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ON INFINITESIMAL AFFINE AND ISOMETRIC
TRANSFORMATIONS PRESERVING

RESPECTIVE VECTOR FIELDS

BY TOSHIHIRO IWAI

§ 1. Introduction.

Researches into symmetry of dynamical systems exhibit an increase of
interest in automorphisms of geometric objects with some dynamical constraints.
Recently, Ikeda and Nishino [1] have studied scalar-preserving isometries of a
Riemannian space. In 1968-1974, Katzin and Levine treated projective and con-
formal transformations related with dynamical structures [2], [3], [4], [5].
The present author [6] has shown that an invariance of the equations of motion
in a Riemannian space entails an affine or isometric transformation which pre-
serves a vector field. Interest in the same kinds of transformations comes also
from other branch [7]. This paper presents solutions to equations proposed in
the previous paper [6] and reveals what Riemannian spaces can admit invariance
Lie algebras consisting of the infinitesimal affine and isometric transformations
preserving respective vector fields. Global situations will be touched upon.

The settings of the problem are briefly reviewed in Section 2. Section 3
deals with Lie algebras of the infinitesimal affine transformations preserving
a vector field. Maximal Lie algebras and the allowed Riemannian spaces will be
found out there. Section 4 is concerned with Lie algebras of infinitesimal iso-
metries which preserve a vector field, and with the problem of what Riemannian
spaces can admit such Lie algebras. Global structures of these Riemannian spaces
will be described. Section 5 is devoted to studying a Lie algebra of dimension
lower than that of the considered ones in Section 4 this Lie algebra consists of
the infinitesimal isometries preserving a scalar. A case which was out of con-
sideration in [1] will be studied. It will be shown what Riemannian spaces can
admit Lie algebras of the infinitesimal isometries preserving a scalar, together
with remarks on global situations.
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§ 2. Basic equations.

Let (M, g) be an n-dimensional Riemannian spaceυ, and (V) 2 ) a local
coordinate system of M. Let T(M) be the tangent bundle over M and (xι, v*)
the induced coordinate system of T(M). The geodesic spray is a vector field
on T(M) given by

where | . \ denote Christoffel symbols formed from the metric g. Given a

vector field V on M with local components (V*), define a vector field on T(M) by

(2.2)

The field Z is defined throughout T(M). Integral curves of Z describe time
development of the dynamical system (T(M), Z). An infinitesimal transformation
X=(^) of M is naturally lifted to T(M) by

3x ι 3x ι 3ι;1

THEOREM 2.1 [6]. A necessary and sufficient condition for Z given by (2.2)
to admit an infinitesimal transformation X given by (2.3), that is, [_X, Z~\=0, is

(2.4) -Γχ{jk}=0' -ϊxV^0'

where Xx denotes the Lie derivation with respect to X.

Alternatively, denote by T*(M) the cotangent bundle over M with the in-
duced coordinate system (x*, ρt). The vector field Z on T(M) is carried over,
by the natural diffeomorphism of T(M) with T*(M), to

(2.5) 4^4^9

dpi ox1 ox opt dpi

where T—^rgVpipj and Vj=gjkV
k. For a given vector field X on M, we put

which is the natural lift to T*(M).

1) All geometric objects in this paper are supposed to be of class C°°.
2) Unless otherwise stated, Latin indices run from 1 to n, and the summation

convention is adopted.
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THEOREM 2.2 [6]. Zr given by (2. 5) admits an infinitesimal transformation
given by (2. 6), if and only if

(2.7)

We are going to solve Eqs. (2.4) in Section 3 and Eqs. (2. 7) in Section 4,
respectively. We shall consider in Section 5 Eqs. (2.7) with gradient V in detail.

§ 3. Infinitesimal affine transformations.

By © we mean the Lie algebra of all the vector fields X satisfying (2.4).
To investigate & we put (2.4) into a normal form :

(3.1) 7t £>=£,.', Vjξk^-RuM1,

(3.2) f*7*7*-7*f*?=O,

where (i?£^Λΐ) denotes the curvature tensor and 7Z the covariant derivation with
respect to 9/dx\ Eqs. (3.1) and (3.2) are linear differential equations in n2+n
unknowns (£*, ξf.) with the constraints. We assume that the vector field 7^(7*)
is not the zero but may have isolated zero points.

