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PLANAR GEODESIC SUBMANIFOLDS
IN COMPLEX SPACE FORMS

BY JIN SUK PAK

Let Mn and Mn+P be connected complete Riemannian manifolds of dimension
n and n+p respectively. An isometric immersion of Mn into Mn+P is called a
planar geodesic immersion when every geodesic in Mn is mapped locally into
2-dimensional totally geodesic submanifold of Mn+P. When the ambient manifold
Mn+P is a space form of constant curvature c, K. Sakamoto [7] has showed that
such an immersion is an isotropic immersion in the sence of B. O'Neill [6] with
parallel second fundamental tensor. Using this fact, he reduced planar geodesic
immersions into space forms to full, minimal and planar geodesic immersions of
compact rank one symmetric spaces into spheres and obtained

THEOREM A. Let / : Mn —>S n + q (c) be a planar geodesic immersion. Then
the simply connected Riemannian covering manifold of Mn is a sphere, a complex
projective space, a quaternionic projective space or a Cay ley projective plane. The
immersion is rigid.

A submanifold Mn of a complex space form Mn+P(c) with constant holomor-
phic sectional curvature c is called complex or invariant (resp. tot oily real) if
each tangent space of Mn is mapped into itself (resp. the normal space) by the
complex structure of Mn+P(c). A complex submanifold of a Kaehler manifold is
also a Kaehler manifold. K. Ogiue [5] has showed that if Mn(c) is a Kaehler
submanifold immersed in Mn+P(c) and if the second fundamental form of the
immersion is parallel, then either c=c (i. e., Mn(c) is totally geodesic in Mn+P(c))
or c=c/2, the latter case arising only when c>0. Moreover the immersion is
rigid. When c^O, E. Calabi [1] proved that if Mn(c) is imbedded in Mn+P(c) as
a Kaehler submanifold, then Mn(c) is totally geodesic in Mn+P(c).

In this paper we study a planar geodesic immersion / : Mn — > Mn+P(c) of a
connected complete Riemannian manifold of real dimension n into a complex
space form of real dimension n+p with constant holomorphic sectional curvature
cφO. When the immersion / is complex or totally real, it is an isotropic immer-
sion with parallel second fundamental tensor. Moreover, if the immersion / is
totally real and not totally geodesic, we can reduce the immersion to a full,
minimal, planar geodesic immersion of Mn into a real projective space RPn+p(c/4)
(resp. a real hyperbolic space Hn+p(c/4:)) when Mn+P(c) is a complex projective
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space CPm(c) (resp. a complex hyperbolic space Dm(c)), where m = n+p/2.
Roughly speaking, our results are due to Calabi-Ogiue's results in the case
where Mn is complex and due to Theorem A in the case where Mn is totally
real.

Manifolds, tensor fields, geometric objects and mappings we consider are
assumed to be differentiable and of class C°°.

The author would like to express his hearty thanks to Professor Kunio
Sakamoto for his valuable suggestions and encouragements.

§ 1. Preliminaries.

Let Mn and Mn+P be connected complete Riemannian manifolds with real
dimension n (^2) and n+p respectively and let / : Mn—> Mn+P an isometric
immersion. We denote by 7 the covariant differentiation with respect to the
Riemannian metric of Mn+P. Then we may write

(1.1) ΪXY=1XY+H{X, Y)

for arbitrary tangent vector fields X and Y on M, where 1XY and H(X, Y)
denote the components of ϊXY tangent and normal to Mn respectively. Then V
becomes the covariant differentiation of the Riemannian manifold Mn. The
symmetric bilinear form H valued in the normal space is called the second
fundamental form of the immersion / . For a normal vector field C on a
neighborhood of P^Mn, we write

(1.2) lzC=-AcX+lχC,

—ACX and V^C being the components of 7 X C tangent and normal to Mn res-
pectively, where 7 X is the covariant differentiation with respect to the induced
connection in the normal bundle NM which will be called the normal connection.
Denoting the inner product of vectors with respect to the Riemannian metric of
βn+p by < , >, we find that the tangential component — ACX of 1XC and the
second fundamental form H are related by

