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A CLASS FUNCTION ON THE TORELLI GROUP
MASAAKI SUZUKI

Abstract

The Magnus representation of the Torelli group has been defined in virtue of Fox
derivation. The Torelli group is a significant subgroup of the mapping class group of a
surface. In this paper, we show some properties of the characteristic polynomials of
matrices obtained from the Magnus representation of the Torelli group, which is a class
function on the Torelli group.

1. Introduction

Let X, be an oriented surface obtained from a closed surface X, of genus
g by removing an open disk. We denote by .#,; the mapping class group of
Y,.1 relative to the boundary, that is the group of path components of the group
of orientation preserving diffeomorphisms of X, ; which restrict to the identity on
the boundary. Let .7 ; be the Torelli group of %41, namely the normal sub-
group of .#, consisting of all the elements which act on the first homology
group of X, trivially.

We call the following mapping r; the Magnus representation of the Torelli

group:
r g1 — GL(2g; Z[H])

where H = H(X,1;Z). We will consider the characteristic polynomials of
matrices obtained from the Magnus representation of the Torelli group. That is,
we will investigate

R(p) = det(ihy — r1(p))

for ¢ € 4, 1, where I, is the unit matrix and /A is an indeterminate. Then R is a
class function on .4 ;.

We will prove some properties of this class function R. For example, we
will show that the restriction of R to .4  is non-trivial, where | is the normal
subgroup of .% 1 generated by all the Dehn twists along bounding simple closed
curves.

Received February 28, 2003; revised June 4, 2003.

304



A CLASS FUNCTION ON THE TORELLI GROUP 305

2. Definition of the Magnus representation of the Torelli group

In this section, we recall the definition of the Magnus representation of the
Torelli group.

Let F, be a free group of rank n with free basis zj,...,z,. The following
simple derivation on the integral group ring Z[F,] is the main ingredient of Fox
derivation.

DEerFINITION 2.1 (Fox derivation). The Fox derivation is defined by the
following equations:

(7 X r X 1/2)(ei—1
oy G5 = Db i), =
i
0 ow
P (Z aww) = Zawa, wekF, a,eZ.
0Zj j
We fix a system of generators oy, ...,a,, f,...,f, of the free group I) =
m1(Zy,1) as shown in Figure 1. Let us simply write p,...,7,, for them.

Moreover, we obtain a system of symplectic basis x;, y; of H by abelianizing o;, f3;
respectively.

DerINITION 2.2, We call the mapping

r: My — GL(2g; Z[To))

(0
0y; i

the Magnus representation for the mapping class group. Here 0/dy; is Fox
derivation and ~: Z[T[y] 3 Y ay — Y ay~! e Z[I).

f

FIGURE 1. Generators of I}

This mapping r is a crossed homomorphism. The product formula below
follows from the chain rule of Fox derivation.
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ProposITION 2.3 ([M1]). For any two elements ¢\ € My 1, we have

r(py) = r(p) - 'r(¥)
where ?r(\y) denotes the matrix obtained from r(¥) by applying the automorphism
¢ : ZTy] — Z[Ty] on each entry.

We denote by r® the composition of the mapping r by abelianizing a : Z[I)] —
Z[H] the coefficients. If we consider elements of the Torelli group, we write r; for

r®.  Thatis to say, we get a genuine representation r| by restricting this mapping r® to

the Torelli group:
r 951 — GL(2¢; Z[H]).

3. Characteristic polynomials

In this section, we investigate characteristic polynomials of the Magnus
matrices. Here the Magnus matrix means the image of r; for a mapping
class. We define

R(p) = det(Ahy — r1(p))
for p € .4 1. In particular, for any elements ¢, 9, € .4, we have

R(pyp105") = R(py)

so that R is constant in the conjugacy classes of .7 1, that is, R is a class function
on .4 1.

dy,

FIGURE 3. Bounding pair dy,d}
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The curve ¢, shown in Figure 2 is a bounding simple closed curve, where
bounding means 0-homologous. Let ¢, denote the BSCC map which is the
Dehn twist along a bounding simple closed curve c;. We denote by . the
product of the right Dehn twist along a simple closed curve di and the left Dehn
twist along a simple closed curve ¢, which is disjoint and homologous to di as
shown in Figure 3. We call y;, to be the BP map. It is known that the Torelli
group .% ; is normally generated in .#,; by y, (see [J] for details).