THEOREM 3.1. Lie algebras of infinitesimal affine transformations preserving
a non-zero vector field are of dimension n2 at most. An n2-dimensional algebra,
when such exists, is transitive at every point where V does not vanish.

Proof. By bringing (3. 2) into the form

(3.3)

and by considering the rank of the (n, n2)-matrix (Vkδ)) in a local coordinate
system such that ( 7 ί ) = ( l , 0, ••, 0), we find that (3.2) contains at least n linearly
independent equations in {ξ\ ξ/). Hence Eqs. (3.1) and (3.2) admit at most
n2(=n2-\-n — n) linearly independent solutions. When n2 independent solutions
are admitted, by means of (3.3) the initial values of (?*) can be arbitrarily
chosen at each point where 7 does not vanish, and consequently © is transitive.
This completes the proof.

By straightfoward calculation we can conclude that if the integrability
conditions

of (3.1) are satisfied for any (ξ\ ξ/) satisfying (3.2) then M is locally flat:
Rιjki=0. Thus, we have

THEOREM 3.2. // a Riemannian space M admits a maximal Lie algebra of
the infinitesimal affine transformations preserving a non-zero vector field, then it
is locally flat.
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Although groups of affine transformations of an affinely connected space
have been already investigated by Wang and Yano [8], our result about affine
transformations preserving a non-zero vector field is not necessarily contained
in theirs. For in our case singular points of transformations, which was out of
consideration in [8], are allowed.

In what follows we shall work with (3. 2) for © of maximal dimension n2.
By Theorem 3. 2 M is locally identified with Rn having the standard coordinate
system (**). Let G denote a local Lie group generated by a maximal Lie algebra
© and Go, isomorphic with a subgroup of the general linear group GL(n, R), the
isotropy subgroup of G at a point of M. Then we have

Since © is transitive at every point where F^=0 (see Theorem 3.1), Go is of
dimension n2—n at the points. If V=0 at some point, (3.3) holds identically for
all (ξ\ f/) corresponding to the elements of the Lie algebra ©0 of GQ and hence
gives no constraints, so that Go is of dimension n2 there. Thus we get

(3.4) d imG 0 =n 2 or n2 — n,

according as V vanishes at a point or not.
About subgroups of GL(n, R) the following Lemma 3.3 due to Wang and

Yano [8] is available. We use here the following notations:

GL+(n, R)={(α ι,); | f l ι, |>0},

L={(a*J);a\=l, a\=0, |α*,| = l}8),

M={(a*J);a\>0, a\=0, |α ι , | =

K— {(aιj) aιj=aδιj, a : positive real},

7(6)={diag(eα + δ ) ί, ebt, •••, ebt) b : fixed real},

where t is the parameter of the group I(b). In this notations the lemma is
stated as follows.

LEMMA 3.3. Let H be a closed and connected subgroup of GL (n, R).
// dim H^n2—2n-{-5, then H is conjugate to one of the groups: GL+(n, R),
SL(n, R) (the special linear group), KxL, KxL', KxM, KxMf, I(b)xL,
I(b)xL', L, U.

3) Greek indices range over 2, 3, •••, n.
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For n ^ 5 Lemma 3. 3 provides all possible subgroups Go of dimension greater
than or equal to n2—n. Accordingly, we can determine a vector field preserved
by an isotropy subgroup Go. Because of (3.4) we single out n2- and (?ι2—n)-
dimensional subgroups of GL+(n, R) as follows: GL+(n, R), KxL, KxU,
I(b)xL and I{b)xL'. Thus in our situation ©0 is necessarily one of the Lie
algebras of these subgroups. We now adress ourselves to determining preserved
vector fields V by solving (3. 2) for each Lie algebra ©0. After doing so, we
consider what infinitesimal affine transformations other than the elements of ©0

can preserve (i. e., be commutative with) the already determined vector field V.

( i ) G0—GL+(n, R). A basis of ©0 on M consists of4)

(3.5) ^"air-
Substituting (3. 5) for (ξ1) into (3. 2) shows that the vector field V commutative

with (3. 5) is

(3.6) V=cxι^r— (C^FO: constant).
ox1

It is easily seen that (3.6) is not commutative with any infinitesimal affine
transformations other than (3.5). Thus G=G0, and hence dim®=n2.

