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ON A CHARACTERIZATION OF THE EXPONENTIAL

FUNCTION AND THE COSINE FUNCTION

BY FACTORIZATION

BY MITSURU OZAWA

1. Introduction. Recently there have appeared quite many results in the
theory of factorization by composition. However, so far as the present author
knows, all of them are concerned with the possibility or the impossibility of
factorization of certain functions. The factorization theory is still in the infancy
so that almost all fundamental problems remain unsettled.

A meromorphic function F(z)=f(g(z)) is said to have f(z) and g(z) as
left and right factors respectively, provided that / is meromorphic and g is
entire (g may be meromorphic when / is rational). F(z) is said to be pseudo-
prime if every factorization of the above form implies that g(z) is a polynomial
unless f(z) is rational. If F(z) is representable as fx(f2 ••• (fn(z))- -) and gι{g2'"
(gn(z))'") and if with suitable linear transformations λJ} j = l, •- ,n—1

hold, then two factorizations are called to be equivalent.
It is well-known that ez and cos z are both pseudo-prime and further they

admit infinitely many non-equivalent left polynomial factors, that is, ez—wnoez!n

and cosz=Pn(cos z/ή) with a suitable polynomial Pn of degree n. This means
that ez and cos z occupy a quite special situation in the factorization theory. In
this paper we shall discuss the inverse problem and prove the following chara-
cterization of the exponential function and the cosine function.

THEOREM. Let F{z) be an entire function, for which for every positive integer
m there is a polynomial Pm(z) of degree m such that

F(z)=Pm(fm(z))

for an entire function fm(z). Then

F(z)=A cos VΉ(z) + B

with two constants A, B and an entire function H(z), unless
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46 MITSURU OZAWA

F(z)=Aemz'+B.

Our proof is divided into several steps, since it needs a little bit complicated
process.

2. We shall make use of the following famous theorem and its conse-
quences repeatedly.

THEOREM A. {The second fundamental theorem for an entire function.) Let
f(z) be an entire function. Then

(?-l)m(r,/)< ΣMr, av, f)+S(r),

where avφco and

S{r)=O{\ogrm{r,f))

except for a set of finite measure.

THEOREM B. Let f{z) be an entire function. Then

where

1 " w - ^ m(r,f) *

Let v(a) denote the least order of almost all a-points of f{z). Then

Z-l ( 1 / \ ) = 1

α#«Λ v(a) /

3. Proof of Theorem. The first step. Let us start from m=2. Then with
constants Λ2, b and w0

F(z)-b=A2{f2{z)-w0Y.

Hence F(z)—b has only zeros of even positive integral order if they exist. In
the first place we assume that F{z)—b has only finitely many zeros. Then

F{z)-b=Q(z)2eLU'

with a polynomial Q{z) and an entire function L{z). F{z) is trivially transcen-
dental by our assumption. Hence L{z) is not a constant. Let m be an arbitrary
large integer. Then

F{z)-b=Amfi{fm{z)-w3).

By Picard's theorem for entire functions we have only one representation
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F(z)-b=An(fn(z)-w1)
m,

Mz)-Wi=Qm(z)eL*c'>

with a polynomial Qm(z) and an entire function Lm(z). Thus

m deg Qm—2 deg Q .

This is possible if and only if deg Q=άeg Qm=0. Therefore

The second step. From now on we assume that F—b admits infinitely many
zeros of even integral order. Let us consider the case m=3. Then by Theorem
B we have only two possibilities:

1) F(z)-b=A3(fB(z)-w1)(f3(z)-w2)
2, w1φw2

2) F(z)-b^As(Uz)-wir.
In this step we consider the case 2). Then by Theorem B we have

F(z)-b=A<(Mz)-w1*y,

since F(z)—b has only zeros of order 6p. We inductively assume that F(z)—b
has only zeros of order Z l?'1. Then we consider

Σ h=2*.

If there are two odd integers among {/,-}, say k and l2, then f2P(z) —al7 f2p(z)—a2

have only zeros of order at least 2P~1. This is impossible by Theorem B. Hence
we may put lj=2m3. We may put m^m^ ••• ^m s . Let n3 be the least order
of zeros of f2V-aΓ Then 2njmj^3'2p-1 for all . If s^3, ms^2p~1-2. Hence
n s >3 2ί5-1/2rns^3 22 >-1/(2p-4)>l. Therefore n s ^2. In this case ^m^m^ - +
ms=2p~1. Th\isn1^3'2p~1/2m1^32 2p~1/2p=9/2. Hence ^ ^ 5 . This is impossible
by Theorem B. If s=2, then similarly n2^3-2p-1/(2p-2)>l} which shows that
n2>2. Further 7?z1^2^~2. Hence n1^3-2p"1/2p'1=3. This is again absurd by
Theorem B. Thus we have only one representation

F(z)-b=A2P(f2P(z)-ajy
p.

