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Abstract

A new class of semi-Riemannian and lightlike manifolds (including globally null) is
constructed by using a hypersurface of an orientable Riemannian manifold, endowed
with the second fundamental form instead of a metric induced from the ambient
space. We show the existence (or non-existence) of harmonic tensor fields and har-
monic maps and extend to the semi-Riemannian and lightlike case a result of Chen-
Nagano [4]. Then we deal with general lightlike submanifolds immersed in a semi-
Riemannian manifold and propose a definition of minimal lightlike submanifolds, which
generalize the one given in [7] in the Minkowski space R[‘. Several examples are given
throughout.

0. Introduction

Since the middle of the twentieth century Riemannian geometry has created
a substantial influence on several main areas of mathematical sciences. For
example, see Berger’s recent survey book [2], with voluminous bibliography.
Primarily, semi-Riemannian (in particular global Lorentzian) geometry [10] has
its roots in global Riemannian geometry, with many similarities. On the other
hand, the situation is quite different for lightlike (null) manifolds, as one fails to
use, in the usual way, the theory of non-degenerate geometry.

To deal with this anomaly, lightlike manifolds have been studied by several
ways corresponding to their use in a given problem. In 1996, Duggal-Bejancu
[7] published a book on general theory of lightlike submanifolds of semi-
Riemannian manifolds and their applications to general relativity. They in-
troduced a non-degenerate screen distribution to construct a lightlike transversal
vector bundle which is non-intersecting to its lightlike tangent bundle and de-
veloped local geometry of lightlike curves, hypersurfaces and submanifolds.
Having a different approach than presented in [7], this paper has two objectives.
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The first objective is to produce new examples of certain types of lightlike
manifolds. For this reason, we start with a hypersurface H of an orientable
Riemannian manifold (M,§) endowed with the second fundamental form B
instead of the metric ¢g” induced from the ambient space and we deal with a
semi-Riemannian or a lightlike (H,B). In particular, H is a globally null
manifold which admits a global null vector field and a complete Riemannian
hypersurface (Definition 1). We also construct a hypersurface L of a proper
semi-Riemannian (H,B) on which B is lightlike. Then, we study harmonic
properties of some geometric objects on semi-Riemannian and lightlike manifolds.
We recall the concept of harmonic tensor field [4] and extend it in two different
ways. We show that if the null distribution Rad(7TH) of the lightlike manifold
(H,B) is Killing, then B is harmonic w.r.t. the Riemannian metric g? over
Rad(TH). We also prove a characterization result (Theorem 2.1) between
harmonic tensors and harmonic maps for a semi-Riemannian manifold (H, B).
For the second objective, we study a general lightlike submanifold M” immersed
in a semi-Riemannian manifold (M™*", g). We first prove (Theorem 3.1) that if
¢:(Mi,g1) — (M>,g2) is an immersion between semi-Riemannian manifolds and
if ¢*g> is a semi-Riemannian (resp. lightlike) metric on M), then ¢ is harmonic iff
¢*g> is a harmonic tensor w.r.t. g; and trace, & =0, where / denotes the second
fundamental form of the immersed semi-Riemannian submanifold (M;,¢"g,)
(resp. lightlike submanifold) in (M>,g,). We give an example of a globally null
hypersurface, which is non-compact and another example of a 3-dimensional
compact lightlike submanifold in an 8-dimensional semi-Euclidean space (RS, { ).
Because of the difficulty coming from the degenerate metric, a definition of
minimality was given in [7] only for a hypersurface of a Minkowski space R;‘.
Here we introduce the general notion of minimal lightlike submanifolds immersed
in an arbitrary semi-Riemannian manifold (Definition 2) and study their existence
or non-existence.

1. A class of lightlike manifolds

Let (M,s) be a real paracompact smooth manifold endowed with a sym-
metric (0,2)-tensor field s which has a constant index on M. For any xe M,
let Rad T\M = {ue T M/s(u,v) = 0,Yv e TyM} denote the radical subspace of
T«M. Then M is called a lightlike manifold [7] with a lightlike metric s if the
mapping x € M — Rad(7.M) that assigns to each x e M the radical subspace
Rad(7 M) of T M, defines a non-zero smooth distribution Rad(7TM). If the
distribution Rad(7TM) is zero, then (M,s) is called semi-Riemannian [10] and is
proper provided +s is not Riemannian.

