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REAL HYPERSURFACES OF A COMPLEX MANIFOLD
AND DISTRIBUTIONS WITH COMPLEX STRUCTURE

By KENTARO YANO AND SHIGERU ISHIHARA

The purpose of the present paper is to study real hypersurfaces of a complex
manifold, distributions with complex structure induced on a real hypersurface
from that of the ambient manifold, pseudo-conformal mappings between two real
hypersurfaces and infinitesimal pseudo-conformol transformations on a real hyper-
surface.

In §1 we state some preliminaries on almost contact structures and an ele-
mentary lemma. In §2 we study real hypersurfaces of an almost complex
manifold and show that a hyperdistribution with complex structure is induced on
the real hypersurface. We then show that, if we choose a local affine normal,
there is on a real hypersurface an almost contact structure associated with the
hyperdistribution endowed with complex structure. §3 is devoted to the study
of affine connections induced on the real hypersurface form an affine connection
of the ambient complex manifold with respect to which the complex structure is
covariantly constant. In §4 we study pseudo-conformal mappings and in §5
infinitesimal pseudo-conformal transformations.

§1. Preliminaries

Let there be given, in a manifold M of odd dimension 2n+1(=3), a tensor
field f of type (1,1), a vector field & and a 1-form & satisfying

(L.1) [i=—14+0R5,  f6=0, f-f=0, 6&)=1,
I being the identity tensor field of type (1,1), or
(L.2) Flft=—08+0,5%,  f.°6°=0,  0.£,,=0, 6.5°=1,

f»% &% and 6, denoting components of f, & and € respectively. Then the triple
(f, & 0) is called an almost contact structure in M. In the sequel, manifolds,
tensor fields, connections and mappings we consider are assumed to be differen-
tiable and of class C* unless otherwise stated and the indices a, b, ¢, d, e, -
run over the range {1, 2, ---, 2n+1}, the summation convention being used with
respect to this system of indices.
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We define tensor fields S of type (1, 2), G of type (0, 2), T of type (0, 2), P
of type (1,1) and Q of type (0, 1) as those with components

(1.3) Seo®= eV ofo* = foV of "=V o fo* =V of )"+ Oy =V o0e)5%
(14) Geo=1"W 0,—V ,0.),

(15) Tev=Geo—Goe

(1.6) Pyt=—=[ET ofo" =W £0/o*+ (V£ ],

(L7 Qo=—L[ET 0, +( )01,

respectively, where /' denotes the operator of covariant differentiation with
respect to an arbitrary symmetric affine connection in M. We easily see that
these tensor fields are independent of the symmetric connection /' used to define
them. Then S and G are respectively called the torsion temsor and the Levi
tensor of (f, &, ). The following propositions are well known [4]:

Py S=0 wmplies T=0, P=0 and Q=0;
(P2) P=0 wmplies Q=0.

When the tensor field S vanishes identically, the almost contact structure
(f, & 0) is said to be normal.

We now state an elementary lemma for later use. Let V be a vector space
over real number field with complex structure F. That is, FF: V — V is a linear
transformation satisfying F*=—J. Then V is necessarily even-dimensional, say
dim V=2n+2(=4). Take arbitrarily a (2n-+1)-dimensional subspace W of V.
Then FW is also (2n+1)-dimensional. We can now state

LEMMA 1.1. Put D=WnNFW and N=FW—D. Then FD=D, FNCW, V
=W+FW, dim D=2n, N={ax,+y|la€R, a#0, yeD}, x, being a fixed element of
N, and any element x of N 1s uniquely represented as x=ax,+y(@a<R, yeD).

The subset N appearing in Lemma 1.1 has two connected components, each
of which 1s homeomorphic to a Euclidean space of dimension 2n+41. The subset
N is called the affine normal space to W in the vector space V with complex
structure F.

§ 2. Hypersurfaces of an almost complex manifold.

Let M be an almost complex manifold of real dimension 2n+2(=4) with
almost complex structure F, where F is a tensor field of type (1,1) in M satisfy-
ing [?’=—1, i.e.

