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PICARD VALUES AND DERIVATIVES OF MEROMORPHIC
FUNCTIONS*
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Abstract

Let f be a transcendental meromorphic function and R be a rational function,
R #0, and let k be a positive integer. In this paper, we obtain some results concerning
the zeros of f%) — R, which generalize and improve related results of Wang-Fang and
Bergweiler-Pang.

1. Introduction

In 1998, Wang and Fang [11] proved the following results.

THEOREM A. Let f be a transcendental meromorphic function and k e N. If
f has only zeros of multiplicity at least k + 1 and poles of multiplicity at least 2,
then, for each ¢ € C\{0}, f% — ¢ has infinitely many zeros.

THEOREM B. Let [ be a transcendental meromorphic function and k e N. If
f has only zeros of multiplicity at least 3, then, for each ¢ e C\{0}, % — ¢ has
infinitely many zeros.

A natural problem arises: What can we say if the constant ¢ in the above
results is replaced by a rational function R(z) # 0?7 (see [1]).
In 2000, Fang [3] considered the fixed points of f’ and obtained

THEOREM C. Let f be a transcendental meromorphic function. If f has only
multiple zeros and poles, then f' — z has infinitely many zeros.

Recently, Bergweiler and Pang [2] proved the following result, which is a
significant improvement of Theorem C.
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THEOREM D. Let f be a transcendental meromorphic function, and let R be
a rational function, R £ 0. Suppose that all zeros and poles of f are multiple,
except possibly finite many, then f'— R has infinitely many zeros.

In this paper, we borrow the idea of Bergweiler and Pang [2] and prove the
following results with a simpler proof.

THEOREM 1. Let f be a transcendental meromorphic function, and let R be a
rational function, R # 0, k € N.  Suppose that all zeros of f have multiplicity at
least k+ 1 and all poles of f have multiplicity at least 2, except possibly finite
many. Then %) — R has infinitely many zeros.

THEOREM 2. Let f be a transcendental meromorphic function, and let R be a
rational function, R # 0, k e N. Suppose that all zeros of f have multiplicity at
least k + 2, except possibly finite many. Then f%) — R has infinitely many zeros.

It seems reasonable to conjecture that the conclusion of Theorem 1 or
Theorem 2 still holds under a considerably weaker condition that the zeros of f
have multiplicity at least 3. In this direction, we have the following result.

THEOREM 3. Let f be a transcendental meromorphic function, k € N, and let
P be a polynomial, P #£0. If all zeros of f have multiplicity at least 3, except
possibly finite many, then f*) — P has infinitely many zeros.

We shall use some standard notations and results from Nevanlinna theory
(see [4, 9, 12]).

2. Some Lemmas

Now we recall some definitions. If there exists a curve I' = C tending to oo
such that f(z) - a as z — o, ze I, we call that a is an asymptotic value of f.
A meromorphic function f is called a Julia exceptional function if f¥#(z) =
O(1/lz]) as z — oo. Here, as usual, f/#(z) = |f'(2)]/(1 + |f(2)[?) is the spherical
derivative of f. It follows easily from the Ahlfors-Shimizu form of the Ne-
vanlinna characteristic function that if f is a Julia exceptional function, then
T(r, f) = O((log r)*) as r — co. The following result concerning functions sat-
isfying this growth condition is due to Hayman [5, 6].

Lemma 1. Let f be an entire function satisfying
log M(r, /) = O((log r)*)

asr— . Thenlog|f(re®)| ~log M(r, f) as r — oo for almost every 0 € [0, 2x].

The following result is due to Lehto and Virtanen [7].
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LemMa 2. A transcendental Julia exceptional function does not have an
asymptotic value.

Lemma 3. Let f be a transcendental meromorphic function and k € N, and let
R be a rational function satisfying R(z) ~ cz? as z — oo, with ¢ce C\{0} and
deZ. Suppose that f*) — R has only finitely many zeros and that T(r,f) =
O((log r)?) as r — oo. Set g:= f(z)/z9%%. Then g has an asymptotic value.

Proof. Since ) — R has only finitely many zeros, there exists a polynomial
P #0 such that h = P/(f®) — R) is entire. By standard results in Nevanlinna
theory, we have

log M(r,h) < 3T(2r,h) < 3T(2r, f©) + O(log r)
and
TQ2r, f%) < (k+1)TQ2r, f) + O(log r)

as r — oo. Thus log M(r,h) = O((log r)?). By Lemma 1, there exists 0 € [0, 27]
such that |h(re”)[r™ — oo (r — o) for any me Z. Let m = deg(P) + 2+ |d|.
It follows that

P(re'?)
h(rei?)

F9(re) - R(re)| = \

for sufficiently large r, say r > ro. Hence

| (O (1) — R(te)) dr

ro

tends to a finite limit as r — oo. We consider three cases.

Case 1. d > —1. We have

(k=1 (0
lim — D (rz d)+1 = 1.
PN (re')
Hence
: . f@) f'(2)
Jim g(z) = lim 5% = lim 1 k)zd 1=
f(kfl)(z) c

= @ k= 1) @42 a1 [

CasE 2. d < —1. We have

- C
SEE) = a2+ 02
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for some aeC as z— oo. For k=1, we have either lim. . g(z) = o or
lim._o g(z) =c¢/(d+1) (see [2]). For k =2, by an elemental calculation, we
have that

(a) if —k <d < —1, then lim._., g(z) = oo;

(b) if d < —k, then either lim._., g(z) = o0 or

¢
li = .
Im 9 = i D@+ @+ h
Cast 3. d=—-1. We have
A
—w cloglz|
Then
, .S /') [ ()
Jim g(e) = lim S = lim g e = T i ey =
This completes the proof of Lemma 3. O

Lemma 4 ([11]). Let f be a meromorphic function of finite order in the plane,
b nonzero complex numbers, and k a positive integer. If all zeros of [ are of order
at least k+ 1 and all poles of f are multiple, and f*)(z) # b, then f(z) is a
constant.