(1.3) (ACX, Y>=<H(X, n θ

for any vector Y contained in the tangent space TPM
n. Thus Ac is a sym-

metric linear transformation of TPM
n. Given an orthonormal normal frame

{Cn+i, ~> Cn+p\, we write Aa=AC(X (a=n+l, •••, n+p). In the sequel, indices a,

β and γ run over the range {n+1, •••, n+p}.
Let 7V be the covariant differentiation with respect to the induced connec-

tion in the direct sum (tangent bundle TM) © (normal bundle NM). For the
second fundamental form H, we find

(1.4) {ΊXH)(Y, Z)=V±(ff(F, Z))-H{ΊXY, Z)-H{Y, 1XZ)

for all tangent vector fields X, Y and Z on M.
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Let the ambient manifold Mn+P be a complete, simply connected complex
space form of real dimension n+p with constant holomorphic sectional curvature
cφO. The complex dimension will be denoted by m=(n + p)/2. Thus Mn+P will
be complex projective space CPm(c) or complex hyperbolic space Dm(c) according
as c>0 or c<0. If / denotes the complex structure, the Riemannian curvature
tensor of the complex space form Mm(c) is given by

(1. 5) R(X, Ϋ)Z=(c/4)«f, Z}X-(X, Z)Y+<JΫ, Z)]X

-Ox, zyjγ-2(jxf ?)Jz)

for all X, Ϋ, Z tangent to Mm(c).
We denote by ProjΓ i l f and P r o j ^ the projections of TPM

m(c) to the tangent
space TpMn and the normal space NPM

n respectively and put J=Pro]TMoj\TM,
JN=ProjNM°J\TM, Jτ=FrojTM°J\NM and / 1=Proj i VWiA 7M. ηphen we can write

(1.6) ]X=JX+JNXf JC=JTC+ΓC

for all X tangent to Mn. Taking account of P~—l, we see that these tensors
satisfy

(1.7) P+JTJN=-I,

J12+JNJT=-I, JJτ+JτJλ=0,

I denoting the identity transformation, and also we find

(1.8) <JNX,O=-<X,JτC>

with the help of </Z, Y)=-<X, JY}.
Differentiating covariantly the left hand side of (1. 6), we have

because of (1.1) and (1.2). On the other hand, using V/=0 and (1.6) itself,
we also have

, Y)+JNΦYX)+JXH(X, Y),

from which

(1.9) {1YJ)X=AJNXY+JTH(X, Y),

WYJN)X=JLH(X, Y)-HUX, n

Similarly, from the right hand side of (1. 6), we also obtain

(1.10) ('VχJτ)C=Aj±cX-JAcX,

^xP)C=-JNAcX-H{Xf JTC).
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Let's denote curvature tensors for the connections V and V1 by R and RL

respectively. Then, using (1. 5), we can easily see that the structure equations
of Gauss are given by

(l. li) R(X, y)z=(274)«y, zyx-(x, Z>Y+<JY, zyjx

-<jx, zyjγ-2<jx, γ}jz)

+ Έ«AaY, Z>Aaχ-(AaX, Z>AaY),
a

or equivalently

(l.iiy <R(x, Y)z, wy=(c/4)«γ, zy <x, w>-<x, zy<y, wy

+<jγ, zy ux, wy-ijx, zy </y, wy

-2<jx, r> <jz, wy)

+{H{Y, Z), H{X, W)y-<H(X, Z), H(Y,

and those of Coddazi and Ricci respectively by

(1.12) ('Vx//)(y, Z)-(ΊYH)(X, Z)

=(?/4)«/y, zyjNx-(jx, zyjNγ
-2<jx, γyjNz\

(i. 13) RL(x, Y)C=(C/4)«JNY, cyjNx-<jNx, cyjNγ

c, Aa-\x, γyca.

Therefore, if the submanifold Mn is complex or totally real, that is, / ^ = 0 or
/ = 0 , then

(1.14) ('VχH)(Y, Z)-C!YH)(X, Z)=Q

with the help of (1.12). Conversely if the above equation is verified at every
point of Mn, then Mn is complex or totally real. Hence 2-dimensional complete
totally geodesic submanifolds in CPm(c) are CPx{c) or i?P2(c/4).

§ 2. Planar geodesic submanifolds.