(ii) G0=KxL. After the same method as above, we can prove that V has
the same form as (3.6) in this case. It is an easy matter to see that if V is
commutative with an arbitrary infinitesimal affine transformation other than the
elements of ©0 then V vanishes. Therefore G—Go holds, so that dim($=?ι2—n.

(iii) G0=KxL'. By substituting the elements of ®0 for (£*) into (3.2), we
find that

(3.7) V=cxλγΎ (c^O: constant)

is preserved by ©0. An infinitesimal transformation d/dx1 is the only one com-
mutative with (3.7), as is easily seen. Thus, G = G o x R and dim@=n 2 —n+1.

(iv) G0—I(b)xL. A basis of ©0 consists of

(O Q\ /I I /)\yl I U γλ γλ " γλ SΛ γK

dx1 oxλ ox1 oxμ n—\ μ ox

A vector field commutative with any element of @0 turns out to be

for 1 + 6=0,
dx1 dx1

(3.9) V=

OX1

4) Without loss of generality we can suppose that Gύ is the isotropy group at the
origin (xl) =0.
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where c and c/ are constants. Furthermore, infinitesimal affine transformations
d/dxk (&=1, •••, n) can preserve (3.9), when and only when 1 + 6 = 0 and c=0.
Hence, G=G0'R with 1+6=0 and dim($=n 2, where the dot means the semi-
direct product.

(v) G0=I(b)xL/. Following the method used above, we can see that the
preserved vector field V is of the form

(3.10) V= <

c{xι)xλ-^-γ for
O X

ox
for 1+6^=0,

where c(V) is a function of x1 alone and c is a constant. If (3.10) is commuta-
tive with an infinitesimal affine transformation other than the elements of ©0,
then c(x1)=c=0. Hence, G=G0 and dim(&=n2—n.

Summarizing the above discussion, we obtain

THEOREM 3.4. // a Riemannian space of dimension n (n^5) admits a maxi-
mal Lie algebra © of the infinitesimal affine transformations preserving a non-zero
vector field, then the preserved vector field is either cxι d/dxι or cf d/dx1 (c, d :
consts.) in a suitable coordinate system. The admitted local group generated by ®
is locally isomorphic to GL+(n, R) or (I(b)xL)-Rn with 1+6=0, according to
whether the preserved vector field is cxι d/dx1 or cf d/dx1.

Remark : If the Riemannian space is the Euclidean space Rn, Theorem 3. 4
can be easily set up in global situation.

§ 4. Infinitesimal isometries.

Let © denote the Lie algebra consisting of the infinitesimal isometries
preserving a vector field this is determined by (2. 7). As is well known, (2.7) is
equivalent to

(4.1) V»£'=£Λ Vkξi>=-Rιki>ξι,

(4.2) ξι3+ξji=0, ξklkVj+Vkξjk^, (ζιj=gjkξι

k).

We assume that V is not the zero but may have isolated zero points, as well as
in Section 3. Eqs. (4.2), the set of constraints on n2jrn unknowns (ξι, ξjί), can
be written as

(4.3) ξ'VkVj+T/ξ^O,

where TjΛ—δljVk, A=(l, k) with l>k. By choosing a local coordinate system
such that (]/*)=(!, 0, •••, 0), we can see that the rank of the matrix (T/) is
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equal to n—1. Accordingly, the linear differential equations (4.1) and (4.2) may
admit at most n(n—l)/2J

rl(=n2+n — n(n —1)/2—(n—1)) linearly independent
solutions. When the maximal number of independent solutions are admitted, by
means of (4. 3) the initial values of (£*) can be chosen arbitrarily, so that © is
transitive at each point where V does not vanish.

Let G be a local isometry group generated by a maximal algebra © and Go

an isotropy subgroup of G at a point of M. Then

If F^O, G is transitive, as is claimed above, so that dim G0=(n—ΐ)(n—2)/2.
If V=Q at a point, the second equations in (4.2) hold identically in (ξ\ ξ)) stand-
ing for the elements of ©o And hence dim G0=n(n —l)/2+l. This, however,
contradicts the fact that Go is a subgroup of the rotation group SO(n).
Therefore, V vanishes nowhere under consideration, and consequently

(4.4) d i m G 0 = γ ( n - l ) ( n - 2 ) .

Thus, we have

THEOREM 4.1. Lie algebras of the infinitesimal isometnes preserving a non-
zero vector field are of dimension n(n—l)/2+l at most. The preserved vector
field never vanishes, and a maximal dimensional algebra, when such exists, is
transitive.

