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Automorphism groups of smooth cubic threefolds
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Abstract. In this paper, we classify groups which faithfully act on
smooth cubic threefolds. It turns out that there are exactly 6 maximal ones
and we describe them with explicit examples of target cubic threefolds.

1. Introduction.

Throughout this paper, we work over the complex number field C. The purpose of

this paper is to study the automorphism group of a smooth cubic threefold, an important

counterexample to the three-dimensional Lüroth problem ([CG72]). Let X ⊂ P4 be a

smooth cubic threefold defined by an irreducible homogeneous polynomial F . It is known

([MM63]) that the automorphism group Aut(X) is finite, every element of Aut(X) ex-

tends to an automorphism of the ambient space P4, and two smooth cubic threefolds

are isomorphic if and only if they are projective linearly isomorphic. Classification of

finite groups appearing as subgroups of Aut(X) seems still unknown (for studies of au-

tomorphism groups of smooth cubic hypersurfaces, see [Se42], [Ad78], [Ho97], [Ro09],

[GL11], [Do12], [GL13], [Mo13], [HM14], [BCS16], [Fu16], [DD18], [LZ19], etc.).

Our main result is the following (see Section 3 for more details about the 6 groups in the

theorem):

Theorem 1.1 (Theorem 3.2). A finite group G has a faithful action on a smooth

cubic threefold if and only if G is isomorphic to a subgroup of one of the following 6

groups : C4
3 ⋊ S5, ((C

2
3 ⋊ C3)⋊ C4)× S3, C24, C16, PSL(2, 11), C3 × S5.

The automorphism group of Klein cubic threefold is isomorphic to the finite simple

group PSL(2, 11) ([Ad78]), and it is, up to isomorphism, the unique smooth cubic three-

fold admitting an automorphism of order 11 ([Ro09]). On the other hand, by a result

of [GL11], all possible prime orders of automorphisms of smooth cubic threefolds are

2, 3, 5, 11. Therefore, in order to classify subgroups of Aut(X), we are reduced to consider

subgroups of order 2a3b5c. Our approach to classify such subgroups is the same as that

of [OY19] in which all possible groups of automorphisms of smooth quintic threefolds

are classified. By Matsumura–Monsky ([MM63]), it suffices to consider finite subgroups

G ⊂ PGL(5,C) = Aut(P4) such that F is G-invariant (i.e., for each g = [A] ∈ G,

A(F ) = λAF for some λA ∈ C∗, where A ∈ GL(5,C) is a representative of g). As in
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[OY19], we use the notion F -liftability (see Definition 4.5 in Section 4) to transfer clas-

sification problem in PGL(5,C) to classification problem in GL(5,C), and the latter one

can be handled with the help of non-smoothness criteria (Proposition 4.3) and computer

program GAP (see Appendix A). It turns out that for a smooth cubic threefold X,

Aut(X) ⊂ PGL(5,C) always admits an F -lifting (Theorem 4.11). For a candidate finite

group G of order 2a3b5c ≤ 2000, smoothness of X gives strong constraints (see Table 2)

on eigenvalues (“local information”) of each element in an F -lifting G̃ (which is naturally

viewed as a 5-dimensional faithful linear representation of G). On the other hand, GAP

provides character table and list of all subgroups (especially, abelian subgroups) of G

(“global information”). Then our way of ruling out groups is simply by combining local

and global information (see Theorem 6.1 and its proof). It turns out that this method of

ruling out groups which cannot faithfully act on smooth cubic threefolds is quite efficient

in our study. Larger orders cases (i.e., |G| = 2a3b5c > 2000) are reduced to smaller

orders cases just mentioned in PC free way.

Acknowledgements. The authors would like to thank Professors Keiji Oguiso

and Song Yang for helpful conversations. They also would like to thank the referee for

useful comments.

2. Notation and conventions.

In this paper, if A ∈ GL(n,C), then we use [A] denote the corresponding element in

PGL(n,C).
Xi (resp. GXi), i = 1, . . . , 6, are the six smooth cubic threefolds (resp. finite groups)

in Example 3.1 in Section 3;

In := the identity matrix of rank n,

ξk := e2πi/k k-th primitive root of unity, where k is a positive integer.

We use π : GL(n,C) −→ PGL(n,C) to denote the natural quotient map.

Let G be a finite group and p be a prime. If no confusion causes, we use Gp to

denote a Sylow p-subgroup of G.

The following is the list of symbols of finite groups used in this article:

Cn: cyclic group of order n,

D2n: dihedral group of order 2n,

Sn(An): symmetric (alternative) group of degree n,

Q8: quaternion group of order 8.

