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PICARD VALUES AND DERIVATIVES OF MEROMORPHIC

FUNCTIONS*

Yan Xu

Abstract

Let f be a transcendental meromorphic function and R be a rational function,

RD 0, and let k be a positive integer. In this paper, we obtain some results concerning

the zeros of f ðkÞ � R, which generalize and improve related results of Wang-Fang and

Bergweiler-Pang.

1. Introduction

In 1998, Wang and Fang [11] proved the following results.

Theorem A. Let f be a transcendental meromorphic function and k A N. If
f has only zeros of multiplicity at least k þ 1 and poles of multiplicity at least 2,
then, for each c A Cnf0g, f ðkÞ � c has infinitely many zeros.

Theorem B. Let f be a transcendental meromorphic function and k A N. If
f has only zeros of multiplicity at least 3, then, for each c A Cnf0g, f ðkÞ � c has
infinitely many zeros.

A natural problem arises: What can we say if the constant c in the above
results is replaced by a rational function RðzÞD 0? (see [1]).

In 2000, Fang [3] considered the fixed points of f 0 and obtained

Theorem C. Let f be a transcendental meromorphic function. If f has only
multiple zeros and poles, then f 0 � z has infinitely many zeros.

Recently, Bergweiler and Pang [2] proved the following result, which is a
significant improvement of Theorem C.
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Theorem D. Let f be a transcendental meromorphic function, and let R be
a rational function, RD 0. Suppose that all zeros and poles of f are multiple,
except possibly finite many, then f 0 � R has infinitely many zeros.

In this paper, we borrow the idea of Bergweiler and Pang [2] and prove the
following results with a simpler proof.

Theorem 1. Let f be a transcendental meromorphic function, and let R be a
rational function, RD 0, k A N. Suppose that all zeros of f have multiplicity at
least k þ 1 and all poles of f have multiplicity at least 2, except possibly finite
many. Then f ðkÞ � R has infinitely many zeros.

Theorem 2. Let f be a transcendental meromorphic function, and let R be a
rational function, RD 0, k A N. Suppose that all zeros of f have multiplicity at
least k þ 2, except possibly finite many. Then f ðkÞ � R has infinitely many zeros.

It seems reasonable to conjecture that the conclusion of Theorem 1 or
Theorem 2 still holds under a considerably weaker condition that the zeros of f
have multiplicity at least 3. In this direction, we have the following result.

Theorem 3. Let f be a transcendental meromorphic function, k A N, and let
P be a polynomial, PD 0. If all zeros of f have multiplicity at least 3, except

possibly finite many, then f ðkÞ � P has infinitely many zeros.

We shall use some standard notations and results from Nevanlinna theory
(see [4, 9, 12]).

2. Some Lemmas

Now we recall some definitions. If there exists a curve GHC tending to y
such that f ðzÞ ! a as z ! y, z A G, we call that a is an asymptotic value of f .
A meromorphic function f is called a Julia exceptional function if f #ðzÞ ¼
Oð1=jzjÞ as z ! y. Here, as usual, f #ðzÞ ¼ j f 0ðzÞj=ð1 þ j f ðzÞj2Þ is the spherical
derivative of f . It follows easily from the Ahlfors-Shimizu form of the Ne-
vanlinna characteristic function that if f is a Julia exceptional function, then
Tðr; f Þ ¼ Oððlog rÞ2Þ as r ! y. The following result concerning functions sat-
isfying this growth condition is due to Hayman [5, 6].

Lemma 1. Let f be an entire function satisfying

log Mðr; f Þ ¼ Oððlog rÞ2Þ

as r ! y. Then logj f ðreiyÞj@ log Mðr; f Þ as r ! y for almost every y A ½0; 2p�.

The following result is due to Lehto and Virtanen [7].
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Lemma 2. A transcendental Julia exceptional function does not have an
asymptotic value.

Lemma 3. Let f be a transcendental meromorphic function and k A N, and let
R be a rational function satisfying RðzÞ@ czd as z ! y, with c A Cnf0g and
d A Z. Suppose that f ðkÞ � R has only finitely many zeros and that Tðr; f Þ ¼
Oððlog rÞ2Þ as r ! y. Set g :¼ f ðzÞ=zdþk. Then g has an asymptotic value.

