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PLANAR GEODESIC SUBMANIFOLDS
IN COMPLEX SPACE FORMS

By JIN SUK Pak

Let M™ and M™*? be connected complete Riemannian manifolds of dimension
n and n-p respectively. An isometric immersion of M™" into M»*? ig called a
planar geodesic immersion when every geodesic in M™ is mapped locally into
2-dimensional totally geodesic submanifold of M™*?, When the ambient manifold
Mm*? is a space form of constant curvature & K. Sakamoto [7] has showed that
such an immersion is an isotropic immersion in the sence of B. O’Neill [6] with
parallel second fundamental tensor. Using this fact, he reduced planar geodesic
immersions into space forms to full, minimal and planar geodesic immersions of
compact rank one symmetric spaces into spheres and obtained

THEOREM A. Let f: M™ —> S™9¢) be a planar geodesic immersion. Then
the simply connected Riemannian covering manifold of M™ is a sphere, a complex
projective space, a quaternionic projective space or a Cayley projective plane. The
immersion is rigid.

A submanifold M™ of a complex space form M=**?(¢) with constant holomor-
phic sectional curvature ¢ is called complex or invariant (resp. totolly real) if
each tangent space of M™ is mapped into itself (resp. the normal space) by the
complex structure of M™*?(¢). A complex submanifold of a Kaehler manifold is
also a Kaehler manifold. K. Ogiue [5] has showed that if M™(c) is a Kaehler
submanifold immersed in M"*2(?) and if the second fundamental form of the
immersion is parallel, then either c=¢ (i.e., M™(c) is totally geodesic in M"*?(¢))
or c¢=¢/2, the latter case arising only when &>0. Moreover the immersion is
rigid. When #<0, E. Calabi [1] proved that if M™(c) is imbedded in M"*2(?) as
a Kaehler submanifold, then M*(c) is totally geodesic in M™*?(¢).

In this paper we study a planar geodesic immersion f: M™ —> M"*?() of a
connected complete Riemannian manifold of real dimension n into a complex
space form of real dimension n+p with constant holomorphic sectional curvature
¢+0. When the immersion f is complex or totally real, it is an isotropic immer-
sion with parallel second fundamental tensor. Moreover, if the immersion f is
totally real and not totally geodesic, we can reduce the immersion to a full,
minimal, planar geodesic immersion of M” into a real projective space RP™"?(¢/4)
(resp. a real hyperbolic space H™*?(¢/4)) when M"*?(#) is a complex projective
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space CP™(&) (resp. a complex hyperbolic space D™()), where m=n+p/2.
Roughly speaking, our results are due to Calabi-Ogiue’s results in the case
where M™ is complex and due to Theorem A in the case where M™ is totally

real.
Manifolds, tensor fields, geometric objects and mappings we consider are

assumed to be differentiable and of class C*.
The author would like to express his hearty thanks to Professor Kunio
Sakamoto for his valuable suggestions and encouragements.

§ 1. Preliminaries.

Let M™ and M"*? be connected complete Riemannian manifolds with real
dimension n (=2) and n+ p respectively and let f:M"™ —> M""? an isometric

immersion. We denote by V the covariant differentiation with respect to the
Riemannian metric of M™*?, Then we may write

1.1 VxV=VyY+H(X,Y)

for arbitrary tangent vector fields X and Y on M, where VyY and H(X, Y)
denote the components of VY tangent and normal to M" respectively. Then V
becomes the covariant differentiation of the Riemannian manifold M™ The
symmetric bilinear form H valued in the normal space is called the second
fundamental form of the immersion f. For a normal vector field C on a
neighborhood of P=eM", we write

1.2) Ty C=—AcX+V3C,

—Ae¢X and ViC being the components of VyC tangent and normal to M” res-
pectively, where V* is the covariant differentiation with respect to the induced
connection in the normal bundle NM which will be called the normal connection.
Denoting the inner product of vectors with respect to the Riemannian metric of
M~*? by (, >, we find that the tangential component —A¢X of VyC and the
second fundamental form H are related by

(1.3) (AcX, Y)=CH(X, Y), C)

for any vector Y contained in the tangent space TpM". Thus A; is a sym-
metric linear transformation of 7TpM". Given an orthonormal normal frame
{Cas1s ) Cuap}, we write Ap=A¢, (a=n+1, -+, n+p). In the sequel, indices «,
B and 7 run over the range {n-+1, ---, n+p}.