(2.1) FrFr=—ar,
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F’;” denoting components of F. In the sequel, the indices h, 1, j, k, -+ run over
the range {1, 2, -, 2n+2} and the summation convention will be used with res-
pect to this system of indices.

Let there be given a hypersurface M immersed in M. For each point P of
M, denote the tangent space to M and that to M at P by TP(M) and Tp»(M)
respectively. Then the subspace Dp=T o(M)NETH(M) is 2n-dimensional and
hence the correspondence P — Dp defines a distribution D of dimension 2n in M.
Since FD=D, we can define a tensor field J of type (1, 1) in D by JX= Fx, X
being an arbitrary vector field belonging to D. Then Fe=— implies J*=—1I)p,
where I, denotes the identity tensor field of type (1,1) in D. Thus the D is
called a hyperdzstrzbutzon with complex structure J in M and said to be induced
in M from £ by the immersion [3]

Since the tangent space T p(M ) is a vector space with complex structure F
by Lemma 1.1 the subspace TH(M) of TP(M ) has its affine normal space Np. We
call N=P&EJMNP the affine normal bundle to the hypersurface M. Since Np has

two connected components, each of which is homeomorphic to a Euclidean space,
N has a global cross-section if M is orientable.

Let 7 be a coordinate neighborhood of M such that any connected component
U of U~M is a coordinate neighborhood of M. In the sequel by U we mean
such a coordinate neighborhood of M. Take a local cross-section C of the affine
normal bundle N over U and call it a local affine normal to M in U. Then by
Lemma 1.1 FC is tangent to A in U and hence

(2.2) e=—Fc

is a non-vanishing vector field in U. Next, for any vector field X mn M, we can
decompose FX uniquely as

(2.3) Fx=rx+6(x)C,

where fX is tangent to M. Thus f and € are a tensor field of type (1,1) and a
1-form in U respectively. Applying F to (2.3) and using F?=—I, we find —X
=(f*X—0(X)5)+0(fX)C, which implies

(2.4) fi=—I14+0Q%, G-f=0

If we put X=¢ in (2.3), we obtain Fg f(&)+0(6)C. On the other hand (2.2) gives
Fe=C. Hence we get

(2.5) =0, 6&=1.

Equations (2.4) and (2.5) show that the triple (f, &, ) is an almost contact struc-
ture in U, which is called an almost contact structure induced wn M by an affine
normal C in U. A vector field X in M belongs to D if and only if FX belongs
to D. Thus, because of (2.3), X belongs to D if and only if #(X)=0. Hence the
distribution D is defined by #=0 in U. Therefore the almost contact structure
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(/, & 0) is associated with the hyperdis-tribution D with complex structure [3].
We now take another affine normal C to M in U. Then by Lemma 1.1 we
have

26) C=1(cra,
a

where « is a non-vanishing function and A a vector field being tangent to M
and belonging to D, a and A being defined in U. Thus we have

27 F=i-094, E=-LG-fa), i=a0,

where (f, &, 6) is the almost contact structure induced in M by (2.3) and (2.5), C
being replaced by C. The change (2.7) of almost contact structures has been
discussed in [3] and is called a change of almost contact structures associated
with D.

§3. Induced affine connections

We now assume that the ambient manifold M is a complex manifold of com-
plex dimension n+1(=2) with complex structure £. It is well known that there
is a symmetric affine connection 7 satisfying 7 F=0, i.e.

3.1) 7 Er=0

(6], [7]. In the sequel we fix this affine connection 7.

Consider a real hypersurface M immersed in M and a coordinate neighborhood
U of M such that U is a connected component of UM, U being a coordinate
neighborhood of M. Let (x*) and (%) be coordinates in U and in U respectively.
We assume that M is represented in U by

(3.2) xh=xy%).
Take an affine normal C to M in U and put
(3.3) B,"=0x"/0y®

in U. Then B,=B,"d/0x" and C=C"0/0x" form an affine (2n+2)-frame along U.
Thus on putting

B,
(7.)=wn e,
G
we have
(34) BblBai=5i‘ » B{Ci———o y B“iC‘ZO 5 CZC’=1 ;
(3.5) B/*B°,+C"C;=06".
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Thus B*=B%dx* and C=C,dx* form a coframe dual to {B,, C} along U.

