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ON A CHARACTERIZATION OF THE EXPONENTIAL
FUNCTION AND THE COSINE FUNCTION
BY FACTORIZATION

By MiTSURU OZAWA

1. Introductien. Recently there have appeared quite many results in the
theory of factorization by composition. However, so far as the present author
knows, all of them are concerned with the possibility or the impossibility of
factorization of certain functions. The factorization theory is still in the infancy
so that almost all fundamental problems remain unsettled.

A meromorphic function F(z)=f(g(z)) is said to have f(z) and g(z) as
left and right factors respectively, provided that f is meromorphic and g is
entire (g may be meromorphic when f is rational). F(z) is said to be pseudo-
prime if every factorization of the above form implies that g(z) is a polynomial
unless f(z) is rational. If F(z) is representable as f,(f, - (fa(2))-) and g,(gs -
(ga(2))-++) and if with suitable linear transformations 2,, j=1, ---, n—1

fi=g(Ay), fi=20(g2), -+, fr=2211(gn)

hold, then two factorizations are called to be equivalent.

It is well-known that ¢ and cos z are both pseudo-prime and further they
admit infinitely many non-equivalent left polynomial factors, that is, e*=w"oe*"
and cos z=P,(cos z/n) with a suitable polynomial P, of degree n. This means
that ¢* and cos z occupy a quite special situation in the factorization theory. In
this paper we shall discuss the inverse problem and prove the following chara-
cterization of the exponential function and the cosine function.

THEOREM. Let F(z) be an entire function, for which for every positive integer
m there 1s a polynomial P,(z) of degree m such that

F<Z):Pm(fm(z>)
for an entwe function fn(z). Then
F(2)=A cos v H(Zz)+B

with two constants A, B and an entwe function H(z), unless
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46 MITSURU OZAWA
F(z)=Ae"®+-B.

Our proof is divided into several steps, since it needs a little bit complicated
process.

2. We shall make use of the following famous theorem and its conse-
quences repeatedly.

THEOREM A. (The second fundamental theorem for an entire function.) Let
f(z) be an entwe function. Then

(gD, )< SNG, 0, )+S0),

where a,#co and
S(r)=0(log r m(r, 1))

except for a set of finite measure.
THEOREM B. Let f(z) be an entwre function. Then
2 0@)=1,
where _
— N, q,f)

1=6@=lim— £

Let v(a) denote the least order of almost all a-points of f(z). Then
1
—_ )<
a;eo(l V((l) )=1 '

3. Proof of Theorem. The first step. Let us start from m=2. Then with
constants A,, b and w,

F(2)—b=A:(fo2)—wo)*.

Hence F(z)—b has only zeros of even positive integral order if they exist. In
the first place we assume that F(z)—b has only finitely many zeros. Then

F(Z)_b:Q<Z)zeL(z)

with a polynomial Q(z) and an entire function L(z). F(z) is trivially transcen-
dental by our assumption. Hence L(z) is not a constant. Let m be an arbitrary
large integer. Then

F(z2)—b=A, ﬁ (fu(2)—w,).

By Picard’s theorem for entire functions we have only one representation
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F(2)~b=An(fu(2)—w)™,
Im(2)—w,=Qn(2)e*m?

with a polynomial Q,(z) and an entire function L,(z). Thus

mdeg Q,=2deg Q.

This is possible if and only if deg Q=deg Q,,=0. Therefore
F(z)=b-+Aet®,

The second step. From now on we assume that F—b admits infinitely many
zeros of even integral order. Let us consider the case m=3. Then by Theorem
B we have only two possibilities :

1) F(2)—b=Afo(2)—w)(fs(2)—ws)?, w,#w,

2) F(a)—b=Ayfs(2)—w,)*.

In this step we consider the case 2). Then by Theorem B we have

F)—b=Af,(2)—w,*)*,

since F(z)—b has only zeros of order 6p. We inductively assume that F(z)—b
has only zeros of order 3-2?7'. Then we consider

F(2)—b= Ay H (Funl)—a,),

i ljzzp .
j=1

If there are two odd integers among {/,;}, say [, and I, then fop(2)—ay, fon(2)—a,
have only zeros of order at least 27°!. This is impossible by Theorem B. Hence
we may put [;=2m,. We may put m;<m,= --- <m,. Let n, be the least order
of zeros of f,,—a, Then 2n;m;=3-2°7* for all j. If s=3, m;=27"'—2. Hence
Nng>3-2P71/2m,=3-27"1/(27—4)>1. Therefore n,=2. In this case 3m,<m;+ - +
ms=27"1, Thus n,=3-2P71/2m,=3%-2P"1/27=9/2. Hence n,=5. This is impossible
by Theorem B. If s=2, then similarly n,=3-27"1/(2?—2)>1, which shows that
n,=2. Further m; <272, Hence n,=3-2?71/2P"'=3. This is again absurd by
Theorem B. Thus we have only one representation

F(z)—b=A,(f,n(z2) —a,)? .

This implies that F(z)—0b has only zeros of order 3-27-/, where [ is a positive
integer. Thus F(z)—b has only zeros of arbitrary high order. This is absurd.
Thus the case 2) is now rejected.