DerNITION 1 [5]. A lightlike manifold is called globally null if it admits a
globally null vector field and a complete Riemannian hypersurface.

Let (M m+l g), with m > 2, be an orientable smooth Riemannian manifold
with an orientable hypersurface H™. From the orientation, there exists a unique
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globally defined unit normal vector field, say ne I'(T M). Let V and V be the
Levi-Civita connections on M and H respectively. Then, the Gauss-Weingarten
formulas are

VyY =VyY + B(X, Y)n,
?Xn = —AnX,

for any tangent vectors X and Y of H. Here B(e,®)n is the second fundamental
form tensor and B is the second fundamental form, related with the shape operator
Ay by

(1.1) B(X,Y)=§(AX,Y), VX,YeT(TH).

The eigenvalues of A, in a point p € H are called the principal curvatures of H
in p.

Now, we consider H endowed not with the Riemannian structure inherited
from (M,g), but with the symmetric (0,2)-tensor field B which is its second
fundamental form. Therefore, (H,B) is one of the following:

(1) proper semi-Riemannian;

(2) lightlike;

(3) Riemannian (for instance, H umbilical in (M, g));

(4) None of the above three (for example, the saddle z = x?> — y? € R?).

Next we deal with the first two cases, which are useful for our purpose.

Casg (1). The manifold (H, B) is semi-Riemannian iff it has nowhere zero
principal curvatures and the same number of negative ones (by taking into
account their multiplicity) in each point of H.

Example 1. Let S be endowed with the standard inner product induced

from R* For any 0 e (O,g), identify the torus S! x S! with the tori
Ty = {(cos 0 cos u,cos 0 sin u,sin 0 cos v,sin 0 sin v) € S /u, v € [0, 2]},

which are Clifford tori, in particular the one corresponding to 0:%. The

second fundamental form of any such torus is proper semi-Riemannian on Tj.
This example can be generalized as follows:
Example 2. If H is a minimal hypersurface of (M), then its second
fundamental form is either proper semi-Riemannian or lightlike on (possibly

some open subsets of) H.

Casg (2). If the manifold (H,B) is lightlike, then we have Rad(TH) =
ker A,. Moreover, H is globally null iff H has a global zero principal curvature
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in each point and there exists a complete hypersurface of H on which all
principal curvatures are positive.

Remark 1. If instead of being positive we let the principal curvatures to
have only the same sign, then in the negative case by changing the orientation of
H, we choose the inward unit normal vector field —n instead of the outward one
n and then the above statement remains valid since B changed to —B, as in the
next:

Example 3. The hypercylinder
G ={(x1,. -, Xmp1) ER™XT b x2 =1}

in R, endowed with its second fundamental form derived from the inward unit
normal vector field n = —(x;0;,+ -+ + X,0,), 1s globally null and Rad(7%) =

span{am-H }

_ ProposiTiON 1.1.  Let (H,B) be a proper semi-Riemannian hypersurface of
(M,§) and L be a hypersurface of (H,B) on which B is lightlike.
(i) Then gy ={¢e TiL/Anl € TEL} # {0}, Vx € L, where T*L denotes the
orthogonal of TL in TH with respect to g.

(i) The map x — oy defines a 1-dimensional distribution on L.

(i) Let X be a complementary distribution of ¢ in TL, that is, TL =X @ o.
Then, there exists a unique vector bundle tr(TL) of rank 1 over L such that to
every non-zero (local) null section & € o, there is a unique null section N € tr(TL)
Sfor which G(AwN,&) =1 and A,N is orthogonal to N and X, with respect to §.

Proof. From the definition of a lightlike manifold and (1.1) we have that
o = Rad(TL) which yields (i). Then (ii) holds since the manifold (H, B) is semi-
Riemannian and L is a hypersurface of it, which is lightlike with respect to B.
The statement (iii) follows by using (1.1) and proceeding exactly as presented in
[7, Theorem 1.1, page 79], which complete the proof.

Example 4. Let H={xeR""/x}+...4x2 —x2 =1} be a hyper
quadric in the Euclidean space R”*! and denote by B its second fundamental
form derived from the unit normal vector field

n=—(x101 + -+ Xu0n — Xut10ms1)/0, a=4/1 +2x54+].