Let 'V be the covariant differentiation with respect to the induced connec-
tion in the direct sum (tangent bundle TM) (normal bundle NM). For the
second fundamental form H, we find

1.4 (NxH)(Y, Z)=Nz(H(Y, 2))—H(NxY, Z)—H(Y, Vx Z)

for all tangent vector fields X, ¥ and Z on M.
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Let the ambient manifold M**? be a complete, simply connected complex
space form of real dimension n-+p with constant holomorphic sectional curvature
¢+#0. The complex dimension will be denoted by m=(n-+p)/2. Thus M"*? will
be complex projective space CP™(¢) or complex hyperbolic space D™(¢) according
as ¢>0 or #<0. If J denotes the complex structure, the Riemannian curvature
tensor of the complex space form M™() is given by

(1.5) R(X, V)Z=@ /0T, 2)X—X, Z>Y+JT, 2>]X

for all X, ¥, Z tangent to M™({).

We denote by Projyy and Projyy the projections of TpM™(@) to the tangent
space TpM™ and the normal space NpM™ respectively and put J=Projryo/|TM,
Jy=ProjyuoJITM, Jr=ProjryoJINM and J*=Projyyo/|NM. Then we can write

(1.6) JX=JX+]yX, JC=J,C+J*C

for all X tangent to M™. Taking account of f :=—J, we see that these tensors
satisfy

L7 I e v==1, JxJ+]"J5v=0,
J2 v Jr=—1, J]r+]rJ*=0,

I denoting the identity transformation, and also we find

(1.8 InX, O=—X, ] C

with the help of (JX, Y>=—<X, JY).
Differentiating covariantly the left hand side of (1.6), we have

Ty JIX=(Vy NXA+] (Ve X) = Aryx Y H( Ve )X+ n (Ve X)+H(JX, ¥)

because of (1.1) and (1.2). On the other hand, using V/=0 and (1.6) itself,
we also have

Ve IX=] (Ve X)+]r HX, Y)+]v(Te X))+ HX, Y),
from which

(1- 9) (VY])X:AJNXY+]TH(X; Y),
(NyJnX=]*H(X, Y)—H(JX, Y).

Similarly, from the right hand side of (1.6), we also obtain

(1. 10) (/VX.[T)C:AJ‘LCX_]ACX:
(’VXJL)CZ —]NACX_H<X: ]T C)~
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Let’s denote curvature tensors for the connections V and V* by R and R*
respectively. Then, using (1.5), we can easily see that the structure equations
of Gauss are given by

(1.11) R(X, V) Z=@/H(KY, Z>X—X, Z>YJY, Z>]X
—JX, Z3]Y-2X]X, Y)]Z)
TE (ALY, 254X —{AaX, 27 AdY),
or equivalently
.11y RX, V)Z, W)=(@/HKY, Z)<{X, W)X, Z>Y, W)
HJY, Z5JX, WH—<JX, Z>]Y, W)
=X, Y><{JZ, W?)
+C(H(Y, Z), HX, W)—<H(X, Z), H(Y, W),
and those of Coddazi and Ricci respectively by
(1.12) (Nx )Y, Z)—(Vy H)(X, Z)
=(/VKJY, Z>]n X=X, Z>]5Y
—XJX, Y InZ),
(1.13) R (X, Y)C=(@/DInY, COInX—InX, COJnY
—2{JX, Y] O+ 2l Ae, AalX, V) Co
Therefore, if the submanifold M™ is complex or totally real, that is, Jy=0 or
J=0, then
(1.14) (N H)(Y, Z)—(VyH)(X, Z)=0

with the help of (1.12). Conversely if the above equation is verified at every
point of M™", then M™ is complex or totally real. Hence 2-dimensional complete
totally geodesic submanifolds in CP™(¢) are CP*(¢) or RP*(¢/4).

§2. Planar geodesic submanifolds.

We consider an isometric immersion f : M™ —> M™(?) such that every
geodesic o :(a, b)) —> M™ on M™ is locally contained in a 2-dimensional totally
geodesic submanifold of M™(?), that is, for each i€(a, b), there exist an open
interval I, 1=]C (a, b) and 2-dimensional totally geodesic submanifold M?, such
that f(e(I))CM?,. In this case the immersion f is called a planar geodesic
tmmersion and the manifold M™ called a planar geodesic submanifold. Then we
have
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LEMMA 2.1. (S. L. Hong [3] and K. Sakamoto [7]). Let X and Y are
orthonormal vectors at P€M™ wn TM. Then

2.1) (H(X, X), HX, Y)>=0.