First, we compute the Magnus matrices of BSCC map ¢, and BP map y,
directly. Since

i (o)) = {[ﬁkﬂxk]-.-[ﬂ],dl]dj[dl,ﬁl]...[ak’ﬁk] l<j<k

ol k< ]
and
B - [BrooalBilon, i) fows Bi] 1< <k
(ok(ﬂj) - ﬁj k<] 3

these free differential calculuses are

Brs o] - [ﬁi+1,°‘i+1]ﬁi
- [ﬁkv (xk] T [ﬁiv ai]
+ 5i~,j[ﬁka (xk] T [ﬂla o‘l]
(g1 (%)) _ + B ou] -+ [Bryon]eylon, B -+ o1, i)
0 — B ou - [Bryoloylon, By] - -+ [otim1, By ]oufBiot
1<j<k/ i<k
0 1<j<k k<i<y
5,‘,]‘ k < i
(B> o] -+ [Bir %1 ]B;
=B o] -+ [ By ]
+[ﬂk7ak] [ﬁ]?“l]ﬂ [[leﬂl] [fxi—lvﬁi—l]
Q@%@D: =B o] -+ [Bry ol Bilon, Bi] -+ lorimr, BiyJouidti
l<j<k/ i<k
0 1<j<k k<i<yg
0 k<j
[ﬁkv ak] T [ﬂi+laai+l]
- [ﬁkaak] [ﬁ,+1,ai+l]ﬁ OCZ}B_
Kl o +[ﬁk5ak] [ﬂhal]al[alvﬁl] [OC, laﬁifl]ai
%{_/)): _[ﬁlwock] [ﬂhal]al[alvﬂl] [ ﬁ]
1<j<k i<k
0 1<j<k k<i<yg
0 k<j
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[Bres o] -+ [Bigr 2i] B
= [Bis o] -+ [Big1s w1 [Bioil;
+ 0B ] -+ [y ou]
a(wk(ﬁi)) — + [Bres o] -+ [ﬂl»“l]ﬁ [oer, Bl -+ otie1, By Jou
oB; — B o] -+ [Bry ol Bjloa, Bl - - - [oui, B
l<j<k i<k
0 I1<j<k k<i<y
(5,‘7/ k< ]
Then the Magnus matrix of genus k& BSCC map ¢, is
ri(or) = Dy + aibx
where
a="y -1y -10--01-X--1-X 0---0)
g—k times g—k times

bi=(1-%-1-%0--01—7---1=3 0---0).

g—k times g—k times
Similarly, since
e (o)
[oet, B -+ (o, Bl 1 Brr @1 ot i1 B Bt [Brs o] -+ [Broon] 1< j<k
= Qs Bil - o, il j=k+1
o k+1< ]
and
Vi (B))
_ (o, B1] - - [0tk Bilotes 1 By Bt B0 1 Br a0kt [Brs o] -+ [Bryon] 1< j <k
B k<j

the Magnus matrix of genus & BP map y, is

o= (5 o)

where
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Jep X1

XY,
X1 Y
0

Yin

Y1 Y

By =1 Y Y4

Bs

B, =

0

0
-X1Xi
—X1X;

X 14X
0

0

Jep1 — XN

XY
X1 N
0

0

X, Y

Vi1 T XY Yi
1
0

X Yi
0

0
YiYv O

Y. Vi
YiYin

o

Here X;=1-x=1-x1, Yi=1-y3,=1-y;L.
Then straightforward calculations show the following results about the

characteristic polynomials of them.

LemMma 3.1. Let ¢,y be as above.
1. det(ihy — ri(py)) = (A—1)%
2. de'[(/llzg —r(Yy)) =(A-

DRECET RS

Yi

o O

o

0

[« JNEI

Then we have

309
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We remark that the characteristic polynomial R is a class function not
on .#4, but on .% . More precisely,

PRrROPOSITION 3.2. For any g9 e d; and f € My,

R(fof™") = /(R(9))
where we also denote by f the mapping Z[/l,xlil, . .,xgil,ylil, ce ygil] —

Z S )™ SO S0 S ).
Proof. First, we note that /r(f~!) = r(f)”", because we have

Ly =r(ff~") =r(f)-r(f).