We consider an isometric immersion / : Mn — > Mm (c) such that every
geodesic σ :(a, b)—> Mn on Mn is locally contained in a 2-dimensional totally
geodesic submanifold of Mm(c), that is, for each ί^(a, b), there exist an open
interval /, / G / c ( β , b) and 2-dimensional totally geodesic submanifold M2

t such
that /(d(/))cMV In this case the immersion / is called a planar geodesic
immersion and the manifold Mn called a planar geodesic submanifold. Then we
have
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LEMMA 2.1. (5. L. Hong [3] and K. Sakamoto [7]). Let X and Y are
orthonormal vectors at P e M n in TM. Then

(2.1) <H(X,X),mx, F)>=0.

The equation (2.1) is equivalent to the condition that / is isotropic, i. e.,

(2.2) \\H(X, X)\\2=λ2

for all unit vector X tangent to Mn, where λ is a differentiate function on Mn.
In fact, in this case the function λ2 is given by

λ2=l/n(nJr2) Σ {(trace Λ,)2+trace Aa

2}
a

(See K. Sakamoto [7]). We first prove

LEMMA 2.2. The function λ2 is constant on Mn.

Proof. Let P be arbitrary fixed point of Mn. Take normal coordinate
neighborhood U around P in Mn. Let X be any unit vector tangent to Mn at P
and Y an unit vector orthogonal to X at P. Let σ be a geodesic with unit
speed such that σ(0)=P and σ(0)=Y. Then, using (1.1), we find

^jif*=Πid+H{d, ά)=H(ά, σ).

We assume now_#(F, Y)=H(σ(Q), σ(O))φθ. Then, since M 2 is totally geodesic
submanifold in Mm(c), we have ϊf^H{σf σ)^Tf.σM

2 and hence

for some differentiate functions a(t) and b(t). Translate X and F parallely to
each point of U along the unique geodesic from P to that point. Then we have
vector fields defined on U denoted by X and 7 which extend X and Y res-
pectively and satisfy

!XX=1YΫ=1XΫ=1YX=O at P.

We can compute {X>λ2){P) as followings:

(X λη(P)=X <H(Ϋ, Ϋ), # ( ? , f ) > | P = 2 0 W ( f , f ) ) , //(F, F ) > | P

, f ) ) , //(f, F ) > | P

+ 2 / ί ( 7 ϊ F , f ) , i/(f, f ) > | P

, Ϋ),H{Ϋ, 7)>\P

, 7>JNZ-<JX, Ϋ}JNΫ

-2(JX, Ϋ)JNΫ),H(Y, Y))\P
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Ϋ)),H(Ϋ, Ϋ)}\P

, Y><JNY, H{Y,

=2(ΐγ{H{X, f ) ) , # ( ? , Ϋ))\P

-(3/2)c(JX, Y}(JNY, H(Y,

= -2(H(X, Ϋ),ϊy{H{Ϋ, Ϋ)))\P

, Y)(JNY, H{Y,

with the help of (1.12), (2.1) and (2.2). Since ϊγ{H{7} Ϋ))\P=ϊύ(H(σ, σ))\t=0

= a(0)fY+b(0)H(Y, Y), the first term of the last equation vanishes. Hence we
obtain

f YXJNY, H{Y,

Since P is taken arbitrary in Mn, for orthonormal vectors X and Y

, H(Y,

If M2 is invariant, then JY^TPM
2 and hence H(Y, Y)=±λ]Y. Thus we have

X-λ2=0. If M2 is totally real, then JY is orthogonal to TPM
2 and consequently

JY is orthogonal to H(Y, Y). Thus we have X-λ2=0. Therefore we have
proved (X-λ2)(P)=0 for arbitrary X if λ\P)Φθ. When ^2(P)=0, λ2 takes
minimum at P. Thus (X-λ2)(P)=0 for any X These complete the proof.

Q. E. D.

From the above proof we have

H(X, X)=±λ]X or H(X, X) 1 JX

for each unit vector X tangent to Mn. But if we regard (H(X, X), JX) as a
function on the unit sphere bundle, then this function is clearly differentiable
(continuous). Hence the above relations are established for all unit vectors X.
Thus we have

LEMMA 2.3. Every geodesic is contained in a totally geodesic submanifold
CPι(c) or R

In the sequel, we denote by (C) the case where H(X, X)=λ]X holds on the
unit sphere bundle and by (R) the case where H(X, X) 1 JX always holds on the
unit sphere bundle.