The equation (2.1) is equivalent to the condition that f is isotropic, i.e.,
(2.2) 1H(X, X)lI*=2*

for all unit vector X tangent to M™, where A is a differentiable function on M™.
In fact, in this case the function A* is given by

A2=1/n(n+2) > {(trace A,)*+trace A%}
(See K. Sakamoto [7]). We first prove

LEMMA 2.2. The function 2% 1s constant on M™.

Proof. Let P be arbitrary fixed point of M7". Take normal coordinate
neighborhood U around P in M™ Let X be any unit vector tangent to M™ at P
and Y an unit vector orthogonal to X at P. Let ¢ be a geodesic with unit
speed such that ¢(0)=P and 6(0)=Y. Then, using (1.1), we find

vfafé:fvdé-"i—H(a": d):H(é: d)-
We assume now H(Y, Y)=H(6(0), (0))#0. Then, since M* is totally geodesic
submanifold in M™(¢), we have V,; H(6, 6)€Ts.,M? and hence
Vs H (G, 6)=a(t)fo-+b1H(9, 5)

for some differentiable functions a(t) and b(t). Translate X and Y parallely to
each point of U along the unique geodesic from P to that point. Then we have

vector fields defined on U denoted by X and Y which extend X and Y res-
pectively and satisfy

VXX:VY7:VXY=VYX:0 at P.
We can compute (X-2%)(P) as followings :

(X-2)(P)=X-CH(Y, ¥), H(¥, Y))|P=2Tx(H(Y, 7)), H(Y, ¥)>|P
=2{Vx(H(Y, Y)), H(Y, ¥)>| P
=2{('VxH)(¥, V)+2H(V3Y, V), H(Y, 7)) P
=2{(NzH)(Y, ¥), H(Y, Y)>| P
=2{(Vs H)(X, T)+@/DKTY, YOI X—JX, YO nY
—2{JX, Y>]x¥), H(Y, Y))|P
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=2(Vy(H(X, ¥)), H(Y, Y))|P
—B/2)6<JX, Y><{JnY, H(Y, Y))
=2{Vg(H(X, 1)), H(Y, Y)>|P
—@/2)eJX, YO <{nY, H(Y, Y))
=—2CH(X, ), Vg (H(Y, ¥))>|P
—B/)eJX, Yo <{JxY, H(Y, Y))
with the help of (1.12), (2.1) and (2.2). Since Vy(H(Y, ¥)|P=V1;(H (3, 6))| =

=a(0)fY+b(0)H(Y, Y), the first term of the last equation vanishes. Hence we
obtain

(X-22)(P)=(—3/2)¢<JX, Y)Y, H(Y, Y)).
Since P is taken arbitrary in M™, for orthonormal vectors X and Y
(X-2)=(=3/2)¢{JX, Y><JY, H(Y, Y)).

If M? is invariant, then JY &TpM? and hence H(Y, Y)=+2JY. Thus we have
)_( -A2=0. If M? is totally real, then JY is orthogonal to T»M? and consequently
JY is orthogonal to H(Y, Y). Thus we have X-12=0. Therefore we have
proved (X:-2%)(P)=0 for arbitrary X if A%(P)#0. When 2¥P)=0, A* takes
minimum at P. Thus (X:4%)(P)=0 for any X. These complete the proof.
Q.E.D.

From the above proof we have
H(X, X)=+2JX or H(X, X)1JX

for each unit vector X tangent to M™. But if we regard <{H(X, X), jX > as a
function on the unit sphere bundle, then this function is clearly differentiable
(continuous). Hence the above relations are established for all unit vectors X.

Thus we have
LEMMA 2.3. Ewvery geodesic 1s coniained n a totally geodesic submanifold
CP*(¢) or RPE(C/4).

In the sequel, we denote by (C) the case where H(X, X)=2 JX holds on the
unit sphere bundle and by (R) the case where H(X, X) 1 /X always holds on the
unit sphere bundle.

Finally we prepare the following lemma.