3. Examples and main theorem.

Throughout this paper, we identity PGL(n + 1,C) with Aut(Pn) via the following

group action:

Ψ : PGL(n+ 1,C)× Pn −→ Pn, (3.1)

where, for any A = (aij) ∈ GL(n+ 1,C) and any (z1 : · · · : zn+1) ∈ Pn,
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Ψ([A], (z1 : · · · : zn+1)) =

(
n+1∑
i=1

a1izi : · · · :
n+1∑
i=1

a(n+1)izi

)
.

For any A = (aij) ∈ GL(n + 1,C) and any homogeneous polynomial F ∈
C[x1, . . . , xn+1], we denote by A(F ) the homogeneous polynomial

F

(
n+1∑
i=1

a1ixi, . . . ,
n+1∑
i=1

a(n+1)ixi

)
. (3.2)

For a finite subgroup G < PGL(n+1,C) and a smooth hypersurface X ⊂ Pn defined by

an irreducible homogeneous polynomial F = F (x1, . . . , xn+1) of degree greater than 1,

if, for any [A] ∈ G, A(F ) = λAF for some λA ∈ C∗, then clearly G acts on X via Ψ and

G is a subgroup of Aut(X).

Example 3.1. (1) Fermat cubic threefold X1: F = x3
1 + x3

2 + x3
3 + x3

4 + x3
5 = 0.

Let GX1 be the subgroup of PGL(5,C) generated by the following three matrices:

A11 =


0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

, A12 =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

, A13 =


1 0 0 0 0

0 ξ3 0 0 0

0 0 ξ23 0 0

0 0 0 1 0

0 0 0 0 1

 .

Then Aut(X1) = GX1
∼= C4

3 ⋊ S5 and |GX1 | = 23 · 35 · 5 = 9720.

(2) Let X2 : F = x3
1 + x3

2 + x3
3 + 3(

√
3 − 1)x1x2x3 + x3

4 + x3
5 = 0 (see [DD18,

Lemma 12.15]) and let GX2 be the subgroup of PGL(5,C) generated by the following

five matrices:

A21 =


0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

, A22 =


1 0 0 0 0

0 ξ3 0 0 0

0 0 ξ23 0 0

0 0 0 1 0

0 0 0 0 1

, A23 =
1√
3


1 1 1 0 0

1 ξ3 ξ23 0 0

1 ξ23 ξ3 0 0

0 0 0
√
3 0

0 0 0 0
√
3

,

A24 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0

, A25 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 ξ3 0

0 0 0 0 ξ23

 .

Then GX2 acts on X2, GX2
∼= ((C2

3 ⋊ C3)⋊ C4)× S3, and |GX2 | = 23 · 34 = 648.

(3) Let X3 : F = x2
1x2 + x2

2x3 + x2
3x4 + x3

4 + x3
5 = 0, and let GX3 be the subgroup

of PGL(5,C) generated by the following matrix:
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A31 =


ξ8 0 0 0 0

0 ξ−2
8 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 ξ3

 .

Then GX3 acts on X3, GX3 is isomorphic to C24 and |GX3 | = 23 · 3 = 24.

(4) Let X4 : F = x2
1x2 + x2

2x3 + x2
3x4 + x2

4x5 + x3
5 = 0 and let GX4 be the subgroup

of PGL(5,C) generated by the following matrix:

A41 =


ξ16 0 0 0 0

0 ξ−2
16 0 0 0

0 0 ξ416 0 0

0 0 0 −1 0

0 0 0 0 1

 .

Then GX4 acts on X4, GX4
∼= C16 and |GX4 | = 24 = 16.

(5) Klein cubic threefold X5 : F = x2
1x2 + x2

2x3 + x2
3x4 + x2

4x5 + x2
5x1 = 0 and

let GX5
be the finite simple group PSL(2, 11). Then GX5

∼= Aut(X5) ([Ad78]) and

|GX5 | = 22 ·3 ·5 ·11 = 660. Note that PSL(2, 11) is not a subgroup of the Cremona group

of rank 3 ([Pr12]).

(6) Let X6 : {x3
1 + x3

2 + x3
3 + x3

4 + x3
5 + x3

6 = x1 + x2 + x3 + x4 + x5 = 0} ⊂ P5 and

let GX6 be the subgroup of PGL(6,C) generated by the following three matrices:

A61 =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, A62 =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 0 0 1

, A63 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 ξ3

 .

Then GX6 acts on X6, GX6
∼= S5 × C3 and |GX6 | = 23 · 32 · 5 = 360.

