of graded algebras 7g, ,0: W,— A(M) is de-
fined by requiring

Az.wlc) = Aa')e,, 1=)=q,

and 2z, o0( ) 1= A, oY), , 1=1=q.
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Remark 4.1. This homomorphism is originaly defind only for foliations with
trivialized normal bundles [B].
From Fact 1.1, it is clear that A .0 i$ a cochain homomorphism.

Fact 44. The induced homomorphism A%, ,0: H*(W,) — H*(M) does not de-
pend on the choice of basic connections.

Remark 4.2. In contrast to the case of WO,, 4% ,0 depends also on the -
equivalence class [TM/F with "] which was defined in [A]. The flat connec-
tion @° is not reducible to P in general for a G-subbundle P defined in §3.

Following to the method of Vey [H], we get

Fact 45. A basis for H*(W,) is given by the classes of h;®c, as in Fact
4.3, provided that the odd integer restriction on i, -+, 1; is deleted and j°:=j,.

§5. Exotic characteristic classes of (G, !)-foliations

In this section, we study exotic characteristic classes, using Theorem 3.2.
Let ¥ be a I'-foliation, B the normal frame bundle, w'eC(B) a basic connection.
Let K™ :={pel"(GL)| A(w)pC* A}, and K:= 3, K" is a subring of I(GL,). There

720

exist integers s, -+, s, (158, < -+ <s,<¢) satisfying I(GL)=K[c¢,,, -+, ¢5,].
It is clear that

LEMMA 5.1. If sy, -+, s, are odd, then
AMI(GLY)~0  for r>q/2.

Hereafter in this paper we will deal with only the cocycles A;®c, as in
Facts 4.3 and 4.5. Fixing a basic connection w'eC(B), we use the convention
that ¢ :=A(w"e for 0=I(GL,) and h;:=2gh; (o7 Az, ool ).

PROPOSITION 5.1. If sy, ==, s, are odd, |J|>q/2 and i,+|]J|=q+s. for
hI®CJE qu, then

Rines ~ by shog N AN@EDYE  Jor A |T1=q+se, silg and siliy,
~0 otherwise,
where Iy:=(y, -+, 1,) and by, ; 15 a real number.
Proof. There exist ¢%,= K''-'! guch that

Cg =

K
= > a°C
ogm(gmgo" 4

where A:=(a,, ---) with {a,, -} C{sy, -+, sx} and a,<a,<---. Since |]J|>q/2
and a, is odd, we get

iy :0<|£|JI¢§AA6A = D (dha)NCa,NPKa = 2 d(ho NE4,NEFS)

where A,:=(a,, -). The condition 1,+|/|=¢g+s, and Fact 3.2 imply
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hiney ~ (=1 (dh A b o A, A $5a
Y TN I IV
It follows from the definition of K and Fact 3.2 that
Eo NEa A PSy € 148D AL 20T 1514D 4 C ntAlmer 20l - i4n 4
Since i;+|J|=q+s; and s =a,,
utHAl—a,+2(1]1 —1AD =2 ¢+(sp—an+UJI =14 = g,

where the equality holds if and only if 1,+|J|=q+s:, |A|=1/| and a,=s,. As
a, is the smallest in A, the condition s,|(g—i,) is necessary. If the equality
holds, then

A~

Rines ~ 5 R N Ae A(@s,) @0l

141=1J1
= byh Nhp NE N (Es) @0

Apply the same method as above to the cocycle h;,Ah; & cy - (cs,) @ 0%
instead of A;®c,. Then we get

R AR NG A ) Tk by Ry AR A for syl
~0 otherwise. Q.E.D.

Remark 5.1. If j°#o0o, that is, J contains an odd integer, then the condition
|J1>¢q/2 is automatically satisfied.

