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1. Introdcution. In a work [5], J. Michael and L. Simon studied mean-
value inequalities on generalized submanifolds of Rn, and from which the
volume of domains in an m-dimensional submanifold of Rn can be estimated
under additional assumptions (see also [6]). In this note, we study mean-value
inequalities for submanifolds of the n-dimensional unit sphere Sn and then we
estimate the volume of domains in an m-dimensional submanifold M of Sn

under certain additional assumptions.

2. Statement of results. Let M be a m-dimensional immersed submani-
fold of Sn. We use the following quantities:

//=the mean curvature vector field of M,
ωT O=the volume of the unit ball in Rm,
Bp(ζ)=the open geodesic ball in Sn with center ξ and radius p,

Sp(ξ)=MrΛBp(ξ).

2.1 THEOREM (Mean-value Inequality). Let 1 be a non-negative (weakly)
subharmonic function on M and suppose that there is a constant A such that

H(x)\^Λ for all x e M. For each f G M and for each p ^(ΰ, -~\, the ine-

quality

^ X(x)dV(x)

holds, where dV is the volume element of M and

( Λ ) 1 + 1

h(p)=min.lexp Λp, l+Λp-\ ——Λ 2 p sin p +

m! r r
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Theorem 2.1 has immediate geometric applications. By putting X=l, we
have

2.2 COROLLARY. // M has no boundary in Sp(ξ) for some ξ e M and for

some p <= (0, y \ then

volume S p(ξ)^ωm(sin ρ)m/h(p).

2.3 COROLLARY. // furthermore M is minimally immersed, then

volume S p(ξ)^ωm(s'm ρ)m .

The author would like to thank Professor H. Kitahara for his kind advice
and encouragement.

3. Preliminaries. We denote by < , > the canonical Riemannian metric on
Sn induced from Rn+1 and by 7 the canonical Riemannian connection on Sn.
Let M be a C°° m-dimensional immersed submanifold of Sn. We denote by
< , > and 7 the induced Riemannian metric and the Riemannian connection on
M respectively. We denote the tangent and normal bundles of M by TM and
NM respectively, and denote the projection of a vector field X along M into
TM, NM by Xτ, XN respectively. The second fundamental form B: TX(M)X
TX(M) — NX(M) at x is given by

B(X, Y)=ΪXΫ-{ΪXΫ)T=ΪXΫ-1XΫ, I J e TX{M),

where 7 is a smooth extension of Y, TX(M) is the tangent space to M at x
and NX(M) is the normal space to TX(M) in Tx(Sn). The mean curvature
vector field H of M is given by ϋΓ= trace of B. We denote by Δ the Laplace
operator acting on C\M), the space of class C2 functions on M. A real valued
function X on M will be called (weakly) subharmonic if X is continuous on M
and

(3.1) f X(x)hh(x)dV(x)^0

for every non-negative function h e Cl(M), the space of class C2 functions on
M with compact support.

It can be easily shown that for g e Q(M) and h e C\M)

[ Ag hdV=-[
j M J M

and so that

where Vg is the gradient vector field of g. Therefore, it follows that X e C\M)
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is (weakly) subharmonic if and only if Δ%Ξ>0 on M. For a fixed point f ε M
we denote the geodesic distance in Sn from ξ to x e Sn by r(x). For later
applications we prove the following Lemma.

3.1 LEMMA. For each point x e M with 0<r(x)<π we have

(Δr)(jc)=m cot r(*)+<r(r(*)), H(x)>-<e, f{r{x))Y cot r(*),

where γ is the unique minimal geodesic with unit speed in Sn from ξ to x and e

is the vector in TX{M) with \e\=l such that (e, 7i(r(x))>=max.{<A', f(r(x))> Z e

Proof. For any point x e M and any * e TX(M), let c : (—ε, ε)-> M for
some ε>0 be the geodesic such that c(ό)=x and c(o)=X. If 0<r(x)<π , then
we can choose a sufficiently small ε>0 such that r(c(ί))=Cos"1«f, c(ί)», ί e
(—e, ε), where Cos"1!/ is the principal value of arc cosine u, 0^?ί^l. Then we
have

sin , c(ί)»]

sin

Furthermore, extending c(0 as a vector field around x and denoting it by the
same notation X we have

(X(X r))=
d

sin , c(ί)»]

sin e, c(o»] <=°

sin2 [Cos"!(<£, c(ί)»]

— <<?, c(o)> cosr(x)

rfί-sin -^f , c(ί)>]

sin r(x) sin3

Let {βj} be an orthonormal basis of TX(M) such that ex—ey and let each e3

extend to E3 around x such that E3 is the tangent vector along the geodesic
emanating from x with the tangent vector e3. Then from the above argument
we have

(1) (Δr)(z): - Σ
.7 = 1
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m

= Σ {£/£/•)} (x)

f ' β>Λxh

where V is the canonical connection of Rn+ί.
On the other hand, from the formulas of Gauss we have

(2) ( V ^ E J ) ( J C ) = ( ^ £ , ( Λ ) - < £ J , EJ>(X)X

= B(eJf ej)-x ,

while, from the choice of {e3} we have

(3) <eJfξ>=0 for j=2,3, - , m,

and

(4) <el9 ξ>=<e, ξ> .