Proof. Since f ðkÞ � R has only finitely many zeros, there exists a polynomial
PD 0 such that h ¼ P=ð f ðkÞ � RÞ is entire. By standard results in Nevanlinna
theory, we have

log Mðr; hÞa 3Tð2r; hÞa 3Tð2r; f ðkÞÞ þOðlog rÞ
and

Tð2r; f ðkÞÞa ðk þ 1ÞTð2r; f Þ þOðlog rÞ
as r ! y. Thus log Mðr; hÞ ¼ Oððlog rÞ2Þ. By Lemma 1, there exists y A ½0; 2p�
such that jhðreiyÞjr�m ! y ðr ! yÞ for any m A Z. Let m ¼ degðPÞ þ 2 þ jdj.
It follows that

j f ðkÞðreiyÞ � RðreiyÞj ¼ PðreiyÞ
hðreiyÞ

����
����a 1

r2þjdj

for su‰ciently large r, say rb r0. Henceð r
r0

ð f ðkÞðteiyÞ � RðteiyÞÞ dt

tends to a finite limit as r ! y. We consider three cases.

Case 1. d > �1. We have

lim
r!y

f ðk�1ÞðreiyÞ
c

d þ 1
ðreiyÞdþ1

¼ 1:

Hence

lim
z!y

gðzÞ ¼ lim
z!y

f ðzÞ
zdþk

¼ lim
z!y

f 0ðzÞ
ðd þ kÞzdþk�1

¼ � � �

¼ lim
z!y

f ðk�1ÞðzÞ
ðd þ kÞðd þ k � 1Þ � � � ðd þ 2Þzdþ1

¼ c

ðd þ 1Þðd þ 2Þ � � � ðd þ kÞ :

Case 2. d < �1. We have

f ðk�1ÞðzÞ ¼ aþ c

d þ 1
zdþ1 þOðjzjdÞ
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for some a A C as z ! y. For k ¼ 1, we have either limz!y gðzÞ ¼ y or
limz!y gðzÞ ¼ c=ðd þ 1Þ (see [2]). For kb 2, by an elemental calculation, we
have that

(a) if �ka d < �1, then limz!y gðzÞ ¼ y;
(b) if d < �k, then either limz!y gðzÞ ¼ y or

lim
z!y

gðzÞ ¼ c

ðd þ 1Þðd þ 2Þ � � � ðd þ kÞ :

Case 3. d ¼ �1. We have

lim
z!y

f ðk�1ÞðzÞ
c logjzj ¼ 1:

Then

lim
z!y

gðzÞ ¼ lim
z!y

f ðzÞ
zk�1

¼ lim
z!y

f 0ðzÞ
ðk � 1Þzk�2

¼ � � � ¼ lim
z!y

f ðk�1ÞðzÞ
ðk � 1Þ! ¼ y:

This completes the proof of Lemma 3. r

Lemma 4 ([11]). Let f be a meromorphic function of finite order in the plane,
b nonzero complex numbers, and k a positive integer. If all zeros of f are of order
at least k þ 1 and all poles of f are multiple, and f ðkÞðzÞ0 b, then f ðzÞ is a
constant.

Lemma 5 ([11]). Let f be a meromorphic function of finite order in the plane,
b nonzero complex numbers, and k a positive integer. If all zeros of f are of order
at least k þ 2 and f ðkÞðzÞ0 b, then f ðzÞ is a constant.

The next is one up-to-date version of Zalcaman’s lemma due to Pang and
Zalcman [8].

Lemma 6. Let k be a positive integer and let F be a family of functions
meromorphic in a domain D, such that each function f A F has only zeros of
multiplicity at least k, and suppose that there exists Ab 1 such that j f ðkÞðzÞjaA
whenever f ðzÞ ¼ 0. If F is not normal at z0 A D, then, for each 0a aa k, there
exist a sequence of points zn A D, zn ! z0, a sequence of positive numbers rn ! 0,
and a sequence of functions fn A F such that

gnðzÞ ¼
fnðzn þ rnzÞ

ra
n

! gðzÞ

locally uniformly with respect to the spherical metric, where g is a nonconstant
meromorphic function on C, all of whose zeros have multiplicity at least k, such
that g#ðzÞa g#ð0Þ ¼ kAþ 1. Moreover, g has order at most 2.
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3. Proof of Theorems

Proof of Theorem 1. Suppose that f ðkÞ � R has finitely many zeros. We
assume that RðzÞ@ czd as z ! y, with c A Cnf0g and d A Z. Define

gðzÞ :¼ f ðzÞ=zdþk:

If g is a Julia exceptional function, then Tðr; gÞ ¼ Oððlog rÞ2Þ and hence Tðr; f Þ ¼
Oððlog rÞ2Þ as r ! y. Thus, by Lemma 3, g has an asymptotic value. But g
has not an asymptotic value by Lemma 2, a contradiction.