In the case of a foliation with a flat connection, the assumption that s;, -+, s,
are odd and |/|>¢/2 is avoidable, that is,

PROPOSITION 5.2. Let F be a folwation with a flat connection, s, as above.
If iy +1J1=2q+se for hi@c,€W,, then

ﬁIAéJNbile/’lsk/\hll/\(ésk)q/S" Jor i +1JI=q+se, silqg and s.lu,
~0 otherwise.

Proof. Since 1;-+|]J|=¢+1 and 1,<j,, 2|J|=i,+|J|=¢+1, that is, the as-
sumption |J|>¢/2 in Proposition 5.1 is satisfied. The same method as in the
proof of Proposition 5.1 completes the proof. Q.E.D.

Let & be a (G, l)-foliation, @' as in Theorem 3.2. Let I, :={p=sI(GL,)
lolg=¢lg for some ¢l (G)}, then I CK for this basic connection by
Theorem 3.2. If I(GL, is generated by I, and c;, -+, ¢y, then I(GL)=
Klcs,, =+, ¢5,]. Thus Propositions 5.1 and 5.2 are applicable to (G, I)-foliations.

§ 6. Exotic characteristic classes of projective and conformal foliations

Let & be a projective (resp. conformal) foliation of codimension ¢ on M, G
=GL, (resp. CO(q)) and L=SL(q+1, R) (resp. O(g+1, 1)) as in Example 2.4’ (resp.



266 NAOTO ABE
2.5"). The subring {p=I(GLy)|¢la=¢lg for some ¢=I(L)} in I(GL,) is denoted
by I. 1. Note that I, 1,ClwG.n. We now study the relation between I(GL,)
and [, 1,- Let ckeI*(GL,) be defined by

k-1

= Z; Bl ;4
P
— I \¢90q+1—; gt+1—; q+l J

where By,i=(=—27) (7 7) (resp (‘_) )G D} and

¢, =1

LEMMA 6.1. ckelte .

Proof. For Xeg, let Y be the corresponding element in /, see Example 2.4’
(resp. 2.5"). A direct calculation shows

_t_ J— k AL,
det(I—5-7) = Streh(X),
where I=1,,, (resp. Igs). Q.E.D.
Obviously ¢ =c¢,=1 and ¢} =0.
LEMMA 6.2. In the conformal case, we have

cklg=0 for k:odd.

Rearranging the expression in the definition, we obtain

-1 .
LEMMA 6.3. ¢, = > B¥(c,))  *ck+-ct
k=0

where  B'*:= (qul)rl(q_:_lgk)(resp( )1 kslk(q 2= k)( 2 s)

Thus I(GL,) is generated by [, 1, and ¢;€/*(GL,). From now on, we will
consider only the cocycles described in Facts 4.3 and 4.5. We may assume, as
is allowable from Facts 4.2 and 4.4, o' is the basic connection defined in Proposi-
tion 3.1. We will use the same notations as in §5.

First we study the homomorphism A¢: WO, — A(M). We may assume that
@’ is a metric connection which is reducible to P. Since I 17Tl nCK and
I(GL)=K[c,], Proposition 5.1 implies

PROPOSITION 6.1 If |J|>q/2 for h;Qc,eWO,, then
hines ~b, JhNR AN@)T for w+1]l=q+1,
~0 Jor u+I|Jl=q+2.

Remark 6.1. We find that b, ,=B*° H B’s° by chasing the proof of Pro-
position 5.1 with Lemma 6.3.



EXOTIC CHARACTERISTIC CLASSES 267

Especially when & is a conformal foliation, we obtain the following theorem
in which the condition |J|>¢/2 is avoidable by Lemma 6.2.
THEOREM 6.2. For h;Qc,sWO,,
hiNes ~ by b N@Y for I=() and +|]1=¢+1,

~0 otherwise .

Proof. Lemma 6.3 and Proposition 1.1 imply
A@°, w)e, ~ A, 0)ct+(A0’, @) AN @),

for certain o,€I*-{(GL,), that is, h;~ht+h,A¢,, where hf:=Jgct. It follows
from Fact 3.2 that

A

hines ~hENG R NRE NG NG .