The affine connection ' induced in U from ¥ with respect to the affine
normal C has, by definition, components given by

(3.6) I'4=(,B,"+ "B’ B,")B%,
j

where 8(,:@/8311’~ and I’ % denote components of ¥ in U. Since 7 is symmetric,
i.e. since I'=1I"", IV is also symmetric, i.e. I'4=1"¢. Thus if we define the so-
called van der Waerden- Bortolotti covariant derivative of B,* along M by

(3.7) V .By"=0.By"+1"%B. By —I'%B,"

in U, then we have (V.B,")B% =0, which shows that V,B," is of the form
(3.8) V .By*=h,C",

where ., are defined by

(3.9) hev=hye=(0.B,"+ "B, B,")C,

and are called components of the covariant second fundamental tensor h of M

with respect to the affine normal C, 4 being of type (0,2).
Differentiating B,"B%,=0¢ covariantly along M and using (3.8) and C"B%,=0,

we find B,"(V .B%,)=0, from which
(3.10) V. .B*,=H.C,,

where . B%, are defined by
(3.11) vV .B*=0d,B%—I"B,’B%+IT'%B",

in U and H,* by
(3.12) H.=—@,C*+I"B,C")B%,.
The H,* are called components of the mixed second fundamental tensor H of M

with respect to the affine normal C in U, H being of type (1.1).
We next differentiate B*,C*=0 covariantly along M and use (3.10). Then

we obtain H,%+B*(V .C*)=0, from which

(3.13) V Ct=—H2 B, "+[.C",

where [, are defined by

(3.14) 1,=@,C*+ "B, CHC,

and V,C* by

(3.15) Vv .Cr=0,C"+T"B,C?

in U. The [, are called components of the third fundamental tensor | of M with
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respect to the affine normal C in U, [ being of type (0,1). The [ gives a linear
connection in the one-dimensional vector bundle

U {aCpla=R} over U.
PEU

Finally, differentiating B,"C;=0 covariantly along M and using (3.8), C;B,*=0
and C;C*=1, we find [,+C*(V.C,)=0, from which

(3.16) Vcci:_hchbz_lch
where J .C, are defined in U by
(3.17) V.C;=0.C,— "B Cy.

Equations (3.8) and (3.10) are those of Gauss for the real hypersurface M and
equations (3.11) and (3.13) are those of Weingarten for M.

Consider a vector field X=X"9/0x" tangent to M. Then we have X"= X°B,".
Thus using (3.8), we have

(3.18) V. X"=W X*)B,"+h,XC",
where we have put in U
V. X"=0.X"+I"B X", V. X°=0,X°+I%X".

Let (f, &, 0) be the almost contact structure induced in M by the affine
normal C to M in U. Then (2.2) and (2.3) can be written as

(3.19) Fre=—gB,t,
(3.20) FrByr=f,"B+1,C"
respectively. Applying 7, to (3.20) and using V Lr=p7 jﬁl":O, we obtain
heo(—f2B")=W ¢ f6)Bo"+ hee [o°C*+(V 0,)C"+0,(— H,*B,"+1,C"),
where we have used (2.2), (2.3) with X=B,, (3.16) and (3.17). Thus we obtain
(3:21) Vefo"=—haf"+H: 0,
(3.22) V 0p=—hee fo? =10, .
Next, applying V. to (3.19), we have in a similar way as above
—H A fo*Ba"+0.C")+1(—§°Bo")=—F £9)Bo"—he£°C",
from which
(3.23) V &=/ "H 4187,
(3.24) H0:=h.E°.
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Substituting (3.21), (3.22) and (3.23) into (1.3) and using (3.24), we obtain

(3.25) Seo"=(H fot— [ He = £, —(H fo*— [ H — 1,ED)e
(3.26) G ov="(her+f.2fs hea) +hoeE0,— [0 ,

(3.27) Pyo=—(H,*+fo fo*HA)+ H, %60, — f,°1.£%,

(3.28) Qo=1y—(E)0s—heal’fo* .

