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1. Introdcution. In a work [5], J. Michael and L. Simon studied mean-
value inequalities on generalized submanifolds of R", and from which the
volume of domains in an m-dimensional submanifold of R™ can be estimated
under additional assumptions (see also [6]). In this note, we study mean-value
inequalities for submanifolds of the n-dimensional unit sphere S™ and then we
estimate the volume of domains in an m-dimensional submanifold M of S”
under certain additional assumptions.

2. Statement of results. Let M be a m-dimensional immersed submani-
fold of S®. We use the following quantities:

H=the mean curvature vector field of M,

w,=the volume of the unit ball in R™,

B,(§)=the open geodesic ball in S™ with center £ and radius p,

SpE)=MnN B,(&).

2.1 THEOREM (Mean-value Inequality). Let X be a non-negatiwe (weakly)
subharmonic function on M and suppose that there 1s a constant A such that

[|Hx)|=A for all x € M. For each § € M and for each p E(O, %), the ne-

quality
wnlsin " IO | H0aV(x)

Sp(
holds, where dV is the volume element of M and

T 1+1

h(p):min.{exp Ap, 1—}—/1[0—1———2?'——/12‘0 sin p+ -+

(Zr_>1+2+~ +(m-1+(m-1)
2 Am Si m-1
p© sin p(-

+ !
m:

Received January 24, 1978.
243



244 HIROSHI MORI

Theorem 2.1 has immediate geometric applications. By putting X=1, we
have

2.2 COROLLARY. If M has no boundary wn S,(&) for some & M and for
s
some p € (0, §>, then
volume S,(§)Zwx(sin p)™/h(p).
2.3 COROLLARY. If furthermore M 1s minumally vmmersed, then
volume S,(§)Zwx(sin p)™.

The author would like to thank Professor H. Kitahara for his kind advice
and encouragement.

3. Preliminaries. We denote by <, > the canonical Riemannian metric on
S* induced from R”*! and by V the canonical Riemannian connection on S™
Let M be a C* m-dimensional immersed submanifold of S®. We denote by
{, > and V the induced Riemannian metric and the Riemannian connection on
M respectively. We denote the tangent and normal bundles of M by TM and
NM respectively, and denote the projection of a vector field X along M into
TM, NM by X7, X¥ respectively. The second fundamental form B: T,(M)X
T.(M)— Ny (M) at x is given by

BX, V)=V V=T 7= 7—V,7, X, YeT.(M)),

where ¥ is a smooth extension of Y, T,(M) is the tangent space to M at x
and N,(M) is the normal space to T,M) in T S™). The mean curvature
vector field H of M is given by H=trace of B. We denote by A the Laplace
operator acting on C* M), the space of class C? functions on M. A real valued
function X on M will be called (weakly) subharmonic if Z is continuous on M
and

G.1) SMX(x)Ah(x)d V(x)=0
for every non-negative function i € C¥M), the space of class C? functions on

M with compact support.
It can be easily shown that for g € C}(M) and h € C*(M)

SMAg-h dV:—SMWg, ThydV
and so that
SMAg-h dV:SMg-Ah av,

where Vg is the gradient vector field of g. Therefore, it follows that X € C*(M)
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is (weakly) subharmonic if and only if AX=0 on M. For a fixed point £ & M
we denote the geodesic distance in S™ from & to x € S®™ by r(x). For later
applications we prove the following Lemma.

3.1 LEMMA. For each point x € M with 0<r(x)<=z we have
(br)(x)=m cot r(x)+ y(r(x)), H(x)>—<e, 7(r(x))>? cot r(x),

where 7 1s the unique minvmal geodesic with unit speed in S™ from § to x and e
18 the vector wn T (M) with |e| =1 such that {e, 7(r(x))y=max.{{X, 7(r(x))); X
T.(M), | X|=1}.