And since r(x) satisfies 0<r(x)<π, it is easily shown that f(r(x)) is represented
as an element of Rn+1

(5) ftKx))=_-_^

From (1), (2), (3), (4) and (5) we get

f ' mx>

cosr(x)

sinMx)

— m cot r(x) + <j(r(x)), H{x)} — (e, γ(r(x))>2 cot \

by virtue of H(x): = Σ B(eJf e3) and <?, x>=cos r(x). This completes the proof.

4. Proof of the mean-value inequality. Let λ be a nondecreasing C1 func-
tion on R with λ(t)=O for ίfgO. Let % be a non-negative (weakly) subharmonic
function on M. For a fixed point f £ M w e define the following quantities:

φξ(p)=\ X{x)λ(p-r{x))dV{x),
J M

ψi{p)= [ %{x)I H{x)I λ{p-r{x))d V{x).
J M
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We now prove the following Lemma.

4.1 LEMMA. Let φξ(ρ) and φς(p) be as above. Then

dp \ sinm/)

for each p GΞ (O, y ) .

Proof. Let / be defined on R by

f(s)=\Ίλ(p-t)dt.
J s

Then for any p e (0, π) the support of the function for, r—r{x), is contained
in the closure of the set Bp(ξ) and far is C2 function on Sn— {ξ} by virtue of
r=r(x) is C°° function on Bp(ζ)— {ξ}. We now show that for can be considered
as a C2 function at f. Since the exponential map expξ of Sn at f induces the
diffeomorphism of the set {X e T f(Sn) | ^ | < τ r } onto the set {x e S" r(x)<ττ}
it is sufficient to show that /oroexp^ can be considered as a C2 function at the
origin of Tξ(Sn). Let {**} be the coordinate system of T f(Sn) with respect to

some orthonormal basis of Tξ(Sn). Since (roexpf)U1, •••, xn)={ Σ (xk)2)1/2 we

can show that for (x\ •••, xn)φ(0, •••, 0)

From this we see that /oroexp^ can be extended as a C2 function around ξ.
For each point x <= M with 0<r(x)<τr let {β;} be an orthonormal basis of TX(M)
as in the proof of Lemma 3.1. Then we have

where |7r( . t ) | 2 = Σ C(^ r)W] 2 .

Using the unique minimal geodesic γ in Sn from f to x, and from the choice
of {βj} we have

From Lemma 3.1 we get
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(6) t(for)(x)=-mr(x)cotr(x)'λ(p-r(x))

-r(x)λ(p-r(x))<t(r(x)), H(x)>

+ r(x) cot r(x) λ(p-r(x)Ke, f(r(x))>

- {λ{p-r{x))-r{x)λf{p-r(x))} (e, f (

Since 0<u cot u<\ for u in (o, -~-J we get

(7) r(x) cot r{x)λ{p-r{x))(e, f(r(x))>2

From (6) and (7) we obtain the following inequality

A(/or)(i)^-mr(x) cot r(x)-λ(p—r(x))

+r(x)λ(p-r(x)) I H(x) \

so that we have by the properties of X and for

(8) O^ί X(x)L(for)(x)dV(x)
J M

£ - m \ r{x) cot r(x)'X{x)λ(p-r(x))d V{x)

+ \ X(x)r(x)λ(p-r(x))\H(x)\dV(x)

X(x)r(x)λ'(p-r(x))dV(x)

for each p e (̂ 0, y j .

From the inequalities rλf(p—r)^ρλf{p—r) and r cot r^p cot p for

i °(=y) w e β e t

- m ί r(x)cotr(x)-Z
J Λl

S — mp cot p-φξ(p)
and

while
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\vX{x)\H(x)\r(x)λ{p-r{x))dV(X)

(x) I H(x) I {γtr(xmσ-iix))dσ}d V(x)

Cp

— \ σψξ(σ)dσ .

Hence (8) gives

ί p

Qσψ'ξ(σ)dσ ,

which can be written in the form

dp V sin771/? / p sin771/?

as required.
Noting that

Jo Jo

we obtain the following Corollary to Lemma 4.1.

4.2 COROLLARY. // the hypotheses are as in Lemma 4.1, then

dp \ sin771/? / sin771/?

for each p e (o, y ) .

Proof of Theorem 2.1. We follow essentially the argument of [5]. We
first show the following inequality

/ j j U + l > 7 Γ > v l + 2+-+(TO-l)-t

(9) o
m !

l(x)dV(x).

