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Abstract

Jørgensen groups of parabolic type parametrized by three real parameters are

divided into three types: finite type, countably infinite type and uncoutably infinite

type. In the previous papers we found all Jørgensen groups of finite type and of

countably infinite type. In this paper we find all Jørgensen groups of uncoutably

infinite type. Consequently, the problem finding all Jørgensen groups of these parabolic

type has been completely solved.

0. Introduction

0.1. It is one of the most important problems in the theory of Kleinian
groups to decide whether or not a subgroup G of the Möbius transformation
group is discrete. For this problem there are two important and uesful theorems:
One is Poincaré’s polyhedron theorem, which gives a su‰cient condition for G to
be discete. The other is Jørgensen’s inequality, which gives a necessary condition
for a two-generator Möbius transformation group to be discrete.

0.2. Let Möb denote the set of all linear fractional transformations (Möbius
tranformations)

AðzÞ ¼ azþ b

czþ d

of the extended complex plane ĈC ¼ CU fyg, where a, b, c, d are complex
numbers and the determinant ad � bc ¼ 1. There is an isomorphism between
Möb and PSLð2;CÞ. We always write elements of Möb as matrices with
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determinant 1 in this paper. We recall that Möb (¼ PSLð2;CÞ) acts on the
upper half space H 3 of R3 as the group of conformal isometries of hyperbolic 3-
space.

In this paper we use a Kleinian group in the same meaning as a discrete
group. Namely, a Kleinian group is a discrete subgroup of Möb. A Kleinian
group G is of the first kind if the limit set LðGÞ of G is all of the extended
complex plane ĈC and it is of the second kind otherwise. A subgroup G of Möb
is said to be elementary if there exists a finite G-orbit in R̂R3.

0.3. The trace trðAÞ of the matrix

A ¼ a b

c d

� �
ðad � bc ¼ 1Þ

in SLð2;CÞ is defined by trðAÞ ¼ aþ d. We remark that the trace of an element
of Möb (¼ PSLð2;CÞ) is not well-defined, but Jørgensen number (defined later) is
still well-defined after choosing matrix representatives.

0.4. In 1976 Jørgensen obtained the following important theorem, which
gives a necessary condition for a non-elementary Möbius transformation group
G ¼ hA;Bi to be discrete.

Theorem A (Jørgensen [1]). Suppose that the Möbius transformations A and
B generate a non-elementary discrete group. Then

JðA;BÞ :¼ jtr2ðAÞ � 4j þ jtrðABA�1B�1Þ � 2jb 1:

The lower bound 1 is best possible.

0.5. Here we will state some definitions.

Definition 1. Let A and B be Möbius transformations. The Jørgensen
number JðA;BÞ for the ordered pair ðA;BÞ is defined by

JðA;BÞ :¼ jtr2ðAÞ � 4j þ jtrðABA�1B�1Þ � 2j:

Definition 2. A subgroup G of Möb is called a Jørgensen group if G
satiafies the following four conditions:

(1) G is a two-generator group.
(2) G is a discrete group.
(3) G is a non-elementary group.
(4) There exist generators A and B of G such that JðA;BÞ ¼ 1.

0.6. Jørgensen and Kiikka showed the following.

Theorem B (Jørgensen-Kiikka [2]). Let hA;Bi be a non-elementary discrete
group with JðA;BÞ ¼ 1. Then A is elliptic of order at least seven or A is
parabolic.
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If hA;Bi is a Jørgensen group such that A is parabolic and JðA;BÞ ¼ 1, then
we call it a Jørgensen group of parabolic type. There are infinite number of
Jørgensen groups (Jørgensen-Lascurain-Pignataro [3], Sato [6]).

Now it gives rise to the following problem.

Problem 1. Find all Jørgensen groups of parabolic type.

0.7. Let hA;Bi be a marked two-generator group such that A is parabolic.
Then we can normalize A and B as follows:

A ¼ 1 1

0 1

� �
and B :¼ Bs;m ¼

ms m2s� 1=s

s ms

� �
where s A Cnf0g and m A C (see [4] for the detail).

We denote by Gs;m the marked group generated by A and Bs;m:
Gs;m ¼ hA;Bs;mi. We say that ðs; mÞ A Cnf0g � C is the point representing a
marked group Gs;m and that Gs;m is the marked group coresponding to a point
ðs; mÞ.

0.8. In [6], Sato considered the case of m ¼ ik ðk A RÞ. Namely, he
considered marked two-generator groups Gs; ik ¼ hA;Bs; iki generated by

A ¼ 1 1

0 1

� �
and Bs; ik ¼ iks �k2s� 1=s

s iks

� �
where s A Cnf0g and k A R.

