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Abstract

In this article E. Cartan’s theorem about the existence of (local) totally geodesic
submanifolds with a prescribed tangent plane is generalized to manifolds which are
equipped only with a linear connection; there is also given a global version of the
theorem. The results are used for a short and geometric proof of the Theorem of
Cartan-Ambrose-Hicks, and more generally of a generalization which is concerned with
the existence of affine maps of arbitrary rank.

Manifolds with a linear connection can be regarded as generalizations of
affine spaces (in the sense of linear algebra). Therefore, we will shortly call them
affine manifolds. The morphisms of the category of affine manifolds are the
affine maps, as they are defined in [KN] I, p. 225; and in this spirit it is con-
venient to speak of affine submanifolds instead of auto-parallel ones; see [KN] II.

As affine submanifolds and affine maps essentially are determined by their
I-jet at one point, it is a natural question to ask for criteria which guarantee the
local and global existence of affine submanifolds resp. affine maps correspond-
ing to given linear initial data at one point. In riemannian geometry these local
questions where partially already treated by E. Cartan in [C]. His work was
continued by W. Ambrose, N. J. Hicks and R. Hermann, see [A, Hil, Hi2, He].
The most important result in this context is known as the Theorem of Cartan-
Ambrose-Hicks which states the global equivalence of simply connected, geo-
desically complete affine manifolds under suitable hypotheses; see [Hil, W]|. It
is a special case of Theorem 4 of this article, in which the dimension of the
manifolds may be different, and the global affine map we look for may be neither
an immersion nor a submersion. Theorem 2 is a local version of this result. In
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both cases the affine maps, we are looking for, are constructed via their graphs
which have to be affine submanifolds of the affine product space of the mani-
folds being involved. In other terms, we derive these results from the local resp.
global existence theorem for affine submanifolds (Theorem 1 and Theorem 3).
As is well known, global theorems of this kind are in general obtained by gluing
together local solutions, mostly a tedious work. We avoid it by using an idea of
K. Tsukada from his paper [T] on totally geodesic submanifolds of riemannian
spaces, where these submanifolds are obtained via integral manifolds of a distri-
bution £ which is defined on the GraBmann bundle of the ambient space and
which in general is not completely integrable. Theorem 5 shed more light upon
this distribution by characterizing those “points” where & is involutive. By this
result we get a second very short proof of the “smooth and handy” version of
Theorem 1 which, in fact, is the basis for Theorems 2-4.

It should be mentioned that Theorems 1-4 can be found also in [Hi2].
But Hicks’ existence theorems for affine maps rely on additional assumptions
which are shown here to be unnecessary; moreover, his proof of the local exis-
tence theorem for affine submanifolds remains incomplete as an example below
shows. The essential tool which fills the latter gap is Lemma 2 of this article.
In addition, it opens the possibility for this very geometric treatment.

1. Preliminaries and notations

In this article (M,V) and (M,V) denote two connected, affine mani-
folds with torsion and curvature tensor 7 and R resp. T and R and with the
exponential map exp resp. exp. We put m := dim M. Furthermore, let po e M
and p, € M be two fixed points. We are interested in the existence of an affine
submanifold N through po with a prescribed tangent space 7,,N and the exis-
tence of an affine map f from a neighbourhood U = U(p,) into M mapping py
to p, with a prescribed tangent map T, f : T,,M — TﬁoM . For the formulation
of the results the following notions are important.

DerFINITION 1. Let points p e M, peM, a linear subspace V c M
and a linear map A : T,M — T;M be given. We say that V is torsion and
curvature invariant iff V satisfies T(V,V) < V and R(V,V)V < V, and that 4

preserves the torsion and curvature tensor fields iff A(T(u,v)) = T (Au, Av) and

A(R(u,v)w) = R(Au, Av)Aw for all u,v,w e T,M. Furthermore, we put V(4) :=
{(v,Av) [ve T,M} = T(, (M x M).

Let us recall the definition of an affine map f: M — M: It is a C* map
whose differential commutes with covariant differentiation’, i.e., Vy £, Y = £,Vy Y.
Consequently, the image f oy of each geodesic y of M is a geodesic of M, and
the image f.Z of a parallel vector field Z along a curve o :J — M is a parallel

'For the covariant differentiation of vector fields along maps see [P] p. 36.
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vector field along f o a. Therefore, the parallel translation and the differential of
f commute in the following sense:

15}

(1) (T f) © <|| oc) = (Tfooc> o (Tyu)f) for all t,15€J.

51

Furthermore, for each point p € M the differential 7,/ preserves the torsion and
curvature tensor fields. It should be mentioned that, conversely, the affinity of f
follows from (1).

We say that an (immersed) submanifold N of (M,V) is affine, if it
can be equipped with a covariant derivative V" such that the inclusion map
(N,VY) — (M,V) becomes affine, in other terms, if VyY € ¥(N) for all X, Y e
X(N). Because of (1), a submanifold N is affine iff its tangent bundle TN is
invariant under parallel translation in M along curves «:J — N. If N is an
affine submanifold, then each geodesic y of N is also a geodesic of M (in other
words, affine submanifolds are totally geodesic), and each tangent space T,N is
torsion and curvature invariant. As mentioned in the introduction, in [KN] II
affine submanifolds are said to be auto-parallel.