Then we get
R(fof ") = det(hy —ri(fof "))
= det(hy —r'(f) - 'ri(p) - 7Pr*(f 7))
= det(Lyy —r*(f) - Tri(p) - r° (/)7
= det(by — 'r1(9))
= f(det(ly — ri(9)))
= [(R(p)) =

Any BSCC map ¢ can be written as ¢ = fg, /!, where f € ./, and ¢ is
the Dehn twist along a simple closed curve c¢; as before. According to Lemma
3.1, we deduce the following corollary.

CorROLLARY 3.3. For any BSCC map ¢, we have
R(p) = (2 - 1)*.
For any BSCC map ¢, the characteristic polynomial of ri(p) is trivial.

However, the characteristic polynomial of a product of two BSCC maps is not
always trivial. For example, we can show that

R(ppippy ) = (= DY + 20— ¥ (n1 = 24 ) (02 = 2+ 7).

Here v, is the Dehn twist along n; as shown in Figure 4. This means that the
restriction of R to . is non-trivial, where .#; ; is the normal subgroup of .7, |
generated by all the BSCC maps.

PrOPOSITION 3.4, For any € 9,1, R has a common factor (A — )%

Proof. From our previous paper [S2], there exsists a non-singular matrix P
such that for any element € .7, ;
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1 * *
0
—1 _ .
PrniP=1sl ) |
0j0 - o]l

Here pp is a (2g — 2)-dimensional irreducible representation of .7 | (see [S2] for
details). This means that the assertion holds. |

Moreover, from our previous paper [S2], we have

pp(te) = by-2,

where 7, be the Dehn twist along a simple closed curve on X, ; which is parallel
to the boundary. This equality says that R factors through .7, .. Here .4, is
the Torelli group of X, relative to the base point * € X,.

4. The relation between R(i) and R(} ')
The relation between R(y) and R(y ') is given by the following formula.

ProPOSITION 4.1.  For € 4, 1, we have

where =1 x; v+ x;7 1,y pil

To prove Proposition 4.1, we recall that the Magnus representation of the
Torelli group is symplectic.

ProposITION 4.2 (Morita [M1]). There exists a matrix J € GL(2g; Z[H))
such that for any € 9,1 we have the equality

() In () =J.

Here J is defined as follows:
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Ji J
7 :< 1 2)
J3 Jy
1— X1

(1—)62)(1—)_61) 1 —x;
J = (I—X3)(1—)_Cl) (1—)63)(1—)_62) 1 —x3

where

(I=x)(1=x1) (1-x)(1-%) - L=x

X1)1
(1 =x2)(1 =) 27,

S=| A=x3)0=p) (1=x3)(1=3) x37;

(I=x)(1=7) (I=x9)(1=3) - XgVy
I —Xx1—
(I=»)1-x1) 1-X-»
Ji=| =)0 =x1) (I1-p)(1-%) 1-%-

(1 =y (I =x1) (1 =yy)(1 = %) I =X -y

1 -y
(1=y)(1-y) 11—y,

Jo=| U=y)(T=y) (A=p3)(1=53) 1-7;

(I=y)d=y) (T=y)A=3) - 1=y,
Proof of Proposition 4.1. By Proposition 4.2, we get
i) = In@) T =an I

Hence we conclude
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Corollary 3.3 states that the determinant of the Magnus matrix for any
BSCC map is one. Because the group #;; is generated by BSCC maps,
det ri(p) =1 for any g€ #; . Then we deduce the following.

COROLLARY 4.3. Let ¢ be an element of A, 1. Suppose that the charac-
teristic polynomial is written as

R(p) = 2% + piiX "+ ppd 7+t pagid+ 1,
where pi € Z[H], then py = prg—x. In particular, we have p, = p,.

Moreover, in the case of genus 2, for any ¢ € 45| the variables p; can be
reduced to just one. That is, we have

R(p)= (=14 +pi+1)

by Proposition 3.4. The above equation and Corollary 4.3 yield the following
statement.

COROLLARY 4.4. For any ¢ € > we have
R(p)=R(p").