Now we have the following conjecture.

Conjecture. For any Jørgensen group G of parabolic type there exists a
marked group Gs; ik ðs A Cnf0g; k A RÞ such that Gs; ik is conjugate to G in Möb.

If this conjecture is true, then it is su¤ucient to consider the case of m ¼ ik
in order to find all Jørgensen groups of parabolic type. In this paper we only
consider the case of m ¼ ik.

0.9. Let C be the following cylinder:

C ¼ fðs; ikÞ j jsj ¼ 1; k A Rg:

Theorem C (Sato [6]). If a marked two-generator group Gs; ik

ðs A Cnf0g; k A RÞ is a Jørgensen group, then the point ðs; ikÞ representing Gs; ik

lies on the cylinder C.

If ðs; ikÞ is a point on the cylinder C, then we set s ¼ �ieiy ð0a ya 2pÞ.
For simplicity we write By;k and Gy;k for Bs; ik and Gs; ik with s ¼ �ieiy,
respectively. If Gy;k is a Jørgensen group, then we call the group a Jørgensen
group of parabolic type ðy; kÞ.
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Now it gives rise to the following problem.

Problem 2. Find all Jørgensen groups of parabolic type ðy; kÞ.

0.10. We devide Jørgensen groups of this type into three parts as follows:
Part 1. jkja

ffiffiffi
3

p
=2, 0a ya 2p (finite case).

Part 2.
ffiffiffi
3

p
=2 < jkja 1, 0a ya 2p (countably infinte case).

Part 3. 1 < jkj, 0a ya 2p (uncountably infinte case).
By some lemmas in [7], it su‰ces to consider the case of 0a ya p=2 and

kb 0 for solvoing Problem 2.
In the previous papers [4, 5] we found all Jørgensen groups of finite case and

of countably infinite case. Namely we obtained the following theorem.

Theorem D (Li–Oichi–Sato [4, 5]). (i) There are sixteen Jørgensen groups
in the region D1 ¼ fðy; kÞ A R j 0a ya p=2; 0a ka

ffiffiffi
3

p
=2g. Nine of them are

Kleinian groups of the first kind and seven groups are of the second kind.
(ii) There are countably infinite Jørgensen groups in the region D2 ¼

fðy; kÞ A R j 0a ya p=2;
ffiffiffi
3

p
=2 < ka 1g. One of them is a Kleinian group of the

first kind and others are of the second kind.

In this paper we find all Jørgensen groups of uncountably infinite case.
Consequently, Problem 2 has been completely solved.

Thanks are due to the referees for their careful reading and very valuable
suggestions.

1. Preliminary

In this section we will state Poincaré’s polyhedron theorem following Maskit
[6, pp. 73–78] and some properties of an isometric hemi-sphere.

1.1. Poincaré’s polyhedron theorem gives a su‰cient condition for a
subgroup of the Möbius transformation group to be discrete. See Maskit [6] for
notation and terminologies, for example, a side pairing transformation, a cycle
transformation and a cycle of edges.

Theorem E (Poincaré’s Polyhedron Theorem (Maskit [6, p. 73])). Let P be
a polyhedron with side pairing transformations satisfying the following conditions
(1) through (6). Then, G, the group generated by the side pairing transformations,
is discrete and P is a fundamental polyhedron for G, and the reflection relations and
cycle relations form a complete set of relations for G:

(1) For each side s of P, there is a side s 0 and there is an element gs A G
satisfing gsðsÞ ¼ s 0 and gs 0 ¼ g�1

s .
(2) gsðPÞVP ¼ j.
(3) For every point z A P�, p�1ðzÞ is a finite set. Here P� is the space of
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equivalence classes so that the projection p : P (the closure of P) ! P� is con-
tinuous and open.

(4) Let e be an edge and let h be the cycle transformation at e. Then for
each edge e, there is a positive integer t such that ht ¼ 1.

(5) Let fe1; e2; . . . ; emg be any cycle of edges of P and let aðekÞ
ðk ¼ 1; 2; . . . ;mÞ be the angle measursed from inside P at the edge ek. Let q be
the smallest positive integer such that hq ¼ 1, where h is the cycle transformation at
ek. Then the equality

Xm
k¼1

aðekÞ ¼ 2p=q

holds.
(6) P� is complete.

For simplicity, in this paper we only say a relation for both a cycle relation
and a refrection relation.