Obviously the image f(N) of every injective affine immersion f : N — M is
an affine submanifold of M. Therefore, affine immersions represent “affine sub-
manifolds with self-intersections”. In a riemannian manifold the affine subman-
ifolds are exactly the totally geodesic ones, but in affine manifolds this equiv-
alence is not true as is demonstrated by the following example due to E. Cartan:
Let V° be the canonical covariant derivative in R® and denote by v x w the cross
product in this space. Then VyY = VY 4+ X x Y defines another linear connec-
tion on R*, and in the affine manifold (R*, V) the (usual) planes are totally geo-
desic, but not affine submanifolds; notice that the geodesics of (R*,V) are again
the straight lines.

As we have seen, affine maps and affine submanifolds are related to each
other very closely. In the following Proposition 1 we will describe a further
relation; for that we remind the reader to the affine product M* := M x M of
the affine manifolds M and M: It is the C* product manifold with the unique
covariant derivative V* such that the canonical projections pr: M* — M and
pr: M* — M are affine maps. The geodesics of (M*,V*) are the curves (7,7) :
J — M* where y:J — M and y:J — M are geodesics of M resp. M; and its
torsion and curvature tensors 7 resp. R* are described by 7™ ((u,u), (v,0)) =
(T(u,v), T(a,0)) and R*((u,u), (v,?))(w,w) = (R(u,v)w, R(&, 0)W).

ProposITION 1. _

(a) A4 linear map A : T,M — T;M preserves the torsion and curvature tensor
fields if and only if V(A) is torsion and curvature invariant with respect to
VX

(b) A C*-map f: U — M from an open subset U = M into M is affine if
and only if its graph is an affine submanifold of the affine product M*.

The simple proof is left to the reader.
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2. Local Theorems

At first we are interested in the existence of a (local) affine submanifold
fitting to given initial data (pg, V), where p¢ is a point of M and V a linear
subspace of T,, M. For its construction we choose a normal neighbourhood
exp,, : U T — U of pgin M; here UT is a star shaped neighbourhood of 0 in
T,,M on which the exponential map is a diffeomorphism into M.

Let us fix the following notations: For every ue T, M let J, denote
the interval {te R|me U"} and y,:J, — M the geodesic ¢ — exp, (). Fur-
thermore, for every ue U let us abbreviate p(u) := exp, (u), 7, := ||é y, the
parallel translation along y, from 7, M to T,,M and V,:=1,(V) < Ty,M.
As exp, (VNUT) is the union |J,_; 7,(Ju), we call the regular submanifold

exp,, (VNU T) the geodesic umbrella associated to the data (po, V).

THEOREM 1. In the above situation the geodesic umbrella N :=
exp,, (V' N UT) is an affine submanifold of M if and only if for every ue VO UT
one has®

(2) T(.(1), Vi) =V and  R(7,(1), Vi)V < Ve

Of course, condition (2) is satisfied, if 'V, is torsion and curvature invariant.

The riemannian version of the theorem is attributed to E. Cartan. The
above version can be found in [Hi2, Theorem 9], but his proof is incomplete as
we indicate after the proof of Theorem 1.

If the geodesic umbrella N is affine, its construction implies V, = T,,)N
for every ue VN UT and therefore, the linear subspaces V, satisfy (2). Thus,
it remains to prove that (2) implies the affinity of the umbrella N. This step is
based on two lemmas, the first of which is also used by Hicks (see [Hi2,
Proposition 2J).

LemMA 1. For every ue UT\{0} and ve T, M the infinitesimal variation
YUt F.(0/0s), of the geodesic variation F : (s 1) — exp, (1 (u+sv)) =
Vurso (1) 18 the Jacobi field along the geodesic y, satisfying the initial data Y"(0) =0
and (VaY")(0) = v.

Remember that in (M,V) the Jacobi fields along a geodesic y are the solutions
of the differential equation

see [KN] II, p. 63. It should also be mentioned that 0 denotes the canonical
unit vector field of R.

LemMmA 2. Let be given a vector ue UT\{0}, a Jacobi field Y along y,

2Notice that the single vectors in (2) form the radial vector field p(u) — 7,(1).
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satisfying Y(0) =0 and a vector field X € X(U), which is parallel along every
geodesic y, (ve T,yM). Then the vector field VyX :t— VyX satisfies the dif-
ferential equation

VoVyX = R(yua Y)(XO yu)'
Proof. 1If we put v:=(V,Y)(0) and define F and Y’ as in Lemma 1, then
we have Y = Y, hence
VyX = (Vajas(X 0 F))l (0,

Because of X o F(s,1) = X oy,,,(f) the parallelity of X along the geodesic rays
implies

Vojar(X o F)|, ) = Vo (t— X o F(s,1)) = 0.
Therefore, the structure equation for the curvature tensor (see [P] p. 83) gives

(VoVy X)(t) = (VosaVosas(X o F))l .1

0 0
= (R(F*at’F* 6s> (XoF) +Va/5sva/ar(X0F)>

(0,1
= R(3,(1), Y(1))(X 07,(1)). =

Proof for Theorem 1 “<«<. At the moment we fix three vectors u,v,we V'
with e UT\{0}, use the Jacobi field Y’ and the map F from Lemma 1.
Because of u + sv e V' the image of the map F lies in the geodesic umbrella N.
Therefore, Lemma 1 shows

4) VieJ,: Y'(t)e T, yN.

