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ANALYTICAL INVARIANTS OF QUASI-ORDINARY HYPERSURFACE

SINGULARITIES ASSOCIATED TO DIVISORIAL VALUATIONS

Pedro Daniel González Pérez and Gérard Gonzalez-Sprinberg

Abstract

We study an analytically irreducible algebroid germ ðX ; 0Þ of complex singularity

by considering the filtrations of its analytic algebra, and their associated graded rings,

induced by the divisorial valuations associated to the irreducible components of the

exceptional divisor of the normalized blow-up of the normalization ðX ; 0Þ of ðX ; 0Þ,
centered at the point 0 A X . If ðX ; 0Þ is a quasi-ordinary hypersurface singularity, we

obtain that the associated graded ring is a C-algebra of finite type, namely the coor-

dinate ring of a non necessarily normal a‰ne toric variety of the form ZG ¼ Spec C½G�,
and we show that the semigroup G is an analytical invariant of ðX ; 0Þ. This provides

another proof of the analytical invariance of the normalized characteristic monomials of

ðX ; 0Þ. If ðX ; 0Þ is the algebroid germ of non necessarily normal toric variety, we apply

the same method to prove a local version of the isomorphism problem for algebroid

germs of non necessarily normal toric varieties (solved by Gubeladze in the algebraic

case).

Introduction

We study a class of algebroid hypersurface singularities called quasi-ordinary.
These singularities arise classically in Jung’s approach to analyze surface sin-
gularities by using a finite projection to a smooth surface (see [16], [27]). Quasi-
ordinary hypersurface singularities are parametrized by quasi-ordinary branches,
certain class of fractional power series in several variables having a finite set of
distinguished or characteristic monomials, generalizing the characteristic pairs asso-
ciated to a plane branch (see [28]). These monomials determine many features
of the geometry and topology of the singularity, for instance in the analytically
irreducible case they define a complete invariant of the embedded topological type
(see Lipman’s and Gau’s works [19] and [8]). This characterization implies the
analytical invariance of the characteristic monomials suitably normalized by an
inversion lemma of Lipman (see [8], Appendix and [11]). In the case of alge-
broid surfaces the analytical invariance of the normalized characteristic mono-
mials was proved by Lipman and also by Luengo, by building canonical se-
quences of monoidal and quadratic transformations which desingularize the germ,
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however these methods do not admit generalizations to quasi-ordinary hyper-
surfaces of dimensionb 3 (see [18] and [20]).

In what follows ðS; 0Þ denotes the algebroid germ of an analytically irre-
ducible quasi-ordinary hypersurface. In [12], the first author introduced a semi-
group G associated to a fixed quasi-ordinary branch parametrizing the germ ðS; 0Þ
and showed, using the characterization of the topological type, that di¤erent
quasi-ordinary branches parametrizing ðS; 0Þ provide isomorphic semigroups. In
this Note we prove that the semigroup G is an analytical invariant of the alge-
broid germ ðS; 0Þ, without passing by Lipman’s and Gau’s topological approach.
The isomorphism class of the semigroup G determines the normalized charac-
teristic monomials of the germ ðS; 0Þ (see [12], [11] or [23]). Our result provides
a proof of the analytical invariance of the normalized characteristic monomials of
the quasi-ordinary hypersurface ðS; 0Þ.

Popescu-Pampu has given another proof of the analytical invariance of the
normalized characteristic monomials of the quasi-ordinary hypersurface ðS; 0Þ (see
[24] and [23]). In his work [24], which has a flavor similar to that of the surface
case [23], the structure of the singular locus of ðS; 0Þ is used to build a sequence
of blow-ups of ðCd ; 0Þ (where d ¼ dim S), in terms of the presentation of the
normalization of ðS; 0Þ as a quotient singularity. This sequence is used to define
a semigroup G 0 depending only on the germ ðS; 0Þ. He proves, using a fixed
quasi-ordinary branch parametrizing ðS; 0Þ, that the semigroup G 0 is a linear
projection of the semigroup G, eventually, of rank less than the rank of G. The
normalized characteristic monomials are recovered from the semigroup G 0 and
from analysis of the equisingularity class of certain plane sections of ðS; 0Þ, this
latter technique is also essential in Gau’s work [8].