1.2. Isometric circles and isometric hemi-spheres. Let X be a Möbius
transformation represented by the following matrix:

X ¼ a b

c d

� �
; ad � bc ¼ 1 ða; b; c; d A C; c0 0Þ:

The isometric circle of the transformation X is the set:

fz A C : jczþ dj ¼ 1g:
The isometric hemi-sphere of the transformation X is the hemi-sphere in the upper
half space H 3 that has the same center and the same radius as those of the
isometric circle of X . We call this isometric hemi-sphere the isometric hemishere
associated with the isometric circle. The transformation X maps the isometric
hemi-sphere of X onto the isometric hemi-sphere of X�1. This property is helpful
to us when we find a fundamental polyhedron for a discrete group.

1.3. Notation. Let FX and FX�1 be two faces of a polyhedron P such that
FX is mapped onto FX�1 by the side pairing transformation X .

We denote by eðm;nÞ;y the n-th edge of the m-th cycle transfomation such that
the angle measured from the polyhedron P at the edge is y.

For simplicity we use the following diagram to represent the m-th cycle
transformation:

eðm;1Þ;y1 ��!X1
eðm;2Þ;y2 ��!X2 � � � ��!Xn�1

eðm;nÞ;yn ��!Xn m p
y

This diagram means the following: The initial edge eðm;1Þ;y1 is mapped to the
second edge eðm;2Þ;y2 by the side pairing transformation X1 and then the edge
eðm;2Þ;y2 is mapped to the edge eðm;3Þ;y3 by the side pairing transformation X2 and

so on. The symbol eðm;nÞ;yn !
Xn m p

y means that the final edge eðm;nÞ;yn is mapped

252 changjun li, makito oichi and hiroki sato



to the initial edge eðm;1Þ;y1 by the side pairing transformation Xn and the sum of
all angles at the edges in this sequence is equal to y, that is, y ¼ y1 þ y2 þ � � � þ
yn. The cycle transformation XnXn�1 � � �X1 is either the identity transformation
or an elliptic transformation. The number p is the order of the cycle trans-
formation, that is, if XnXn�1 � � �X1 is the identity transformation, then p ¼ 1 and
if XnXn�1 � � �X1 is an elliptic transformation of order q, then p ¼ q.

2. Main Theorem

In this section we will state our main theorem. Let VðGy;kÞ denote the
volume of 3-orbifold for a Kleinian group Gy;k of the first kind and let LðyÞ
denote the Lobachevskiı̆ function:

LðyÞ ¼ �
ð y
0

logj2 sin uj du:

A Riemann surface with signature ðg;m1; . . . ;mn;yÞ means a Riemann surface of
genus g with n branch points of orders m1; . . . ;mn and one puncture.

Main Theorem (uncountably infinite case).
The group Gy;k with 0a ya p=2 and k > 1 is a Jørgensen group if and only if

one of the following conditions holds.
(a) y ¼ 0 and k > 1. In this case, G0;k is a Kleinian group of the second

kind, and WðG0;kÞ=G0;k is a union of two Riemann surfaces with signatures
ð0; 2; 3;yÞ and ð0; 2; 2; 2; 3Þ.

(b) (1) y ¼ p=6 and k ¼
ffiffiffi
3

p
n=2 ðn ¼ 2; 4; 6; . . .Þ. In this case, Gp=6;k is a

Kleinian group of the first kind, and VðGp=6;
ffiffi
3

p
n=2Þ ¼ 3Lðp=3Þ.

(2) y ¼ p=6 and k ¼
ffiffiffi
3

p
n=2 ðn ¼ 3; 5; 7; . . .Þ. In this case, Gp=6;k is a

Kleinian group of the first kind, and VðGp=6;
ffiffi
3

p
n=2Þ ¼ 6Lðp=3Þ.

(c) (1) y ¼ p=4 and k ¼ 3=2. In this case, Gp=4;k is a Kleinian group of the

first kind, and VðGp=4;3=2Þ ¼ 3VðGp=2;1=2Þ.
(2) y ¼ p=4 and k ¼ 1þ

ffiffiffi
2

p
=2. In this case, Gp=4;k is a Kleinian group

of the first kind, and VðGp=4;1þ
ffiffi
2

p
=2Þ ¼ VðG ffiffi

2
p

p=2;1=2Þ=2þ 2VðGp=2;1=2Þ.
(3) y ¼ p=4 and k ¼ ð5þ

ffiffiffi
5

p
Þ=4. In this case, Gp=4;k is a Kleinian

group of the first kind, and VðGp=4;1þð1þ
ffiffi
5

p
Þ=4Þ ¼ VðGp=4; ð1þ

ffiffi
5

p
Þ=4Þ=2þ

2VðGp=2;1=2Þ.
(4) y ¼ p=4 and k ¼ 1þ

ffiffiffi
3

p
=2. In this case, Gp=4;k is a Kleinian group

of the first kind, and VðGp=4;1þ
ffiffi
3

p
=2Þ ¼ VðGp=4;

ffiffi
3

p
Þ=2Þ=2þ 2VðGp=2;1=2Þ.