In the following we use the development z:J, — T, M of vector fields Z along
7. in the sense of Cartan given by z(¢) := 7, Z(z), which satisfies

(5) Vie J: (VoZ)(1) = tu(2'(1)).
Besides, for € J, we also define the tensors 7,(¢) and R,() on T,,M by
Tu(0)(x) = 1/ T (7, (1), tu(x)  and Ry(0)(x, ») 1= 7, R (1), 70a(x))Tua()

for all x,ye T,,M. According to condition (2) the linear subspace V' is invari-
ant with respect to these tensors, i.e.:

(6) T,()(V)cV and Ru(0)(V,V)c V.

If now y denotes the development of the Jacobi field Y?, then the Jacobi
equation (3) implies that y is a solution of the linear differential equation

Y1) = Ru(D)(0(2),0) + (Tu())' (1)
=0,

with the initial values y(0) »'(0) =ve V. Combining this with (6) we

obtain
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(7) y(J,) =V, hence Vied,: Y°(t) € V.

Now let us vary the vector v: As our consideration takes place in the normal
neighbourhood U, there are no conjugate points along y, : J, — U; combining
(4) and (7) we therefore obtain

u = u or €very ue .
8 Vy=TyyN f yue VNU"

We continue the argumentation with the Jacobi field Y* and apply formula (5)
to the development z of the vector field Z:7+— Vy. X", where X" denotes
that radially parallel vector field with X" (pg) = w. According to Lemma 2 we
get

2'(1) = Ru(0)(¥(1), w).
Since z(0) =0 € V (because Y"(0) =0 and therefore Z(0) =0), we obtain from
(7) and (8)
z(Ju) =V, hence in particular Vy. .\ X" € V,, = Ty, N.

Repeating the argument of the absense of conjugate points, we find
Vx(X™|N) € X(N) for every X € X(N). If now (wy,...,w,) is a basis of V, then
(X"'N,...,X"|N) is a frame field of the tangent bundle TN, and therefore, we
finally get VxY € X(N) for all X, Y € X(N); thereby the affinity of the geodesic
umbrella N is proved. O

It should be mentioned that the proof of Theorem 9 in [Hi2] runs exactly
along the above lines (with some other notation), but it ends at formula (8).
Thereby Hicks has only proved V,Y € TN for vectors v e TN in radial directions
and arbitrary vector fields Y € X(N). The following example shows that his
proof is really incomplete: Let E € 3E(R3), ¢-,-> and V° denote the radial vector
field defined by E, ~ p, the canonical riemannian metric of R® and its Levi-
Civita connection, respectively. With respect to the covariant derivative Vy Y =
V}? Y +<Y,E)>- X x E every 2-dimensional linear subspace N = R* is a geodesic
umbrella with center py = 0 satisfying formula (8) with V' := T, N; nevertheless,
N is no affine submanifold of (R* V).

From Theorem 1 we will now derive a criterion on the existence of a local
affine map for which at one point the differential is prescribed by a linear map
A: TPOM — T3, M. For that we choose normal neighbourhoods exp, : U" — U
and exp~0 U" — U of py in M resp. of Do in M with AUT) < Ur.

As at the beginning of this section, for every u# € Tj; poM we define the interval
Ji and the geodesic 7 7z Ji— U. Because we have J, = J4,, we can consider the
geodesic (y,,74,) : Ju — M for every ue TPOM In addltlon for every ue UT
we define the linear map A, := (||¢ 7)o 4o (||V7,) : T, WM — T;, 1)M.
Notice, if there exists an affine map f: U — M with T,,f = A, then we have
Yau =J oy, for every u, hence A, =T, (1)f; thus in this case the maps 4, preserve
the torsion and curvature tensor fields. Therefore, the assumption of the fol-
lowing theorem is necessary.
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THEOREM 2. If in the above situation for every ue UT the linear map A,
preserves the torsion and curvature tensor fields, then

[ =exp, o Ao (exp, |U) " U— M
is an affine map satisfying f(po) =py and T, f = A.

This result is a generalized local version of the Theorem of Cartan-
Ambrose-Hicks in which the map A is assumed to be an isomorphism (see [KN]
I, p. 257). The general version was also proved in [Hi2], but under additional
unpleasant assumptions. The idea to prove this theorem via the graph of f was
born, when we read a remark of R. Hermann in [He].