The third step. We now discuss the case 1). Then f;—w,=T? Hence

A,

T——w)T=(-5)" (fiwy).
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There are two constants C; and C, such that

T —(w,—w)T+C=T—a; T —as,)? j=1, 2.

Then
C _\/_4~( — )3 C,=—C
1= 27 We—UWy)" , 2= 1
Ay =—— 2\/ —w,) , Ayp= "0
1
azl:\/_g—(wZ——wl) s Qpp— "Wy .
Hence

(5 A )w(fz work (-5 A ) €)= (T~ T —a,)

and on putting

Xj=Wo— (—%:—)UZCJ

we have

® (4) e r) == )(T—aw, 1=1, 2,

Let us consider the case m=4. Then by Theorem B we have only three
cases :
i) F(Z)_b:A4(f4(Z)_dl)(f4(2>_‘dz>(f4(z>—d3)2 s
i) F(2)—b=A,(f(2)—d)(fi(2)—d,)*,
iii) F(2)—b=A,(fi(2)—d)*(fi(2)—d.)*.
The case F(z)—b=A,(f,(2)—d,)* does not occur, since F—b=A;(fs—w)(fs—w,)
In this step we shall consider the cases i) and ii). Since F(2)—b=A,(f.(2)
—1wy)% we may put
f4—d1:T2; f4—d2:SZ

with entire functions T and S. Therefore
T+S T-S
and hence with a suitable entire function H

TS g T=S _ a
vV d,—d, © Wdi—d,

which imply

ree B g oy,
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d;—d,

2
St=—

(eH_e—H)Z
Case 1).
— 2__ dZ—dl i om -2H\2( J2H -2H\2
F—b= Ay fmwi= A (- 2) (@ —e e ypen ),

where

_9__ 4(d3_d1)
Y5=2 d—d. #42.

Thus

( ﬁf >1/2(_dzi—dl)2(f e wo)=(e" —e (et yo e

On the other hand

<%)M<f —1)=(T—anXT—aw)’,

xlzwo——( ﬁz )UZC1 .

Hence

() (GZa) v (5 0)

:(ezH-—e‘ZH)(ew-l-ya—Fe'ZH)+( flj )WCI( d24d1 )2

A,
A,

12 (x*+ysx3+dx®—yx—1)

x
with x=e*#,
- Ay \V2 4 2
d—( A, ) Cl( dy—d, ) ’
We now put
ity +dxt—yx—1= ,ﬁ=1(7‘—ﬁ]) .
Thus
1 4
G= x? ,;131 (x—ﬁy>:C/(T"a11)<T_az1>2-

If B, are all different, then ;0 implies

49



50 MITSURU OZAWA
2 mlr, G~2mlr, TIZG, avy, T)+N(r, az, T)

= 2 NG, B, D~Am(r, m(r, G)

excepting a set of finite measure, which is impossible. If B, B,, B: are different
and B;=p,, then

2 mlr, G~2mlr, TYZNG, as, T+, auy, T)

= 3 N, B, D~3mr, D~—m(r, G)

excepting a set of finite measure, which is impossible. If B, 8, but B.=p:=p8,,
then

G:c/(T—au)(T—azl)Z

= xlz (X yox®+dx®—yx—1)= 'xlT(x_ﬁlxx_ﬂzy .

In this case

51‘]‘352: —JVs

38,2 4-3B:18:=d

l ﬁ23+3.31,322:y3

BifBt=—1.

In referring d+#0, B,#0 we have
yi'=—32, 4ﬂ22+y3/32+1:0 .

If y,=44271,

—V2+6. —/2—+6
ﬁzz 2 1, 2 1.

If y,=—4+21,
V2+6 . V2—6
Bo= 2 Z, 5 i,

In these cases we have

pi=— (VI +3VE), — - (5VZ—36).

—%—(5«/5 ~3v6), —S-(Gv2+3v6)
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respectively. Let us consider the derivative G’. Then

4H’ (r— ﬁ)2< 2y B.— ﬂlx ﬁﬁ)

l

4H’

(x—=B2) (x—72)*,

where
A 2446 . VE6—V2 . VE6—+2 AB+A2.
Vo= D) 1, 2 1, — 2 1, 2 1

respectively. Hence B,#7. B:r:#0. On the other hand
G'=C"BT?*—(w,—w,))T".

Since m(r, H)=o0(m(r, e)), almost all zeros of T—a,;, T+a, are of even order.
Thus
2m(7’, T)§]\7(1’, allr T)"i‘N(?’, a’21: T)—l_N(V; '—aZI; T)

<N, ayy, T)+QA+0)mlr, T),
(L—o(W)ym(r, TSN, ayy, TYSm(r, T) .

This means that N, ay, T)~N(, ay;, T)~m(r, T) and so almost all zeros of
T—ay, are simple. Let N, denote the counting function of multiple roots being
counted multiply. Then

—i—m(r, G)~3m(r, x)~3N(r, B,, x)
~Nu(r, 0, G)~2N(r, as, T)
=2m(r, T)N—g—m(r, G).