Thus g is not a Julia exceptional function, and then there exists a
sequence ðanÞ in C such that an ! y and ang

#ðanÞ ! y as n ! y. Let D ¼
fz A C : jz� 1j < 1=2g, and set

F ¼ gnðzÞ :¼ gðanzÞzdþk ¼ f ðanzÞ
adþk
n

; n ¼ 1; 2; 3 . . . ; z A D

� �
:

Since

g#
n ð1Þ ¼

jang 0ðanÞ þ ðd þ kÞgðanÞj
1 þ jgðanÞj2

b janjg#ðanÞ �
jd þ kj

2
! y

as n ! y, we know that F is not normal at 1. Obviously, for su‰ciently large
n, all zeros of gn in D have multiplicity at least k þ 1 and all poles of gn are
multiple. Then by Lemma 6, we can find sequences ðnjÞ, ðzjÞ and ðrjÞ satisfying
nj A N, nj ! y, zj A D, zj ! 1, rj > 0 and rj ! 0 such that

Gnj ðzÞ ¼
gnj ðzj þ rjzÞ

rk
j

¼
f ðanj ðzj þ rjzÞÞ

rk
j a

dþk
nj

! GðzÞ

locally uniformly with respect to the spherical metric, where GðzÞ is a non-
constant meromorphic function in C, all of whose zeros have multiplicity at least
k þ 1. In particular, G is of order at most 2. By Hurwitz’s theorem, G has
only multiple poles.

Since RðzÞ@ czd as z ! y, we have

GðkÞ
nj

ðzÞ �
Rðanj ðzj þ rjzÞÞ

ad
nj

! GðkÞðzÞ � c

and (for j su‰ciently large)

GðkÞ
nj

ðzÞ �
Rðanj ðzj þ rjzÞÞ

ad
nj

¼
f ðkÞðanj ðzj þ rjzÞÞ � Rðanj ðzj þ rjzÞÞ

ad
nj

0 0:

It follows from Hurwitz’s theorem that either GðkÞ 0 c or GðkÞ 1 c on C. But
GðkÞ D c since all zeros of G have multiplicity at least k þ 1. Thus GðkÞ 0 c. By
Lemma 4, GðzÞ must be a constant, a contradiction. This completes the proof of
Theorem 1. r

picard values and derivatives of meromorphic functions 103



Proof of Theorem 2. Theorem 2 can be proved by using Lemma 5 and the
same argument as in Theorem 1. We here omit the details. r

Proof of Theorem 3. For k ¼ 1, the conclusion comes from Theorem
2. Now we assume kb 2. Let PðzÞ ¼ anz

n þ an�1z
n�1 þ � � � þ a0 ðai A C; i ¼

0; 1; . . . ; n; an 0 0Þ. Suppose that f ðkÞ � P has finitely many zeros. Then

N r;
1

f ðkÞ � P

� �
¼ Sðr; f Þ:ð1Þ

By the logarithmic derivative theorem, we have

m r;
1

f

� �
þm r;

1

f ðkÞ � P

� �

¼ m r;
f ðkþnÞ

f

1

f ðkþnÞ

� �
þm r;

ð f ðkÞ � PÞðnÞ

f ðkÞ � P

1

ð f ðkÞ � PÞðnÞ

 !

am r;
1

f ðkþnÞ

� �
þm r;

1

f ðkþnÞ � ann!

� �
þ Sðr; f Þ

¼ m r;
1

f ðkþnÞ þ
1

f ðkþnÞ � ann!

� �
þ Sðr; f Þ

am r;
1

f ðkþnþ1Þ

� �
þ Sðr; f Þ

aTðr; f ðkþnþ1ÞÞ �N r;
1

f ðkþnþ1Þ

� �
þ Sðr; f Þ:

aTðr; f ðkÞÞ þ ðnþ 1ÞNðr; f Þ �N r;
1

f ðkþnþ1Þ

� �
þ Sðr; f Þ:

Thus

Tðr; f Þa ðnþ 1ÞNðr; f Þ þN r;
1

f

� �
þN r;

1

f ðkÞ � P

� �
�N r;

1

f ðkþnþ1Þ

� �
þ Sðr; f Þ:

ð2Þ

Using a inequality of Wang [10] and noting that kb 2, then, for every e > 0, we
have

ðnþ 1ÞNðr; f Þ þN r;
1

f

� �
a ðk þ n� 1ÞNðr; f Þ þN r;

1

f

� �

a 2N r;
1

f

� �
þN r;

1

f ðkþnþ1Þ

� �
þ eTðr; f Þ þ Sðr; f Þ:ð3Þ

Combining (2) and (3), we obtain

yan xu104



Tðr; f Þa 2N r;
1

f

� �
þN r;

1

f ðkÞ � P

� �
þ eTðr; f Þ þ Sðr; f Þ:ð4Þ

Recalling that the zeros of f are of orderb 3 and setting e ¼ 1
6 , from (1) and (4),

we get

Tðr; f Þa 6N r;
1

f ðkÞ � P

� �
þ Sðr; f Þ ¼ Sðr; f Þ;

which contradicts the fact that f is a transcendental meromorphic function.
Theorem 3 is proved. r
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