Proof. Of course, f is a C* map satisfying f(po) = py and T, f = 4; its
graph is the geodesic umbrella N := exp(, ﬁo)(V(A) N(UT x UT)) in the affine
product M* = M x M (for V(A) see Definition 1). According to Proposition
1(b) it remains to prove the affinity of NV in M*. Starting from the linear sub-
space V(A) = T(p, ;)N = Ty, 5,)M* we define the linear subspaces V(A4), 4,
analogously to the construction at the beginning of this section. It is easy to
see that V'(4), 4, coincides with V'(4,). As every map 4, preserves the tor-
sion and curvature tensor fields (because of the assumptions), we know from
Proposition 1(a) that the subspaces V'(4), 4, are torsion and curvature invari-

ant. Therefore, Theorem 1 implies the affinity of the submanifold N. O

3. Grallmann bundle

For each point pe M let L,M be the set of frames of 7,M, which we
describe by isomorphisms u : R” — T,M as in [KN] I, p. 56; by n: LM — M
we denote the entire frame bundle.

For some fixed number re{l,...,m—1} let 7:G,(TM) — M denote
the GraBmann bundle; its fibre over p is the GraBmann manifold G,(7,M) of
the r-dimensional subspaces V' = T,M. This bundle is associated to the frame
bundle via the map

0:LM x G(R™) — G,(TM), (u,V)— u(V).

For each ue L,M the map g, : G,(R") = G,(T,M),V — u(V) is a diffeomor-
phism; and if ¥ € G,(R™) denotes the subspace which is spanned by the first
canonical unit vectors eq,...,e, € R™, then the fibre bundle morphism

9) o' :LM — G.(TM), u— u(V)=span{u(er),...,u(e,)}

is a surjective submersion (even a principal fibre bundle). The linear connection
A (LM) of LM corresponding to V induces a connection #(G,(TM)) (in the
sense of Ehresmann) on the GraBmann bundle (see [KN] I, p. 87); it is given by

(1) Hyu(G(TM)) = o H,(LM) < Ty y)(GH(TM))  (ue LM).
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This vector bundle s#(G,(TM)) contains a canonical subbundle & characterized
by

(11) 1.9y =V (VeG(TM));

see [T] p. 400; of course, & is a subbundle of T(G,(TM)) of rank r; in general
it is not completely integrable.

ProrosITION 2.

@) If «:J — M is a broken C* curve and V € G'(T,M) a subspace
with 0 € J and p = 0(0), then the horizontal lift V, of o in G,(TM) with
the initial value V,(0) =V is given by the parallel displacement of V in
(M, V) along a, ie., Vy(t)=(llga)(V) = TyyM.

(b) In the situation (a) the curve V, is tangential to 9 iff a(t) € V,(¢) for all
teld.

(c) If in the situation (a) o is a geodesic with a(0) € V, then V, is already
tangential to 9.

(d) For every two sections X,Y € '(2) and every element V € G,(TM)
the relation Vyyt.Y € V' holds. Therefore, every integral manifold S
of 9 can be equipped uniquely with a covariant derivative VS such that
7S : (S,V®) — (M, V) becomes an affine immersion.

() If f:N— M is an affine map of rank r, then its GauP map g’ :
N — G.(TM), p— f.T,N is tangential to Z; therefore, S := g/ (N) is an
integral manifold of & and g’ is a submersion onto S, which is affine with
respect to the covariant derivative V° described in (e).

Remark 1. The statements (d) and (e) are generalizations of Tsukada’s
Theorem 3.1 in [T].

Proof.  For (a)—(c): Because of (9) we can write V =u(V) with some
ueLlyoM. As a:tw (|ge)ou is the horizontal lift of « in LM with
@(0) = u, the horizontal lift V, is o" oa: ¢~ (||ge)(u(V)) = (||g*)(V).—Since
T | #y,)(G(TM)) is an isomorphism onto 7, M, the statement (b) follows
from 7oV, =a and (11). The statement (c) is now clear, because the tangent
vector field of a geodesic is parallel.

For (d): If X,Yel'(9) and VeG,(TM) are given, let ¢ be the
maximal integral curve of X with ¢(0) = ¥. Then ¢ is a horizontal curve
over o :=T1oc, hence ¢ = V, because of (a); therefore for every e J we obtain
t.Yoc(t) ety = c(t) = Vy(t) = ([po)(V). Therefrom we derive Vy{, .Y =
(V¥ (z.Y 0¢))(0) € V.—If now S is an integral manifold of &, then (according
to the statement just proved) for all X, Y € X(S) and V € S there exists a vector
Z(V)e Py = TyS such that Vy()7.Y = ©.Z(V). In this way a vector field Z €
X(S) is defined. By V§Y :=Z we get the covariant derivative in question.