(5) y ¼ p=4 and k ¼ 1þ cosðp=nÞ ðn ¼ 7; 8; . . .Þ. In this case, Gp=4;k are
Kleinian groups of the second kind, and WðGp=4;kÞ=Gp=4;k is a Riemann
surface with signature ð0; 2; 3; nÞ.

(6) y ¼ p=4 and k ¼ 2. In this case, Gp=4;k is a Kleinian group of the
second kind, and WðGp=4;kÞ=Gp=4;k is a Riemann surface with signature
ð0; 2; 3;yÞ.
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(7) y ¼ p=4 and k > 2. In this case, Gp=4;k is a Kleinian group of the
second kind, and WðGp=4;kÞ=Gp=4;k is a Riemann surface with signature
ð0; 2; 2; 2; 3Þ.

(d) y ¼ p=3 and k ¼
ffiffiffi
3

p
n=2 ðn ¼ 2; 3; . . .Þ. In this case, Gp=3;k is a Kleinian

group of the first kind, and VðGp=3;
ffiffi
3

p
n=2Þ ¼ 3Lðp=3Þ.

(e) (Sato-Yamada [8]) y ¼ p=2 and k > 1. In this case, Gp=2;k is a Kleinian
group of the second kind, and WðGp=2;kÞ=Gp=2;k is a Riemann surface with
signature ð0; 2; 2; 3; 3).

Corollary. There are uncountably infinite Jørgensen groups in the region
fðy; kÞ j 0a ya p=2; k > 1g.

3. Proofs

In this section, we will give the proof of our main theorem. In order to
prove that the group Gy;k is discrete, we will construct a fundamental polyhedron
for Gy;k for applying Poincaré’s polyhedron theorem. On the other hand, in
order to prove that Gy;k is not discrete, we will find a pair of elements of Gy;k

whose Jørgensen number is less than one.

3.1. The case of y0 0; p=6; p=4; p=3 and p=2
In these cases, we can prove by the same methods as in our previous paper

[4] that Gy;k are not discrete and so not Jørgensen groups for all k A R. We omit
the proofs here.

3.2. The case of y ¼ 0
For simplicity we write Bk and Gk for B0;k and G0;k, respectively. We set

Sk and Tk as follows:

Sk :¼ BkA
�1BkAB

�1
k A�1Bk ¼

ik �1þ k2

1 �ik

� �
;

Tk :¼ A�1BkAB
�1
k A�1Bk ¼

i 0

0 �i

� �
:

We note that the transformations Sk and Tk are elliptic of order two and the
fixed points of Sk (resp. Tk) are ið1þ kÞ and ið�1þ kÞ (resp. 0 and y). In the
left-hand side of Figure 1 we can see all isometric circles of radius one near
the origin. To obtain a fundamental polyhedron for Gk we cut the isometric
hemispheres associated with the isometric circles along the dotted lines in the left-
hand side of Figure 1. Then we have a fundamental polyhedron for Gk as in the
right-hand side of Figure 1.

In the left-hand side of Figure 2 we can see the side pairing transformations:
AðFAÞ ¼ FA�1 , SðFSk

Þ ¼ FS�1
k
, TðFTK

Þ ¼ FT�1
k
, where in the figure we write S and

T for Sk and Tk, respectively. We set G �
k ¼ hA;Sk;Tki. In the right-hand side

of Figure 2 we can see the edges of the polyhedron P. In this case we have the
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Figure 1. Isometric circles and a fundamental polyhedron (y ¼ 0)

Figure 2. Side pairings and cycle relations (y ¼ 0)
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following four cycle transformations: (1) eð1Þ;p !
S m 2

2p=2, (2) eð2Þ;p !
T m 2

2p=2, (3)

eð3;1Þ;p=3 !
A

eð3;2Þ;p=3 !
S m 3

2p=3, (4) eð4;1Þ;p=2 !
A

eð4;2Þ;p=2 !
T m 2

2p=2, where we write

S and T for Sk and Tk, respectively. These form a complete set of relations
for G �

k . Namely, the relations are as follows: S2
k ¼ I , T 2

k ¼ I , ðSkAÞ3 ¼ I and

ðTkAÞ2 ¼ I , where I is the identity transformation.
By Poincaré’s polyhedron theorem we can see that G �

k is a discrete group.
Since Bk ¼ SkT

�1
k , we have Gk ¼ G �

k . Thus Gk is a discrete group (a Kleinian
group of the 2-nd kind) and so a Jørgensen group.