In what follows we study structures of Riemannian spaces admitting maximal
Lie algebras preserving a non-zero vector field. Incidentally, a Riemannian space
which admits an isometry group of dimension n(n—ΐ)/2+ί have been already
studied by Yano [9] for n>4 (W=*F8) and by Obata [10] for n—S. Homogeneous
Riemannian spaces of dimension three and four have been studied by Cartan [11]
and Ishihara [12], respectively. In case of n=2 and dim(S=2, we go back to
Bianchi (see [13], for instance).

On the basis of their results we can determine preserved vector fields (i. e.,
vector fields commutative with any element of ©) in each case. The notations
will be fixed as above.

(i) n=2. If © is Abelian, M is locally flat. A basis of (S and a preserved
vector field V are given, respectively, by

(4.5) *,= A, χ-j-.

(4.6) V=aj-+bγ- (a, b: constants).

If © is non-Abelian, M is a space of constant negative curvature [13]. A basis
of © is given in a suitably chosen coordinate system by
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(4 7) Xι=.-£, *,= A

A vector field commutative with Xλ and X2 turns out to be

(4.8) V=(-bx+a)-^-+b-^,

where a and b are constants. Thus we have

THEOREM 4.2. Let M be a two-dimensional Riemannian space which admits
a maximal two-dimensional Lie algebra of the infinitesimal isometnes preserving
a non-zero vector field. Then M is locally flat or of constant negative curvature.
The preserved vector field is given in a suitable coordinate system by (4. 6) or (4. 8)
according as M is flat or of constant negative curvature.

(ii) n~3. In this case the maximal dimension of © is equal to four.
Riemannian spaces of dimension three admitting four-dimensional isometry groups
are classified into two types [11]. One is defined in a suitable coordinate system
by the metric

(4.9) ds2=^-(dx2+dy2+dz2) (B>0: constant)
z

and the other by the metric

(4.10) d*=

\

(A>0, B: consts., AΓ=—1, 0, +1).

The preserved vector field can be easily written as

(4.11) y=czγ- (c: constant)

in the first case (4.9) and as

(4.12) v=c'— {cf: constant)

in the second case (4.10). Thus we obtain

THEOREM 4.3. Let M be a three-dimensional Riemannian space which admits
a maximal four-dimensional Lie algebra of infinitesimal isometnes preserving a
non-zero vector field. Then M has a metric defined by either (4.9) or (4.10). The
preserved vector field is given by (4.11) or (4.12J according to whether the metric
is given by (4. 9) or (4.10).
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(iii) n ^ 4 . The maximal dimension of ® is equal to n(n—l)/2+l. An
isotropy subgroup Go, isomorphic to a subgroup of SO(n), plays a key role to
the problem, where dim G0=(n —ϊ)(n—2)/2 as is given by (4.4). Incidentally, we
know a lemma about subgroups of dimension (n —l)(n—2)/2 of SO 00 [10], [12],
which is stated as follows.

LEMMA 4.4. // n^=4, 8, then Go is isomorphic to SO(n —1) leaving a one-
dimensional subspace of Rn invariant. If n=4, Go is isomorphic to either SO (3)
having a one-dimensional invariant subspace of R^ or SU(2) as the real representa-
tion in GL(4, R). // n=8, Go is isomorphic to either SO (7) having a one-
dimensional invariant subspace of Rs or Spin (7) acting irreducibly on R8.

Since SU(2) acting on J?4 and Spin (7) acting on R8 have no invariant
subspaces of R4 and of R8 respectively, any vector field commutative with the
elements of ©0 (the Lie algebra of SU(2) or Spin (7) acting on a tangent space
to M) vanishes at every point. Thus, it suffices for us to deal with only the
case G0~SO(n—1) leaving a one-dimensional subspace of Rn (n^4) invariant.
Through the same argument as in [9], M turns out to be a Riemannian space
endowed with a metric locally reducible to either

(4 13) ds^idx'y+g^dx^dx^ or

(4.14) ds*=-^;7 ϊ (k*0: constant),
X )

where gλμdxλdxμ defines an (n—l)-dimensional Riemannian space of constant
curvature. In accordance with (4.13) or (4.14), a basis of © consists of

(4.15)

(416) x*-

where ξλd/dxλ stands for a basis of all the Killing vector fields on an (n —1)-
dimensional Riemannian space of constant curvature.