Our main theorem is the following:

Theorem 3.2. For a finite group G, the following two conditions are equivalent

to each other :

(i) G is isomorphic to a subgroup of one of the 6 groups above, and

(ii) G has a faithful action on a smooth cubic threefold.

We will prove Theorem 3.2 in Section 9.

4. Smoothness and liftability.

In this section, we recall some definitions and results from [OY19], and we will

prove that any subgroup of the automorphism group of a smooth cubic threefold has an
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F -lifting (Theorem 4.11).

Definition 4.1. Let F = F (x1, . . . , xn+1) be a homogeneous polynomial of degree

d > 0 and let m = m(x1, . . . , xn+1) be a monomial of degree d. Then we say m is in F

(or m ∈ F ) if the coefficient of m is not zero in the expression of F .

We will frequently use Lemma 4.2 and Proposition 4.3 to check smoothness of hy-

persurfaces in the sequel.

Lemma 4.2 ([OY19, Lemma 3.2 and Proposition 3.3]). Let F = F (x1, . . . , xn+1)

be an irreducible homogeneous polynomial of degree d ≥ 3 and let M := {F = 0} ⊆ Pn.

Let a and b be two nonnegative integers, and 2a + b ≤ n. The hypersurface M is not

smooth if there exist a+ b distinct variables xi1 , . . . , xia+b
such that F ∈ (xi1 , . . . , xia) +

(xia+1
, . . . , xia+b

)2, where (xk1
, . . . , xkm

) means the ideal of C[x1, . . . , xn+1] generated

by xk1 , . . . , xkm . In particular, if M is smooth, then, for any i ∈ {1, 2, . . . , n + 1},
xd−1
i xj ∈ F for some j = j(i) (j = i is also allowed here).

Proposition 4.3 ([OY19, Proposition 3.4]). Let M be a hypersurface in P4 de-

fined by an irreducible homogeneous polynomial F = F (x1, . . . , x5) of degree 3. Then M

is not smooth if one of the following three conditions is true :

(1) There exists 1 ≤ i ≤ 5, such that for all 1 ≤ j ≤ 5, x2
ixj /∈ F ;

(2) There exists a pair (p, q), p ̸= q, such that F ∈ (xp, xq);

(3) There exist three distinct variables xi, xj , xk, such that F ∈ (xi) + (xj , xk)
2.

Let F ∈ C[x1, . . . , xn+1] be a homogeneous polynomial of degree d. For any A =

(aij) ∈ GL(n+ 1,C), we denote by A(F ) the homogeneous polynomial

F

(
n+1∑
i=1

a1ixi, . . . ,
n+1∑
i=1

a(n+1)ixi

)
.

Note that (AB)(F ) = A(B(F )) for any A,B ∈ GL(n + 1,C). Following [OY19], we

recall some definitions about liftability of group actions.

Definition 4.4. (1) Let A = (aij) ∈ GL(n + 1,C). We say F is A-invariant if

A(F ) = F . In this case, we also say A leaves F invariant, or F is invariant by A. We

say F is A-semi-invariant if A(F ) = λF, for some λ ∈ C∗.

(2) Let G be a finite subgroup of PGL(n+ 1,C). We say F is G-invariant if for all

g ∈ G, there exists Ag ∈ GL(n + 1,C) such that g = [Ag] and Ag(F ) = F , equivalently

F is G-invariant if F is A-semi-invariant for any A ∈ GL(n+ 1,C) such that [A] ∈ G.

(3) Let G be a finite subgroup of PGL(n+1,C). We say a subgroup G̃ < GL(n+1,C)
is a lifting of G if G̃ and G are isomorphic via the natural projection π : GL(n+1,C) →
PGL(n+ 1,C). We call G liftable if G admits a lifting.

Definition 4.5. (1) Let G be a finite subgroup of PGL(n + 1,C). We say G is

F -liftable if the following two conditions are satisfied:

1) G admits a lifting G̃ < GL(n+ 1,C); and
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2) A(F ) = F , for all A in G̃.

In this case, we say G̃ is an F -lifting of G.

We say G is F -semi-liftable if 2) is replaced by the following:

2)′ for all A in G̃, A(F ) = λAF , for some λA ∈ C∗ (depending on A).

(2) Let h be an element in PGL(n+ 1,C) of finite order. As a special case, we say

H ∈ GL(n + 1,C) is an F -lifting (resp. a lifting) of h if π(H) = h and the subgroup

⟨H⟩ < GL(n+1,C) is an F -lifting (resp. a lifting) of the subgroup ⟨h⟩ < PGL(n+1,C).