Let φξ, ψξ be as in Lemma 4.1. Since \H(x)\^Λ for all x <= M, we have
ψζ(ρ)t^Λφξ(p) and hence Lemma 4.1 implies

(10) - - £
/) Jo
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for each p e (o, —\ Let p e (O, —) be fixed.
2

Using the notation

=\P \-j—(\\φf

ξ(τ)dτ)dσ
Jo σ sm3σ VJo r /

- lim \P \~Ί—([στφ'ξ(τ)dτ)dσ
β-o Jε σsm'σ VJo γ* )

for O^ ^ m and integrating (10) over the interval (σ, p) (where 0<σ<p), we
first obtain

Next, using integration by parts, we get

dτ

o

(12)

Since .—,— >—^~—,— for 0<τ<-r-, it follows that
rsin Jr sm ; + 1r 2

σ rsm J r v V sinJ/) sm^σ /

(is) λP λ^
j smJp r

Now we can write

CP φξ(σ) , CP φξ(σ) . m ,

Jo sm V Jo sm m ( j

so that by integrating by parts and using (10) and the inequalities

ί
σ m-j + l / \

sinm-Jτdτ<-~-—-— and σm^+1<(^sin σ)
o m— + l \2 /

and σ < ( ^ s i n σ) f o r O O < ^ ,
m— + l \2 / 2

we obtain
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CP φξ(σ) , CP φt(σ)
\ . , — dσ = hm \ . '
Jo sin'σ ε-o Je smmα

dσ

(14)

J

β-o I s m m σ Jo

<
— θit-»m

sin™/) m— + l

<7 / VJo d τ / J

A KϊSln

m— 7 + 1 sin771^ m —

Combining (12), (13) and (14) we have

dσ

T ύ J-1 ί pΦίp) 1 / p γ~j, v 2v τ 1
J 7 I sin;/9 m — j + 1 V sin ^ / m —7 + I ;~1J

j sinJ p

(15)

for 1 ^

(16)

Γ27

Inequality (15) for j—1, 2, •••, m together with (10) implies

m !

sin7"/?

Now let ε e (0, σ) and choose the function λ such that Λ(ί)^l when t^ε. Then

(16) implies
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fπ \ 1 + 1

1

sin'"σ

+ 2+ +(m-i)

©""
Λnp sin

m-1

jo}-Λr-( χdV-+ i p j o } Λ r
ml ' r J sin™^

Since σ e (0, /?) and ε e (0, <τ) are arbitrary we see that (9) is true.
Next we show the following inequality

(17) ωm s in> %(f)^(exp Ap)\ l{x) dV{x).
JSpCf)

From the assumption on the mean curvature vector field H and Corollary 4.2
we have

(18) <L(JM\<A ΦM
J dσ\ s in m σ / =

( < A
dσ\ sinmσ / = sinm<7

for each σ e (o, —\ Let /? e (o, y j be fixed. Integrating (18) over the in-

terval (σ, />) (where 0<σ< io), we obtain

(19) - ^ ^

By virtue of - ^ < Γ - 0 f o r 0 < σ < f •

Using (19) and repeating the same discussion as in the proof of (9), we obtain
the inequality (17).

From (9) and (17) we see that our assertion is true.
Remark 1. Let M be an m-dimensional minimal submanifold in Sn which

has no boundary in Sp(ξ)=Bp(ξ)r\M for some ξ e Mand for some p in (—, π\

Since volume Sp(ζ) is a continuous function of ξ, 0<p<π, we have volume
5π / 2(f)^^m by virtue of Corollary 2.3. This shows that our estimation of the
volume of an m-dimensional compact minimal submanifold M in Sn with r(x)
>π/2 for some point x e M will be better than the one of Hoffman and Spruck's

(see [2]). We notice that the Clifford minimal hypersurfaces M=Sp(Vp/m)X

Sq(Vq/m) in Sn, p, q^l, p+q—m, n = m+l, satisfy the conditions mentioned
above.

Remark 2. Let M be as in Corollary 2.3. When we consider M as an m-
dimensional submanifold of Rn+1 the norm of its mean curvature vector field
is just m. Applying the Theorem 3.4 in [5] to this case we get

volume Mπ^2S 1π,/2(f)^^m(2sin-^-)m/{l+2m sin-^-+ - +(2m sin-£-)m/m
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In this case, for p sufficiently near π/2 our estimation of the volume of such a

domain in M is better than the one of Michael and Simon's. Here Uσ(ξ) is the

open ball in Rn+1 with center ξ and radius σ. We notice that Sn

= Bσ{ξ) for ξ e Sn and σ in (0, TΓ).

Remark 3. In the Theorem 2.1 we have

exp Λp<fm(p): =1 + Λp+ - + — -η Λ > sin

for sufficiently small p>0, provided ΛΦO. But it is not always true that exp

Λp<fm(p) for p, 0<p<π/2, ΛφO. In fact, if M is a small sphere in S3 of the

form M={(x\ x2, x3, x4) i4=l/V"2} then the norm of its mean curvature

vector field is just 2. Therefore exp Λp>f2(p) for p sufficiently near π/2.
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