When a hyperdistribution D with complex structure J is given in a manifold
of odd dimension and when S,.,*=0, (mod 4., 6,) is satisfied for an almost contact
structure (f, &, 0) associated with D, the D is said to be forsionless [3]. Thus
we have from (3.25)

THEOREM 3.1. For any real hypersurface M of a complex manifold the in-
duced hyperdistribution D of M with complex structure J 1s always torsionless.

Equations (3.26) imply

THEOREM 3.2. For any real hypersurface M of a complex manifold, the Levt
tensor G of an almost contact siructure (f, &, 6) winduced wn M has components of
the form

(329) Gcb: _(hcb +fcefbdhed) (mOd 00; 6b)

in U, when an affine normal C to M is gwen n a coordinate neighborhood U of M.
Theorem 3.2 implies that

GX, Y)=G, X), GUX JY)=GX,Y)

for any vector fields X and Y belonging to the hyperdistribution D with complex
structure J. Equations (3.25) imply

THEOREM 3.3. Let (f, & 6) be an almost contact structure induced on a real
hypersurface M of a complex manifold by giving an affine normal C to M n a
coordinate neighborhood U of M. Then (f, &, 6) 1s normal 1f and only if

(3.30) Hlfo' —fe Hy —1,*=0,  (modfy).

We take another affine normal C to M in U and assume C is given by (2.6).

Denote by I, [, i and H respectively the induced affine connection, the third
fundamental tensor, the covariant and the mixed second fundamental tensors of

M in U, which are determined by (3.6), (3.14), (3.9) and (3.12) in terms of €.
Then components "% of V7, k., of h, H* of Hand I, of [ are respectively given by

f?b:['?b‘hcha » hee=ahey ,

1
(331) Hba:7I:Hba—VbAa+(lb+hbeAe)Aa] ’
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[b:lb+hbeAe—Vb log la l y

where a is a non-vanishing function and A=A%B,"3/0x" is a vector field bel_ong-
ing to D, both being defined in U. To obtain (3.31), we have used (2.6), B,"=

Bbh and
(3.32) B*=B*—AC,, C,=C,,
where

Be, _
(.")=@Ba o
Theorem 3.2 and A, =ah,, appearing in (3.21) imply the following well known
theorem [17, [2], [3], [5]:

THEOREM 3.4. Let (f, & 0) and (f, &, ) be two almost contact structures
wnduced on a real hypersurface M and assume that they arve related to each other
by (2.7). Then

chEaGcb (mOd 0::) 0b) 1)

a being a non-vamshing function, where G, and Gy are respectively components
of the Lew tensors of (f, &, 0) and (f, &, 0).

Theorem 3.4 shows that the restriction G, of the Levi tensor G to D is
determined up to a non-vanishing factor. Thus G, is sometimes called the Levi
tensor of the induced hyperdistribution D with complex structure. When G is
of the maximum rank 2n everywhere in M, the real hypersurface M is said to
be non-degeneraie. By Theorem 3.1, for any real hypersurface M of a complex
manifold the hyperdistribution D of M with complex structure is torsionless.
This fact means that any real hypersurface M admits a pseudo-conformal struc-
ture when M is non-degenerate [17, [2], [5].

§4. Pseudo-conformal mappings.

Let M and ‘M be two manifolds admitting hyperdistributions D and ’D with
complex structures J and ’J respectively. Assume that there is a homeomorphism
¢ : M —'M such that, for any vector field X belonging to D, ¢+X belongs to ‘D
and ¢x/='/Px, where ¢, denotes the differential of ¢. Then ¢: M —'M is
called a ;bseug’o-cogformal mapping (3], [5].