Theorem 4.6 ([OY19, Theorem 4.8]). Let G be a finite subgroup of PGL(n+1,C).
Let F ∈ C[x1, . . . , xn+1] be a nonzero homogeneous polynomial of degree p, where p is

a prime number. Suppose F is G-invariant. Let Gp be a Sylow p-subgroup. Then G is

F -liftable if the following two conditions are satisfied :

(1) Gp is F -liftable ; and

(2) either Gp has no element of order p2 or G has no normal subgroup of index p.

In the rest of this section, let X ⊂ P4 be a smooth cubic threefold defined by

an irreducible homogeneous polynomial F = F (x1, . . . , x5). Since Aut(X) = {f ∈
Aut(P4)|f(X) = X} is a finite group, we may and will view Aut(X) as a subgroup

of PGL(5,C) via Ψ (see (3.1) in Section 3).

Proposition 4.7. Let G ⊂ Aut(X) be a subgroup. Suppose 3 ∤ |G|. Then G has

a unique F -lifting.

Proof. Let k be |G|. Since 3 ∤ k, by Theorem 4.6, G admits an F -lifting G̃ ⊂
GL(5,C). Let g ∈ G. Suppose A,B ∈ GL(5,C) are two F -liftings of g. Then A = λB.

By A(F ) = B(F ) = F , we have λ3 = 1. By λI5 = AB−1 and ord(A) = ord(B) = ord(g),

we have λord(g) = 1. Then λk = 1. Since 3 and k are coprime, it follows that λ = 1.

Thus, G has a unique F -lifting G̃. □

Lemma 4.8. Let g ∈ Aut(X) of order 3. If A is a lifting of g, then A is an F -lifting

of g. In particular, g admits an F -lifting.

Proof. Note that any finite order element of PGL(5,C) admits a lifting. Let A

be a lifting of g. Then g = [A], ord(A) = ord(g) = 3, and A(F ) = λF for some λ ∈ C∗.

Our goal is to show λ = 1. Since F = A3(F ) = λ3F , it follows that λ3 = 1. For any

i ∈ {0, 1, 2} and any j ∈ {1, 2}, ξi3Aj is a lifting of gj , and (ξi3A
j)(F ) = (ξi3)

3λjF = λjF .

Thus, ξi3A
j is an F -lifting of gj if and only if A is an F -lifting of g. Then, by linear

change of coordinates and replacing the pair (A, g) by (ξi3A
j , gj) for suitable i ∈ {0, 1, 2}

and j ∈ {1, 2}, we may assume A is one of the following four cases: (a) diag(1, 1, 1, 1, ξ3),

(b) diag(1, 1, 1, ξ3, ξ
2
3), (c) diag(1, 1, 1, ξ3, ξ3), (d) diag(1, 1, ξ3, ξ3, ξ

2
3).

Case (a): A = diag(1, 1, 1, 1, ξ3). Since F is irreducible, it follows that F /∈ (x5) ⊂
C[x1, . . . , x5] and there exists a monomial xd1

1 xd2
2 xd3

3 xd4
4 ∈ F , where all di ≥ 0 and

d1 + d2 + d3 + d4 = 3. Then, by A(F ) = λF and A(xd1
1 xd2

2 xd3
3 xd4

4 ) = xd1
1 xd2

2 xd3
3 xd4

4 , we

have λ = 1.
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Case (b): A = diag(1, 1, 1, ξ3, ξ
2
3). Since X is smooth, by Proposition 4.3 (2), F /∈

(x4, x5) ⊂ C[x1, . . . , x5] and there exists a monomial xd1
1 xd2

2 xd3
3 ∈ F , where all di ≥ 0

and d1 + d2 + d3 = 3. Then, by A(F ) = λF and A(xd1
1 xd2

2 xd3
3 ) = xd1

1 xd2
2 xd3

3 , we have

λ = 1.

Case (c): A = diag(1, 1, 1, ξ3, ξ3). Similar to case (b), we have λ = 1.