LEMMA 2.4. For all vectors X, Y and Z tangent to M™

(2.3) (N H)(Y, Z)=(=¢/HKIX, YO nZHTX, Z5]5Y).
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Proof. Let X be any unit vector at any point PEM™ Let ¢ be a unit
speed geodesic such that ¢(0)=P and ¢(0)=X. We may assume that 1#0. Since
|H (5, 6)|>=2*=constant, and 10, we can see that V ;(H (5, 6))=—2%/6. On the
other hand, we also have

V1e(H (G, 6))=—Ff Aucs 56 +V(H(, 6)).
Thus V;(H(d, 0))=0 and Ag¢,;,0=A4%. These imply
(VH)(X, X, X)=0 and A, o X=2XX, X)
for any vector X. Therefore we obtain
S(VH)(X, Y, Z)=0
and

© X (AxX, YA Z=2C(X, Y )Z,

where © denotes the cyclic sum with respect to X, Y and Z. The latter is the
isotropic condition. The former reduces to

(NxH)(Y, Z)+(NyH)(Z, X)+(VzH)(X, Y)=0,
from which, taking account of (1.12), we have
0=(VxH)(Y, Z)+(VxH)(Y, Z)+C/HKJX, Z>]nY
—JY, Z5 v X=2C]Y, X5 nZ)+(NxH)(Y, Z)
HE/DKIX, YO InZ—<JZ, Y2 InX—=2{]JZ, XDJnY)
=3(VxH)(Y, Z)+@C/D X, YO nZ+{X, Z>]nY),

and hence (2. 3). Q.E.D.

Therefore we see that if the submanifold M™ is complex or totally real,
then the second fundamental form is parallel.

§3. The case (C).

In §§3 and 4 we shall study only planar geodesic submanifolds of complex
projective space CP™(¢) and those of complex hyperbolic space D™(¢).

First we consider the case (C), that is, the case where H(X, X)=21/X holds
on the unit sphere bundle. In this case 2=0 and consequently we have

PRrROPOSITION 1. The case (C) occurs only 1f M™ 1is totally geodesic, M"=
RP™(¢/4) or CP™*(Z) and the immersion 1s rigid.
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§4. The case (R).

Next, we consider the case (R), that is, the case that H(X, X) | jX holds on
the unit sphere bundle. Then we have <{H(X, X), J#X)>=0 for any vector X.
Therefore, symmetrizing this equation, we have

LEMMA 4.1. In the case (R) the following equations hold :
©<H(X, Y), JnZ>=0.

We first assume that the planar geodesic submanifold M?" is a Kaehler
submanifold. Then the second fundamental form is parallel because of Lemma
2.4. On the other hand, since the immersion f is isotropic, M™ is of constant
holomorphic sectional curvature ¢—24% In fact, using (1. 11)’, we find

R(X, JX)JX, X)=t—2|H(X, X)|*=t-22

for arbitrary unit vector X. Since the second fundamental form is parallel, we
can also see that &—222=¢/2 (i.e., 22*=¢/4). This conclusion is due to Ogiue [5].
He obtained his results by establishing an equation of Simon’s type. Thus we
have

PROPOSITION 2. If a planar geodesic submanifold M™ of CP™(Z) 1s a
Kaehler submanifold, then 1t 1s CP™*(f/2) or CP™*(), 1 e., a complex Veronese
mantifold or totally geodesic. The immersion 15 rigud.

We next consider the case where the planar geodesic submanifold M™ is
totally real. We then have A,yxY-+J/rH(X, Y)=0 which is a direct consequence
of /=0 and (1.9). Therefore {(A,;yxY, Z)=—(JrH(X, Y), Z) and consequently
InX, HY, Z))=—X, JtH(Y, Z) )= AsyzY, X>={JvZ, HX, Y)). Thus we
find <{JnX, HY, Z)>={JxZ, HX, Y))={JyY, H(Z, X)), from which and
Lemma 4.1,

Gy InX, H(Y, Z))=0.

Moreover the second fundamental form is parallel too. Using these facts, we
shall reduce the codimension to the dimension of the first normal space. The
first normal space N,(P) at P is defined as the subspace in the normal space
NpM™ which is spanned by the set {H(X, Y): X, YeT,M"}. Denoting by
Sp{ } the vector space spanned by the set { } of vectors, we can see (cf.
Sakamoto [7])

Ni(P)=Sp{C: Ac=0}3
and
N, (P)=Sp{Ac . CeNpM™}
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in the vector space consisting of symmetric linear transformations on TpM?",
where * means the orthogonal complement in NpM™.