We can see by the same method as in [8] that WðGkÞ=Gk is a union of
two Riemann surfaces with signatures ð0; 2; 3;yÞ and ð0; 2; 2; 2; 3Þ. We omit the
proof.

3.3. The case of y ¼ p=2
The proof of this case is written in Sato-Yamada [8], but for the com-

pleteness we give the proof.
In the case of y ¼ p=2 we have

A ¼ 1 1

0 1

� �
; Bk :¼ Bp=2;k ¼

ik �1� k2

1 ik

� �
ðk A RÞ:

We set matrices Sk, Tk and Uk as follows:

Sk :¼ A�1BkA
�1B�1

k A�1 ¼ ik �1þ k2

1 �ik

� �
;

Tk :¼ A�1B�1
k A�1BkA

�1 ¼ �ik �1þ k2

1 ik

� �
;

Uk :¼ B�1
k A�1BkA

�1B�1
k A�1 ¼ 1 �2ik

0 1

� �
:

By a similar method to the case of y ¼ 0 we have side pairing trans-
formations A, Sk, Tk, and Uk (see the left-hand side of Figure 4, where we write
S, T , and U for Sk, Tk, and Uk, respectively). In Figure 3 we can see all
isometric circles of radius one near the origin and a fundamental polyhedron P
for G �

k ¼ hA;SK ;Tk;Uki. In this case we have the following six cycle trans-

formations (see the right-hand side of Figure 4): (1) eð1Þ;p !
S m 2

2p=2, (2) eð2Þ;p !
T

m 2
2p=2, (3) eð3;1Þ;p=3 �!A eð3;2Þ;p=3 �!S�1 m 3

2p=3, (4) eð4;1Þ;p=3 �!A eð4;2Þ;p=3 �!T�1 m 3
2p=3,

(5) eð5;1Þ;p=2 �!A eð5;2Þ;p=2 �!U eð5;3Þ;p=2 �!A�1

eð5;4Þ;p=2 �!U�1 m 1
2p=1, (6) eð6;1Þ;p=2 �!S

eð6;2Þ;p=2 �!U eð6;3Þ;p=2 �!T�1

eð6;4Þ;p=2 �!U�1 m 1
2p=1, where we write S, T and U for

Sk, Tk and Uk, respectively. These form a complete set of relations for G �
k :

S2
k ¼ I , T 2

k ¼ I , ðS�1
k AÞ3 ¼ I , ðT�1

k AÞ3 ¼ I , U�1
k A�1UkA ¼ I , U�1

k T�1
k UkSk ¼ I .

By Poincaré’s polyhedron theorem the group G �
k is discrete. Since Bk ¼ SkU

�1
k ,

we can easily see G �
k ¼ Gk. Hence Gk is discrete (a Kleinian group of the 2-nd

kind) and so a Jørgensen group.
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Figure 3. Isometric circles and a fundamental polyhedron (y ¼ p=2)

Figure 4. Side pairings and cycle relations (y ¼ p=2)
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We can see by the same method as in [8] that WðGkÞ=Gk is a single Riemann
surface with signature ð0; 2; 2; 3; 3Þ. We omit the proof.

3.4. The case of y ¼ p=6
In this section we set y ¼ p=6. Then the group Gk :¼ Gp=6;k is generated by

the following transformations A and Bk :¼ Bp=6;k:

A ¼ 1 1

0 1

� �
; Bk ¼

kepi=6 ik2epi=6 � ie�pi=6

�iepi=6 kepi=6

� �
;

that is, Gk ¼ hA;Bki.
We consider the following transformation Tk:

Gk C Tk ¼ B�1
k A�1BkAB

�1
k ABkA

�1B�1
k

¼ 1 ð
ffiffiffi
3

p
� 2kÞi

0 1

� �
:

Then

Gkþ
ffiffi
3

p C Tkþ
ffiffi
3

p ¼ 1 �ð
ffiffiffi
3

p
þ 2kÞi

0 1

� �
:

Thus we have

Gkþ
ffiffi
3

p C Tkþ
ffiffi
3

p Bkþ
ffiffi
3

p Tkþ
ffiffi
3

p ¼ �kepi=6 ik2epi=6 � ie�pi=6

�iepi=6 �kepi=6

� �
¼ B�k:

Hence we have

Gkþ
ffiffi
3

p ¼ hA;Bkþ
ffiffi
3

p iI hA;B�ki ¼ G�k

Conversely, since

G�k C T�k ¼ 1 ð
ffiffiffi
3

p
þ 2kÞi

0 1

� �
;

we have

Gk C T�kB�kT�k ¼
ðk þ

ffiffiffi
3

p
Þepi=6 iðk þ

ffiffiffi
3

p
Þ2epi=6 � ie�pi=6

�iepi=6 ðk þ
ffiffiffi
3

p
Þepi=6

 !
¼ Bkþ

ffiffi
3

p

and then

Gkþ
ffiffi
3

p ¼ hA;Bkþ
ffiffi
3

p iH hA;B�ki ¼ G�k:

Thus we have

Gkþ
ffiffi
3

p ¼ G�k:

Now we recall the following theorem:
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Theorem F (Sato [7]). The group Gk is discrete if and only if the group G�k

is discrete.