Since ° is reducible to P, Lemma 6.2 imply ﬁ%AEJZO, and then ﬁ,/\éJNO for
I,#¢ or ,+|J|=¢+2. In the same way as the proof of Proposition 5.1, we get
o NCy=by,, s(€)* for i;+|]|=q+1. Q.E.D.

The classes h;Qc,e W0, with ,+|/|=g+2 are said to be rigid [H]. The
class of h;®(c,)? is called the Godbillon-Vey invariant of foliations of codimen-
sion q.

Next we study the homomorphism 2%, ,0: W, — A(M). Ler & be a projective
or conformal foliation with a flat connection w’ on the normal frame bundle B.
Proposition 5.2 implies

PROPOSITION 6.3. For h;Qc,eW,,

hines ~ by by AR AN@)T for u+]])=g+1,
~0 Jor u+lJl=zg+2.

Hereafter we assume that & is a conformal foliation.

THEOREM 6.4. ~If the flat connection «° is reducible to P and /, contains an
odd integer, then h;A¢,~0.

The proof is almost the same as that of Theorem 6.2.

COROLLARY 6.5. If the flat connection @ is given by a trwialization of B
and I, contains an odd integer, then h;Né;~0.

For the proof of this corollary, we need the following lemma which is
derived from Fact 1.3.

LEMMA 64. [f {0}|0=<s=<1} 1s a smooth family of flat connections on B, then
Aaf, @), ~ Awh, we,  for i=2.

Remark 6.2. This lemma also shows exotic characteristic classes of i;& ¢y
depends on the 9-homotopy class [A] of [TM/F with o®]g if 1,>1.



268 NAOTO ABE

Proof of Corollary 6.5. Since O(q)cCO(q), any trivialization of B is homo-
topic to one of P. Then there is a smooth family ) of flat connections such
that w} is reducible to P. Lemma 6.4 completes the proof. Q.E.D.

Remark 6.3. In the case of projective or conformal foliations with trivialized
normal bundles, Proposition 6.3 and Corollary 6.5 were proved by Morita [M]
and Yamato [Y], where they used the normal Cartan connections as in [NS].

§7. Appendix

In this section, we apply the method of integration along fibre to the case
of secondary invariants, that is, exotic characteristic classes [B] and Chern-
Simons classes [CS]. By this method, certain formulae for secondary invariants
(derivation formulae, especially) can be proved in a simple manner.

Let G be a Lie group, g and I"(G) as in §1. Let P be a smooth manifold.
We denote the space of g-valued (resp. real-valued) r-forms on P by A"(P, g)
(Eesp. A™(P)). Denote RXP by P, where R is the real numbers field. Let z:
P — P be the canonical projection, j,: P — P the inclusion map defined by
7:(p) =, p)e P. For the interval 1 :=[0, 1]JCR, a linear map =’ : A’(ﬁ)ﬁA"’(P)
is defined by

l{a) = S:(zTa)dt for ac A"(P),

where T is the vector field on P whicn is the canonical extension of 3/3¢ on R.
We can easily get the following :

LEMMA 7.1. dra'+z'd = j¥—Jj¥.

For we AY(P, g), define 2=2(w)e A¥ P, g) by 2(w) :=dw+1/2[w, wls AP, g).
When w is a connection form on a principal G-bundle P, £ is the curvature form
of w. Let ¢=I(G). From Ad(G)-invariancy of ¢, we obtain

LEMMA 7.2. de(2)=0.

For a smooth family of g-valued 1-forms g)R: {wte AYP, g)|t= R}, o%< AP, Q)
is defined by (@%)¢, ) :=n*("), for (¢, p)eP.