For higher genera, this statement does not hold. For example, an explicit
calculation shows that

R(py2ovipvy 25 vadavio)vi 251y ) # R((pydavign vy 25 vadovipvy 25 vy D 7h.

Here ¢{, 12, v, are the Dehn twists along ¢1, l», v» as shown in Figure 5 and Figure
4. However, for a product of two BSCC maps, we arrive at the following.

FIGURE 5. bounding simple closed curve ¢/

THEOREM 4.5. Let ¢(,¢p, be BSCC maps. Then we have
-1
R(p1p2) = R((91902) )-

We provide the following to prove Theorem 4.5.
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LEMMA 4.6. Let uj,uy be n-dimensional column vectors and vy,v; n-
dimensional row vectors. Then we get

det(¢l, + ujv) + upvy — UV ULDY)

= det(t],, — U] — Uy — ulvluzvz) + 2(tr ujvy + tr uzvz)t"*l.

If we write My, M, for —ujvy — upvy + u1v1Uv2, ULV + UpUy + UV UV TE-
spectively, then the above equality can be stated as

det(tl, — M) = det(tl, — M>) + 2(tr uyo; + tr uyoy)" L.
Thus we will prove the above equation.
Proof. The characteristic polynomial of matrix M; = (mll j) is given as
det(tl, — M) ="+ cjt" "+ 4" 24+l i+l (1=1,2)

where

i1, i i1, ik
1 /
] o k 2,11 1,1 12,1
o =(=1) ) . o e (4.1)
1<ij<ib<-<ix<n . . .
/ 1 /
My o My 0 My

Since the rank of M; is less than 3, then
c§:c£:-~:c,l,:0.

This means that the difference between the characteristic polynomial of M; and
that of M, appears only in terms of *~! and #"~2. First, the coefficient of "~ ! is
the difference between tr M| and tr M;:

(el — )" = (—tr My +tr My)t"™" = 2(tr uyvy + tr upva)t"™ 1.

Second, we compute the term of "~2. We set

w="(c1 ), w="(d-dy), vi=(er-e), v2=(fi"fa).
The (i, j)-components of M; and M, are

m,{_i = —C,'€j — dlfj‘ + AC,’ iz I’I/llz/ = CiEj + dl]; + Acifj

where 4 =3, exdr. Because of the equation (4.1), we get the following.
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1 1 2 2

2o mi; M mi; m;
2T 6= E: ml ml Z m2. m?,
I<i<j<n| i JsJ I<i<j<mn| 71 5
_ 1 1 1 1 2 2 2 2
= > (miml;—miml—mim?; 4 mim?)
1<i<j<n
= Y {(—ce—difi + Acif)(—ce — d fy + Ay )
1<i<j<n

— (—ciej — difi + Acifj)(—¢ei — di fi + Ac; fi)
— (cie; +difi + Acifi)(cje; + difj + Aci f;)
+ (cie + dif + Acifj)(cjer + difi + Ac; fi)}
=0
This means that the coefficient of "2 is zero and completes the proof. |
Proof of Theorem 4.5. The Magnus matrix of ¢; which is any BSCC map
can be written as
ri(g) = by +uv; i=1,2
where u; is a n-dimensional column vector and v; is a n-dimensional row vector.
Corollary 3.3 states that tru;u; = vu; equals zero. This deduces ri(¢p;!) =
by — ujv;. Therefore we have
R(gy'or') = R(oi'9y")
=det(Aly — (hy — u1v1)(fry — ur12))
=det((A — 1)y + ujv1 + ua02 — ujv1U202)
=det((A — 1)by —ujv1 —upvy — ujviurv2) Because of Lemma 4.6
=det(Aly — (Ly + u1v1)(Lrg + us12))
= R(p,9,)
This completes the proof. n

In general, we can not decide how many BSCC maps are producted for
a given element of #; ;. However, Corollary 3.3 and Theorem 4.5 help to
determine the number. More precisely, we have the following criterion.

COROLLARY 4.7. First, for an element ¢ of 1, if the characteristic poly-
nomial is not trivial, then the element ¢ can not be written as just one BSCC map.
Second, if the characteristic polynomial of ri(¢) and that of r| ((p)_1 are not the
same, then the element ¢ can neither be written as one BSCC map nor a product of
two BSCC maps.
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