Proof. For any point x € M and any X e T, (M), let c: (—e, &) — M for
some ¢>0 be the geodesic such that c¢(o)=x and ¢(o)=X. If 0<7(x)<=, then
we can choose a sufficiently small ¢>0 such that r(c()=Cos (<&, c()), t €
(—e, ¢), where Cos™'u is the principal value of arc cosine u, 0<u<1. Then we
have

(X-r)(x)= % LGOI
sin [Cos™ (<&, c(@®)))]

_ =X
sin r(x)

t=0

Furthermore, extending ¢(f) as a vector field around x and denoting it by the
same notation X we have

d =y
(X(X-r)= dt sin [Cos™(<&, c(t)y)] li=o
Ly
sin [Cos™'(<§, c(t)>)] li=0
<, @)y

d . s
sin? [COS-1(<E, C(t)>):|- X —dt_‘SIn [COS <&, C(t»] =0
__—<& o)y cosr(x)

sin r(x) sin® r(x)

€, X0,

Let {e,} be an orthonormal basis of 7,(M) such that e,=e, and let each e,
extend to £, around x such that E, is the tangent vector along the geodesic
emanating from x with the tangent vector e¢,. Then from the above argument
we have

m

W) GO = 3 {(Te,(Te, ) —(Ts, E ()

J=1
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= S E(EM}(x)

J=1

=y & BBl B e, o),

sin 7(x) sin’® r(x) ;5

where V is the canonical connection of R™*!,
On the other hand, from the formulas of Gauss we have

) (Ve,E,)(x)=(Tg,E (x)—<E,, E,x)x
=(Vg,E;)(x)+ B(E,, E)(x)—<e,, e,>x
=DB(e,, e))—x,

while, from the choice of {e,} we have

(3) <e]; E>:O fOI' ]:2: 3) e, M,
and
(4) <ely E>:<e: 5> .

And since r(x) satisfies 0<r(x)<m, it is easily shown that 7(r(x)) is represented
as an element of R™*!

5) 7(r(x))= E+cot r(x)x .

“sinr ( )
From (1), (2), (3), (4) and (5) we get
1

(br)(x)= (x) <, EB(e]) ;)>+m<$, mxy
cos 7(x) .
T sin® r(x) PO

=m cot r(x)+<7(r(x)), H(x)>—<e, 7(r(x))>* cot (x)

by virtue of H(x): = § B(e,, ¢;) and <&, x>=cos r(x). This completes the proof.
7=1

4. Proof of the mean-value inequality. Let A be a nondecreasing C* func-
tion on R with A(#)=0 for /1=<0. Let X be a non-negative (weakly) subharmonic
function on M. For a fixed point & € M we define the following quantities:

¢e(p)=S K@ p—r(x)dV(x),

ge(o)={ 1) H)| Ao —r(x)d V().
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We now prove the following Lemma.

41 LEMMA. Let ¢p) and ¢«p) be as above. Then

__d_ ¢E(P) 1 e,
dp ( sin™p >§ psin™p S00¢e(0)d0

for each p = (O, f—).
Proof. Let f be defined on R by
f(s)=g°:tl(p—t)dt .

Then for any p = (0, =) the support of the function for, r=r(x), is contained
in the closure of the set B,(£) and for is C* function on S"—{£} by virtue of
r=r(x) is C* function on B,(§)—{£}. We now show that for can be considered
as a C* function at & Since the exponential map exp; of S™ at & induces the
diffeomorphism of the set {X & T¢(S™); |X| <=} onto the set {x € S™; r(x)<x}
it is sufficient to show that foroexps can be considered as a C? function at the
origin of T«(S™). Let {x*} be the coordinate system of T (S™) with respect to

some orthonormal basis of T¢(S™). Since (roexpg)(x', -+, xn):(é(ﬂ)?)wz we
can show that for (x?, ---, x™)#(0, ---, 0)

S (foroexpd(x, -, x)=—ALo—( (&P,
k=1

0° n
‘ﬁz(fo TOeXpexxl’ Tty xn):_Z[P—( 2 (xk)2)1/2:|51]
x70x k=1

n xtx?

XL (B (k) —, s
(& Gy
k=1

From this we see that foroexp; can be extended as a C* function around &.
For each point x € M with 0<»(x)<r let {e,} be an orthonormal basis of T.(M)
as in the proof of Lemma 3.1. Then we have

A(f>r)(x)=—1(x)Ap—r(x)br(x)—[Ap—r(x)—r(x)2 (o—7(x))]
X |Vr(x)]?,
where |Vr(x)|2= ’”g [(e)(x)T

Using the unique minimal geodesic 7 in S* from £ to x, and from the choice
of {e;} we have

1Vr() 2= & 9% o o).