Let g§~ M — M be a holomorphic transformation of the ambient complex
manifold M with complex structure F. Then ¢+F=F@, where §x denotes the
differential of @¢. Consider real hypersurfaces M and ‘M immersed in M and
assume @(M)='M. Denote by ¢: M — 'M the restriction of ¢ to M. Then ¢
is a homeomorphism and is called the mapping induced from @. Let D and ‘D
be the hyperdistributions with complex structure induced in M and ’M respec-
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tively. Denote by J and ’J the complex structures induced in D and ‘D respec-
tively. Then we can easily verify that ¢+X belongs to /D whenever X belongs
to D and that ¢x/='J/¢«. Thus ¢: M —'M is a pseudo-conformal mapping.
Hence we have the following well known theorem [1], [2], [5]:

THEOREM 4.1. Any holomorphic transformation B M— M of the ambient
complex manifold M mduces a pseudo-conformal mapping ¢: M —'M, where M
and 'M are real hypersurfaces in M such that ’M—¢(M)

Let ¢: M — M and ¢: M—'M be taken as above. If we take an affine
normal C to M in a coordinate neighborhood U of M, then C=g4(C) is also an
affine normal to ‘M in ‘U=¢(U) because of ﬁ*ﬁ:ﬁﬁ* Thus, taking an affine
normal ‘C to ‘M in U, we get because of (2.6)

4.1 c="L et
(44

in ‘U, where « is a non-vanishing function and A a vector field belonging to ‘D,
both being defined in ‘U. Let (f, &, 6) be the almost contact structure induced
in M by the affine normal C to M in U. Let ('f, ', '0) be the almost contact
structure induced in ‘M by the affine normal 'C to ‘M in ‘U. Then putting

4.2) F=¢uf(ge)t, E=¢&, 0=0¢,

we see that (f, &, §) is an almost contact structure associated with ‘D in ‘U.
Thus, taking account of (2.7), we have from (4.1)

- _ 1 _
(4.3) J="1="04, EZT(E—’fA), 0=a’d.
In general, the following lemma prevails [3]:

LEMMA 4.2. For a homeomorphism ¢ M —'M of a manifold M admitting a
hyperdistribution with complex structure onto another 'M, (4.3) 1s a necessary and
sufficient condition for ¢ M —'M to be a pseudo-conformal mapping.

Let ¢: M — M, ¢: M—'M and other notions be fixed as above. Take a
coordinate neighborhood U of M with coordinates (") and put 1{f= ng(b) which
is a coordinate neighborhood of M with coordinates (u"). Then & : M — M will
be locally represented by

4.4) ut=0@"x")

with respect to U and ‘0. If we take complex coordinates (%) and (w?) in U
and ' respectively, then (4.4) is represented as follows :

(4.5) w=@X(z, 27),

where z2=7%% In the sequel the indices 4, g, v, --- run over the range {1, 2, -,
n-+1}. Then we can easily prove
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LEMMA 4.3. The condition $F=Fy 1s equivalent to each of the following
conditions (4.6), (4.7) and (4.8):

wo) EA O P

for any pomnt P of U where F* and 'F.* are components of ' wm U and in 0
respectively:

a@l
oz*

(4.8) APANAZ NAZ2N -+ NdZ"H'=0.

4.7 =0;

Denote by (%) and (»%) coordinates of M in U and those of ‘M in 'U respec-
tively. Then ¢™': "M — M will be represented by
(4.9) Y =¢(n")
with respect to U and ‘U. Moreover the hypersurfaces M and ‘M are assumed
to be represented by
(4.10) =x"y*) and ut=u(n*)

respectively with respect to the pairs (U, [) and (‘U, /0. Putting

h h
Byt= gz” inU and ’Bbhz—g—z:]T in'U,

we obtain

LEMMA 44. The condition (4.3) for the ¢ M —'M "which is [induced from
3 M— M is equivalent to each of the following conditions (4.11) and (4.12):

__a¢ Frpa a¢,e —|lrprrpa
4.11) [axk Frpo i, 1.=[F, ]W)
for any pownt P of U;
(4.12) d(@ioi)/\d(gloi)/\ o Ad(Ze1)=0,

where v: M — M denotes the immersion of M.