Case (d): A = diag(1, 1, ξ3, ξ3, ξ
2
3). Suppose λ = ξ3. Let xd1

1 xd2
2 xd3

3 xd4
4 xd5

5 ∈ F

where all di ≥ 0 and d1+ · · ·+d5 = 3. By A(F ) = λF = ξ3F and A(xd1
1 xd2

2 xd3
3 xd4

4 xd5
5 ) =

ξd3+d4+2d5
3 xd1

1 xd2
2 xd3

3 xd4
4 xd5

5 , we have ξ3 = ξd3+d4+2d5
3 . Thus, either d5 > 0, or d5 = 0

and d1 + d2 = 2. Then xd1
1 xd2

2 xd3
3 xd4

4 xd5
5 ∈ (x5) + (x1, x2)

2 ⊂ C[x1, . . . , x5]. Thus,

F ∈ (x5) + (x1, x2)
2, by Proposition 4.3 (3), a contradiction to smoothness of X. So

λ = ξ3 is impossible. Similarly, λ = ξ23 is also impossible (otherwise, F ∈ (x5)+(x3, x4)
2,

a contradiction). Thus, we conclude λ = 1. □

Lemma 4.9. Let g ∈ Aut(X) of order 3k, k ≥ 1. Then g admits an F -lifting.

Proof. If k = 1, then, by Lemma 4.8, g admits an F -lifting.

From now on, we may assume k ≥ 2. Let A be a lifting of g. Then ord(A) =

ord(g) = 3k, and A(F ) = λF for some λ ∈ C∗. Note that A3k−1

is a lifting of g3
k−1

. Since

ord(g3
k−1

) = 3, by Lemma 4.8, A3k−1

is an F -lifting of g3
k−1

. Then F = A3k−1

(F ) =

λ3k−1

F . Thus, λ3k−1

= 1. Choose any α ∈ C∗ such that α3 = λ−1. Then αA is an

F -lifting of g. □

Proposition 4.10. Let g ∈ Aut(X) of order 3k, k ≥ 1. Then k ≤ 2, and g admits

a unique F -lifting in SL(5,C).

Proof. First we show k ≤ 2, and it suffices to show that there exists no g ∈
Aut(X) of order 27. Suppose g ∈ Aut(X) is of order 27. By Lemma 4.9, g admits an

F -lifting, say A. Since A is of finite order, up to linear change of coordinates, we may

assume A is diagonal. Replacing A by suitable power Aj where j and 3 are coprime, we

may assume A = diag(ξ27, ξ
a1
27 , ξ

a2
27 , ξ

a3
27 , ξ

a4
27 ). By A(F ) = F and A(x3

1) = ξ327x
3
1 ̸= x3

1, we

have x3
1 /∈ F . Then, by Proposition 4.3 (1), x2

1xj ∈ F for some j ∈ {2, 3, 4, 5}. Thus,

by suitable linear change of coordinates, we may assume j = 2 and x2
1x2 ∈ F . Then by

A(F ) = F and x2
1x2 = A(x2

1x2) = ξ2+a1
27 x2

1x2, we have A = diag(ξ27, ξ
−2
27 , ξa2

27 , ξ
a3
27 , ξ

a4
27 ).

Repeating the process above, we can show that, up to linear change of coordinates, we

may assume x2
1x2, x

2
2x3, x

2
3x4, x

2
4x5 ∈ F , and A = diag(ξ27, ξ

−2
27 , ξ427, ξ

−8
27 , ξ1627). Then, for

any i ∈ {1, 2, 3, 4, 5}, A(x2
5xi) ̸= x2

5xi, and, by A(F ) = F , x2
5xi /∈ F , contradicting to

smoothness of X (by Proposition 4.3 (1)). Thus, k ≤ 2.

Next we show that g admits an F -lifting in SL(5,C). Suppose k = 1. By Lemma 4.9,

g admits an F -lifting, say A. Since ord(A) = ord(g) = 3, it follows that det(A) = ξa3 for

some a ∈ {0, 1, 2}. Choose any b ∈ Z such that 5b + a ≡ 0 (mod 3). Then Ag := ξb3A ∈
SL(5,C) is an F -lifting of g.

Suppose k = 2. Note that g admits an F -lifting in SL(5,C) if and only if gj admits an

F -lifting in SL(5,C). Thus, if necessary, we may replacing g by a suitable power gj where

3 ∤ j. Choose any F -lifting, say A, of g. Then, as in the proof of Lemma 4.8 and as in the

argument above to ruling out k = 3 (roughly speaking, if necessary, replacing the pair
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(A, g) by a suitable power (Aj , gj), using linear change of coordinates and Proposition 4.3

repeatedly), we may assume A = diag(ξ9, ξ
−2
9 , ξ49 , ξ

a1
9 , ξa2

9 ) where 0 ≤ a2 ≤ a1 ≤ 8. Then,

by smoothness of X and using case by case check with the help of computer algebra

(e.g., Mathematica), one can conclude that (a1, a2) = (0, 0), (3, 0), (3, 3), (6, 0), (6, 3), or

(6, 6). Then (det(A))3 = 1. Thus, for suitable i ∈ {0, 1, 2}, ξi3A is in SL(5,C) and ξi3A is

an F -lifting of g.