It turns out that (H, B) is Lorentzian, since the principal curvatures of H are 1/o
(with the multiplicity m — 1) and —(1/6°). The timelike 1-dimensional distri-
bution on H is spanned by the vector field

xm+1(x161 + -+ xmam) + (1 + x,%Hl)aerl-
For any c € R, we restrict /1 to

Le={xeH/xpi1 —xXn=cly+ 1)}, y=y/x}+-+x2,
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to obtain a family of lightlike manifolds which are globally null. For instance,
when m =3, then Rad(7L.), ¥ and tr(7L.,) are spanned respectively by
X201 — X102, YW —V and yW + V, where V = xx30| + x2x30, — y03 and W =

x1X401 4 X2%402 + X3x403 + (/1 + x3)da.

Remark 2. Proposition 1.1 can be generalized for a lightlike submanifold of
a semi-Riemannian manifold (H,B). We deal with this case in section 3.

2. Harmonic tensor fields

We recall that B. Y. Chen and T. Nagano introduced in [4, page 297] the
concept of (relatively) harmonic tensor field. If M is a manifold endowed with
both a Riemannian tensor field ¢ and a symmetric (0,2)-tensor field s and V°

denotes the Levi-Civita connection of o, then s is called a harmonic tensor w.r.t. ¢
if for any X e I'(TM) it satisfies:

(2.1) trace,(V%s) = 2(div s)(X),

where the divergence is defined by (div s)(X) = trace,(V/s)(e, X). More general,
if D is a distribution on M, we say that s is harmonic w.r.t. ¢ over D if (2.1) is
satisfied for any X € I'(D). Another way to generalize the above concept is to
take o to be semi-Riemannian, instead of Riemannian, as we use later on.

Under the previous notations, H is a hypersurface embedded in (M,g). In
this section we assume that the manifold H is endowed with both the Rie-
mannian metric g/ induced from (M, g) and its second fundamental form B and
let V denote the Levi-Civita connection of g%’

PROPOSITION 2.1.  Let the manifold (H, B) be lightlike. Then the distribution
Rad(TH) is Killing (i.e. each vector field in Rad(TH) is Killing w.r.t. B) iff we
have:

(2.2) (VxB)(Y,Z) = (VyB)(X,Z) + (VzB)(X,Y),
VX el'(Rad(TH)), Y,ZeI'(TH).

Moreover, in that case B is harmonic w.r.t. g" over Rad(TH).

Proof. We have:
(ZxB)(Y,Z) = XB(Y,Z)— B(VxY,Z) + B(VyX, Z)
- B(Y,VxZ)+ B(Y,VzX)
= (VxB)(Y,Z) - (VyB)(X, Z) — (VzB)(X, Y),

since B(X,U)=0, VX el'(Rad(TH)), Ue'(TH). Thus, (2.2) is satisfied iff
any X € I'(Rad TH) is Killing. The last statement follows from (2.1) and the
above equivalence, which complete the proof.
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Remark 3. In 1959, Reinhart [12] introduced a class of Riemannian foliated
manifolds with bundle-like metrics which are now called as Reinhart man-
ifolds. A lightlike manifold is a Reinhart lightlike manifold if and only if its
radical distribution is Killing [7, page 49].

Example 5. The hypercylinder in Example 1.3 is a Reinhart lightlike
manifold, since its tangent space is spanned by J,,;1 and all vector fields tangent
to the unit sphere S”~!, which shows that the radical distribution is Killing.

Example 6. 1If (H,B) is lightlike and the second fundamental form B is
parallel (i.e. VB=0), then from Proposition 2.1 it follows that (H,B) is a
Reinhart lightlike manifold.