sin? r(x)>
From Lemma 3.1 we get
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(6) A(for)(x)=—mr(x) cot r(x)- Ap—r(x))
—r(0)A(p —r(x)<F(r(x)), H(x)
-+r(x) cot r(x)- Ap—r(x))e, F(r(x)))*
—{(p—r(x)—r()X (p—r(x)}<e, 7(r(x))*.
Since 0<ucot u<1 for u in (0, 3-) we get
0] r(x) cot r(x)A(p—r(x))e, 7(r(x))>*
—2p—r(x))e, T(r(x))»*=0.
From (6) and (7) we obtain the following inequality
L(for)(x)=—mr(x) cot r(x)- A(p—r(x))
+r(0)A(p—r(x) | H(x) | +7(x)A'(p—7(x))

so that we have by the properties of X and for

®) 0= [ 0a(Fonnd Vi
<—m| () cot rx) U p—r(x)d Vi)
+ [, KOr =) Hx) | dVix)
+{ Ko (p—=r(x)aV(x)

T
for each p € (0, 7).
From the inequalities r2(p—7)<pA’(p—r) and rcotr=pcotp for 0<r=

p(§%) we get

—mSMr(x) cot 7(x)- X(x)A p—r(x)d V(x)

=—mpcot p-d«(p)
and

[ HOr 20— V)= pgip)

while



MEAN-VALUE INEQUALITIES 249

|, O H ()= r(x)d V(o)
={ @I H@ | 02 —r(x)da}a Vi)

éSMX(x)IH(x) | {S:aua—r(x))da}d V(x)

5:090’5(0)(10 .
Hence (8) gives
mp cot p gelp)—pg = sgka)da,

which can be written in the form

d «(0) 1 o
—_d_p—< sgisn’fp )é psin™p So o¢i(a)da

as required.
Noting that

0
V' oguordo=p| pordo=pg:(p)
we obtain the following Corollary to Lemma 4.1.

4.2 COROLLARY. [f the hypotheses are as mn Lemma 4.1, then

_L( Pe(p) >< ¢:(p)
dp \ sin™p /= sin™p
T
for each p = <O, 7) .
Proof of Theorvem 2.1. We follow essentially the argument of [5]. We
first show the following inequality
T 1+1
(%)

©)] W, (sin p)’“%(;‘)§{1+/1p+~27— A*psin p+ -+ +

(7.[_>1+2+'~~+(7n—1)+(7n—1)

2

m!
m Iam=-1
X A™p sin p}SS$ (p)X(x)d V(x).

Let ¢¢, ¢: be as in Lemma 4.1. Since |H(x)|<4 for all x € M, we have
P(p)= A¢k(p) and hence Lemma 4.1 implies

_ d /7¢€(P) Y| o
{0 dp \ sin’"p ) o Sinmp SOGQc(U)dG

A
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for each p = (0, 127_) Let p € <0, %) be fixed.

Using the notation

1=y (sl

= lim Sp ——-*.La— (S:rq%(r)a’z')da

-0 Je 0 sin’

for 0=<;7=m and integrating (10) over the interval (o, p) (where 0<o<p), we
first obtain

11) ¢$(0) < Pe(p) +AT,,

sin™o sin™p

Next, using integration by parts, we get

7= tim ([ S5 ([ eastmae) | 0= ([ 5 Jovitordo)
=1im|’o(] :R‘%?)#(”)d”

- e{rgl{o(&g z'sm’z' >¢
S delo )Ga rsm’r - sir}]o )dg}

=p

(o ¢o) __Sp SP dr
(12) —So sin’a do 0¢5(g)( s Tsin’t )da
Since 75;;;% for O<r< o it follows that

S Pelo )(Sy z-smf ) 0<S Pelo)— (smf siifa )dg

1 ¢e(0)
(13 =7 7 smf 7, o) So sin’o
Now we can write
S ¢é(0) S ¢5(U> sin®’g do,
o sin’e o sin™

so that by integrating by parts and using (10) and the inequalities

o.m J+1 T m-j+1 T
m-J <____u7,,_ m-)+1< [ 2 & B
S sin™r dr< . and o =<231na) for O<¢7<2 ,

we obtain
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Sp—~—¢.e(a) da—hms _gedo) sin™ ¢ do