This implies that F{z)—b has only zeros of order 3 2P /, where / is a positive
integer. Thus F(z)—b has only zeros of arbitrary high order. This is absurd.
Thus the case 2) is now rejected.

The third step. We now discuss the case 1). Then f3—w1=T2. Hence
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There are two constants Cλ and C2 such that

T8-(w;2-M;1)T+C i=(T-α1,XT-α8,)2, ; = 1, 2.
Then

2—w1) , a12=—an

-KW2—Wι) , a22=—a21.* o

Hence

and on putting

we have

Let us consider the case m—L Then by Theorem B we have only three
cases:

ϋ) F(z)-6=Λ(/4U)-di)(ΛW-d«)8,
in) F(z)-b=Λ,(M2)-d1)KMz)-d2γ.

The case F(z)—b=AJ^f^z)—dλy does not occur, since F—b—Az{fz—w^){f^—w2)
2.

In this step we shall consider the cases i) and ii). Since F(z)—b=A2(f2(z)
—Wo)2, we may put

Λ-di=T β , f,-d2=S2

with entire functions T and 5. Therefore

T+S T-S

\/d2—d1 V' d2—d1

and hence with a suitable entire function H

T+5 „ T-S
— n" = —

Jd2—dx ' *s/d2—dλ

which imply
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S2= d2~dl (eH-e-HY

Case i).

F-b^Λ2(f2-Wo)=Λi(κ

where

Thus

On the other hand

Hence

= — Γ {x i

with * = e 2 i / ,

4 V4 V

-^
We now put

Thus

-y3x-l= Tl(x-βj)

Π U-i8J) = C /(T-α 1 1)(T-
J~l

If /3̂  are all different, then βjΦO implies
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-|-m(r, G)~2m(r, T)^N(r, an, T)+N(r, a21, T)

= Σ#(r,ft,. , x)~rn(r, G)

excepting a set of finite measure, which is impossible. If βlf β2, βz are different
and βz=βi, then

-J-m(r, G)-2m(r, T)^iV(r, α π , T)+iV(r, α21, T)

r, /3;, x)~3m(r, r, G)

excepting a set of finite measure, which is impossible. If βλΦβ2 but βz

:=βs=β^
then

G=C(T-an)(T-a21Y

In this case

3 i82

2+3 i8 l i92=d

In referring dΦO, β2Φθ we have

If 3;3 =

If y3=-W2i,

- Λ/2 + V6 . - A/2 - Vβ

V2+V6 . V2-V6
i z ~ 2 z> 2

In these cases we have

^-(5 V2 - 3 V6), - y (5 V2 +3 V6)



CHARACTERIZATION OF THE EXPONENTIAL FUNCTION 51

respectively. Let us consider the derivative G''. Then

x

where

_ V2 + V6 . V6-V2". V6-V2 V6 + V 2".
Γ 2 - g h 2 ι ' 2 Z' 2 '

respectively. Hence $zΦγ<ι, βzγzΦΰ On the other hand

Since m(r, H/)=o(m(r, e11)), almost all zeros of T—a2i, T+α^i are of even order.
Thus

2m(r, T)^iV(r, α n , T)+iV(r, α81, T)+iV(r, - α 2 1 , T)

(r, T)^iV(r, α π , T)^m(r, T).

This means that N(r,an,T)~N(r,an,T)~m(r,T) and so almost all zeros of
T—an are simple. Let Nm denote the counting function of multiple roots being
counted multiply. Then

\m(r, G)-3m(r, x)~ZN{r, βΛ, x)

~Nm{r, 0, G)-2Mr, α21, T)

This is impossible.
If βi=βi=β9=βu then

This is impossible by Theorem B.

If β1=β3 and β2=β49 β!Φβ2, then

- A) 4

Therefore
Cr2-l)(x2+3

This is possible if and only if 3̂ 3=0, d=±2i and
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Hence

or
1 or

which leads us to

F-b=Ai(fi-woγ=A<( ά \ ά l )\e*H+e-*H-2).