Instead of defining an intrinsic semigroup associated to the singularity, we
study certain filtrations of its analytic algebra, and their associated graded rings.
This approach is inspired by the description, due to Lejeune-Jalabert, of the
semigroup of a plane branch in terms of the graded ring associated to the filtra-
tion of its local ring by the powers of the maximal ideal of its integral closure (see
[26] page 161). If ðX ; 0Þ is an analytically irreducible algebroid germ so is its
normalization ðX ; 0Þ. We can study the singularity ðX ; 0Þ by considering the
filtrations, and their associated graded rings, induced by the divisorial valuations
associated to the irreducible components of the exceptional divisor of the nor-
malized blow-up of ðX ; 0Þ centered at the point 0 A X . In general graded rings
associated to divisorial valuations on normal or regular local rings are not nec-
essarily Noetherian (see examples by Cutkosky and Srinivas [5], page 557, and by
Cossart, Galindo and Piltant in [4]). We apply this strategy successfully in two
particular instances:. If ðX ; 0Þ is the algebroid germ of a non necessarily normal a‰ne toric

variety of the form, ZL ¼ Spec C½L� at its zero dimensional orbit 0, we
obtain that the graded ring associated to ðX ; 0Þ by any of these divisorial
valuations, is a C-algebra of finite type, namely the coordinate ring of the
a‰ne toric variety ZL. We apply a theorem of Gubeladze on the iso-
morphism problem for commutative monoid rings (see [15]) to recover the
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semigroup L from the toric variety ZL. This means that the semigroup
L is an analytic invariant of the algebroid germ ðX ; 0Þ, and it does not
depend on the choice of toric structure on ðX ; 0Þ. A topological proof of
this result, in the case of normal simplicial toric singularities, has been
given by Popescu-Pampu in [25].. If ðX ; 0Þ is the germ of quasi-ordinary hypersurface ðS; 0Þ we obtain that
the graded ring associated to ðS; 0Þ by any of these divisorial valuations, is
a C-algebra of finite type, namely the coordinate ring of the a‰ne toric
variety ZG :¼ Spec C½G�. The algebroid germ ðZG; 0Þ of the a‰ne toric
variety ZG at its zero dimensional orbit 0, is of geometric significance to
the hypersurface germ ðS; 0Þ, for instance both germs have the same
normalization (see [13]), and any of these divisorial valuations associates
to ðS; 0Þ and ðZG; 0Þ a pair of isomorphic graded rings. The analytical
invariance of the semigroup G follows simultaneously for the algebroid
germs ðS; 0Þ and ðZG; 0Þ. The same strategy provides a proof of the
analytical invariance of the semigroup associated to a toric quasi-ordinary
hypersurface. This kind of singularity belongs to certain class of
branched coverings of a germ of normal a‰ne toric variety at the special
point, which are unramified over the torus, and plays an important role in
the toric embedded resolutions of quasi-ordinary hypersurface singularities
described in [13]. It is shown in [13] that the germs ðS; 0Þ and ðZG; 0Þ
have simultaneous toric embedded resolutions, which are described from
the properties of the semigroup G by a method inspired by that of Goldin
and Teissier for plane branches (see [10]).

1 A reminder of toric geometry

We give some definitions and notations (see [22], [21], [6], [7] and [17] for
proofs). If N is a lattice we denote by M the dual lattice, by NR the real vector
space spanned by N. A rational convex polyhedral cone s in NR, a cone in what
follows, is the set of non negative linear combinations of vectors a1; . . . ; as A N.
The cone s is strictly convex if s contains no linear subspace of dimension > 0.
We denote by s

�
the relative interior of a cone s. The dual cone s4 (resp.

orthogonal cone s?) of s is the set fw A MR=hw; uib 0; (resp. hw; ui ¼ 0)
Eu A sg. A fan S is a family of strictly convex cones in NR such that any face of
such a cone is in the family and the intersection of any two of them is a face of
each. The support of the fan S is the set 6

s AS sHNR.
A non necessarily normal a‰ne toric variety is of the form ZL ¼ Spec C½L�

where L is a sub-semigroup of finite type of a lattice Lþ ð�LÞ which it generates
as a group. The torus ZLþð�LÞ is an open dense subset of ZL, which acts on
ZL, and this action extends the action of the torus on itself by multiplication.
The semigroup L spans the cone Rb0L thus we have an inclusion of semi-