For (e): If pe N and ve I,N are given, we choose a curve o :]—1,1[ = N
with &(0) = v and put V :=g/(p). From (1) we get g/ oa(t) = (||o(f o w))(V) =
Vioy(t) and additionally (d/d¢)(f o a(t)) € g/ (a(2)) = Vyou(f). Applying (b) we
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find that the curve g/ oa is tangential to &, in particular g/v = (d/d?)|,_,-
(9/ oo(t)) € Zyr(,). Hence, the map ¢/ is tangential to %.—According to the
rank theorem, for every point p e N we can find a neighbourhood U = U(p)
such that L :=f(U) is a submanifold of M and s:=f|U: U — L a submersion
onto L. Obviously we have ¢g/|U = g’ os where i denotes the inclusion map
L— M. Now, g’ is an injective immersion, which can be considered as a
parametrization of g/ (U); because g/ is tangential to &, g/ (U) therefore is an
integral manifold of . Consequently, the entire set S:=g/(N) is an integral
manifold of Z. Since f = (7|S)og/ and 7|S are affine maps, it is easily seen
that also ¢/ : N — S is an affine submersion. O

Remark 2. By the way we have proved that every affine map can globally
be written as the composition ios of an affine submersion s and an affine
immersion i; this result is already known from [LR, Theorem 1].

4. Global Theorems

We will now prove a globalization of Theorem 1. For that we intro-
duce a further notation. Let again a point pye M and a linear subspace V €
G,(Ty,M) be fixed. If y:[0,b,] —» M is a broken geodesic with y(0) = po and
with the “break points” 0 <t <--- <1, <b,, let V,:[0,b,] — G,(TM) denote
the horizontal lift of y as in Proposition 2(a). Furthermore, put #:=0, #,.1:=b,
and y; :=y|[t;, tis1]. By I'(M, V') we denote the set of all such broken geodesics
such that 7,(t;) € V,(t;) holds for every #; then automatically one has j;(¢) € V,(¢)
for every ¢ € [t;,t;41]. In other terms, the elements of T'(M, V) are those broken
geodesics y: [0,b,] — M emanating from p, for which V, is tangential to the
subbundle & everywhere (see Proposition 2(b)).

THEOREM 3. If in the above situation for every geodesic (y:1[0,b,] — M) €
I'(M,V) the linear subspace V,(b,) is torsion and curvature invariant, then there
exists one (and up to an affine diffeomorphism exactly one) geodesically closed,
affine immersion F: N — M from a simply connected affine manifold N and a
point qy € N such that F(qy) =po and F.TyyN =V.

The attribute geodesically closed means: For every maximal geodesic
¢:J— N the image Foc:J — M is a maximal geodesic, too. If M is geo-
desically complete, then F is geodesically closed if and only if N is geodesically
complete.

In the special case of a complete riemannian manifold M Theorem 3 is
due to R. Hermann [He]. He used strongly the Theorem of Hopf-Rinow and
remarked that therefore he could not see how to generalize the theorem to affine
manifolds. Theorem 3 proves that even the geodesical completeness of M is not
needed.

Proof. We start with an arbitrary normal neighbourhood exp,, :
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UT — U of pp in M. Then we can apply Theorem 1 and find that the geo-
desical umbrella Ny = exppo(Vﬂ UT) is an affine submanifold of M. According
to Proposition 2(e) the image Sy := g™ (Ny) of its GauB map g™ : p — T,Ny is
an integral manifold of & with V' € S). Let S be the maximal connected inte-
gral manifold of 2 which contains Sy (see [N, Theorem 4] or [BH, Theorem 1.3
and 1.4], a proof of the paracompactness of S can be found in [LR] p. 94).
Because of Proposition 2(d) 7|S is an affine immersion with respect to a suitable
covariant derivative of S. Of course, we have t(V)=po and t. Ty S=1.2y =V.

Now the crucial point is to prove that ]S is geodesically closed. For that,
let a maximal geodesic ¢: J — S be given. As 7o ¢ is a geodesic in M, it can be
extended to a maximal geodesic ¢:J — M. Let us assume J :=sup J < sup J.
Then we choose some broken geodesic 7 : [0,d] — S starting from 7(0) = V' with
7(d) e ¢(J). We may assume $(d) = ¢(d). Then the horizontal lift V), of the
broken geodesic

| toj(f) for1e(0,d]
7:[0,0] = M, f'—’{c(,) for t e d, o]

(with initial point po) is given by V,(f) = () for t€[0,d] and V() é(t)
for te]d,d[. In particular, we have ¢(d) = 7.é(d) € T Tga)S = 1.9 é(d) =
V,(d). As the analogous argument holds for the other break pomts of Y, We
find ye I'(M, V). Therefore V, :[0,0] — G,(TM) is tangential to Z, i.e., V,(0)
is a good candidate in order to continue ¢. For realizing this idea we choose
some normal neighbourhood exp,, : Ul — Uy of p;:=c(5). Because of the
hypothesis of Theorem 3, we can again apply Theorem 1 replacing V by Vi :=
V,(0); hence the geodesic umbrella N; = exp, (VN U) is an affine submani-
fold of M and its “GauBl image” S) := ¢g™1(N;) is a further integral manifold
of & containing the “point” V; € S;. If we now choose some ¢ > 0 such that
J(©0) =10 —¢0+¢ <|d,sup J| and ¢(J(0)) < U, then ¢(J(d)) lies in N; be-
cause ¢(0) € V;. Furthermore, since N, is an affine submanifold we get for all
teldo—egd|

(12) gN] o C(l) = TC(,>N1 = <|;| C)(TplNl) = (g C>(V1) = V/(l‘) = E(l),

hence ¢é(¢) e SNS;. Therefore, S; is a subset of S and g™ an affine diffeo-
morphism into S. Therefrom we conclude that g™ oc¢|J(d) is a geodesic in S
continuing ¢ beyond ¢ (because of (12)) in contradiction to the maximality of
¢. Thus we have proved sup J=supJ. In the same way we get inf J = inf J,
hence J = J.