To solve Eqs. (4.1) and (4. 2), we need only to determine vector fields V
commutative with any element of (4.15) or (4.16). It is, however, an easy matter.
We obtain then

d
dx1 , ?

• dχt>
γf-ί

or

3
dxλ'

d
dx"

(4.17)

for ®

(4.18)

for ©

given

given

by

by

(4.

(4.

15)

16).

V=c

and

v=c

Thus

dx1 {c*

1 9

x dx1 {c

we have

0: constant)

' ^ 0 : constant)
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THEOREM 4.5. Let M be an n-dirnensional (n^4) Riemannian space which
admits a maximal Lie algebra of infinitesimal isometnes preserving a non-zero
vector field. Then M has a metric locally reducible to either (4.13) or (4.14).
The preserved vector field is given by (4.17) or (4.18) according as the metric is
of the form (4.13) or (4.14).

This theorem can be set up in global situation. Let M be an n-dimensional
Riemannian manifold, I(M) the group of isometries of M, and G a closed con-
nected subgroup of /(M). It is known today [16] what Riemannian manifolds
can admit the subgroups G of dimension n(n—l)/2+l. According to [16], such
a Riemannian manifold M (n^5) is one of the following:

(1) M=RxMn-lf where Mn-1 is a complete simply connected space of
constant curvature, and G=RxP(Mn-ύ\

(2) M^S'xMn-i, where Mn.x is as above and G=S 1X/°(Mn_ 1);

(3) M=RxPn-i(R) and G=Λx/ 0(P»-iCR));

(4) M=S 1XP»- 1(B) and G=S1Xl°(Pn-1(R));

(5) M is a simply connected homogeneous Riemannian manifold G/H with
H=SO(n—ϊ). It admits a G-invariant unit vector field V and a G-invariant
Riemannian metric of constant negative curvature (which agrees with the
originally given metric on the tangent vectors perpendicular to V);

(6) M=R* and G=R8 Spin (7).

From the viewpoint of vector-preserving isometry, among the list of
Riemannian manifolds shown above (1) to (5) are possible. The preserved vector
field V is the infinitesimal transformation of a one-parameter subgroup R or S1

of G for each case (1) to (4). For the case (5) the preserved vector field V has
been already given above. Needless to say, these preserved vectors never vanish
(see also Theorem 4.1).

§ 5. Scalar-preserving isometries.

A dynamical system (T(M), Z) is called simple (or conservative), if there is
a function U on M, referred to as a potential, such that

(5.1) V=-graάU.

We are going to specialize in the infinitesimal isometries preserving (5.1), and
to characterize the gradient field (5.1). Eqs. (2.7) with V satisfying (5.1) imply
that j:xdU=d(XU)=0, so that XU— constant. To consider a subalgebra of ©
treated in Section 4, we impose the condition that XU=0. Then (2.7) is
reduced to

(5.2) -CχgtJ=0, XU=0.
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Though these equations was studied by Ikeda and Nishino [1], here we
have to supplement their results. Eqs. (5. 2) can be put into a normal form:

(5.3) V. £'=&>, Vkξi^-RtkJξ1,

(5.4) f , ,+?*=0, Γt/i=0,

where Uι=dU/dxι. The integrability conditions of the second equation of (5. 4)
are given by

(5.5) ξ'^Uj+ξ^δ'U^O.

We now show that (5.5) is independent of (5.4). In fact, if not, there are
functions A3 such that

hold identically in (ξι, ξjk) satisfying the first equations in (5.4). This means
that δk

JU
i=δ)Uk. By contacting them for i and /, we have (n—l)Uk~0,

hence Uk—0, contradicting the assumption that V=— grad £/ is not the zero.
We mean by ί) the Lie algebra of the infinitesimal transformations satisfying
(5. 2). Like Theorem 4.1, we can prove the following theorem which was first
proved in [14].

THEOREM 5.1. Lie algebras of the infinitesimal isometnes preserving a non-
constant scalar are of dimension n(n—1)/2 at most, and are intransitive.

Let if be a local isometry group generated by a maximal Lie algebra ί) and
Ho an isotropy subgroup of H at a point of M. Then dim Ho satisfies

(5.6) y ( n - l ) ( n - 2 ) - l ^ d i m i / 0 ^ ~ n ( n - l ) .