N Proof. Denote _components of C in ﬁ, those of ’C in ‘U and those of C in
'U by C* 'C™ and C" respectively. Then we have for any point P of U

(4.13) [ Sff c ”]P: [C"L(P)-

On the other hand we easily obtain

(4.14) [%‘?}Be gf ]:[Bbh]¢<p>'
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Transvecting (4.6) with [Bez gfb ]P and using (4.13) and (4.14), we obtain

(4.15) [ gf: FrB: gfz ]P:[/Eh/Bbl]gﬁ(m’

which is equivalent to
w0 [Grynes( e, (o yparac],,

Equation (4.16) is equivalent to (4.3). Thus (4.15) is equivalent to (4.3). Finally,
if we take account of Lemma 4.3 and (4.14), we see easily that (4.15) is equivalent
to (4.12). Therefore Lemma 4.4 is proved.

Let there be given abstractly a homeomorphism ¢: M — ’M and assume that
¢ is represented by

(4.17) ur=@(y%) or wi=0¥y?)

with respect to U and ‘U. Then in a way similar to that used for the proof of
Lemma 4.4 we can prove

LeMmMA 4.5. For any homeomorphism ¢ : M —'M, which 1s abstractly given,
the condition (4.3) is equivalent to the condition

(4.18) dDP*ANd(Z DN -+ Ad(21e)=0,
where i+ M— M 1s the immersion of M.

YVe now assume that M and ‘M are real hypersurfaces analytically immersed
in M and that ¢: M—'M is an analytic homeomorphism. Then, as is well
known, the differential equation (4.8) with unknown functions @*(z*, z') has a
local solution @* satisfying the boundary condition

Boi=?

along M, when @% satisfy the condition (4.18) [5]. Therefore, taking account of
Theorem 4.1, Lemmas 4.2, 4.3, 4.4 and 4.5, we can prove the following well known
theorem [17, [2], [5]:

THEOREM 4.6. Let M and 'M be real hypersurfaces analytically immersed in
a complex manifold M and assume that ¢ M—'M 1s an analytic homeomorphism.
Then ¢ 15 pseudo- conformal 1f and only if, for any pownt P belonging to M, there
are neighborhoods O and 'O of M contaiming respectively P and ¢(P) and a holo-
morphic homeomorphism ¢ : O — 'O such that é 15 the restriction of ¢ to ONM.

§ 5. Infinitesimal pseudo-conformal transformations.

Let X be a vector field in a manifold M admitting a hyperdistribution D
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with complex structure and assume that any local transformations ¢,(—e<?<g,
¢>0) of M generated by X are always pseudo-conformal transformations. Then
X is called an wnfinitesumal pseudo-conformal transformation or simply a pseudo-
conformal vector field in M. Let (f, &, 6) be an almost contact structure associated
with D in a coordinate neighborhood U. Then we have the following lemma
proved in [3] for a manifold admitting a hyperdistribution with complex structure :

LEMMA 5.1. In a real hypersurface M of a complex manifold, a vector field
X 15 pseudo-conformal 1f and only 1f X satisfies

(5.1) Lxf=—0RV, Lxb=—al—fV, Lx0=ab,
where a 15 a function and V a vector field belonging to D, both being defined in U.

It is known that a pseudo-conformal vector field X in M vanishes identically
if X belongs to D, where D is assumed to be torsionless and non-degenerate. On
the other hand, by Theorem 3.1, for any real hypersurface M of a complex
manifold M the induced hyperdistribution D of M is always torsionless. Thus we

have [5]

THEOREM 5.2. Let M be a non-degenerate real hypesurface of a complex
mamifold M. A pseudo-conformal vector field X in M vamishes identically if X
belongs to the induced hyperdistribution D with complex structure.

Consider a real hypersurface M of a complex manifold M with complex
structure F. Let a holomorphic vector field X in M be tangent to M. Then,
since X is holomorphic, X satisfies

(5.2) Fop Xe=0 X1F

On the other hand, since Xis tangent to M, we have along M
(5.3) Xr=X"B,*.
Transvection of (5.2) with B,* gives
(5.4) EMP 9B =7 XME B,
which is equivalent to
(5.5) Lo XV e = e XD fo* —hpe X°E1BS"

L7 s X0 — fohea X¥1CH=0,(CH7 ,X7)

because of (3.18), (3.19), (3.20) and (5.3), where (f, & 6) is an almost contact
structure induced in each coordinate neighborhood U of M by fixing an affine
normal C to M in U. Next, transvection of (5.2) with C* gives