groups L ! L :¼ Rb0LV ðLþ ð�LÞÞ, defining an associated toric modification
ZL ! ZL, which is the normalization map. The cone Rb0L has a vertex if and
only if there exists a zero dimensional orbit, and in this case this orbit is reduced
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to the point of 0 A ZL defined by the maximal ideal mL :¼ ðL� f0gÞC½L�. The
ring C½½L�� is the completion of the local ring of germs of holomorphic functions
at ðZL; 0Þ with respect to its maximal ideal. (See [9] for non necessarily normal
toric varieties). In particular, if s is a cone in the fan S, the semigroup s4VM
is of finite type, it spans the lattice M and the variety Zs4VM , which we denote
also by Zs;N or by Zs when the lattice is clear from the context, is normal. If
sH s 0 are cones in the fan S then we have an open immersion Zs HZs 0 ; the
a‰ne varieties Zs corresponding to cones in a fan S glue up to define the toric

variety ZS. The torus ðC�Þrk N is the open dense subset Zf0g HZs, and acts on
Zs for each s A S; these actions paste into an action on ZS. We say that a fan
S 0 is a subdivision of the fan S if both fans have the same support and if every
cone of S 0 is contained in a cone of S. The subdivision S 0 defines the toric
modification pS 0 : ZS 0 ! ZS which is equivariant and induces an isomorphism
between the tori.

We introduce, for each s A S, the closed subset Os of Zs defined by the ideal
ðX w=w A ðs4� s?ÞVMÞ of C½s4VM �. The coordinate ring of Os is C½s? VM �.
The map that applies a cone s in the fan S to the set Os HZS is a bijection
between the relative interiors of the cones of the fan and the orbits of the torus
action which inverses inclusions of the closures. The set Os is the orbit of
the special point os defined by X uðosÞ ¼ 1 for all u A s? VM. We have that
dim Os ¼ codim s, in particular if t is an edge of S the closure DðtÞ of the orbit
Ot in ZS is a divisor.

If dim s ¼ rk N, the orbit Os is reduced to the special point os of the a‰ne
toric variety Zs. The toric variety defined by the fan formed by the faces of the
cone s coincides with the a‰ne toric variety Zs. If S is a subdivision of s
we have that the exceptional fiber of the modification pS : ZS ! Zs is equal to
p�1
S ðosÞ ¼ 6

t AS; t
�
Hs

� Ot (see Proposition page 199, [14]). Any non empty set I H
s4VM defines an integral polyhedron in MR as the convex hull of the set
6

a A I aþ s4. We denote this polyhedron by NsðIÞ or by NðIÞ if the cone s is
clear from the context. The face of NðIÞ determined by h A s is the set Fh :¼
fv A NðIÞ=hh; vi ¼ inf v 0 ANðIÞhh; v

0ig. All faces of NðIÞ are of this form, the
compact faces are defined by vectors in s

�
. The dual Newton diagram SðIÞ

associated to NðIÞ is the subdivision of s formed by the cones sðFÞ :¼ fh A
s=hh; vi ¼ inf v 0 ANðIÞhh; v

0i; Ev A Fg, for F running through the faces of NðIÞ.
If S ¼ SðIÞ, the modification pS : ZS ! Zs is the normalized blowing up of Zs

centered at the monomial ideal defined by I in C½s4VM � (see [17], Chapter I,
section 2). The support of a series f ¼

P
cuX

u in C½½s4VM �� is the set of ex-
ponents of monomials with non zero coe‰cient. The Newton polyhedron NðfÞ is
the integral polyhedron associated to the support of f. If h A s we denote by fjh
the symbolic restriction fjh :¼

P
u AFVM cuX

u of f to the face F determined by h.