By Theorem F we have the following lemma:

Lemma. The group Gkþ
ffiffi
3

p ð¼ G�kÞ is discrete if and only if the group Gk is
discrete.

In the previous paper Li–Oichi–Sato [4], we can see that Gk is discrete for
k ¼ 0;

ffiffiffi
3

p
=2, and that Gk is not discrete for the other k in 0a k <

ffiffiffi
3

p
. Hence

by the above lemma we have that G ffiffi
3

p
n=2 is a discrete group only for

n ¼ 0; 1; 2; 3; 4; . . . :
Since VðGp=6;kþð

ffiffi
3

p
n=2ÞÞ ¼ VðGp=6;0Þ (resp. VðGp=6;kþð

ffiffi
3

p
n=2ÞÞ ¼ VðGp=6;

ffiffi
3

p
=2Þ

for even integers n (resp. for odd integers n), we have VðGp=6;kþð
ffiffi
3

p
n=2ÞÞ ¼ 3Lðp=3Þ

(resp. VðGp=6;kþð
ffiffi
3

p
n=2ÞÞ ¼ 6Lðp=3Þ) for even integers n (resp. for odd integers n)

by [4]. We proved the assertions b(1) and b(2).

3.5. The case of y ¼ p=3
Next, we will consider the case of y ¼ p=3. In this case we will use two

elliptic elements of order two with y as one of the fixed points instead of the
parabolic transformation Tk in §3.4. The group Gk :¼ Gp=3;k is generated by the
following two matrices A and Bk :¼ Bp=3;k, that is, Gk ¼ hA;Bki:

A ¼ 1 1

0 1

� �
; Bk ¼

kepi=3 ik2epi=3 � ie�pi=3

�iepi=3 kepi=3

� �
:

Then Bkþ
ffiffi
3

p and B�k are as follows:

Bkþ
ffiffi
3

p ¼ ðk þ
ffiffiffi
3

p
Þepi=3 iðk þ

ffiffiffi
3

p
Þ2epi=3 � ie�pi=3

�iepi=3 ðk þ
ffiffiffi
3

p
Þepi=3

 !

and

B�k ¼
�kepi=3 ik2epi=3 � ie�pi=3

�iepi=3 �kepi=3

� �
:

We consider the following transformations E0
k and E1

k :

E0
k ¼ B�1

k ABkAB
�1
k A�1BkA

�1B�1
k ¼ �i

ffiffiffi
3

p

0 i

� �
and

E1
k ¼ B�1

k A�1BkA
�1B�1

k ABkAB
�1
k ¼ i

ffiffiffi
3

p

0 �i

� �
:

Note that these transformations E0
k and E1

k are independent of k and hence
E

j
k A Gk ð j ¼ 0; 1Þ for any k A R:
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We can see the following:

Gkþ
ffiffi
3

p C E1
kBkþ

ffiffi
3

p E0
k ¼ kepi=3 ik2epi=3 � ie�pi=3

�iepi=3 kepi=3

� �
¼ B�1

k :

Hence we have

Gkþ
ffiffi
3

p ¼ hA;Bkþ
ffiffi
3

p iI hA;Bki ¼ Gk:

Conversely, since

Gk C E0
kBkE

1
k ¼ ðE0

k Þ
2
B�1
kþ
ffiffi
3

p ðE1
k Þ

2 ¼ B�1
kþ
ffiffi
3

p ;

we have

Gkþ
ffiffi
3

p ¼ hA;Bkþ
ffiffi
3

p iH hA;Bki ¼ Gk:

Hence

Gkþ
ffiffi
3

p ¼ Gk:

Thus the assertion (d) follows from the main theorem in [4].

3.6. The case of y ¼ p=4
Here we consider the case of y ¼ p=4. We divide this case into the

following four cases: (i) k ¼ 1þ cosðp=nÞ ðn ¼ 3; 4; 5; 6Þ; (ii) k ¼ 1þ cosðp=nÞ
ðn ¼ 7; 8; 9; . . .Þ; (iii) kb 2; (iv) others.