The concept of harmonic maps constitutes a very useful tool for both Global
Analysis and Differential Geometry (see the harmonic maps and harmonic
morphisms bibliographies [3] and [9], respectively). Among them only few
ones deal with semi-Riemannian case and even less with the lightlike case (i.e.
Duggal [6], Pambira [11]). We provide some work in Section 3. A map
¢:(Mi,91) — (M>,g,) between semi-Riemannian manifolds is harmonic (resp.
totally geodesic) if its tension field 7(¢) = div d¢ = trace,, V d¢ (resp. V d¢) is

identically zero. If (x') are local coordinates on M, then

. 0 0
_ i |gM R M, 7
©(4) = g, [Va/axf dg <axj> d¢ (Vﬁ/(l?X’ axjﬂ’

where VM and V™ denote the Levi-Civita connections of g, and g, respectively.
The stress-energy tensor field of ¢ is given by S(¢) =e(d)g1 — ¢*g2, where
e(¢): My — Ry is the energy density of ¢, defined by [l]

1 )
elg) = race,, #"gs.

A harmonic map is called minimal if it is an isometric immersion. For
instance, in the context of this paper, the inclusion map i: (H,g") — (M,§) is
minimal (resp. totally geodesic) iff trace,» B =0 (resp. B =0).

ProrosITION 2.2. If the manifold (H™,B) is semi-Riemannian, then the
inclusion map I :(H,B) — (M,g) is never harmonic.

Proof. Let V, V and D denote the Levi-Civita connections of §, g”/ and B,

respectively. If we suppose that 7 is harmonic, then for any local coordinates
(x') on H, we have

e ] 0
y i ——— Dy — | =
B (VC/M, =~ Dojox MA) =0,
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which is equivalent to

WY 0 ; 0 d
BY (V@/@X:‘ P Va/gxi @> = BY (Va/@xi _— — D@/gxi —) =0.

ox/ 0x/ ox/
Thus, BYB; = m =0, which is a contradiction so the proof is complete.

Remark 4. More general, to study the harmonicity of an immersion
¢: (Mi,91) — (M2,g2) between semi-Riemannian manifolds in terms of the
second fundamental form of the immersed submanifold (M;,¢"g>) in (M>,g2),
one should take into account that ¢*g, can be degenerate on M;. We deal with
this general case in Section 3.

THEOREM 2.1. If the manifold (H, B) is semi-Riemannian, then the following
assertions are equivalent:

(1) the identity map 1y : (H,B) — (H,g') is harmonic;

(2) g is harmonic w.r.t. B;

(3) tracep(¥zB) = tracep(Zy,z9"), VZ e T(TH);

(4) the stress-energy tensor S(ly) is divergence free.

Proof. The equivalence (1) < (2) holds for the metric B, which is semi-
Riemannian, in a similar way as in the Riemannian context [4, page 296], where
the identity map is harmonic iff the metric on the target is a harmonic tensor
w.r.t. the metric on the domain. The same for the equivalence (1) < (4), which
holds as in the Riemannian case [1, Proposition 3.4.7], where a diffeomorphism
between Riemannian manifolds is harmonic iff it is divergence free. To prove
the equivalence (1) < (3) we use the definition of the Levi-Civita connections V
and D of g and B respectively, which yield:

2B(VyY — DyY,Z) =2[g"(Vx Y, 4,Z) — B(DxY,Z)]
= (ZB)X,Y) = (Ly29")(X,Y), VX,Y,ZeT(TH).

To above formula we apply the trace operator w.r.t. B and since B is semi-
Riemannian, we use that 1y is harmonic iff B(z(1y),Z) =0, VZ e I'(TH).

COROLLARY 2.1. If the manifold (H™, B) is semi-Riemannian, then any two
of the following assertions imply the third:

(i) the identity map 1y : (H,B) — (H,g') is harmonic;

(i) the energy density e(1y) is constant;

(ii1) div g7 =0, where div denotes the divergence operator w.r.t. B.

Proof. From Theorem 2.1 it follows that 1g is harmonic iff the stress-
energy tensor field S(1y) =e(1y)B— g is divergence free (on the domain
manifold (H,B)). If D denotes the Levi-Civita connection of B, then:
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[div S(15)](X) = traceg(D.S) (e, X)
= traceg(ee(1))B(e, X) — tracep(D.g™) (e, X)

= isi(uie(lﬂ))B(ui, X) — (divg®)(X), VX eI(TH),
=1

where {u;} is an orthonormal frame on (H™,B) for 1 <i<m and ¢ =
B(u;,u;) = £1. Replacing X consecutively by each u; we complete the proof.