In order to define the affine immersion F: N — M of Theorem 3 we
use the universal covering ¢ : N — S of S and put F := (7|S)o¢. Let us now
prove the uniqueness of F. For that let F:N — M be another affine immer-
sion and §, € N a point which have the same properties as F and ¢o. Accord-
ing to Proposmon 2(e) its Gaull map g is a local affine diffeomorphism into S
satisfying 7o g¥ = F. Since N is simply connected and we have g% (g,) = V =
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9(qo), there exists a local affine diffeomorphism f : N — N such that gpo f = g¥
and f(g,) = qo- From the construction we get Fof =F. As F is geodesi-
cally closed, f is geodesically closed, too. Therefore, according to the follow-
ing Lemma f is a covering map, in fact even an affine diffeomorphism because
of the simple connectedness of N. O

LEMMA 3. If N and N are connected affine manifolds of the same dimension,
then each geodesically closed, affine local diffeomorphism f: N — N is a covering
map.

This lemma is a generalization of Hicks” Theorem 3 in [Hil], in which N is
assumed to be geodesically complete. One can follow Hicks’ proof, where he
uses the geodesically completeness of N the argumentation keeps valid if instead
of that we use that f is geodesically closed.

Now we will also derive a global version of Theorem 2. Let again a
linear map A : T,)M — T; M be given. If we suppose the affine manifold M
to be geodesically complete, then for every broken geodesic y: [0,b,] — M with
»(0) = po there exists a unique broken geodesic 7 :[0,b,] — M with §(0) = p,
such that the following is true: If 0 <f < --- <1, <b, are the “break points”
of y, to:=0, t,s1 :=b,, y; :=7|[ti,t;ix1] and J;, :=J|[t;,t;x1] and if we define

t 0 ~
Ay(1) := (|0| )7) oAo (U y) : TyoyM — T;0M

for every t€0,b,], then 7 has no other “break points” than f,...,#, and
(13) yilti) = A,(1) (5:(1;))
holds for every i =0,...,n. Another characteriziation of j is the following: If

C:[0,b)] — T,,M denotes the development of y in T,,M (see [KN] I), then y
is the broken geodesic with the development 4 o C.

THEOREM 4.  Let us assume that M is simply connected and M geodesically
complete and that the linear map A : T, M — T; M has the following property:
For every broken geodesic y : [0,b,] — M emanating from pq the linear map A,(b,)
(defined above) preserves the torsion and curvature tensors. Then there exists one
and only one affine map f: M — M with f(po) =p, and Tp, [ = A.

This result generalizes the Theorem of Cartan-Ambrose-Hicks, in which
A is supposed to be an isomorphism. It should be mentioned that under this
condition f is a covering map if also M is geodesically complete, and a diffeo-
morphism if in addition also M is simply connected. It should also be noticed
that Hicks has treated this general case in [Hi2] but under additional unpleasant
assumptions.

Proof. As in the proof of Theorem 2 one proves
(14) V(4,(1)) = V(4),,5 (1)
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in the situation described before Theorem 4; here V/(4), (1) is constructed
in the affine product M* = M x M by starting from the linear subspace V(4)
(see Definition 1); it means it is the corresponding horizontal lift of the geodesic
(7,9) : [0,b,] = M* in the GraBmann bundle G,,(T7M*). Condition (13) implies
(7,7) e T(M*,V(A4)) (see the beginning of this section); and every geodesic of
the latter set is obtained in this way. Furthermore, Proposition 1(a) and (14)
show that V(4), 5 (b,) is torsion and curvature invariant, because A,(b,) pre-
serves the torsion and curvature tensors (as supposed in Theorem 4). There-
fore, we can apply Theorem 3 and obtain: There exists an affine, geodesically
closed immersion F : N — M* from a simply connected affine manifold N into
M* and a point gy € N such that F(qo) = (po,p,) and F.T, N = V(A4). The
map g:=proF: N — M is then an affine map between m-dimensional mani-
folds; in particular, it has constant rang rk g. Because ¢.T, N = pr,(F.T,N) =
pr, V(4) = T,, M we get tk g = m, that means, g is an affine local diffeomor-
phism. Since F is geodesically closed, it is easily seen that also g is geodesically
closed. Therefore we can apply Lemma 3 and find that ¢ is an affine covering
map, in fact even an affine diffeomorphism because of the simple connectedness
of M. Now f:=proFog': M — M is “the” affine map possessing all prop-
erties which are stated in Theorem 4. O