If grad/7—0 at a point, (5.5) and the second equation of (5.4) are identically
valid at the point for (ζ\ ξjk) corresponding to the elements of the Lie algebra
ΐjo of Ho. Consequently we conclude that

(5.7) d i m / / 0 = y n ( n - l )

at a point where grad U=0. Since ΐ) is intransitive, dim H0^(n—l)(w—2)/2—1.
Therefore, at each point where grad U*?0 we have for n^4

(5.8) dim HQ=~(n-l)(n-2\
Δ

because Ho is a closed subgroup of SO(n) and because SO(n) (n=^4) has no
proper closed subgroups of dimension greater than {n—l)(n— 2)/2 [15]. The
case where (5.7) holds was out of consideration in [1].
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As such, according as grad U vanishes at a point or not, there occur
following two cases to be considered: the case (A) where (5. 7) holds at some
point of M, and the case (B) where (5. 8) holds everywhere.

We begin with the case (A).

THEOREM 5.2. // an n-dimensional Riemanman space M (n^3) admits a Lie
algebra of dimension n(n—1)/2 consisting of the infinitesimal isometnes preserving
a non-constant scalar and if the dimension of an isotropy subgroup satisfies (5. 7)
at some point of M, then a metric ds2 and a potential U are given in a suitable
coordinate system by

(5.9) ds^A^Σiidx

(5.10) U=U(r),

where r ^ Σ U O S and A{r) and B(r) are functions of r^O.

Proof. Choose such a coordinate system (x*) that any element φ of Ho acts
on M in the form φι(x)=cιjXJ with (cV )eSO(tt). After an analogous method
as in [1] (n^S), we can obtain (5.9) on account of the equations

which verify that φ is an isometry in the present coordinate neighborhood,
where p is an arbitrary point. In the present coordinate system a Killing vector
field X is of the form

(5.11) X=Vt>x*-^,

where (v{) are constants such that i^+v>}=0. The second equation in (5.2) with
X replaced by (5.11) implies (5.10). This is because SO(n) acts transitively on
each sphere of radius r. Needless to say, grad U must vanish at r = 0 . This
completes the proof.

We now proceed to the case (B). The following theorem was proved in [1].

THEOREM 5. 3. // an n-dimensional Riemanman space M (n^A) admits a Lie
algebra of dimension n(n—1)/2 consisting of the infinitesimal isometnes preserving
a non-constant scalar and if the dimension of an isotropy subgroup satisfies (5. 8)
everywhere, then M has a metric ds2 and a potential U locally reducible to

(5.12) ds2=(dt)2+f(t)dσ2,

(5.13) £/=ί/(0,

where f(t) is a positive function of t, t being a parameter of R, and dσ2 is a
metric defining an (n—1)-dimensional Riemanman space of constant curvature.
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Riemannian spaces admitting isometry groups of dimension n(n—1)/2 have
been studied globally in [17] without reference to potential functions. Let G be
a connected closed subgroup of I(M), consisting of all the isometries leaving a
non-constant function U invariant. Manifestly G is intransitive and dim G=
n(n—1)/2 (see Theorem 5.1). According to [17] a Riemannian manifold M (n^6)
admitting such a subgroup must be one of the following:

(1) M is diffeomorphic to Rn, Sn or Pn (R). The group G has a common
fixed point and G=SO(n). The Riemannian structure of M is a one which is
invariant under the action of G.

(2) M=(Sn~1xR)/Γ, where Γ is a discrete group acting freely. The pos-
sibilities for Γ are {1}, Z2, Z and Z 2 xZ. The group G comes from the isometry
group P{Sn~ι) of the (n — l)-dimensional factor in the covering space Sn~1xR.

(3) M is non-compact and foliated by closed surfaces which are either all
isometric to Rnί or all isometric to hyperbolic spaces (i. e., complete simply
connected spaces of constant negative curvature). These leaves are the G-orbits.
If M is complete, M is diffeomorphic to Rn or S^R71'1.

Without the restriction that G is intransitive, allowed are other Riemannian
manifolds which are of no interest for us. The preserved scalar U is a one such
that it is constant on each G-orbit. This closes the remark on global situation.