Finally we show uniqueness. Let A1, A2 ∈ SL(5,C) be two F -lifting of g. Then

A1 = λA2 for some λ ∈ C∗ such that λ5 = 1. Since ord(A1) = ord(A2) = 3k, it follows

that λ3k = 1. Thus, λ = 1 and A1 = A2. This completes the proof of the proposition. □

The following theorem will be frequently used in the later sections.

Theorem 4.11. Let G ⊂ Aut(X) be a subgroup. Then G admits an F -lifting.

Proof. Suppose |G| = 3kpk1
1 · · · pkn

n , where pi ̸= 3 are distinct prime numbers,

k ≥ 0, ki ≥ 0, for all 1 ≤ i ≤ n. For any i ∈ {1, . . . , n}, by Theorem 4.6, a Sylow

pi-subgroup Gpi of G admits an F -lifting, say Hi. For a Sylow 3-subgroup G3 of G, let

H0 = {Ag|g ∈ G3 and Ag is the unique F -lifting of g in SL(5,C)}.

Note that H0 is well-defined by Proposition 4.10. Let G̃ = ⟨H0,H1, . . . , Hn⟩ < GL(5,C).
Next we show G̃ is an F -lifting of G. By definition of G̃, we have A(F ) = F for any

A ∈ G̃. Recall that π : GL(5,C) −→ PGL(5,C) is the natural quotient map. Clearly

π(G̃) = G. Let A ∈ (Ker(π) ∩ G̃). Then A = λI5 for some λ ∈ C∗. By A(F ) = F and F

is of degree 3, we have A = ξj3I5 for some j ∈ {0, 1, 2}. Then we have det(A) = ξ5j3 . On

the other hand A = Bl1
1 Bl2

2 · · ·Blm
m , where Bi ∈ (H0 ∪H1 ∪ · · · ∪Hn) and li ∈ Z. Then

det(A) = det(B1)
l1 · · · det(Bm)lm and det(A)p

k1
1 ···pkn

n = 1. Thus, (ξ5j3 )p
k1
1 ···pkn

n = 1 and

A = I5. Then Ker(π) ∩ G̃ = {I5} and G̃ is an F -lifting of G. This completes the proof

of the theorem. □

Remark 4.12. Unlike a smooth cubic threefold, the automorphism group of a

smooth quintic threefold does not necessarily have an F -lifting (see [OY19, Section 4]).

5. Abelian subgroups.

Notation. In Sections 5–8, X is a smooth cubic threefold defined by an irreducible

homogeneous polynomial F .

In this section, we classify abelian groups which can faithfully act on smooth cubic

threefolds (Theorem 5.4).

Proposition 5.1. Let g ∈ Aut(X) be of primary order. Then ord(g) = 2a, 3b, 5,

or 11, where a, b > 0. In particular, if a prime number p divides |Aut(X)|, then p ∈
{2, 3, 5, 11}.
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Proof. Consider the numbers (1− 3)l − 1, for 1 ≤ l ≤ 5. These five numbers are

−3, 3, −9, 15, −33. Thus, by [GL13, Theorem 1.3] (see also [OY19, Theorem 5.1]),

ord(g) is 2a, 3b, 5 or 11. □

Theorem 5.2. If 5 divides |Aut(X)|, then a Sylow 5-subgroup of Aut(X) is iso-

morphic to C5.

Proof. Any finite p-group of order pk contains a subgroup of order pl for any

l ∈ {0, 1, . . . , k}. Thus, in order to prove the theorem, it suffices to show that Aut(X)

contains no subgroup of order 25. Suppose a subgroup G ⊂ Aut(X) is of order 25.

By Proposition 5.1, G is not isomorphic to C25. Then G ∼= C2
5 . Suppose G = ⟨g1, g2⟩

where ord(g1) = ord(g2) = 5 and g1g2 = g2g1. By Theorem 4.11, G admits an F -lifting,

say G̃. Let Ai ∈ G̃ be F -lifting of gi, i = 1, 2. Since A1A2 = A2A1, under suitable

linear change of coordinates, we may assume both Ai are diagonal matrices. Then

Ai = diag(ξai1
5 , . . . , ξai5

5 ), i = 1, 2. As in the proof of Proposition 4.10, by smoothness ofX

and A1(F ) = F , we may assume A1 = diag(ξ5, ξ
−2
5 , ξ45 , ξ

2
5 , ξ

a15
5 ) and x2

1x2, x
2
2x3, x

2
3x4 ∈ F .