Let us put SH=iK. Then

F-b=A cos K-A,

which gives a part of the final result.
Case ii). In this case with x=e2H

Thus

— m(r G)
3

^N(r, 0, T)+N(r, Vw2-wlf T)+N(r, -Vw2-wu T)

=N(r, 1, x)+N(r, — 1, x)^2m(r, x)

which is absurd.
The fourth step. In this step we shall discuss the case iii).

Hence we start from

This gives

and

(d.-d,)2 ( A,

Assume that
frf —ΛΛ2 / Δ \ i/a
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Then by Theorem A and by (1)

(l + o(l))2m(r, f2)^N(r, xlf f2)+N(r, x2r f2)+N(r, y0, f2)

=N(r, an, T)+N{r, a21, T)+N(r, alt, T)+N(r, α 2 2 ) T)

+N(r,yo,A).

Evidently

r, y0,/2)^-γN(r,y0,/2)^\rnir, /,).

Hence

(-|- + o(l))m(r,Λ)

^N(r, an, T)+N(r, an, T)+N{r, «12, T)+N(r, a22, T)

This is a contradiction. Hence yo=Xi, unless 3Ό=^2 It is sufficient to consider
the case yo=Xi. By the way we have

® ^^(^-ΓK-t) 27

Xo XΛ

Hence we have

f2—x2=LM2

2.

Here L is an entire function whose zeros are all simple and satisfy T=a12. M1}

M2 are also entire functions. Let / be the entire function satisfying / + 1 =
aiifi—Xi), /~l=fli(/2—^2). Then

a1(x2-x1)=2,

Hence

Let us consider the logarithmic derivative of / H - ^ Λ / L MλM2
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log (f+a.VΓM.M,)

ff—^f-L'iM.M.Y-a'L M

=a1VΣ(f(M1M,γ-fM1M2)+ -fjj^MiMzf.

Let {a3) be the set of zeros of L. Then /(«i)—aiVLia^XM1(a1)M2{a1)=ί.
Hence

log (f

= α,J«i 2VL

=a1VL(z)M1(z)M2(z)f(z)-2a1 [ *

Of course this depends on paths of integration connecting with «! to 2. Evi-
dently with an integer p3 depending on paths connecting with ax to a3

Let Θ(z) be

I

Then

f+α1VLM1M2=eiθ.

Further with the same path of integration
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Hence

/(z) = COS Θ .

Returning back to /2, we have

(3) A-Wo= %2~Xί cosβ,

F(z)-b=A2

 {x\Xl)2 (cos20+1).
O

If it is possible to prove

f αVΓM 1M2/ /ύί2r=0
Jαi

for all y, then

Γ VZM1M2fdz=VΓS
Jαi

with an entire function 5. This can be proved by the standard method. Then

reduces to an entire function. Therefore

F-b=A2

 ( * 2 ~ * l ) 2 (cos 2VTK+1).
O

which gives the desired result. Thus it is sufficient to prove that

with a fixed path of integration connecting with ax to a3 vanishes for every j .
This will be done by making a detour.

The fifth step. In order to go further we need the following:

LEMMA. Let f, g and h be entire functions satisfying

with γχΦγ2 and a polynomial Pm of degree m. Assume that f has infinitely many
zeros and that m is an even integer 2n (n^3). Then either

with integers v3 satisfying Σ vj=n or

f(z)2=A cos K-A
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with a constant A and an entire function K.

Proof. Suppose that the former does not hold. Then by Theorem B

with odd integers vlf v2 and integers Vj(3^j^s) such that

J=3

and with different ay In the first place we shall prove s^3. If this is not the
case, then

with odd integers vx and v2 satisfying v1

J

Γv2=2n. In this case

N(r, γl9 g)+N(r, γ2, g)=N{r, alt h)+N(r, a,, h)

and

r, a,, h)ίk~N{r, a3, h)^-γ?n(r, h)

and further 4m(r, g)^2n m(r, h). Hence

2
—m(χ, g),

which implies n^2. This contradicts n^3. Thus s^3. We may assume that
Vi^v2. Let us put

U sv —7^2 L n — C2
Γί (Xι—•* * ft — " 2 " — ^

and

T+S _ H T-S _ _H

Then with yjφ±2

{^^)2\eH+e-HγvKeH-e-Hy^ Π (e2H+yj+e-2H)2v

J=3

Hence

/=Λv(_«i«L_)Vr_

We put Λ;=e2/ί. Then
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Kg—γi)(g—rz)= \χ ) \χ—2-\—y~£~ii\χ+y]-\—j3.