aSm

= lim { ¢5( ) Ssm"‘ ‘T dr e

sin

—I—S: do ( ng:;(a()y ) (Sosm’" s dr)da}

= M{ gelo) Ssm"‘ e de|”’

sin™ g=¢

—I—S: TST/flI: (S:ngié(t)dr)(S:Sin’""z' dr)da}

¢ LS sin™-ir dH’S 4 om-,ﬁl (S:z-gég(r)a’z')da

0 o osin™e m—j+1

Il/\

A

( ) m-j+1 0 A (,?ngsin 0'>m a -
gelp o +S (So fngé(r)df)da'

sinp m—j;+1 o m—j+1 o sin™¢

ay =2 8o A2

m—j+1 sin”‘p m—jy+1 1 1o

Combining (12), (13) and (14) we have

. 1 m-j+1
AT

1=1 [ pgep)
7= 7 {sin’p m—]—l—l (smo m—jy+1
7 sin’p
T\™7 T\TIHL
n(3) 0-1(5)
2 o 2/
(15) = jlm—3+1) sin’p o)+ jm—3+1) AT,

for 1=;=m. Inequality (15) for j=1, 2, ---, m together with (10) implies

g3 141 z 14244 (M=1)+(m-1)
p1(0) é{H_/llf_Jr(z) . (%)

(16) sin™o 21 Apsin ot + m!

X A™p sin™~? } sg?i;(p;

Now let ¢ € (0, ¢) and choose the function A such that A(#)=1 when t=e. Then
(16) implies
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(5"

Siimaugsﬁ(&x dv<{1+ +——»-A2p sin p+ - +
7\ D+ -1
+ (z) Ampsin™=p} L S 1dv
m! e sin™p Jsp®

Since o € (0, p) and ¢ € (0, o) are arbitrary we see that (9) is true.
Next we show the following inequality

an wn sin™p E) = (exp A p)Ss SO V().

From the assumption on the mean curvature vector field H and Corollary 4.2
we have

(18) — (94D Yy 90

sin™g sin™¢

for each ¢ e(O, —g—) Let p = (0, lzr—) be fixed. Integrating (18) over the in-

terval (o, p) (where 0<o<p), we obtain

(19) - ¢5£‘1 <(exp AP) ¢E(P)

sin™g sin™p

(U) =0 for 0<o< %
Using (19) and repeatmg the same discussion as in the proof of (9), we obtain
the inequality (17).

From (9) and (17) we see that our assertion is true.

Remark 1. Let M be an m-dimensional minimal submanifold in S® which

By virtue of ¢§

has no boundary in S,(§)=B,E)NM for some £ € M and for some p in (2 , n)

Since volume S,(§) is a continuous function of & 0<p<z, we have volume
Sz2(6)=w, by virtue of Corollary 2.3. This shows that our estimation of the
volume of an m-dimensional compact minimal submanifold M in S™ with »(x)
>r/2 for some point x € M will be better than the one of Hoffman and Spruck’s
(see [2]). We notice that the Clifford minimal hypersurfaces M=S?(v~p/m)X
S(vq/m) in S*, p, =1, p+q=m, n=m+1, satisfy the conditions mentioned
above.

Remark 2. Let M be as in Corollary 2.3. When we consider M as an m-
dimensional submanifold of R™*' the norm of its mean curvature vector field
is just m. Applying the Theorem 3.4 in [5] to this case we get

volume MAUsnmn@Zwn(2sin )" /{14+2m sin bt - +(2m sin )" /m1}.
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In this case, for p sufficiently near n/2 our estimation of the volume of such a
domain in M is better than the one of Michael and Simon’s. Here U,(§) is the
open ball in R™*! with center & and radius ¢. We notice that S™"\Usgner2(6)
=B,(&) for £ = S™ and ¢ in (0, 7).

Remark 3. In the Theorem 2.1 we have

<—7r‘)1+2+~-+(m—1)+(m—1)
2

exp Adp<fulp): =1+dp+ - + p_— A™psin™p
for sufficiently small p>0, provided 4=0. But it is not always true that exp
Ap<fnlp) for p, 0<p<x/2, A#0. In fact, if M is a small sphere in S* of the
form M={(x%, x? x°, x*); x*=1/4/2} then the norm of its mean curvature

vector field is just 2. Therefore exp Ap> f(p) for p sufficiently near z/2.
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