Then, replacing A2 by Aj
1A2 for suitable j, we may assume a21 = 0. Then by A2(F ) = F

and x2
1x2, x

2
2x3, x

2
3x4 ∈ F , we have A2 = diag(1, 1, 1, 1, ξa25

5 ). Since ord(A2) = 5, it

follows that ξa25
5 ̸= 1. Then A2(x

2
5xi) ̸= x2

5xi for any i ∈ {1, . . . , 5}. Thus, by A2(F ) = F ,

x2
5xi /∈ F for any i, a contradiction to Proposition 4.3 (1). □

Theorem 5.3 ([Ro09, Proposition 1.1], see also [GL11, Theorem 2.10]). If 11

divides |Aut(X)|, then X is isomorphic to Klein cubic threefold (in particular, Aut(X) ∼=
PSL(2, 11) [Ad78]).

Theorem 5.4. Let G ⊂ Aut(X) be an abelian subgroup. Then G is isomorphic to

one of the following 25 groups : C2, C3, C4, C
2
2 , C5, C6, C8, C4 ×C2, C9, C

2
3 , C11, C12,

C6 × C2, C15, C16, C18, C6 × C3, C24, C12 × C2, C9 × C3, C
3
3 , C12 × C3, C

2
6 , C6 × C2

3 ,

C4
3 . Moreover, up to linear change of coordinates (equivalently, up to conjugation in

GL(5,C)), one of the H̃ in the Table 2 is an F -lifting of G.

Proof. The idea of the proof is the following: firstly, by Theorem 4.11, G admits

an F -lifting, say G̃; secondly, since G and G̃ ⊂ GL(5,C) are abelian groups, we may

assume G̃ consists of diagonal matrices; lastly, we use smoothness of X and Proposi-

tion 4.3 to find an explicit G̃ (resp. to rule out G) if G is in the list of the 25 groups

in the theorem (resp. if G is not in the list). We give the details of the proof for two

groups: C9, C
2
4 , and we leave the details for other groups to the readers (note that by

consideration of subgroups, we only need to rule out finitely many abelian groups, and

hence we can do case by case check).

Suppose G ∼= C9. Then G admits an F -lifting G̃. Let A ∈ G̃ be a generator. We may

assume A is a diagonal matrix and A = diag(ξ9, ξ
a
9 , ξ

b
9, ξ

c
9, ξ

d
9) where 0 ≤ a, b, c, d ≤ 8.

By smoothness of X and Proposition 4.3 (see proof of Proposition 4.10), we may assume

x2
1x2, x

2
2x3 ∈ F and a = 7, b = 4. Then, without loss of generality, we may assume A =

diag(ξ9, ξ
7
9 , ξ

4
9 , ξ

c
9, ξ

d
9) where 0 ≤ c ≤ d ≤ 8. Then by considering all the 45 possibilities

for the pair (c, d) via direct computation, smoothness of X implies (c, d) = (0, 0), (0, 3),

(0, 6), (3, 3), (3, 6), or (6, 6). Thus, G̃ is one of the groups H̃ ⊂ GL(5,C) in case number 12



1336(312)

1336 L. Wei and X. Yu

of Table 2. Then A3 = diag(ξ3, ξ3, ξ3, 1, 1). Thus, for any monomial m = xi1
1 · · ·xi5

5 of

degree 3, A3(m) = m if and only if either i1 = i2 = i3 = 0 or i4 = i5 = 0. Then

F = R(x1, x2, x3) + S(x4, x5) where R and S are homogeneous polynomial of degree 3.

Since X is smooth, by Jacobian test, the hypersurface defined by R (resp. by S) in P2

(resp. P1) is a smooth cubic plane curve (resp. three distinct points). Thus, up to linear

change of coordinates, S(x4, x5) is the same as x3
4 + x3

5. Since A(F ) = F , it follows that

A(R) = R. Then

R = α1x
2
1x2 + α2x

2
2x3 + α3x

2
3x1,

where all αi are nonzero complex numbers. Then we may assume all αi = 1 and

F = x2
1x2 + x2

2x3 + x2
3x1 + x3

4 + x3
5.