Remark 3. If the affine manifolds (M,V) and (M,V) have parallel torsion
and curvature tensors, then the parallel translation along curves in these mani-
folds are isomorphisms preserving the torsion and curvature tensors. Therefore,
in this situation it is easier to fulfill the hypotheses of Theorem 1-4: If V is
torsion and curvature invariant (resp. if A preserves the torsion and curvature
tensors), then automatically the subspaces V, and V,(b,) of Theorem 1 resp. 2 are
torsion and curvature invariant (resp. the linear maps 4, and A4,(b,) of Theo-
rem 2 resp. 4 preserve the torsion and curvature tensors). Important examples
of such manifolds are the reductive homogeneous spaces; see [KN] II.  For them
we immediately deduce the following corollary from Theorem 3, which general-
izes the well known result about the 1:1 correspondence between totally geodesic
submanifolds of symmetric spaces and Lie triple systems.

COROLLARY. Let M = G/H be a reductive homogeneous space with origin
0€ M and the Ad(H)-invariant splitting g =) @ m of the Lie algebra g of G;
we equip M with the canonical linear connection (see [KN] II, p. 192).  Further-
more, let v be a linear subspace of m and V < T,M its image under the canonical
isomorphism mt — T,M. In this situation there exists a affine submanifold in M
corresponding to the initial data (o, V) if and only if

(15) VX,Y,Zew ([X,Y],enand [[X,Y],Z] en).

Furthermore, if (15) is satisfied, then there exists an affine immersion F: N — M
with the properties described in Theorem 3 (replacing po by o).

m

Remark 4. The manifold N of the corollary can also be given the
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structure of a homogeneous reductive space whose canonical covariant deriva-
tive coincides with the original one: As the torsion and the curvature tensor
of the latter covariant derivative are parallel again, the Theorem of Cartan-
Ambrose-Hicks can be used to show that the Lie group (N) of all affine dif-
feomorphisms N — N acts transitively on N, and its Lie algebra a(N) can be
identified with a Lie subalgebra of X(N) (see [KN] I, p. 232). The Lie algebra
of the isotropy group (N), with respect to some point g € F “1({o}) is by, =
{Xea(N)|X,, =0}; and my, :={X ea(N)|Vve TyN :V,X = T(v,X,,)} can be
shown to be an Ad(A(N) qo)-invariant subspace being complementary to b, ; in
this way N = A(N)/A(N), is given the structure of a reductive homogeneous
space. The idea for the construction of g, is the following: For every u e T,,N
and s € R there exists a unique element f; € 2(N) with initial value fi(qo) = 7,(s)
and with differential 7, f; =57, (In the theory of symmetric spaces f; is
called a transvection along the geodesic y,, see [C] p. 266.) Then (f;) is a 1-
parameter subgroup of 2A(N) with some generator 4. The corresponding
fundamental vector field X := A* is an element of the Lie algebra a(N) satisfying
X, =u and V,X = T(v,u) for all ve T,,N. With this insight it is easy to show
that the above subspace m,, has the stated properties.

Moreover, if ®@ : m, — m denotes the linear map induced by the differential
TyF : T4yN — T,M of the immersion F of the Corollary, then for every X e my,
and for the 1-parameter subgroups yy : R — U(N) resp. Yoy : R — (M) induced
by X resp. ®(X) we have Foyy(f) = ygx)(f) o F for all e R. Hence, at least
“partially” F behaves like a morphism of homogeneous spaces.

5. Involutivity of the subbundle &

Let us recall that by definition the subbundle 2 = T(G,(TM)) is involutive
at some “point” Ve G,(TM) iff [X,Y](V)e Py for all X,Y eI'(2), where
[X, Y](V) denotes the value of the Lie bracket [X, Y] at the point V.

THEOREM 5. The subbundle 2 is involutive at the point V € G,(TM) if and
only if the subspace V is torsion and curvature invariant.

Proof. At first a general remark: If a fibre bundle 7: £ — M is equipped
with an Ehresmann connection ## < TE, then we assign to it the tensor field Q
of type (1,2) on E characterized by the following equation:

VX, Y e X(E): QX,Y) = —[Xy, Yy,

here 7 denotes the vertical subbundle kern 7, and the indices # and ¥~ mean
that one has to regard the horizontal resp. vertical part of the respective vector
field. This tensor field Q is called the curvature form of #. For every X, Y €
I'(#) and e e E we have

(16) (X, Y](e) € #. & Q(X(e), Y(e)) = 0.
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Applying this construction on the connections #(LM) and #(G,(TM)) of
Section 3 we come to curvature forms which we denote by Qry and Qg (7).
They are related to each other by

(17) ol (Quum(&,&))
= Qg () (0l &1,00 &) for all ue LM and &,,&, € #,(LM).

For the proof of (17) one takes notice of (9) and (10) and uses similar arguments
as for the proof of the structure equation for the curvature tensor (e.g. see [P]
p. 83).

The curvature form Qg 7y is of interest for us because of formula (16)
which in combination with (11) implies: £ is involutive at V € G,(TM) if and
only if

(18) VX1,X2 € F(@): (QG,,(TM)(XI(V),Xz(V)) =0 and T*[Xl,Xz](V) € V).