(5.6) CiV K=V . XO)f,"— ho X°€“I B +[E(V . X*)8,]C"
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because of (3.18), (3.19), (3.20) and (5.3). Substituting (5.6) into (5.5), we have
57 Vo X fet =W e XD f ! — hoe XE2=0, (W  XO)fo*—hee§° X%,

(Vo X0,— fotheaX=0,V X)E°O,
which reduce respectively to
(5.8) Lxfi'=—0,V*, Lxb,=ab,,
where we have put
9 Vo= —H X+ heo§ " XE€*—EW X",
a=V X0, — 1. X°.

Thus, taking account of (3.24), we see easily that 4,V*=0, i.e. that V* are com-
ponents of a vector field V belonging to the induced hyperdistribution D of M.
Next, the identities 4,6°=1 and f,°6°=0 imply respectively

(Lx0)8+0,(LxE)=0 and (LxfpE"+1A(LxE)=0.
Substituting (5.8) into these equations, we obtain
(5.10) Lx0=—al*—f,2Ve.

Consequently, we have (5.1) from (5.8) and (5.10). Thus we have the following
theorem [5]:

THEOREM 5.3. Let M be a_real hypersurface ummersed in a complex manifold.
If a holomorphic vector field X in M is tangent to M, then the restrichon X of X
to M is a pseudo-conformal vector field in M.

Let (f, & 6) be an almost contact structure induced in a coordinate neigh-
borhood U of M and assume that & is a pseudo-conformal vector field in U.
Then (f, &, ) is said to be regular [5]. If this is the case, (5.1) implies

Py=—_rL:f,*=0,
because .£:£6=0 and (5.1) gives V=0 and a=0. Therefore (3.27) implies
Hl o —f"Hy*—1,6°=0  (mod G,)
if and only if (f, & 6) is regular. Thus we have, form Theorem 3.3,

THEOREM 5.4. In a real hypersurface M vmmersed n a complex manifold, an
wmnduced almost contact structure of M 1s normal if and only if 1t 15 regular.

Theorem 5.3 is however a consequence of Theorem 3.1 and a theorem proved

in [3].
Let (z%) be a system of complex coordinates in a coordinate neighborhood U/
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of the ambient complex manifold M. Then we have

LEMMA 5.5. The condition (5.2) 1s equivalent to each of the following condi-
tions (5.11) and (5.12):

aX*
(5.11) W =0 ;
(5.12) dXPNdZ N - AdZ"1=0,

It is easily verified that condition (5.8) is equivalent to (5.7) which is equi-
valent to (5.5) and hence to (5.4). Thus we have

LEMMA 5.6. Condition (5.8) is equivalent to (5.4) or to
(5.13) d(X2 D) Ad(Z i) A -+ Ad(z**1e1)=0,
where 1: M— M is the immersion of M.

Let there be given a vector field X in M and put X”zX“Ba", where X°® are
components of X in U. Then we have

LEMMA 5.7. The condition (5.8) for a vector field X=X"/dy* tangent to M
is equivalent to the condition

(5.14) dXANd(ZH o)A -+ Ad(2%*1ei)=0,
where 12 M — M 15 the immersion of M and X’lzX“Bah.

We now assume that M is a real hypersurface analytically immersed in M
and that X is an analytic vector field in M. Then, as is well known, the differeINl-
tial equation (5.12) with unknown functions X*(z# 2¢) has a local solution X
satisfying the boundary condition

Kroj=X7

along M, when X* satisfy condition (5.13) [5]. Therefore, taking account of
Theorem 5.3 and Lemmas 5.5, 5.6 and 5.7, we can prove the following theorem[5] :

THEOREM 5.8. Let M be a real hypersurface analytically immersed in a com-
plex manifold M. Then an analytic vector field X in M 1s pseudo-conformal if
and only 1f, for any point P belonging to M, there are a neighborhood O of M
contavming P and a holomorphic vector field X m O such that X is the restriction
of X to O}\M.
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