For y ¼ p=4 we have

A ¼ 1 1

0 1

� �
and Bk :¼ Bp=4;k ¼ kepi=4 ðik2 � 1Þepi=4

�iepi=4 kepi=4

� �
ðk A RÞ:

We set Gk ¼ hA;Bki.
We introduce the following matrices:

Uk :¼ ABkA
�1B�1

k A�1BkAB
�1
k ABkA

�1B�1
k ¼ �i �2k

0 i

� �
;

Vk :¼ AB�1
k ABkA

�1B�1
k A�1BkAB

�1
k ABk ¼ i �2k

0 �i

� �
;

Sk :¼ ABkAB
�1
k A�1BkA

�1B�1
k A ¼ �iðk � 1Þ �kðk � 2Þ

�1 iðk � 1Þ

� �
;

Tk :¼ AB�1
k A�1BkA

�1B�1
k ABkA ¼ iðk � 1Þ �kðk � 2Þ

�1 �iðk � 1Þ

� �
:

We note that Uk is an elliptic transformation of order 2 with fixed points ik
and y; Vk is an elliptic transformation of order 2 with fixed points �ik and y;
Sk is an elliptic transformation of order 2 with fixed points ik and iðk � 2Þ; Tk is
an elliptic transformation of order 2 with fixed points �ik and �iðk � 2Þ:
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3.6.1. The case of k ¼ 1þ cosðp=nÞ ðn ¼ 3; 4; 5; 6Þ
In this case we will show that all of these groups Gk are discrete (Kleinian

groups of the first kind), and so are Jørgensen groups.
We write B, S, T , U and V for Bk, Sk, Tk, Uk and Vk, respectively. We set

W , X and Y as follows:

W :¼ STS ¼ i 0

0 �i

� �
; X :¼ WUB; Y :¼ WB:

Then we note that the transformation W is elliptic of order 2 whose fixed points
are 0 and y.

In the left-hand side of Figure 5 we can see all isometric circles of radius one
near the origin. In the right-hand side of Figure 5 we can see the polyhedron P
over the rectangle cut along the dotted line in the left-hand side of Figure 5.

The sides of P are given in the left-hand side of Figure 6. The side pairing
transformations are A, T , V , W , X and Y : AðFAÞ ¼ FA�1 , TðFTÞ ¼ FT�1 ,
VðFV Þ ¼ FV�1 , WðFW Þ ¼ FW�1 , X ðFX Þ ¼ FX�1 , YðFY Þ ¼ FY�1 . We set G�

k ¼
hA;T ;V ;W ;X ;Yi.

In the right-hand side of Figure 6 we can see the edges of the polyhedron
P. In this case we have the following eleven cycle transformations: (1)

eð1Þ;p !
W m 2

2p=2, (2) eð2Þ;p !
V m 2

2p=2, (3) eð3Þ;p !
T m 2

2p=2, (4) eð4Þ;p !
X m 2

2p=2, (5)

eð5Þ;p !
Y m 2

2p=2, (6) eð6;1Þ;p=2 !
A

eð6;2Þ;p=2 !
W m 2

2p=2, (7) eð7;1Þ;p=2 !
A

eð7;2Þ;p=2 !
V

m 2
2p=2, (8) eð8;1Þ;p=3 !

A
eð8;2Þ;p=3 !

T m 3
2p=3, (9) eð9;1Þ;p=n !

W
eð9;2Þ;p=n !

T m n
2p=n, (10)

eð10;1Þ;p=2 !
V

eð10;2Þ;p=2 !
Y

eð10;3Þ;p !
X m 1

2p=1, (11) eð11;1Þ;p=3 !
A

eð11;2Þ;p=3 !
Y

eð11;3Þ;2p=3

!T eð11;4Þ;2p=3 !
X m 1

2p=1. The relations are as follows: W 2 ¼ I , V 2 ¼ I , T 2 ¼ I ,

X 2 ¼ I , Y 2 ¼ I , ðWAÞ2 ¼ I , ðVAÞ2 ¼ I , ðTAÞ3 ¼ I , ðTW Þn ¼ I , XYV ¼ I ,
XTYA ¼ I . These form a complete set of relations for G�

k .

Figure 5. Isometric circles and a fundamental polyhedron (ðy; kÞ ¼ ðp=4; 3=2Þ)
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By Poincaré’s polyhedron theorem the group G �
k is discrete and the

polyhedron P is a fundamental polyhedron for G �
k . Since G �

k C W�1Y ¼
W�1ðWBÞ ¼ B A Gk, we can see Gk ¼ G �

k . Hence Gk is discrete (a Kleinian
group of the first kind) and so a Jørgensen group. We can easily calculate the
volume of the polyhedron P, and so we omit it. We proved the assertions (c)(1)
through (c)(4).