Now we show that for all pe M, V e G,(T,M) and wi,w, € #y(G,(TM)) we
have

(19) Qg (7ar) (W1, w2) :% (exp(?- R(v1,v2))(V)) with v; := T,w;.

=0
Here R(vi,v2) 1is considered as an endomorphism of 7,M; hence,
t—exp(t- R(vi,v2)) is a l-parameter subgroup of GL(7,M) and ¢~
exp(t- R(vi,v2))(V) a curve in G,(T,M).

For the proof of (19) we use (9) in order to choose a ueL,M with
u(V) = V. Furthermore, let & € #,(LM) be the horizontal lift of v;; then we
have ¢V& = w;. If now w: T(LM) — End(R™) denotes the connection form of
A (LM), then wo Qpyy is the usual corresponding curvature form with values in
End(R™) satisfying

o(Qry(é1,8E)) =u~' o R(v1,12) ou  because 7,&; = v;
(see [P] p. 282/286 or [KN] I, p. 133). Calling the definition of @ in our mind

we get

(uoexp(t- (u™' o R(vy,v7) ou)))

d
Qru(é, &) = a@
=0

dr
and therefore (because of (17))

(exp(z- R(v1,v2)) o u),
=0

d
Qc,(rary (w1, w2) = 0! (QLu(&1,&)) = & (" (exp( - R(v1,12)) o u))
=0

(exp(t- R, o) (1)



AFFINE SUBMANIFOLDS 355

thus (19) is verified. Now, it is easy to prove:

% 70(6Xp([ : R(Ulva))(V)) =0& eXp([ . R(Ul7l]2))(V) =V & R(Ul,Uz)(V) V.

Hence, using (10) we get
(20) VX1, X2 e T(2) : Qg (i) (X1(V), Xa(V)) = 0) & R(V, V)V < V.

On the other hand we obtain from Proposition 2(d) and the structure equation
for the torsion

VX1, X2 eT(2): (. X1, X](M) eV e T(n.Xi(V),t.X2(V)) e V),
hence,
VX1, X2 eT(2) : . [X1, X (V) e V) & T(V, V) V.
Combining this result with (20) we finish the proof because of (18). O

Theorem 5 enables us to give an alternative proof of a “smooth and handy”
version of Theorem 1. For that we use the following generalization of a result
of F. Nibel; [N, Theorem 1].

PrROPOSITION 3. Let M be a C* manifold and & a vector subbundle of
TM. Furthermore, let V be a linear space, U = V a star shaped neighbourhood
of 0 and ¢ : U — M a C* map. For every ueV put J,:={te R|tue U} and
define B,:J, — V, t— tu. If then 9 is involutive at all points p € p(U) and if
all curves po f, are tangential to &, then the entire map ¢ is tangential to 9.

Remark 5. Because in this proposition there are made no special as-
sumptions on the subbundle 2, this result can be applied in many sit-
uations. For instance, we will use it in a forthcoming paper to prove an
analogue of Theorem 1 for spherically bent submanifolds of a riemannian space.

The proof of Proposition 3 is based on the following result of Blumenthal
and Hebda (see [BH] p. 165).

Lemma 4.  In the situation of Proposition 3 let I and J denote open intervals
containing 0, F : 1 xJ — M a C” map and Y the vector filed t — F(0/0s)],,
along the curve o.: J — M, t— F(0,1). We suppose that for every s € I the curve
oy : t— F(s,t) is tangential to 9, the subbundle 9 is involutive at the points of
F(I xJ) and that Y(0) € Zyq). Then Y(t) lies in D, for all teJ.

Proof of Proposition 3. For pe U and ve T,V =V we apply Lemma 4
on the map F: (s,7) — @(t(p+sv)). Because of Y(0) =0e Z,o we get p,v =
(d/ds)l—op(p + sv) = Y(1) € D). -

As announced, we give now an alternative proof of Theorem 1 under the
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natural, but slightly stronger hypothesis that for every ue VN UT the subspace
V, is torsion and curvature invariant.

We put r:=dim V. Then ¢: VNUT — G.(TM), urs V, is an injective
C” immersion. The proof of the differentiability of ¢ runs along the lines of the
construction of bundle charts in the proof of Ehresmann’s fibre bundle theorem
in [E]. If we define §, as in Proposition 3, we obtain ¢o 8, : ¢t +— Vj,, which is
the horizontal lift of the geodesic y, (see Proposition 2(a)). According to
Proposition 2(c) this curve is tangential to the subbundle 2 which is involutive
at every ‘“point” of the r-dimensional submanifold S:=@(VNUT) < G.(TM)
because of the hypothesis and Theorem 5. Proposition 3, therefore, shows that
S is an integral manifold of 2. As tog=-exp, |(V¥NUT), the map 7|S is an
affine immersion onto the geodesic umbrella N = exp, (VN U Ty according to
Proposition 2(d). Consequently N is an affine submanifold of M.
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