Lemma 5 ([11]). Let f be a meromorphic function of finite order in the plane,
b nonzero complex numbers, and k a positive integer. If all zeros of f are of order
at least k+2 and f%)(z) #b, then f(z) is a constant.

The next is one up-to-date version of Zalcaman’s lemma due to Pang and
Zalcman [8].

LEMMA 6. Let k be a positive integer and let F be a family of functions
meromorphic in a domain D, such that each function f €% has only zeros of
multiplicity at least k, and suppose that there exists A > 1 such that |f®)(z)| < 4
whenever f(z) =0. If # is not normal at zy € D, then, for each 0 < o < k, there
exist a sequence of points z, € D, z, — zo, a sequence of positive numbers p, — 0,
and a sequence of functions f, € F such that

— f;l(zn + pnc)

gn(C) 7

—g(0)

locally uniformly with respect to the spherical metric, where g is a nonconstant
meromorphic function on C, all of whose zeros have multiplicity at least k, such
that g#(() < g#(0) = kA + 1. Moreover, g has order at most 2.
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3. Proof of Theorems

Proof of Theorem 1. Suppose that f*) — R has finitely many zeros. We
assume that R(z) ~ cz? as z — oo, with ¢ C\{0} and d € Z. Define

9() = 1(2)/="%.

If g is a Julia exceptional function, then 7'(r,g) = O((log r)z) and hence T(r, f) =
O((log r)?) as r — co. Thus, by Lemma 3, g has an asymptotic value. But g
has not an asymptotic value by Lemma 2, a contradiction.

Thus ¢ is not a Julia exceptional function, and then there exists a
sequence (a,) in C such that a, — oo and a,g%(a,) — 0 as n — 0. Let D =
{zeC:|z—1| < 1/2}, and set

F = {gn(z) = g(a,z)z7F = fa(j:i) ,n=1273...z¢€ D}.

Since

_ lang’(an) + (d + K)g(an)|
1+ |g(an)|?

_ld+k
2

.‘]f(l) = |an|g#(an)

as n — oo, we know that & is not normal at 1. Obviously, for sufficiently large
n, all zeros of g, in D have multiplicity at least kK + 1 and all poles of g, are
multiple. Then by Lemma 6, we can find sequences (), (z;) and (p;) satisfying
njeN, n; — o0, z;eD, z;— 1, p; >0 and p; — 0 such that

gn(zi +p0)  flan(z +pid))
T a0

an (C)

locally uniformly with respect to the spherical metric, where G({) is a non-
constant meromorphic function in C, all of whose zeros have multiplicity at least
k+ 1. In particular, G is of order at most 2. By Hurwitz’s theorem, G has
only multiple poles.

Since R(z) ~ ¢z

as z — oo, we have

R(ay (2 +p;0))
ad

j

G\ ) —

nj

— G(k)(C) —c

and (for j sufficiently large)

Gﬁljc)(g) B R(an,- (z Jr/);c)) _ f(k) (anj (z erj()) - R(anj (Z./' + P,C)) 2 0.

ad ad
n; ny

It follows from Hurwitz’s theorem that either G¥) # ¢ or G¥) =¢ on C. But
G®) # ¢ since all zeros of G have multiplicity at least k + 1. Thus G¥) #¢. By
Lemma 4, G({) must be a constant, a contradiction. This completes the proof of
Theorem 1. O
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Proof of Theorem 2. Theorem 2 can be proved by using Lemma 5 and the
same argument as in Theorem 1. We here omit the details. O

Proof of Theorem 3. For k=1, the conclusion comes from Theorem

2. Now we assume k>2. Let P(z)=a,z" +a, 1z" '+ +ay (q;eC,i=
0,1,...,n,a, #0). Suppose that %) — P has finitely many zeros. Then

m N(r =) = )

By the logarithmic derivative theorem, we have

flen (f®© — )™ !
=mQ,f fwm)+mo’f®P UW—PWJ
B m(r7 f<k1+n) + f(k+">1— ann!) £8g)
< m<rv f<k+1n+1>> + 50 )

< T W)+ 04 DN ) = N (1 i ) +50.0)

Thus

T(r,f) < (n+ 1)N(r, f)+ N(r,}) + N(r, ﬁ) — N(r, ﬁ) + S(r, f).
(2)

Using a inequality of Wang [10] and noting that k£ > 2, then, for every ¢ > 0, we
have

(n+ 1N, f) —&-N(r,l) <(k+n—1)N(r,f) +N(r,%)

/
(3) <2N (r, %) + N(r, ﬁ) +eT(r, f)+ S(r, f).

Combining (2) and (3), we obtain
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4) T(r,f) <2N (r, }) + N(r, f(k>1—P> +eT(r, f)+ S(r, f).

Recalling that the zeros of f are of order > 3 and setting ¢ =1, from (1) and (4),
we get

1
T(r,f)< 6N<”7m> + S8, f) =5S(r, f),
which contradicts the fact that f is a transcendental meromorphic function.
Theorem 3 is proved. U
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