Hence with C=b(γ1—γ2)
2/^Φ0

t t

Let L(x)+cxn be Tl(x—βι)μι, Σ μι=2n. Here L(x)+cxn has only zeros of even

order. If μt is odd, then (x—βι)μι has infinitely many zeros of order μh since
x—βi has infinitely many simple zeros for βLΦθ. Hence we may put μι=2mι

for all /. We put

1=1 n~ι ~

Evidently xmL(l/x)——L(x). Hence we may put

I I 'V* I I Λ Ύ* fh —— *y* ώ /1 1 vγ Λ^ ίi ll> ~~ Λ. I # I r̂# ŷ* Tt' ~Γ J. I ^» Λ/ JV

J V \ ^ Λ i I G ^ —-Λ* I ^27 i~" 1 I I ^ 7 1 ~h 1 ̂  I C^v

Comparing with the corresponding coefficients we have firstly uo

2= — 1. If wo=z,
then un-j— — iUj l ^ ^n—1 and hence wp0 for l^j^n—1. If uo= — ι, then wn_;

=fMj l ^ i ^ n — 1 and hence Wj=0 for l ^ ^n—1. Hence in each cases w;=0 for
l^y^n—1 and

C=±2ι.

Hence

Γ f γ\_Lr r n (γn_i_ \2 i
— m __ _ — — γn_i_OΊ

Therefore

and

Hence putting AnH=ιK we have
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This is the desired result.
The sixth step. We shall denote our original problem by P for F. In the

second and third steps we have proved from P for F that

F— b=A2(f2—wo)
2=Λ3(f3—M/αX/s—w2)

2 (

excepting F—b=A cos K—A with a constant A and an entire function K. By
Lemma

F-b=A2nmf2n-βJy^f %vj=n

excepting the case F—b—Acos K—A. This gives

f2-w0= (-^p) (Λ-^iXΛ

This is nothing but P for f2. Hence we correspondingly have

with Wi'Φwί, diΦdi except for / 2 —x 1 =/l(e ; / +e •ff—2), which comes from

and

A)

We shall now discuss this exceptional case. In this case

_( Λ y ^ γ . <ii+t/2 γ ( A \ ^ ( ^ -
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Let us put

8 4

Then

Our present problem is when the above relation is possible. Let us put f3—wL

=T\ Then

T*-b*T-M(2+D-eH-e-H)=Q,

Let us consider the cubic equation

This should have an entire solution T, which means that the above cubic equa-
tion is reducible in the ring of entire functions. Hence the discriminant Δ of
the above cubic form satisfies

Evidently

~, a2=2+D-

4 bG

φ 0

It is not difficult to prove that

N(r, a1} eH+e~H)^N(r, alf eHj

Γe'H)^m{r> eHjre'H)

if axφ±2 and

N(r, alf eH+e-H)~\-N(r, alt eH-\-β-H)~\-m{r, eH+
Z Li

if ax=±2. Now assume that aλφ±2, a2φ±2. Then

2m(r, eH+e-H)~N(r, alf eH+e~H)+N(r, a2, euΛ-β~u)

=R(r, 4b2, 2>T2)+Nir, b2, 3T2)
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^2m(r, ZT2)~4rm(r, eH+e~H) .
o

This is impossible. If aλ—2, a2φ—2, then

-γm(r, eH+e~H)~N(r, alf eH+e~H)+N(r, a2, eH+e~H)

=N(r, 4b2, 3T2)+N(r, b\ 372)

^2m(r, 3T2)--\-m(r, eH+e~H).

Again this is impossible. Hence we have either

a,=2 [ <*!=—2
or

In these cases we have 2+D=0, C=4. Hence

, 2H=iK.

This is again a part of the desired result.
Further by Lemma

Σ>

except for the case f2—x1=A(eH+e~H—2). This exceptional case gives again
similarly. Thus we have

( AΛ \l/4s4n «4n

^ f ) n(/«-A')-/,x:v/=»
Still there are exceptional cases of the same type. This indicates just P for /4.
Therefore
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with Wi'Φwz", di'Φd/ with the exception of the case

f2-Xl=A(e2H+e2H+2).