This is impossible.
If ‘Blzﬂzzﬁs:‘g“ then

C/(T—au)(T_aﬂ)Z:

_,81)4 .

This is impossible by Theorem B.
If ‘31:‘83 and ﬁz—_—ﬁ_“ ﬁ]iﬁg, then

- ﬁl)z(x‘—ﬁz)z .

1
C'(T—a;)(T—~ay)’= 22

Therefore
(=) (x*+yex+1D)+dx’=(x— P (x—Bo)".

This is possible if and only if y,=0, d==+27 and
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{ Blzem/at [ ‘Blze—zim
or

ﬁzz _eml/4 ‘32: _e—m /4

Hence

( ﬁj )1/2(f2__wO): (dz_zdlﬂ)?eu{_e-uq) ,

which leads us to
Fob= A femwy= A (Y i),

Let us put 8H=iK. Then
F—b=Acos K—A,

which gives a part of the final result.
Case ii). In this case with x=¢%#

1

C=T(T*—w,+w,)=a pr

(x+1)(x—1)%.
Thus

—g—m(r, G)~2m(r, T)

<N(r, 0, T)+N@r, vVws—wy, T)+Nr, — v ws—w,, T)
=N, 1, 0)+N@r, —1, x) <2m(r, x)

1
N—Z—m(r, G),

which is absurd.
The fourth step. In this step we shall discuss the case iii).
Hence we start from
F—b:Az(fz_‘wo)ZZAA(f4_d1)2(f4_d2)2 .
This gives

( ﬁf ) Gemwd=(fi— T B Y- <d12d2>2

and

et B (G (A )

Assume that

(dl—'dZ)z (_Aﬁ_

o 1/2 _1 2
Yo=Wo— 4 Az > i-x],' =1 .
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Then by Theorem A and by (1)
A+oW)2m(r, f)=N(r, %3, f)+N(r, x5, f)+Nr, 3o, 1)
=N, ay,, T)+N(r, ayy, T)+N(, ay, T)+N@, @y, T)

+N(r, 3o, f2) -
Evidently

_ 1 1
NG, o, £S5 N, 3o, )= i, 1)
Hence
3
(5 Fow)mtr, 72
éN(?’, au, T)'I‘N(T’, a21y T)'I‘N(?’, alZ; T)‘I‘N(?’, a22; T)
<dm(r, T)neg-m(r, £2) .

This is a contradiction. Hence y,=x;, unless y,=x,. It is sufficient to consider
the case y,=x;. By the way we have

(di=dp)* ¢ AsNve_( Agye [ 4
@) —1 (_Az> =( A2> o7 (Wemw)
Xo— Xy
=
Hence we have
fz_‘xszlZ;
fz—‘szLMzZ-

Here L is an entire function whose zeros are all simple and satisfy T=ay,. M,
M, are also entire functions. Let f be the entire function satisfying f+1=

a,(fo—xy), f—1=a,(fo—x,). Then
a,(x,—x,)=2,
fH1=a,M*,
f—1=a,LM,?,

lf.

a;

Jo—woe=

Hence
fi—a LM *M,*=1.

Let us consider the logarithmic derivative of f+a;v'L M;M,:
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—q_'l()g (f+a, \/L“Mle)

dz
- (2L MMita VI (MM,
f+a V'L MM, 2«/ ' ! e
=(r+ ; «/L M1M2+a1«/f(M1M2)’)( f—aVI MM,)
=ff— L'(MIMZ)Z—GZL M My(M M)
—_ ' a, L’
+al\/L(f(M1M2) fM1M2)+ oL Mlef
' a, L’
“al\/L(f(Mle) fM1M2)+ oL MM, f.

Let {a;} be the set of zeros of L. Then fla,)—a,v L(ay)ix M,(a)M(a;,)=1.
Hence

log (f(2)+a, \/I-WMKZ)Mz(Z))

o S 2\/ oL MiMS detas|” VI (LMY —FMiMdz

=a,M,M,

S” NI MM, f dz
ay

=0,V I MM f(D) 20, | VL MM, fdz.

Of course this depends on paths of integration connecting with a; to z Evi-
dently with an integer p, depending on paths connecting with «a; to «,

ijﬂ'izlog (f(aj)_l"al '\/L(a]) Ml(a’j)Mg(aj))
=~2a15 VL MM,fdz.
Let @(z) be

——a,\/L(z) My(2)My(2) f(2)—2a, — S VI M,M,fdz.

Then
fravL MM,=é“.
Further with the same path of integration

f_al '\/I_MIMZ—_:Q_ 6
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Hence

f(z2)=cos O .
Returning back to f,, we have
3) fe—wo= xz;xl cos @,

F(z)—b:Azif‘igﬁ(cos 20+1).