Remark 5. Under the condition that (H,B) is semi-Riemannian, Propo-
sition 2.2 and Corollary 2.1 hold if g and B are interchanged.

3. Minimal lightlike submanifolds

A submanifold M™ immersed in a semi-Riemannian manifold (M™", g)
is called a lightlike submanifold if it is a lightlike manifold w.r.t. the metric
g induced from g and the radical distribution Rad(7M) is of rank r, where
1 <r<m. We note that Rad(TM) = TM N TM~*, where

T™M" =), _,{ue TxM/G(u,v) =0,Yve T M}.

By following Duggal-Bejancu [7], let S(TM) be a screen distribution which is a
semi-Riemannian complementary distribution of Rad(7M) in TM, i.e.

TM = S(TM) L Rad(TM)

and let [S(TM)]*" be its complementary orthogonal vector bundle in 7M|,,. We
consider a screen transversal vector bundle s(TM*), which is a semi-Riemannian
complementary vector bundle of Rad(TM) in TM*, ie.

TM* = Rad(TM) L s(TM™").

Since for any local basis {&;} of Rad(TM), there exists a local frame {N;} of
sections with values in the orthogonal complement of s(TM') in [S(TM)*
such that §(&;, N;) =9, and g(N;,N;) =0, it follows that there exists a lightlike
transversal vector bundle 1tr(TM) locally spanned by {N;} [7, Theorem 1.3, page
144]. Then, the following decomposition holds:

(3.1) TM|,, =S(TM) L [Rad(TM) ® ltr(TM)] L s(TM™*)

and the above direct sum Rad(7TM) @ ltr(TM) is semi-Riemannian. If the
transversal vector bundle is denoted by

(3.2) tr(TM) = lte(TM) L s(TM™),
then we have

TM|, = TM @ tr(TM).
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The following four cases occur:

Case 1: r-lightlike submanifold. r < min{m,n};

Case 2: Co-isotropic submanifold. r=n < m;

Case 3: Isotropic submanifold. r=m < n;

Case 4: Totally lightlike submanifold. r=m = n.

Under the above notations for (M,g,S(TM),s(TM"')), the Levi-Civita
connection V of (M, ) satisfies the Gauss-Weingarten type formulas:

(3.3) VyY =VyY +h(X,Y)
ViV =—AyX +VLV, VX, Y eT(TM), Ve (te(TM)),

where {VxY,AyX} and {h(X,Y),ViV} belong to I'(TM) and T (tr(TM)),
respectively. We note that the induced linear connection V is torsion free and
the transversal V' is a linear connection. The second fundamental form / is a
symmetric & (M)-bilinear form on I'(TM) with values in I'(tr(7M)) and the
shape operator Ay is a linear endomorphism of I'(7M). From (3.2) we use the
following decomposition:

(3.4) WX, Y)=h'(X,Y)+1(X,Y),
ViV =Dy{V + D3V, VYX,Yel(TM), Vel (tr(TM)),

where {h/(X,Y),D{V} and {h*(X,Y),D5V} belong to I (ltr(TM)) and
[(s(TM*1)) respectively.

THEOREM 3.1. Let ¢: (My,g1) — (Ma,g2) be an immersion between semi-
Riemannian manifolds. If ¢*g, is a semi-Riemannian (resp. lightlike) metric on
M, then ¢ is harmonic iff ¢*g> is a harmonic tensor w.r.t. gi and trace, h =0,
where h denotes the second fundamental form of the immersed semi-Riemannian
submanifold (My,¢"g2) (resp. lightlike submanifold (My,¢" gz, S(TM),s(TM;")))
in (M, g,).

Proof. Let VM and V™ denote the Levi-Civita connections of ¢; and
g2, respectively. Let V denote the Levi-Civita (resp. linear) connection of ¢*g,
according as the manifold (M;,¢$*g,) is semi-Riemannian (resp. lightlike). For
any local coordinates (x’) on M;, we have:

N 0 0 0 0
— V| yM: R o J _yM
T(¢) = gl |:V5/ﬁxi d¢<ax]) d¢<v@/5x’ a_x/) + d¢(vn/0x‘ ax] V(‘}/(‘IJXI a.xj>:|

) o a ¢ 2
o s —— — M

This gives a decomposition of 7(¢) € ¢~' (TM,), by taking into account first
the identification ¢~ (TM>) = TM,| v, and then the splitting of TM|[,, into the
orthogonal TM; L TM;* or direct sum TM; @ tr(TM,), according as (M, ¢*g>)
is semi-Riemannian or lightlike, which complete the proof.