In this exceptional case comparing with A3(/3—i^X/^—u/2)
2 we have

F-b=A'(s,osK+l)

similarly. Further with the same exceptional case

Σv/=n.

Hence

( Aa \ 1/8*871 «87l

-ψ-) Uifsn-β/')^", Σv/=n.
This is just P for /8. We evidently can repeat this process ad infinitum.

The seventh step. Especially we have P for f2P, that is,

4

with d^Φd^-1' and

Then

A^ Y2P(f d
7/ V*p+1
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Exceptional cases give F—b=Λ cos K+Λ finally. So we may omit them.
In the final step we need a relation between <i1

(2>"1)—d2

Cp~Ό and c/1

Cp)—ύί
For f2P-i we have the similar relation. Especially

C p ) .

Hence by putting T=f32P-1—w1

c

fzv 2 :

Hence

f

Wg have

ΛP-^-»=(-
1/2P

This gives

Then we have

(4)

Further we have

/ v (p-l) I 'rx32P~1

J2P
 Xl — \ ~Λ

/ 1 2P

1/2P

/ ^ 4 2

Hence we can put T-a^U2, f22p-w1

i^=V2. Then
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Let c be

Then

Ai2

= ( ' Λ32P~1

This implies that

and

Hence

(5)

and

(6)

By (4), (5) and (6)

and

s 1 +2ε 2 =0
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Hence

By the same way as in the proof of (2) we have

and

Hence by (7) we have

Aί

The eighth step. Let C be a cycle in {\z\<oo} — {aj}, which bounds only
two points alf ak of {aj}. Then by a suitable choice of path of integration

a2 [ VTM1M2fdz= -2a
JC

=2pkπι.

Let us consider

This is the same as

/4 2

By remembering

x2—Xi (dx—doY

and

f 2 1 cos θ ,f2w0=

we have

cosθ-2/ 4 * 2 - l .

Hence
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_ θ+2πj . Λ ,
Λ*=cos γ~-, ;=0, 1.

Inductively we assume that we have proved

/ 2 P * = c o s e + ? f ; , j = 0 , I , - , 2 ^ - 1 ,

and

Then by

we have

2

/22P*—/2p + l*—-

p + 1 2

Hence

dΐw-dp-v θ+2πj
- ^ c o s ^ ^ -

I

^ 4

Hence by (8) with p—1 instead of p we have

f *-cos Θ r 2 π j 7-0 1 ... 2 p - l

Let us consider the period of (Θ+2πj)/2p along the cycle C. Then this is
just ipkπ/2p. Assume that pkφQ. Then f2P+i* is not one-valued along this cycle
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C, since (Θ+2πj)/2v has an arbitrary small period along C This contradicts the
one-valuedness of f2P+1. Therefore

[akVLM1M2fdz=0

for every k and for every path of integration. This completes the proof of
Theorem.

4. There exists the following conjecture: Let F{z) be an entire function,
for which there is an infinite sequence of different integers {ntj} such that F(z)
=zPτrιj{fτnj{z)) with a polynomial Pmj of degree m3 and an entire function fmj.
Then either

F(z)=P{AeH(-z'+B)
or

F(z)=P(AcosVH(z)+B)

with constants A, B and an entire function H(z) and a suitable polynomial P.
Amemiya has constructed counter-examples showing that this conjecture is

not true in general. His example shows that, if {πij} is equal to {2;}, this con-
jecture is not true. We have made use of only {2J, 3 2 7}JLo and obtained the
result.

5. We shall now discuss the case that {2J, 3 2j}J=1 is given as {m,}. In
this case firstly we have

F-b=A2(f2-w0γ.

Let us consider

In this case we only have the following possibilities:

1) ΛCΛ-^XΛ-^XΛ-^) 2

2) ΛCΛ-^XΛ-sϋ 3

3) Λ(/4-«2(/4-^)2

4) Λ(/ 4 -^i) 4

Case 1). In this case we may put

and x=e211. Then
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d2-dx

Let us consider
6

6 .7 = 1 3

By Theorem B we have the following possibilities:

i) AQ(fQ-ei){f,-e2){fQ-ez)Kfs-e,Y

m ) A ( T — P )( "f — P i f / — P i

iv) ^46(/e — ̂ I)2(/Θ — ̂ ) 4

In the cases i), ii), iii) and iv) we can put

f-e=U2 f-e=V2 U + V =cL =e2

Then ii) gives

Hence

Since x—a, y=β have almost simple zeros respectively, this is impossible. Case
iii) gives

6\ 4 ) V y ) V y ,

Hence

yό

This is again impossible. Similarly we have the impossibility of iv). Case i)
gives
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vlf v2Φ±2.