If it is possible to prove
S: VL MM, f dz=0
for all j, then
| VI MM pdz=vLS

with an entire function S. This can be proved by the standard method. Then
9 —
VL

reduces to an entire function. Therefore

K

)2 .
F-b:Az—(’ﬁzsLl)@os 2vL K+1).

which gives the desired result. Thus it is sufficient to prove that
S “ VI MiM,f dz
ay

with a fixed path of integration connecting with «; to «, vanishes for every j.
This will be done by making a detour.
The fifth step. In order to go further we need the following :

LEMMA. Let f, g and h be entire functions satisfying
f(2)*=a(g(2)—7)*(g(2)—712)*=Pn(h(2))

with y,%#7. and a polynomial P, of degree m. Assume that f has infinitely many
zeros and that m is an even integer 2n (n=3). Then either

f@)=ATL (@) =)

S
with integers v, satisfying Elv,:n or
=

f(z)*=Acos K—A
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with a constant A and an entire function K.

Proof. Suppose that the former does not hold. Then by Theorem B
)= Alh() = (@) sy 1T (h()—a )
with odd integers v;, v, and integers v,;(3<;=s) such that
v +v,+ ]2321)]:271

and with different «,. In the first place we shall prove s=3. If this is not the
case, then

a(g—r)(g—r)*=Alh—ay) (h—ay)*?
with odd integers v, and y, satisfying v,+v,=2n. In this case

N(T, rlr g)+N(7’, 7'2; g):N(T, al: ]’l)"‘N(?’, a2’ h’)
and

N, ay DS NG, @, DS -4mlr, B
and further 4m(r, g)~2n m(r, h). Hence
m(r, @ =m(r, h)N%m(r, 2,
which implies n<2. This contradicts n=3. Thus s=3. We may assume that
v;=<y,. Let us put
h—a,=T?*, h—a,=S?
and

T+S _ _ u T—S _ u

vVa,—a, ’ Va,—a,

Then with y;#+2
f2:A< aggal )2"(ey+e—H)zul(eH_e—H)zyz li(ezH+yj+e-2H)2u,
7=

Hence

vy—y1
2

f=A" “———2Za’ )n(ezH—e‘g”)”l(ez”—Z—%— e™*)

S
g(e2H+yj+e—2H)uj .

We put x=¢*?. Then
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(. Ly 1yzas 1\
b(g—Tl)(g—rz)—(x x) <x 2+ x) 2 gs(ﬁ_y’_‘-T) .

Hence with C=b(y,—72)%/4%#0

(=LY = (v ) (=2 ) L (xe ) e

1

xn

(L(x)+cx™) .

Let L(x)+cx™ be li{(x— Bur, gt‘_,l w=2n. Here L(x)+cx™ has only zeros of even

order. If g is odd, then (x—p,)* has infinitely many zeros of order p, since
x—f; has infinitely many simple zeros for 8,#0. Hence we may put p,=2m,
for all [. We put

ZI:-‘E (=B ™= (A" —Up, X" - £up)?.

Evidently x™L(1/x)=—L(x). Hence we may put
L)+ cx™=x""+apn X271  coo @y x " - cx™
X = e =y, x—1

Comparing with the corresponding coefficients we have firstly u2=—1. If u,=1,
then u,_;=—iu, 1=)=n—1 and hence u;=0 for 1=j=n—1. If uy=—1, then u,_,
=iy, 1=j=n—1 and hence u;=0 for 1=<)=n—1. Hence in each cases u,=0 for
1=j=<n—1 and

C==+21.
Hence
n n N\ 2
L(x)—l;cx _ (x inl) o ln'
x x x
Therefore
1
b(g—rl)(g—rz)=X"— P
and

fz:A(_a%a_lyn(xzn_z_i_%) .

Hence putting 4dnH=1K we have

AXy—

=24 Tal)zn(cos K—1)
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This is the desired result.
The sixth step. We shall denote our original problem by P for F. In the
second and third steps we have proved from P for F that

F—b:Az(fz“‘wo)z'_‘As(fa—wD(fs—wz)z (wy#w,)
=A4(f4"‘d1)2(f4'_d2)2 (dﬁﬁdz)

excepting F—b=Acos K—A with a constant A and an entire function K. By
Lemma

F"bzAznﬁL(fzn_ﬁj)zu]: jvjvjzn
J=1 =1

excepting the case F—b=Acos K—A. This gives

Jo—we= ( fl: 1/2(f4—d1)(f4_d2)

1/252n

=(Z) i .

This is nothing but P for f,. Hence we correspondingly have

fz—x1:<%‘)m(f4— dl—gdz )2=< jz )l/z(fs“‘w1/)(fs—w2/)2

=(4) e rimry

with w,’#w,’, d,’+d," except for f,—x,;=A(e¥+e#—2), which comes from

fomi=(G5) " Gi— X fimd D i

A:( ﬁ: )1/2( dz’ldl/ >4

and
dz/ _dll

fomdy =P (Y

We shall now discuss this exceptional case. In this case

()i d fimd

A,
=(40) g )= () g™

= fimwe=(G1) (T e n g —() A
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Let us put

#0.

. A4 e (d1_'d3)2 4
D=( A, ) i di—d)
Then
A fum =4, et -2 Dy

=As(fs—w)(fs—w.)*.
Our present problem is when the above relation is possible. Let us put f;—w:
=T* Then
T*—=b*T—MQ2+D—e"—e#)=0,

b*=w,—w,, M:( ﬁ: )”Z( dz/zdl’ >4.