140 C. L. BEJAN AND K. L. DUGGAL

Remark 6. (i) If (My,¢"g2, S(TM),s(TM7")) is lightlike, then the above
theorem is independent on the choice of the screen distribution S(7M;), but it
depends on the choice of the transversal bundle tr(7M,); (i) In the Riemannian
case, the above theorem is proved in [4].

PrROPOSITION 3.1. Let (M,g,S(TM),s(TM™)) be a lightlike submanifold of
(M,§). Then:
(i) h’ =0 on Rad(TM);
(i) *=0 (in Cases 2, 4) and h*=0 on Rad(TM) iff Lwg=0 on
Rad(TM), YW e T'(s(TM™)) (in Cases 1, 3).

Proof. From the definition of V we have:
(3.5)  g(Ve¢&" K)=¢&g(E" K) +&"g(¢ K) — Kg(&', &") + g([¢',¢"], K)
+ g_([K7 é/]7 é//) - g([éﬂa K]7 é/)7
ve' E" e T(Rad(TM)), K e T(TM]|,,).

(i) Suppose A’ is not identically zero on Rad(TM) and let ¢ ¢?e
[(Rad(TM)) such that A7(EW &P) 20, As the direct sum Rad(TM)®
Itr(TM) is semi-Riemannian and #/(¢M,&?) is a non-zero section of the
lightlike vector bundle Itr(7TM), there exists &e I'(Rad(TM)) such that
gh' (W, @Y, &) =1. If in (3.5) we substitute K = ¢, &' =¢&W, ¢" = ¢ then
from (3.3) and (3.4) we obtain:

g’ (W, e®),8) = g(V.0 e, &) =0,
which is a contradiction that yields the statement. (ii) From (3.5) we obtain:
gV=&", W) = ~(Zwg)(¢,&"), ¥¢',&" e T(Rad(TM)), W e T(s(TM™)).
Using (3.3), (3.4) and s(TM*') semi-Riemannian, we complete the proof.
Example 7. Let (R?,( >) be the Minkowski space with signature
(+,+,+,—) w.r.t. the canonical basis (0j,...,04). Then the manifold

(M, 5,,S(TM)) is a lightlike hypersurface, given by an open subset of the
lightlike cone

M = {t(cos u cos v,cos u sin v,sin u,1) e R} /t > 0,u e (0,7/2),v € [0,2x]},
where S(TM) = span{e; = —sin u cos vd; — sin u sin v0, + cos uds,
ey = —sin vd; + cos v0 }.
We note that e; and e, are orthonormal,

Rad(TM) = span{& = cos u cos v0; + cos u sin vd; + sin ud3 + 04},

1 . .
Itr(TM) = span{N =3 (cos u cos v0] + cos u sin vd, + sin uds; — 64)},
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tcosu tcosu
and h(ej,ep) =0. It turns out that the open subset of the lightlike cone
(M, ),) is globally null, since ¢ is globally defined and S(7M) is a spacelike
integrable distribution.

and (&,N>=1. We have /1(61,61)( ! )N, h(ez,€2)< 1 >N

Different from above non-compact hypersurface, in the next example we
construct a lightlike submanifold of codimension > 1, which is compact.

Example 8. Let (R}, { ») be the semi-Euclidean space with the signature
(= —+,+,— =, +,+) wr.t. the canonical basis {01,...,0s}. Then (M, ) ,
S(TM),s(TM*)) is a compact lightlike submanifold, given by
M =T?x S' = {(cos u cos v,cos u sin v, sin u cos w, sin u sin w,

sin u cos v, sin u sin v, cos u cos w, cos u sin w) /u, v, w € [0, 27|},

where S(TM) = span{e; = —cos u sin vd; + €os u cos v,

— sin u sin vd5 + sin u cos vdg,

ey = —sin u sin wdj + sin u cos wds — cos u sin wd; + cos u cos wds }.
Here e is timelike, e, is spacelike and