In this case firstly 4m(r, x)^6m(r, y). Then we can make use of the impossi-
bility of BoreΓs identity. Then we have

4H=6L+k or 4H=-6L+k

and u—0, v1+v2=0> l+v1v2=0, e2k=l. Hence

This gives a part of the desired result.
Case vi). Then

This is impossible, since

4m(r, x)~N(r, I, x)-fiV(r, - 1 , x)+N(r, <xu x)+N{r, a2, x)

=N(r, eu fe)+N(χ, e2, / β ) ^ |

Case v). In this case we have

There is a constant c such that

j 2 — 3 s 2 s1—Vs1

2—3s2

—5/

Then
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Hence the right hand side term is equal to

as in the third step there are only two possibilities:

b) £ = # , * & = & .

Case a). In this case

This was already solved in the third step. Hence

Therefore almost all the zeros of

fe—(X2, /β —

are of even order. Hence

2m(r, /β)(l+0(l))

£ft(r, aly /6)+iV(r, α2, f<)+fϊ(r9

 a*+*ai , /β)

and hence

This gives

% ft, x)

r, alf fe)~N(r, al9

3 ,
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9

~Nn(r, 0, G)£2m(r, /6)~-τrm(r, G),
3

This is impossible.
Case b). In this case we have u=0, d=±2i and

{ X - «t,ι 0Γ { X~l
Hence

F—6=7

d, \γ 1
A* x2

- l ) , 8H=4Ki.

This gives a part of the final result.
Case 2). In this case

Let us consider

By Theorem B we have the following possibilities:

ii) Λ(Λ-ei)(/6-e2)(/β-e3)
4

iii) Λ(/6-ei)(/e-e2)3(/6-e3)
2

iv) Λ(/,-βi)(/.-e,)β

v) Λ(/.-βi) f(/.-ei)*

vi) ΛCΛ-eO C/.-eOV.-eO1

vii) ^ 6 (/ 6 -e!) 2 (/ s -e 2 ) 4 .

In the first five cases we introduce x and y as in Case 1) and arrive at con-
tradiction easily.

Case vi). In this case we have
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Then

-|-m(r, G)~2m(r, /,)g Σ
O .7 = 1

= #(r, - 1 , *)+#(r, 1, x)^2m(χ, x)~-^-m(r, G)
z

This is absurd.
Case vii). In this case we have

Then there is a constant c such that

Here

Then

—

Here we have four possibilities:

1 ,

X

-~

In each cases we have the impossibility easily.
Case 4). In this case
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Then by Theorem B

Therefore either

or

In the latter case we have either F—b—AeH if F—b has only finitely many zeros
or there is no such F if F—b has infinitely many zeros. This has been done
already in the first and the second steps. In the former case the problem
reduces to the problem of Theorem. Hence we can make use of our result.
Therefore

AeH+B,

A cos VH+B .

Hence

(AeH+B)\

(Acos VH+B)2.
Case 3). In this case

Then

or

Hence with a suitable constant c

F-b={

o r

respectively. In the latter case we have

Al/2(f2-

and hence

F-b=(AeH+B)2.
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In the former case we can make use of our theorem and then we have

Hence we have the following corollary.

COROLLARY. Let F(z) be an entire function, for which

F(z)=Pm(fm(z))

holds for m—V and for m~3-2J, l ^ j < o o . Here Pm is a polynomial of degree
m and fm is an entire function. Then either

or

F(z)^{A cos

where A, B, C are constants and H is an entire function.

6. In this section we shall discuss the case that {2J, 3} is given as {mi}
and we shall prove our theorem. In the fourth step and by (1) we have proved

Hence T—an=T2

2 and so

Further by Lemma

s2P

x )=yl 1 / 2 TT (
2 3 = 1

Hence

Here βu,j may coincide with each other. Hence by the third and fourth steps
we have
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hv
— Aυi T\ ( f — R' Ϋvf V υ /-?p-3
— /i 2 p 1JL κj2p P2P'j) > ZJVJ — ^

Again T2—aι=T3

2. Therefore we go a step further. This process can be
repeated ad infinitum. Hence we can get the desired result.
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