Let us consider the cubic equation
Y —by—MQ2+D—e"—eH)=0.

This should have an entire solution 7, which means that the above cubic equa-
tion is reducible in the ring of entire functions. Hence the discriminant 4 of
the above cubic form satisfies

A=—4b"+27TM*2+D— e — M)
=(3T*—3b%)(3T*—b):.

Evidently
A=2TM*"+e F—a)(e"+e P —a,),

a1:2+D+ '\/C_, a2=2+D~\/C_,

4 b°

= e 7Y

C
It is not difficult to prove that
NG, ay, e'+e )~ N(r, a, e¥+e F)~m(r, e+e )
if ay#+2 and
NG, a, eH-l-e'”)N—;—N(r, @, e”—}—e'”)w—é-m(r, e 410
if @;==+2. Now assume that a,#+2, a,#+2. Then
2m(r, e¥4-eH~NG, a,, e?+e ®)+LN@, ay, e+e )
=N(r, 4b%, 3T*+N(r, b, 3T?)
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<2m(r, 3T2)~%m(r, efl4eH)
This is impossible. If a,=2, a,# —2, then
-g—m(r, et ~N(r, ay, e#+e #)+N(r, a, e?+eH)
=N(r, 4b% 3T*+N(r, b%, 3T?)
=2m(r, 3T2)~~§—m(r, e+t H),

Again this 1s impossible. Hence we have either

{ ;=2 [ o, =—2
or

ay=—2 a,=2.
In these cases we have 24+ D=0, C=4. Hence
R dy’—d,’ \s oH | oH
F—b=44( 1 ) (@t +2)
=Acos K+A, 2H=iK .

This is again a part of the desired result.
Further by Lemma

AM 1/284n Aoy i
fimt= (52 I (8,17
7=1

@
i~

SO
Y, =n
4 J

<
1l

except for the case f,—x;=A(e?+e#—2). This exceptional case gives again
F—b=A'(cos K+1) similarly. Thus we have

f4— dl;_dz =< jj 1/4(f8—d1/)<f8_d2/)

A 1/484n L Sam
( - ) I (fin= 8,07, v,/ =n.

Still there are exceptional cases of the same type. This indicates just P for f,.
Therefore
;L A8 1/4 B d1'+d2/ 2
f4_x1—<T) (fs 2 )

( A )1/4(f12_w1/ Y fr—w.")?
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:( AIG
A,
with w,” #w,”, d,” #+d,” with the exception of the case

fo—x,=A(e*H 4274 2) .

)1/4(f16_d1”)2(f16—d2”)2

In this exceptional case comparing with Ay(f;—w;)(fs—w,)?* we have
F—b=A'(cos K+1)
similarly. Further with the same exceptional case

Agn \ V4380

fimxd = () T Gy

v, =n.
=

Hence

d,)+d,’ Ay \V8
fs— : _g : :( Als (flG_d1”>(f16_d2”)
8

Agpn \ V8580 L L
= (S ML om0, Bv=n.
Ay 7=1 J=1

This is just P for f;. We evidently can repeat this process ad infinitum.
The seventh step. Especially we have P for f,,, that is,

d (p—2)_]_d (p-2) A 1/2P _
T e

1/2P Sn2pP

A - . -
X (fype1—dsP™ D)= (T’Z?”_> T (Frop— B, 1)),,]07 D
2P 1=1
With dl(p‘n:/:dz(p—l) and
Sn2p
v, P P=p,
7-1
Then

Azzp 172D dl(p—l)_{_dz(p—l) 2
) (=55

fzp—xl(p-D:

A 1/2P
:<"A—3::‘) (fszp"‘wl(p))(fszp_‘wz(p))z

A 1/2P
= ( A“; ) (f4217_dl(p))z(fuP‘dZ(Z)))Z .
2
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Exceptional cases give F—b=A cos K+ A finally. So we may omit them.
In the final step we need a relation between d,'?"P—d,?"Y and d,‘P—d, ‘™.

For f,,-, we have the similar relation. Especially

(s (g AT

A, \1/2P-1 _ B
:< Aazp 1 ) (Frapo1— 02 D) [ poa— 1w, V)2 .
2p-1

Hence by putting T=f,,,_,—w,*"" we have

dl(p—2)+d2(p—1) A 1 1/22 B _
_ :< 320 T(Tz——wg“’ 1)_I_w1(p 1)) .