LEMMA 4. 1. (Sakamoto [7]). If a planar geodesic submanifold M™ of CP™()
is totally real and of type (R), then the first normal space N, 1s parallel with
respecl to the normal connection and 1s orthogonal to Jy(TM) wn the normal
bundle, 1.e., N; | Jy(TM).

Proof. Let P and Q be arbitrary two points of M"™ and ¢ a curve from P
to Q@ in M™. Let {X,, -, X,} be an orthonormal base of TpM". Then N,(P)=
Sp{H(X,, X;) 1 i, j=1, 2, -, n}. Translate parallely this orthonormal base from
P to @ along ¢ with respect to the Riemannian connection of AM™ Then we
have orthonormal frame field parallel along ¢, which will be also denoted by
{Xy, -, Xz}, Thus H(X,, X;) is parallel along ¢ with respect to the induced
connection in the normal bundle for each ¢ and j, because

V,H(X,, X)=(V;H)(X, X,)+H¥,X,, X,)+H(X,, V;X,)=0,

where we have used 'VH=0. It follows that the parallel displacement along o
from P to Q with respect to the induced connection in the normal bundle gives
an isomorphism of N;(P) to N,(Q). Hence the dimension of N, is constant and
N; is invariant by the parallel displacement with respect to V* and hence
N; | Jy(TM) with the help of (4.1). Q.E.D.

Since {JyX, H(Y, Z)>=0, we see that H(Y, Z)=0, i.e, that M™" is totally
geodesic, when p=n. Thus we have

PROPOSITION 3. If a planar geodesic submanifold M"™ of CP™(&) 1s totally
real and type (R), then M™ 1s totally geodesic.

Now, we suppose p>n. Then we have
LEMMA 4.2. The subspace N\ TM 1s totally real.

Proof. From <(JyX, H(Y,Z)>=0 we can easily see that J,N,=0.
Differentiating covariantly the equation <{/yX, H(Y, Z)>=0 with respect to 'V
and using ‘'VH=0 and (1.9), we have J*N, | N, and so the assertion is followed
from Lemma 4. 1. Q.E.D.

LEMMA 4.3. There exists a totally geodesic and totally real submanifold
RP™4(¢/4) with constant sectional curvature &/4 such that f(M™) C RP™ 2 (¢/4)
and the immersion f. M™ —> RP™9(¢/4) 1s full, where q=dim N,.

Proof. From Lemma 4.2 it follows that there exists a unique totally
geodesic and totally real submanifold RP**%(¢/4) tangent to N(P)HTpM" at
distinguished point P€M™. Let ¢ be a geodesic starting at P and ending at an
arbitrary point Q=M™ Then f-o is contained in RP? spanned by f4(0) and
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H(@(0),6(0)). Thus f-0 CRP*C RP""2(¢/4). Clearly, the immersion f : M™"
—> RP™9(¢/4) is full. Q.E.D.

Therefore we can reduce our immersion to a full, planar geodesic immersion
f i M"— RP"9(¢/4). We may assume locally that the immersion f : M® —>
S™*9(¢/4) is planar and full. Thus, combining Theorem A, we have

PROPOSITION 4. If a planar geodesic submanifold M™ of CP™(Z) 1s totally
real and of type (R), then M™ 1s a compact wreducible symmetric space of rank
one, 1.e., M™ 1s one of a sphere, a real projective space, a complex projective
space, a quaternionic projective space and a Cayley projective plane.

Remark. Let the ambient manifold M™(¢) (m=(n-+p)/2) is complex hyper-
bolic space D™(¢). When the case (C) is arised, we can also see that a planar
geodesic submanifold M™ of D™ (Z) is totally geodesic by means of Proposition 1.
When the submanifold M™ is complex and of type (R), M™ is totally geodesic
in D™ (&) because it is also of constant holomorphic sectional curvature. Finally
when the immersion f . M™ — D™(¢) is totally real and of type (R), we can
also reduce the immersion to a full, planar geodesic immersion f : M" —
H™*9(¢/4). Hence, using Theorem A, we find that M” is a sphere, a complex
projective space, a quaternionic projective space or a Cayley projective plane
and the immersion is rigid.
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