Rad(TM) = span{¢ = —sin u cos vd; — sin u sin v0; + cos u cos wis
+ cos u sin wd4 + cos u cos v0s + cos u sin vdg
— sin u cos wd7 — sin u sin wdg },
Itr(TM) = span{N = cos u cos v0; + cos u sin vd; + cos u cos wds
+ cos u sin wdy + sin u cos vds + sin u sin vdg

— sin u cos wd7 — sin u sin wdg},

s(TM™*) = [span{e}, e, e3,e4}]",

where
1 . . . .
=5 [(cos u + sin u)(cos vd; + sin vd,) + (sin u — cos u)(cos vds + sin v0g)],
1 . . .
¢4 =75 [(cos u — sin u)(cos v0; + sin v02) + 2 cos u(cos wds + sin wos)

+ (cos u + sin u)(cos vds + sin v0g) — 2 sin u(cos wo; + sin wds))|

are timelike and spacelike, respectively and ey, e», e3, e4 are mutually orthogonal.
We have
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h(ey,e;) = (—cos u + sin u)(cos v0; + sin v0z) — cos u(cos wds + sin wds)
— (sin u 4 cos u)(cos vds + sin v0e)
+ sin u(cos wd; + sin wdg) € s(TM™),

h(ez,e2) = —(sin u cos wds + sin u sin Wiy

4 cos u cos wd7 + cos u sin wdg) € S(TM™),  h(er,es) = 0.

From [7, page 166], a lightlike submanifold M of M is called totally geodesic if
any geodesic of M w.r.t. an induced linear connection V is a geodesic of M w.r.t.
the Levi-Civita connection V. For example, any lightlike curve of a semi-
Riemannian manifold and any lightlike hyperplane of a semi-Euclidean space are
totally geodesic lightlike submanifolds.

Remark 7. A more general notion, precisely the one of minimal lightlike
submanifold M of a semi-Riemannian manifold M was not introduced yet, as far
as we know. In the semi-Riemannian context, a minimal isometric immersion
is a particular harmonic map. In [11], a harmonic map ¢ between lightlike
manifolds is defined with the assumption that ¢ is radical preserving (i.e. ¢ maps
the radical of the domain into the radical of the target). This does not apply
here to define minimality, since an isometric immersion from M to M is not
radical preserving. In [6], harmonic maps from a semi-Riemannian manifold
into a lightlike manifold are defined only when the target is a Riemannian
hypersurface of a globally null manifold. This also does not apply here to define
minimality, since our domain M is lightlike. In [7, page 131], a minimal
lightlike submanifold is defined only in the particular case when M is a hy-
persurface of the Minkowski space M = Rj‘. We introduce here the notion of
minimal lightlike submanifolds in a general context.

From now on we work in Case 1 or 2 so that S(7TM) is non-zero. In view
of Proposition 3.1, we introduce the following:

DEFINITION 2. We say that a lightlike submanifold LM,g,S(TM)J(TML))
isometrically immersed in a semi-Riemannian manifold (M ,g) is minimal if:
(i) A*=0 on Rad(TM) and

(ii) trace h =0, where trace is written w.r.t. g restricted to S(TM).

We note that in Case 2, the condition (i) is trivial. From Proposition 3.1,
this definition is independent of S(7TM) and s(TM™), but it depends on the
choice of the transversal bundle tr(7M).

As in the semi-Riemannian case [1, page 435], any lightlike totally geodesic
submanifold is minimal. Next, we construct a proper lightlike minimal sub-
manifold which is not totally geodesic.

Example 9. Let (R},{ ») be the Minkowski space with the signature
(+,4+,+,—) w.r.t. the canonical basis (0j,...,04) and let
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S} ={peR{/{p,p>=1}

be the 3-dimensional unit pseudosphere of index 1, which is a Lorentzian hy-
persurface of (R},< »). We denote by (M =S} x R?,g) the semi-Riemannian
cross product, where Rl2 is semi-Euclidean space with the signature (+,—) w.r.t.
the canonical basis {ds, s} and g is the inner product of RS = R} x R? restricted
to M. Then the submanifold (M,g ,S(TM),s(TM™")) is a minimal lightlike
submanifold of M given by