Jov 2 Ayp
Hence
fzp_,xl(p—n:( Ajlzp—l )UZPT(TZ——wg(p_”—l—wl(l"l))
2D
A 1/20 (dl(p'Z)_dz(p—Z))Z
+ 22P .
i ;
This gives

el & = (RN A
2D

Then we have

a;+20,=0
(4) [ a22+2a1a2:—wz(p"l)+w1(p—l)
(d, P —(,p-2)2 A 1/2P
2 22D
1 = 4 ( Aszp—l )

Further we have

A, \l/2P
(F) e ey
= (ﬁﬁ)l/zp(fszp_w1(p>)<f32p_w2<p>)z
AZP

A 1/2P
= <~A‘42p_ (faizp— i PV (fiap—dyP)?
2P

Hence we can put T—a;=U?, fop—w,?=V2 Then

s2pt
UU—a,+a,)= (_ﬁﬁ,y 2P IV(Vz—wz‘m—b—wl“’))
A32P~1
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A 1/2P+1
= <i> ’ (f42p"“d1(p))(f4zp_dz(p)) .

Aszp
Let ¢ be

Asap >1/2p+1 (d,P>—d,'7)?
Asep 4 )

Then

Ayop \V2PH! _ d,P+d, P \2
) (e )

=U(U*—ay+a,)+c

/2pt1
32D~

This implies that
UU*—az+a)+c=(U~4§,)(U—3d,)*

and
(M)wpﬂV(Vz_wz(p)+w1(p>)+C
Aszp—l
. Asop 1/2p+1 _ e
*(“”‘—Agzpq) (V=—e)(V—er)".
Hence
0,+20,=0
(5) 0,2+20,0,=—a,+a,
51522:’_6
and
e;+26,=0
[ &+ 2e,8,= —w, P+ w, P
(6)

+
o Agop-1 \/2PH1
1€ =—¢C A .
32P

By (4), (5) and (6)

e (aZ_al)s — \/_‘1# (»__ (P8 143217 /2P
c—+24/————27 , c=F2 57 (w,P—w, )<—~Aw_1 )

and
1

WP — 1w, P = 'g‘(az_a'l)z .

63
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Hence

(7) BA;/zszz’fl-l(wz(p-n_wl(p-l)):A;/zalz)%l(wztp)__wlm))z .

By the same way as in the proof of (2) we have

(dl(p—l)__dz(p—l))z . 4 1y (p-1\8 Aszp—l 1/2P
1 TN i) <A42p-1>

and

AP —d, P N1/ Ao 2P 4 ¢
(Y Gy i

Hence by (7) we have

(d, =D — g, =) [ Agp \V2? d, P —d, P \1
® 2 _< Agop-1 ) ( 2 )

The eighth step. Let C be a cycle in {|z| <oo}—{a;}, which bounds only
two points «;, a, of {a;}. Then by a suitable choice of path of integration

a2SC VI MM, f'dz—= —2025 VI MM, fdz
ay

2217),771 .
Let us consider

f2_x1:< ﬁ: )1/2(f4—_—"d1;_d2 )2.

This is the same as

L2f**—11,

o AV (d,—d,)*
fz_wo——< Az) 4

Jit= d?i?dz (f4_ dl;—dz )

By remembering

X—x, _ (di—dy)® ( Ay )1/2
2 4 A,

and

Xo— X1

fo—we= 5 cos @,

we have
cos O=2f**—1.

Hence
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Ot j=o,1.

fi¥=cos

Inductively we assume that we have proved

fzp*:cos%’*’ ]:0) 1 IR 2r-1—1 »
Ny I AS SEEERe L)
fzp*: dl(p_Z)_dZCP-_z) (fzp— 1 5 2 )
Then by
A 1/2P d, PO L 4 (-1 o
fzp_ﬁﬁ(p_l):(’ﬁ> (fzpﬂ—‘—_zl-z—)
we have
d (p-2) d (p-2)
fzp__lﬂ___JzLﬂ
A /2P (d, P-4 (p-1))2
— Azz: ) (d, i 2 ) (2f22p*2_1)’
2
V2
for* =l =G g
d (p—1)+d (p-1)
% (fanm )
Hence
d, PP —(,P=® O+2m)
NG OS5
A 1/2P (d (p—l)__d (p-1)\2
:( 142104—1 ) ( 1 4 2 ) <2f2p+1*2_1)
2P
and
(p-2)_ J (p-2) ;
» (p-1)_ 4 (p-1))2
:<_/114iﬁ1_)1/2 o 4d2 ) (2f2p+1*2"1) .
2P
Hence by (8) with p—1 instead of p we have
O+2rj

f2p+1*:(3052—p, 7j=0,1, -, 21,

Let us consider the period of (©-+27j)/2? along the cycle C. Then this is
just 4p,m/2P. Assume that p,#0. Then f,,.,* is not one-valued along this cycle
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C, since (@-+2xj)/2P has an arbitrary small period along C. This contradicts the
one-valuedness of f,,.;. Therefore

S “* VI MM, f'dz=0
ay

for every k and for every path of integration. This completes the proof of
Theorem.

4. There exists the following conjecture: Let F(z) be an entire function,
for which there is an infinite sequence of different integers {m,;} such that F(z)
=Pn(fn,(2)) with a polynomial P, of degree m, and an entire function S
Then either

F(z)=P(Ae" 4 B)
or

F(z)=P(A cos vVH(Z) +B)

with constants A, B and an entire function H(z) and a suitable polynomial P.