2 Quasi-ordinary hypersurface singularities

A germ of algebroid hypersurface ðS; 0ÞH ðCdþ1; 0Þ is quasi-ordinary if there
exists a finite morphism ðS; 0Þ ! ðCd ; 0Þ (called a quasi-ordinary projection) such
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that the discriminant locus is contained (germ-wise) in a normal crossing divisor.
In suitable coordinates depending on this projection, the hypersurface ðS; 0Þ has
an equation f ¼ 0, where f A C½½X ��½Y � is a quasi-ordinary polynomial: a Weier-
strass polynomial with discriminant DY f of the form DY f ¼ X de, where e is a
unit in the ring C½½X �� of formal power series in the variables X ¼ ðX1; . . . ;XdÞ
and d A Zd

b0. We will suppose from now on that the germ ðS; 0Þ is analy-
tically irreducible at the origin, i.e., the polynomial f is irreducible. The Jung-
Abhyankar theorem guarantees that the roots of f , the associated quasi-ordinary
branches, are fractional power series in the ring C½½X 1=m�� for some m A Zb0, (see

[1]). If the series fzðlÞgdeg f
l¼1 HC½½X 1=m�� are the roots of f , the discriminant of f

is equal to DY f ¼
Q

i0jðz
ðiÞ � zð jÞÞ hence each factor zðtÞ � zðrÞ is of the form a

monomial times a unit in C½½X 1=m��. These monomials (resp. their exponents)
are called characteristic or distinguished. Since the polynomial f is irreducible,
we can identify the analytic algebra of the germ ðS; 0Þ with the ring C½½X ��½z�,
for z any fixed quasi-ordinary branch z parametrizing ðS; 0Þ. The character-
istic exponents l1; . . . ; lg of f can be labeled in such a way that l1 a � � �a lg
coordinate-wise (see Lemma 5.6 [19]).

We denote the lattice Zd by M and by Mj the lattice Zd þ
P

li<ljþ1
Zli, for

j ¼ 1; . . . ; g with the convention lgþ1 ¼ þy; the index nj of the lattice Mj�1 in
Mj non zero, for j ¼ 1; . . . ; g (see [12], [13] and [19]). We denote by N (resp. by
Nj) the dual lattice of M (resp. of Mj, for j ¼ 1; . . . ; g) and by rHNR the cone
spanned by the dual basis of the canonical basis of M. With these notations we
have C½½X �� ¼ C½½r4 VM ��. Since the exponents of the quasi-ordinary branch z
belong to the semigroup r4VMg we obtain a ring extension C½½r4VM ��½z� !
C½½r4VMg�� which is the inclusion in the integral closure (see Proposition 14,
[13]). Geometrically, the germ of toric variety ðZr;Ng

; orÞ is the normalization
ðS; 0Þ of ðS; 0Þ; more generally the normalization of a germ of quasi-ordinary
singularity, non necessarily hypersurface, is a toric singularity (see [25]). In our
case, the monomial ideal mr4VMg

:¼ ðr4VMg � f0gÞC½½r4VMg�� is the maximal
ideal of the closed point 0 A S.

3 The invariance of the semigroups

Let ðX ; 0Þ be an analytically irreducible algebroid germ. Denote by p :
ðX ; 0Þ ! ðX ; 0Þ the normalization map and by b : ðB;EÞ ! ðX ; 0Þ the normalized
blow up centered at 0 A X . If D is any irreducible component of the exceptional
divisor E of the modification b we denote by nD the associated divisorial val-
uation of the field of fractions K of the analytic algebra R of the germ ðX ; 0Þ.
We have that nDðhÞ is equal to the vanishing order of h � b at the component D,
for h A K � f0g. The valuation nD defines a filtration of R with ideals pk ¼
ff A R=nDðfÞb kg for kb 0. We denote by grDðX ; 0Þ the associated graded
ring grDðX ; 0Þ :¼ 0

k AZb0
pk=pkþ1. The graded ideal mDðX ; 0Þ :¼ 0

k AZb1
pk=

pkþ1 is maximal and the pair ðgrDðX ; 0Þ;mDðX ; 0ÞÞ depends only on the analytic
algebra R and the exceptional divisor D.
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Suppose that ðX ; 0Þ is the germ of an a‰ne toric variety Zr;N at its zero
dimensional orbit (which is assumed to exists). The normalized blow up of the
germ ðX ; 0Þ ¼ ðZr;N ; orÞ centered at 0 ¼ or is the toric modification pS : ZS !
Zr;N where S ¼ Sðr4VM � f0gÞ. By definition, the modification pS is an iso-
morphism outside the origin or A Zr;N hence the exceptional divisor E is equal to
the exceptional fiber p�1

S ðorÞ. The irreducible components of this divisor are of
the form DðtÞ, where t runs through the edges of S with t

� H r
�
. There exists at

least one such edge t, we fix it and we denote DðtÞ by D and by n the integral
lattice vector of N in the edge t. The following property of the divisorial valua-
tion associated to a toric divisor is used by Gonzalez-Sprinberg and Bouvier in
the algebraic case (see [3] and [2]).