DEFINITION. A linear map
P : I'(G) —> A¥-1(P)
is defined by w(@®)¢ = (p(2%) for peI(G), where Q% :=Q(a").
P i ¢ ¢
LEMMA 7.3. waoF)p = TSOQJ( o " Q )dt,
where 2°:=2(w").
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Note that p(w®)e can be regarded as a form on M when each o’ is a con-
nection form on a principal G-bundle P over M. From Lemma 7.1 and 7.2, we

get

ProposITION 7.1. d(pl@®)p) = (2 —(22°).

Especially when o'=te'+(1—1)0’, we denote w(@®) by A(«’, »*), and T(w):=
A0, w).

COROLLARY 7.2. A", 0)0) = (DY —p(2°).

COROLLARY 7.3. d(T(w)p) = ¢(2).

If each @' is a connection form on a principal G-bundle P over M, Proposi-
tion 7.1 shows that the characteristic homomorphism I"(G)=¢ — [¢(2)]e H* (M)
is independent of the choice of connections (cf. [C]).

PROPOSITION 7.4 (Product formula). For ¢, ¢=I(G),
@®) @) = (@) NP2 +p(2YN (A, @)

—dn (@R AU x*e’, @®)P)) .
Proof. 1t follows from Lemma 7.1 and Corollary 7.2 that

dz?! (¢(Q~R)/\(Z(7r*a)l, @®)P))
=—1/(o(@B) A dA(m*w', @®)p))
+ (@R A Am*at, a)P)— FH (@A (K r*e!, &F)))
= — 1 (p(DR) A (P(QF)—f(z*21)— () A A, )
=— (&)@ §)+paP)p AY(2)+ ()N A0, @) . Q.E.D.

COROLLARY 7.5.
A, 0@ ¢) = (Ao, 0)) NP2+ (2N A, o))
—da (@B A\ m*e?, aP))) .

COROLLARY 7.6 (Chern and Simons [CS]).
T(w)(@-¢) = (T(@)p) NP(2)+exact .

We need a lemma to prove derivation formulae. Let p=l7(G), {w,€ AYP, g)

|s€ R} a smooth family.
10 0

LEMMA 7A. —0( @) = do(5=0,, 2.).

Proof. For a family w(s)®:={w(s)' :=w,|s= R} for fixed s R, Proposition
7.1 implies

d(la(s)P)p) = p(L2(5))—p(R(s)) = p(2:)— (),
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where £2(s)! :=82(w(s)"). On the other hand, we have
1 70 s 70
#a(s)Hp = rSogza(—aTw(s)‘, Q(s)‘)dt:rgogo(-at—w,, Qt)dt

so that, the proof is completed. Q.E.D.

Let {a)geA‘(P g)|te R, s€ R} be a smooth two-parameters famlly on RXR
X P=Rx P. Denote the smooth one- -parameter family {wi|t= R} on P by w? for
each seR.

PROPOSITION 7.7 (Generalized derivation formula). For ¢=I(G),
_1_~* _ _Q ~R (OF i 1 1 i n 9
3 aher=—dz(o( 57 ot 1)) +e(5 -0l @)—e(55 0k 21),
where QF :=Q(&%) and 0! :=2(w?).

Proof. Applying Lemma 7.4 to the one-parameter family {@?e A‘(.ﬁ, 8)| s= R},
we get

L0 e @m=r(dp(2-of, 7))
:——dn’( (aia)s, 9] >)+]}§D(_a_wx, 025 ) Jogo( 0 wf, QR)
Q.E.D.

For o’ AP, g) and a smooth family {wie AY(P, g)|s= R}, we get the fol-
lowing :

CoroLLARY 7.8 (Heitsch [H]). For o=I(G),

f—(l(w ol)p)y=—dn’ (go(a aF, Q?))-I—gt?(a—ws, Ql)

Note that each term in this corollary can be regarded as a form on M if °
and w! are connection forms on a principal G-bundle P over M. Putting «’°=0
in this corollary, we obtain

COROLLARY 7.9. (Chern and Simons [CS, KOJ).

i%(T(w;)p):—an(w( o, .QR))—I—go( wl, 23).
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