M=S8"x#xR={(p,t,t)eS; xR}/teR,

p= \/75(005 6, sin 6, cosh ¢, sinh @) € Sl3, 0 €0,2n],p € R},

where # is the hyperbola and
S(TM) = span{e; = —sin 80, + cos 00>, e, = sinh ¢d3 + cosh @d4}.
Here ¢ = g(e1,e1) =1, & = g(ez,e2) = —1 and

Rad(TM) = span{¢ = J5 + ds},
ltr(TM) = span{N :%(65 - 66)}7

s(TM™*) = [span{ei, e2, 35, d6}]"
= span{ W = g (cos 001 + sin 80, — cosh pd; — sinh @dy4) },

where {ej, e, 05,06, W} is an orthonormal basis of M. Let p :§(cos 00, +
sin 80, + cosh @03 + sinh pd4) be the position vector of an arbitrary point p of
S7, which is normal to S} in R{. Since the canonical Levi-Civita connection
V¢ of R{ satisfies Viey = —1(W + p) and Vie; =1(—W + p), it follows that
hier,e1) = =3 W, h(ey,e2) =0, h(ez,e2) = —L W, from which

traceg‘s( h= slh(el,el) + &h(ea, 6‘2) = h(é’l, 61) — h(ea, (32) =0.

™)

We also have A(&, &) = 0 and, therefore, M is a minimal lightlike submanifold of
M, which is not totally geodesic.

Note that the Examples 7 and 8 are not minimal submanifolds. The
classical notion of minimality is connected to the geometric interpretation of
being an extremal of the volume functional [8, page 391]. Here we relate the
classical minimality (in semi-Riemannian case) with the minimality introduced in
the lightlike case by Definition 2, as follows:

THEOREM 3.2. Let (M,g,S(TM),s(TM™)) be a lightlike submanifold of a
semi-Riemannian manifold (M,g), with S(TM) integrable. If its leaves are
minimal (semi-Riemannian) submanifolds of (M,g) and h* =0 on Rad(TM), then
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M is a lightlike minimal submanifold of M. Conversely, if M is a lightlike
minimal submanifold of M, then Rad(TM) contains the mean curvature vector field
of any leaf of S(TM).

Proof. Let i:X — M denote the inclusion map of any leaf ¥ of S(TM).
The tension field (i) of ¥ can be decomposed from (3.1) into:

(i) = ©7(i) + tracey,,, A,

where t*(i) € Rad(TM) and h is defined by (3.3). Since X is minimal in M iff the
map i is harmonic, which means (i) = 0, the statement follows from Definition 2.

We observe that Example 9 satisfies Theorem 3.2 with respect to the leaves
S x # of S(TM). Let A= {xe Rg“/@c7 xy =0} be the lightlike cone in the
semi-Euclidean space (RZ+1’< >). Related to the non-existence result of com-
pact minimal spacelike submanifolds isometrically immersed in semi-Euclidean
spaces, we have the following:

PrOPOSITION 3.2. There are no lightlike minimal isometric immersions
¢ (M, S(TM), s(TMF)) — (R () with $(M) = A.

Proof. Suppose there exists such a map ¢. Then the function given by
peM —1{p(p),4(p)> € R is identically zero and hence,

0= 3X<H(p).$(p)> = <X, 4(p)> and

0= SX(XCHP).$(p))) = VX, 4(p)> + <X, X, Vpe M, X eT(TM)

where V¢ is the canonical Levi-Civita connection of (R(’]’“, < ). If we replace X
consecutively by e,, where {e,} is the orthonormal basis of S(7M), then from the
minimality condition we have:

0 = (trace¢ 5, h,4(p)) = — (Z £a<ea,eu>> <0,

where 4 is given by (3.3) and ¢, = {e,, e,», Va. This contradiction completes the
proof.

In support of Proposition 3.2, Example 7 of the lightlike submanifold M,
which is an open subset of the lightlike cone A of (R‘f,( >) is never minimal.

Since A is a proper totally umbilical lightlike submanifold of (R‘f,( >), the
Proposition 3.2 can be generalized, by using the definition of totally umbilical
lightlike submanifolds [7, page 106], as follows:

THEOREM 3.3. There are no lightlike minimal submanifolds contained in a
proper totally umbilical lightlike submanifold of a semi-Riemannian manifold.
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