Finally we prepare the following lemma.

LEMMA 2. 4. For all vectors X, Y and Z tangent to Mn

(2.3) {ΊχH){Y, Z)=(-c/4)((JX, Y}JNZΛ-(JX, Z)JNY).
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Proof. Let X be any unit vector at any point P^Mn. Let σ be a unit
speed geodesic such that σ(fi)=P and σ(Q)=X. We may assume that λΦO. Since
\\H(ά, σ)| |2=^2=constant, and λΦO, we can see that ΐfά(H(σ, σ))=-λ2fσ. On the
other hand, we also have

ά, σ)).

Thus !t(H(ό, σ))=0 and Am^^σ=λ2σ. These imply

(ΊH)(X,X,X)=0 and AmXfJnX=λ2X<X, X>

for any vector X. Therefore we obtain

, Y, Z)=0

and

^ΊKAaX, γ>Aaz=λ2<&(x, yyz,
a

where © denotes the cyclic sum with respect to X, Y and Z. The latter is the
isotropic condition. The former reduces to

, Z)+('VYH)(Z, X)+('VZH)(X, 7)=0,

from which, taking account of (1.12), we have

o=(/vz//)(r, z)+(/7x//)(r, z)+(?/4)«jx, z)jNγ

~</r, zyjNx-2<jγ, xyjNz)Hf^χH){γ, z)

, Y>JNZ-<JZ, Y>JNX-2<JZ, X}JNY)

)+(3c/4)«/Z, YyjNZ+iJXf Z}JNY),

and hence (2. 3). Q. E. D.

Therefore we see that if the submanifold Mn is complex or totally real,
then the second fundamental form is parallel.

§ 3. The case (C).

In §§3 and 4 we shall study only planar geodesic submanifolds of complex
projective space CPm(c) and those of complex hyperbolic space Dm{c).

First we consider the case (C), that is, the case where H(X, X)=-λjX holds
on the unit sphere bundle. In this case Λ=0 and consequently we have

PROPOSITION 1. The case (C) occurs only if Mn is totally geodesic, Mn=
RPn(c/4:) or CPn/2(c) and the immersion is rigid.
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§ 4. The case (R).

Next, we consider the case (R), that is, the case that H(X, X) i Jx holds on
the unit sphere bundle. Then we have (H(X, X), JNX}=0 for any vector X.
Therefore, symmetrizing this equation, we have

LEMMA 4.1. In the case (R) the following equations hold:

, Y),JNZ>=0.

We first assume that the planar geodesic submanifold M n is a Kaehler
submanifold. Then the second fundamental form is parallel because of Lemma
2. 4. On the other hand, since the immersion / is isotropic, Mn is of constant
holomorphic sectional curvature c—2λ2. In fact, using (1. II)7, we find

(R(XJX)JX, X>=c-2\\H(X, X)\\2=c-2λ2

for arbitrary unit vector X. Since the second fundamental form is parallel, we
can also see that c—2λ2=c/2 (i. e., λ2—c/4). This conclusion is due to Ogiue [5].
He obtained his results by establishing an equation of Simon's type. Thus we
have

PROPOSITION 2. // a planar geodesic submanifold Mn of CPm{c) is a
Kaehler submanifold, then it is CPn/2(c/2) or CPn/2(c), i.e., a complex Veronese
manifold or totally geodesic. The immersion is rigid.

We next consider the case where the planar geodesic submanifold Mn is
totally real. We then have AJNχY+JτH(X, Y)=Q which is a direct consequence
of / = 0 and (1.9). Therefore (AJNXY, Z}=-(JTH(X, Y), Z> and consequently

<JNX, H(Y, Z)}=-<X,JTH(Y, Z)}=(AJNZY, X>=(JNZ, H{X, F)>. Thus we
find UNX,H(Y,Z)>=<JNZ,H(X,Y)>=<JNY,H(Z,X)>, from which and
Lemma 4.1,

(4.1) <JNX, H(Y, Z)>=0.

Moreover the second fundamental form is parallel too. Using these facts, we
shall reduce the codimension to the dimension of the first normal space. The
first normal space Nλ(P) at P is defined as the subspace in the normal space
NPM

n which is spanned by the set {H(X, Y) : X, Y^TPM
n}. Denoting by

Sp{ } the vector space spanned by the set { } of vectors, we can see (cf.
Sakamoto [7])

NdP)=Sp{C:Ac=0}}>

and
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in the vector space consisting of symmetric linear transformations on TPM
n,

where L means the orthogonal complement in NPM
n.