Changing situations, we assume that a Lie algebra of the infinitesimal iso-
metries preserving a non-zero vector field V is of dimension n(n —1)/2 without
assuming V=— gmdU. Let ψ be a Lie algebra of dimension n(n — l)/2 deter-
mined by (2.7), H' a local isometry group generated by \/, and Ho

/ the isotropy
subgroup of H' at a point of M. Then dim Ho

/ also satisfies (5. 6). On the same
argument used above, we have the following cases:

(5.14a) dimH0'=^-?ι(n-ϊ),

(5.14b) άimH0

/=j(n~l)(n-2),

(5.14c) d i m / / 0

/ = - ί ( n - l ) ( n - 2 ) - l .

We first assume (5.14 c) which occurs when and only when H' is transitive.
It is known that for n^ HQ

f with the dimensionality given by (5.14c) is
transitive on the unit sphere S71'1 in the tangent space to M at the present
point [17]. Accordingly, Ho

/ has no invariant subspaces of the tangent space, and
hence the vector field preserved by V must vanish at that point. Because of the
transitivity of H'', V vanishes also in a neighborhood of the point, which con-
tradicts the assumption that V has only isolated zero points. Thus the case
(5.14c) does not occur for n^5.
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As such there remain the two cases (5.14a) and (5.14 b). These cases,
however, coincide with (5.7) and (5.8), so that Theorem 5.2 and 5.3 can be
recovered except for the statement of potentials. It is easily seen that in these
cases H' is intransitive and hence there is a family of (n—l)-dimensional sub-
spaces of M invariant under the group actions. From this a new condition
follows: XU=0, where X is an arbitrary infinitesimal transformation of fy and
U is such a scalar that U= constant defines an invariant subspace of M. Here
we have recovered (5. 2).

The gradient field grad U is, of course, preserved by X because of XU=0,
but the question now arises as to whether or not the vector field V preserved
by infinitesimal isometries is a gradient field. Let U be the scalar introduced
above. Define a function / by

(5.15)

where (y*) and (£/*) are local components of V and grad U respectively. We
break up V into two fields as

(5.16) V=fgradU+W.

By differentiating U with respect to V and by the definition (5.15) of / , we
find that W=(Wi) is tangent to every hypersurface U— constant:

(5.17) W'U^O.

Let X be an infinitesimal isometry belonging to ΐj'. We can show that ViUt

and UiUι are both left invariant by X:

(5.18) X(ViUl)=X(UiU%)=0.

In fact, by appealing to the equations [Z, F ] = 0 and d(XU)~0, that is,
f*V J f ey

i-V r*7Λf ι=0 and ξkVk Uι

J

ΓUkVιξ
k=0, respectively, and by straight-

foward calculation, we have

This proves (5.18). From (5.15) and (5.18) we obtain

(5.19) Xf=0.

Since X of lγ preserves V given by (5.16), it follows from (5.19) and d(XU)=0
that

(5.20) [Z, Wlι=0.



ON INFINITESIMAL TRANSFORMATIONS 185

Next we show that W—0. Since X is thought of as a Killing vector field
on each hypersurface U— constant [1] and since W is tangent to the hyper-
surface (see (5.17)), V is regarded as a Lie algebra of the infinitesimal isometries
preserving a vector field W on each (n—l)-dimensional hypersurface £/=constant
(see (5.20)). Consequently Theorem 4.1 applied to V implies that W=0. Thus
we obtain

(5. 21) V=f grad U.

Choose the Gauss coordinate system adapted for a family of hypersurfaces
U= constant:

(5.22) ds*=(dt)2+gλμ(f,x*)dxzdχr, U=U(t).

Then the function / introduced in (5.15) becomes a function of i alone because

of (5.19). Introduce a function U(ί) by U(t)=-$(f(t)dU/dt)dt. We then see

from (5.21) that V=(—dO/dt, 0, •••, 0) in the present coordinate system.
Therefore, we attain

(5.23) V=-graάU.

Summarizing the above discussion, we have

THEOREM 5.4. If an n-dimensional Riemannian space M (n^5) admits a Lie
algebra of dimension n(n—ϊ)/2 consisting of the infinitesimal isometries preserving
a non-zero vector field, then the preserved vector field is a gradient field.

The author wishes to express his gratitude to Professor S. Ishihara for
carefully reading the manuscript and offering valuable comments. The author is
also grateful to Professor M. Ikeda for his encouragement.
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