Lemma 3.1. If 00 f ¼
P

cuX
u A C½½r4VM �� then nDðfÞ ¼ mincu00hn; ui.

Proof. Let v denote any vertex of the compact face F defined by n on the
polyhedron NðfÞ. We denote by fjn the symbolic restriction of f to F (see
section 1). We have that f factors by X v in a neighborhood of the divisor D
in the open chart Zt of ZS. Hence on the chart Zt, we have that X�vf ¼
X�vfjn þ r, where the terms in r have exponents t4� t?. It follows that r vanish
on Ot and then on D. Since X�vfjn is a polynomial in C½t? VM � with non zero
constant term we obtain that nDðX�vfjnÞ ¼ 0. We deduce that nDðfÞ ¼ nDðfjnÞ ¼
nDðX vÞ which is equal to hn; vi ¼ mincu00hn; ui (see [7], page 61). r

3.1 The toric case
Suppose that ðX ; 0Þ is the germ of a non necessarily normal a‰ne toric

variety ZL at its zero orbit 0 (which is assumed to exist). The normalization ZL

is the a‰ne toric variety ZL ¼ Zr;N , where N is the dual lattice of Lþ ð�LÞ and

rHNR is the dual cone of Rb0L. We consider the graduation C½L�ðnÞ of the
algebra C½L�, with homogeneous terms Hk :¼ 0

u AL;hn;ui¼k
CX u, for k A Zb0

induced by the primitive vector n A t
�

associated to the exceptional divisor D.
We denote by m

ðnÞ
L the maximal graded ideal m

ðnÞ
L :¼ 0

kb1
Hk and by mL ¼

ðL� f0gÞC½L� the same ideal without the graded structure.

Proposition 3.2. The pair ðgrDðZL; 0Þ;mDðZL; 0ÞÞ is isomorphic to
ðC½L�ðnÞ;mðnÞ

L ÞÞ.

Proof. The analytic algebra of the algebroid germ ðX ; 0Þ is isomorphic to
C-algebra C½½L��. It is su‰cient to prove that the map pk=pkþ1 ! Hk given by
f A C½½L��, f A pk,

00 f mod pkþ1 7! fjn; and 0 mod pkþ1 7! 0; ð1Þ
is well defined and extends to a graded isomorphism grDðZL; 0Þ ! C½L�ðnÞ. See
section 1 for the definition of the symbolic restriction fjn.

We have that if 00 f A C½½L�� and if h A r
�

the symbolic restriction fjh
belongs to C½L�, conversely given any u A L there exists f ¼ X u A C½½L�� such
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that fjh ¼ X u. It follows that Hk � f0g is equal to ffjn=f A pkjpkþ1g (where
pkjpkþ1 ¼ ff A pk=f B pkþ1g). If 00 f, f 0 A pkjpkþ1 we have that fjn ¼ f 0

jn if and
only if f ¼ f 0 mod pkþ1 since the terms which may di¤er on f and f 0, viewed in
C½½L��, have exponents of the form, u with hn; ui > k. We obtain that the map
pk=pkþ1 ! Hk is an isomorphism of vector spaces over C ¼ H0 ¼ p0=p1. The
face of the Newton polyhedron NðfcÞ defined by n is equal to the Minkowski
sum of the faces defined by n on the polyhedra NðfÞ and NðcÞ (see [6], page
105). We deduce from this that ðfcÞjn ¼ fjncjn and therefore that the map
grDðZL; 0Þ ! C½L�ðnÞ is a graded isomorphism. r

We deduce from this result a local version of the isomorphism problem for
germs of toric varieties (see [15] for the a‰ne case). A topological proof of the
following corollary has been given by Popescu-Pampu in [25] in the case of
normal simplicial toric singularities.

Corollary 3.3. Let ZL and ZL0
be two non necessarily normal a‰ne toric

varieties with zero orbits 0 and 0 0 respectively. If there exists an isomorphism of
algebroid germs ðZL; 0ÞG ðZL0

; 0 0Þ the semigroups L and L0 are isomorphic.