LEMMA 4.1. {Sakamoto [7]). // a planar geodesic submamfold Mn of CPm(c)
is totally real and of type (R), then the first normal space A/"x is parallel with
respect to the normal connection and is orthogonal to JN(TM) in the normal
bundle, i. e., N, 1 JN (TM).

Proof. Let P and Q be arbitrary two points of Mn and σ a curve from P
to Q in Mn. Let {Xlf - , Xn] be an orthonormal base of TPM

n. Then J/V1(P)=
Sp{H(Xx, Xj) : i, 7 = 1, 2, ••-, n). Translate parallely this orthonormal base from
P to Q along σ with respect to the Riemannian connection of Mn. Then we
have orthonormal frame field parallel along σ, which will be also denoted by
{Xly ", Xn}. Thus H(Xt, Xj) is parallel along σ with respect to the induced
connection in the normal bundle for each i and j , because

where we have used /r7H=0. It follows that the parallel displacement along σ
from P to Q with respect to the induced connection in the normal bundle gives
an isomorphism of NX(P) to Nλ(Q). Hence the dimension of A^ is constant and
A7! is invariant by the parallel displacement with respect to V1 and hence
Nλ 1 JN(TM) with the help of (4.1). Q. E. D.

Since <JNX, H(Y, Z)>=0, we see that H(Y, Z)=0, i.e., that Mn is totally
geodesic, when p=n. Thus we have

PROPOSITION 3. // a planar geodesic submamfold Mn of CPn(c) is totally
real and type (R), then Mn is totally geodesic.

Now, we suppose p>n. Then we have

LEMMA 4.2. The subspace NX®TM is totally real.

Proof. From (JNX, H(Y, Z)}=0 we can easily see that JTN1=O.
Differentiating covariantly the equation (JNX, H(Y, Z))=0 with respect to ;V
and using /7//=0 and (1.9), we have JxNι[N1 and so the assertion is followed
from Lemma 4.1. Q. E. D.

LEMMA 4.3. There exists a totally geodesic and totally real submamfold
RPn+q(c/4:) with constant sectional curvature c/4 such that f(Mn)dRPn+q(c/i)
and the immersion f'. Mn — > RPn+q(c/4) is full, where q=άimN1.

Proof. From Lemma 4.2 it follows that there exists a unique totally
geodesic and totally real submanifold RPn+q(c/i) tangent to Nι{P)®TPM

n at
distinguished point P^Mn. Let σ be a geodesic starting at P and ending at an
arbitrary point Q^Mn. Then f-σ is contained in RP2 spanned by fσ(0) and
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H(σ(0), σ(0)). Thus f-σCLRP2(ZRPn+q(c/4). Clearly, the immersion / : Mn

— > RPn+q (c/4) is full. Q. E. D.

Therefore we can reduce our immersion to a full, planar geodesic immersion
/ : Mn — > RPn+q(c/i). We may assume locally that the immersion / : Mn — >
Sn+q(c/4:) is planar and full. Thus, combining Theorem A, we have

PROPOSITION 4. // a planar geodesic submanifold Mn of CPm(c) is totally
real and of type (R), then Mn is a compact irreducible symmetric space of rank
one, i. e., Mn is one of a sphere, a real projective space, a complex projective
space, a quaternionic projective space and a Cayley projective plane.

Remark. Let the ambient manifold Mm(c) (m=(n+p)/2) is complex hyper-
bolic space Dm(c). When the case (C) is arised, we can also see that a planar
geodesic submanifold Mn of Dm (c) is totally geodesic by means of Proposition 1.
When the submanifold Mn is complex and of type (R), Mn is totally geodesic
in Dm(c) because it is also of constant holomorphic sectional curvature. Finally
when the immersion / : Mn — > Dm (c) is totally real and of type (R), we can
also reduce the immersion to a full, planar geodesic immersion / : Mn — >
Hn+q(c/4). Hence, using Theorem A, we find that Mn is a sphere, a complex
projective space, a quaternionic projective space or a Cayley projective plane
and the immersion is rigid.
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