Amemiya has constructed counter-examples showing that this conjecture is
not true in general. His example shows that, if {m,} is equal to {27}, this con-
jecture is not true. We have made use of only {27, 3-27}5, and obtained the
result.

5. We shall now discuss the case that {27, 3-27}%, is given as {m;}. In
this case firstly we have
F—b:Az(fz_w0)2-
Let us consider

F—b:A4JI41=1(f4—dJ) .

In this case we only have the following possibilities :

D Alfimd)(fi—do)(fi—dy)?
2) A(fi—d)(fi—do)’
3 Afi—d)(fi—dy)?
4 Alfi—d).
Case 1). In this case we may put
fi—d,=T*,  fi—d,=s%,
T4+S -

— =T
'\/dz‘— dl
and x=e*?!. Then
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A4(f4_d1)(f4—dz)(f4_d3)2
- d,—d; \* __1_ 2 —1_ 2
=) (=) G ),

A(ds—d,)
—_)— -+ .
u=2 —d, #+2
Let us consider

F"b:As }i[l(fa_ej) .

By Theorem B we have the following possibilities :
) Afe—e)(fs—e)(fo—e)* (fo—e)’
i) A(fe—e)(fo—e)(fo—e)*
iii) Ad(fs—e)(fo—e)*(fo—es)?
iv) Adfo—e)(fo—e)
V) Adfo—e) (fi—en) (fo—es)
iv) Alfe—e)*(fi—en)*.

In the cases i), ii), iii) and iv) we can put

=el, y=¢",

fG—QI:‘_UZ) fe_ezzvz, '\/92—21

Then ii) gives
Ae(—ﬁ—}—el— G(y——;~>2(y—l—v-l——31}—)4, vEE2.

Hence

iz (x2—D(x*+ux+1)=c j3 (»*—D(y*+vy-+1)2.

Since x=a, y=p have almost simple zeros respectively, this is impossible. Case
iii) gives

A(ﬁifi G(y_%)z(y—2+%)2(y+u+—i—)z, —

Hence

;2 (e — D+t D) =c yl (31— +vy+1) .

This is again impossible. Similarly we have the impossibility of iv). Case i)
gives
1

x2

(=D (x®+ux+1)
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=) () () 5 00 F 0 D,

Vi, Vs =12,

In this case firstly 4m(r, x)~6m(r, ¥). Then we can make use of the impossi-
bility of Borel's identity. Then we have

4H=6L+Fk or 4H=—6L-+Fk
and =0, v;+v,=0, 1+v,v,=0, ¢**=1. Hence

dz’_dl

F—b:A4( .

)4(2411_2—41{)2

d,—d,
4

:2A4< )4(003 AK—1), 8H=4Ki.

This gives a part of the desired result.
Case vi). Then

A41/2( ddeI )Z”JiT(xz‘l)(xzwLux—l—l)

:Asl/z(fs_el)(fe“ez)z .
This is impossible, since

dm(r, x)~N(r, 1, )+N@r, —1, D)+N@, a, x)+N@, a, x)
:N(?’, eh fﬁ)_*_N(r; le f6)§2m(7’, fG)N_g_m(T; .X) .

Case v). In this case we have

A e feme) fime)=Ap (Y 2 ey

X (x?Fux-+1).
There is a constant ¢ such that
A {(fe—e)(fome)(fo—e) et = A (fo—a)(fo—an)’.
_ st Vs,2=3s; 51— V5235,

(22 3 y 0= 3 ’

Sy=eteytey, S,=ee,teestee;, s;=ee.e;.

c=8— (%—32— %—sﬁ)az— igsz—

Then
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dz'—d17

G= Asl/z(fs—a;)(fa—a2)2=A41/2( i >2%(x4+ux3+dxz—ux—l) R

d=c( ﬁ: ) ( dzidl ) 0.

Hence the right hand side term is equal to

dz;dl )2 1 ﬁ(x—“@]) ]

x% 751
as in the third step there are only two possibilities :
a) Bi#Pe=ps=ps,
b)  Bi=ps# =P .

Case a). In this case

A41/2(

Bit3B=—u
38,°+3p,6,=d
Ba" 43" =u
BiB=-1.

This was already solved in the third step. Hence

G'=A¢" {(fs_az)(gfs'az*zal)}fsl
:A41/2(d2—2d1_>2 45/ (x_‘BZ)z(x_rz)z .

Therefore almost all the zeros of

ay+2a,

fo—as, f 6 3
are of even order. Hence

2m(r, fo)(1+o(1))
éN(?’, ay, f6)+N<r: Ay, f6)+N<rx %&“1; fs)
=2m(r, fo)(1+o(1)

and hence _
N(T, alr fs)NN(T, 247) fG)Nm<r’ fe) .
This gives

-z’—m@, C)~3mlr, N)~3N(r, o %)

69
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~Np(r, 0, G) =2m(r, fs)fv-g—m(r, G).

This is impossible.
Case b). In this case we have u=0, d==+27 and

ﬁlzeﬁi“ Blze—mﬂ
{ e |
ﬁzz_emm ‘82:’—8_7:“4 .