Proof. For any component D of the exceptional divisor E the pair ob-
tained from ðgrDðZL; 0Þ;mDðZL; 0ÞÞ by forgetting the graduation is isomorphic to
ðC½L�;mLÞ, thus it does not depend on the divisor D. We obtain isomorphic
pairs of C-algebra and maximal ideal ðC½L�;mLÞ and ðC½L0�;mL0 Þ. We apply
Gubeladze’s theorem 2.1 case (a) [15], to deduce the existence of an isomorphism
of semigroups LGL0. r

3.2 The quasi-ordinary hypersurface case
We suppose now that ðX ; 0Þ is the germ of quasi-ordinary hypersurface

ðS; 0Þ. In [12] the semigroup G :¼ Zd
b0 þ g1Zb0 þ � � � þ ggZb0 H r4VMg where

g1 ¼ l1 and gjþ1 ¼ njgj þ ljþ1 � lj for j ¼ 1; . . . ; g� 1, is associated to a fixed
quasi-ordinary branch z parametrizing the quasi-ordinary hypersurface germ
ðS; 0Þ (see [11]) following the analogy to the case of plane curves (see [28]).
The zero dimensional orbit 0 of the a‰ne toric variety ZG corresponds to the
maximal ideal mG :¼ ðG� f0gÞC½G�. In [12] it is shown that the normalizations
of ðZG; 0Þ and ðS; 0Þ coincide. We have that ðX ; 0Þ ¼ ðZG; 0Þ ¼ ðZr;Ng

; orÞ, with
the notations of section 1 and 2.

Proposition 3.4. For any irreducible component D of the exceptional divisor
of the normalized blow up of ðX ; 0Þ centered at 0, the pairs of graded ring and
maximal graded ideal ðgrDðS; 0Þ;mDðS; 0ÞÞ and ðgrDðZG; 0Þ;mDðZG; 0ÞÞ are iso-
morphic.

Proof. An irreducible component D of the exceptional divisor of the nor-
malized blow up of ðX ; 0Þ centered at 0, corresponds to a primitive integral
vector n A Ng in the interior of the cone r. The analytic algebra of ðS; 0Þ is
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isomorphic to C½½r4VM ��½z�, for z a fixed quasi-ordinary branch parametrizing
ðS; 0Þ. We consider the graded ring C½G�ðnÞ. By proposition 3.2 it is su‰cient
to prove that the map pk=pkþ1 ! Hk given by formula (1) for f A C½½r4VM ��½z�,
f A pk, is well defined and extends to a graded isomorphism grDðS; 0Þ ! C½G�ðnÞ.

We have shown in [12] the following property by using some arithmetical
results on the semigroup G and their relation with certain Euclidean divisions of
polynomials with coe‰cients in C½½r4VM ��: if 00 f A C½½r4VM ��½z� and if h A r

�

the symbolic restriction fjh belongs to C½G�, conversely given any u A G there
exists f A C½½r4VM ��½z� such that fjh ¼ X u (see Proposition 2.16 [12] or Proposi-

tion 3.1 and Theorem 3.6 of [11]). This property, which generalizes a well-
known result on the semigroup of an analytically irreducible plane curve germ
(see Chapter 2, Théorème 3.9 [28]), allow us to proceed with the proof of the
statement exactly in the same way as in proposition 3.2. r

Corollary 3.5. If z and z 0 are two quasi-ordinary branches parametrizing
the germ ðS; 0Þ then there exists an isomorphism of the corresponding semigroups G
and G 0.

Proof. For any irreducible component D of the exceptional divisor of the
normalized blow-up of ðS; 0Þ, the pair of C-algebra and maximal ideal obtained
from ðgrDðS; 0Þ;mDðS; 0ÞÞ by forgetting the graduation does not depend on the
component D. Indeed, it is isomorphic to ðC½G�;mGÞ and to ðC½G 0�;mG 0 Þ by
propositions 3.2 and 3.4. We apply Gubeladze’s theorem 2.1 case (a) [15], to
deduce the existence of an isomorphism of semigroups GGG 0. r

Remark 1. Proposition 3.4 and corollary 3.5 extend to the case of toric
quasi-ordinary hypersurfaces in [13]. The arguments used in the proof of
proposition 3.4 above correspond to Proposition 31 Section 4.1 and Proposition
34 Section 4.2 in [13].
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