3.6.2. The case of k ¼ 1þ cosðp=nÞ ðn ¼ 7; 8; 9; . . .Þ
We can treat this case in the same way as in the above §3.6.1. That is, we

have the same side pairing transformations, the same cycle transformations and
the same relations. The only di¤erence from the above is as follows: In this
case Gk is a Kleinian group of the second kind. We can see by the same
method as in Sato–Yamada [8] that WðGkÞ=Gk is a Riemann surface with
signature ð0; 2; 3; nÞ. We proved the assertion (c)(5).

3.6.3. The case of kb 2
In this case we show that all of the groups Gk :¼ Gp=4;k are discrete

(Kleinian groups of the second kind). A fundamental polyhedron for Gk is
obtained by a similar method to the cases of k ¼ 1þ cosðp=nÞ ðn ¼ 3; 4; 5; . . .Þ.
The six side pairing transformations A, Tk, Vk, Wk, Xk, Yk are the same as in
§3.6.1. We set G �

k ¼ hA;Tk;Vk;Wk;Xk;Yki. The ten cycle relations (1)–(8),
(10)–(11) and ten relations except (9) in §3.6.1 also hold in this case. These form
a complete set of relations for G �

k . By Poincaré’s polyhedron theorem we have
that Gk ¼ G �

k is discrete and so a Jørgensen group. We can see by a similar way
to in [8] that WðGkÞ=Gk is a single Riemann surface with signature ð0; 2; 3;yÞ for

Figure 6. Side pairings and cycle relations (ðy; kÞ ¼ ðp=4; 3=2Þ)
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k ¼ 2 and a single Riemann surface with signature ð0; 2; 2; 2; 3Þ for k > 2. We
proved the assertions (c)(6) and (c)(7).

3.6.4. The case of other k
In this case we will show that all of the groups Gk are not discrete. We set

k ¼ 1þ t ð0 < t < 1Þ. We can easily calculate that

Vt :¼ ðSkTkÞ�1 ¼ 2t2 � 1 2it� 2it3

2it 2t2 � 1

� �
:

We set

Mt ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
� �1=2

1 �
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p

1
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
 !

ð0 < t < 1Þ:

Then we have

A�
t :¼ MtAM

�1
t ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
� 1 1

�1 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
þ 1

 !
:

We set V �
t :¼ MtVtM

�1
t . Then we have

V �
t ¼ ð2t2 � 1Þ � 2it

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
0

0 ð2t2 � 1Þ þ 2it
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
 !

:

We set cos y ¼ t ð0 < y < p=2Þ. Then e2iy ¼ ð2t2 � 1Þ þ 2it
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
and

e�2iy ¼ ð2t2 � 1Þ � 2it
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
. Thus we have

JðA;V n
t Þ ¼ JðA�

t ; ðV �
t Þ

nÞ ¼ �1þ cosð4nyÞ
1� cosð2yÞ

����
����:ð*Þ

By straightforward calculations we have that if 0 < cos y < cosðp=3Þ, then
0a JðA�

t ;V
�
t Þ < 1. Furthermore we can easly see from the above equality ð*Þ

that if cosðp=ð2n� 1ÞÞ < cos y < cosðp=ð2nþ 1ÞÞ ðn ¼ 2; 3; 4; . . .Þ, then 0a
JðA�

t ; ðV �
t Þ

nÞ < 1.
We note that if k ¼ 1þ cosðp=2nÞ ðn ¼ 2; 3; 4; . . .Þ, then Gn

k ¼ hA;V n
k i

are elementary groups. We can easily see that Gn
k are non-elementary groups

for k with 1 < k < 3=2 and 1þ cosðp=ð2n� 1ÞÞ < k < 1þ cosðp=ð2nþ 1ÞÞ
ðk0 1þ cosðp=2nÞÞ for n ¼ 2; 3; 4; 5 . . . : By Jørgensen’s inequality theorem
we can see that Gn

k are not discrete for k with 1 < k < 3=2 and
1þ cosðp=ð2n� 1ÞÞ < k < 1þ cosðp=ð2nþ 1ÞÞ ðk0 1þ cosðp=2nÞÞ for n ¼ 2; 3;
4; 5 . . . : Since Gn

k is a subgroup of Gk, Gk is not discrete and so not a Jørgensen
group for k with 1 < k < 2 ðk0 1þ cosðp=2nÞÞ ðn ¼ 2; 3; 4; 5; . . .Þ. Our proof is
now complete.
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