Hence

d24_d1 )2_14__(}(4_1)2

X
(4ot

=4, (ﬂ;—dL)z(eSHJFe-BH —9)

F—b:A4(

=A(cos 4K—1), 8H=4Ki.

This gives a part of the final result.
Case 2). In this case

F—b:Az(fz‘“wo)2:A4(f4_‘dl)(f«;‘dz)g .
Let us consider

F—b=A4, 11 (fi—e,).

By Theorem B we have the following possibilities :

) Alfs—e)(fo—e)(fo—e)'(fo—e)’

i) Afe—e)(fe—e)fo—ed)*

iil) As(fe—ed(fo—es)'(fo—es)

iv) Alfe—e)(fs—e)’

v) Alfe—e)(fi—e)’

vi) A(fe—e)*(fo—e) (fo—es)*

vii)  A(fe—e)(fe—e)*.

In the first five cases we introduce x and y as in Case 1) and arrive at con-
tradiction easily.
Case vi). In this case we have
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1

xZ

(x+Dx—1=c(fe—e)(fe—e)(fs—es)=GC .

Then

Lomte, G2, )2 B0, ¢, 1)

=N@, —1, x)+N(@, 1, x)~2m(r, x)w—;—m(r, G).

This is absurd.
Case vii). In this case we have

1

xz

(+D(x—1Y=d(fs—e)(fe—e)’ =G .

Then there is a constant ¢ such that

d(fe"el)(fe—ez)2+d0=d(fs_ez‘al)(fe_ez_az)z .
Here

€6
3

c=——§~(ez—e1)2¢0, a=

Then

(e D= D) do= o (' — 2 dext+ 22— 1)

1 4
= L),

Here we have four possibilities:

= B = BB

e NCaT RSN

=),
(e BB
X

In each cases we have the impossibility easily.
Case 4). In this case

F—b=A,fr—wo)*=Afi—d))*.

2
y Qg—— ’3“@2_91) .
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Then by Theorem B
F—bzAgn]l—_[:l(fzn_,an)va , Vit oo +”8n:n .

Therefore either
Azl/z(fz"‘wo):A41/2(f4_d1)2: A (fo—e)(fe—es)®
ZA%?(on_,Bnl)pl e (fzn— ;ann)vs”

or
F—b=Af—wo)’=Afi—d)'=Afe—e)".

In the latter case we have either F—b=Ae” if F—b has only finitely many zeros
or there is no such F if F—b has infinitely many zeros. This has been done
already in the first and the second steps. In the former case the problem
reduces to the problem of Theorem. Hence we can make use of our result.
Therefore

AP fi—wi)={ e
—w)= o
T Acos VHEB.
Hence
, { (Ae+B)?,
(Acos VH+B)®.
Case 3). In this case

F'_b=A2(fz—wo)2=A4(f4_d1)2(f4_d2)2 .

Then
F—b:Ae(fs_91)2(fs_92)2(fe_‘es)2
or
F—b=Asfs—e)*(fo—es)*.

Hence with a suitable constant ¢

Aélz(fz_wO‘l'C):Ai/z(f{_ %)2

_ Ayz(fa—‘al)(fs_az)2
AV fe—a)(fe—as)’
respectively. In the latter case we have

AV fo—wotc)=Ae?+B

or  AP(fe—ai)®.

and hence
F—b=(Ae"+B)?.
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In the former case we can make use of our theorem and then we have
F—b=(Acos VH+B)".
Hence we have the following corollary,
COROLLARY. Let F(z) be an entwe function, for which
F(2)=Pu(fn(2))

holds for m=2’ and for m=3-27, 1<j<co. Here Pn 1s a polynomal of degree
m and f 1S an entwre function. Then ether

F(z)=(Ae+B)*+C
or
F(z)=(A cos vH+B)?*+C,

where A, B, C are constants and H 1s an entive function.

6. In this section we shall discuss the case that {27, 3} is given as {m}
and we shall prove our theorem. In the fourth step and by (1) we have proved

d,+d, \2
AP fim )= A= -2 = AT — )T )
=AP(fo—d ) (fe—d)* .
Hence T—ay,;=T,% and so
di+d
A1/4(f4”* 1;— : )=A§/4T2(T22—a21+a11)
:A§/4(f8_d1/)(f8_d2/) .

Further by Lemma

1/2 1/2 er 2 X

Aj (f_xl):Azlﬁ};Il (fzp_ﬁzpf) I, 2 y;=2772,

Hence

A}iM f4‘ M :A}£4(f1s“‘ﬁls,l)(fm‘ﬁls,z)(fm“—,816,3)
2

X (flﬁ—ﬁ16,4) .
Here Bi,;, may coincide with each other. Hence by the third and fourth steps
we have

A fimxy= A (fim BTEY
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=AY(Ty—a,)/ )T —a')?
:A}éa(fls—dI”Y(fle_dz”)2

’
8

9P ) i
=A% JH=1 (fzp—ﬁ;p,j)%’ , 2y, =200,

Again T,—a,’=Ts® Therefore we go a step further. This process can be
repeated ad infinitum. Hence we can get the desired resulit.
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