Therefore, we have proved the following: any smooth cubic threefold admitting an order 9

automorphism is isomorphic to the smooth cubic threefold defined by x2
1x2 + x2

2x3 +

x2
3x1 + x3

4 + x3
5. On the other hand, the Fermat cubic threefold X1 admits an order 9

automorphism. Thus, X ∼= X1. In fact, let

B =
1
3
√
9


ξ618 ξ618 ξ618 0 0

ξ218 −ξ518 ξ818 0 0

ξ418 −ξ18 −ξ718 0 0

0 0 0 3
√
9 0

0 0 0 0 3
√
9

 .

Then B(x2
1x2 + x2

2x3 + x2
3x1 + x3

4 + x3
5) = x3

1 + x3
2 + x3

3 + x3
4 + x3

5.

Next suppose G ∼= C2
4 . Then we may assume an F -lifting G̃ of G is generated

by A1 = diag(ξ4,−1, 1, 1, 1) and A2 = diag(1, 1, 1, ξ4,−1), and x2
1x2, x

2
2x3, x

2
4x5 ∈ F

(cf. the proof of Theorem 5.2). Then A1(F ) = A2(F ) = F implies F ∈ (x3)+(x1, x4)
2, a

contradiction to smoothness ofX by Proposition 4.3 (3). Thus, G ∼= C2
4 is impossible. □

6. Sylow p-subgroups, p = 2, 3.

In this section, we classify p-groups in Aut(X) for p = 2, 3 (Theorems 6.1, 6.3).

Let G2 be the set of the following 7 groups: C2, C4, C
2
2 , C8, C4 ×C2, D8, C16. One

can verify that a 2-group G is, as an abstract group, isomorphic to a subgroup of one of

the 6 groups in Theorem 3.2 if and only if G ∈ G2.

Theorem 6.1. Let G ⊂ Aut(X) be a 2-group. Then G ∈ G2. In particular,

|G| ≤ 24.

Before we start the proof of Theorem 6.1, we explain the main ideas of the proof

(i.e., how to exclude all other 2-groups which are not in G2).

We will exclude groups inductively (from smaller orders to larger orders). Our

strategies to exclude groups consist of two steps:

Step one: Let G be a 2-group of order 2n. If Theorem 6.1 has been proved for

2-groups of orders strictly less than 2n and G contains a proper subgroup which is not in
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Table 1. Character table of Q8.

1a 4a 4b 2a 4c

χ1 1 1 1 1 1

χ2 1 −1 1 1 −1

χ3 1 1 −1 1 −1

χ4 1 −1 −1 1 1

χ5 2 0 0 −2 0

G2, then the group G is excluded. In this section and later sections, we call this method

of excluding groups as sub-test. We frequently use GAP to do sub-test. The detailed

GAP codes can be found on the second author’s personal website [Yu].

Step two: If G survives after sub-test and G /∈ G2, then we just do case by case

consideration to rule out G.

We now start to prove Theorem 6.1.

Proof of Theorem 6.1. By sub-test, it suffices to rule out the following 2-

groups: Q8, C
3
2 , C

2
4 , C4 ⋊ C4 (GAP ID: [16, 4]), C8 × C2, C8 ⋊ C2 ([16, 6]), D16, C32.

Then by Theorem 5.4, we only need to rule out 4 groups: Q8, C4 ⋊C4 ([16, 4]), C8 ⋊C2

([16, 6]), and D16. The ideas of our proof for these 4 groups G are the same: using

Table 2 and character table of G, one can prove that none of 5-dimensional faithful lin-

ear representations of G can be an F -lifting of G. We give detailed proof for the case

G = Q8, and leave the details for the other cases to the readers.

Suppose Q8
∼= G ⊂ Aut(X). By Theorem 4.11, G admits an F -lifting G̃. Since

G̃ ⊂ GL(5,C), G̃ is a 5-dimensional faithful linear representation of Q8. Consider the

character table (Table 1) of Q8.

The group Q8 has exactly 5 conjugacy classes the order of representative of which

are 1, 2, 4, 4, 4. In the table, we use 1a, 2a, 4a, 4b, 4c to denote these conjugacy classes.

χ1, . . . , χ5 are the characters of the five irreducible representations of Q8.

We denote by χ the character of Q8 corresponding to the representation G̃. Since the

representation is faithful, it follows that a) χ = χ5+χi+χj+χk, where i, j, k ∈ {1, 2, 3, 4};
or b) χ = 2χ5 + χi, where i, j, k ∈ {1, 2, 3, 4}.

Case a): χ = χ5 + χi + χj + χk. Then by classification of F -liftings of order 4

elements in Aut(X) (see Table 2, number 4), −1 must be an eigenvalue of any order 4

element in G̃. Thus, by Table 1, χ = χ5 + χ2 + χ3 + χk, χ = χ5 + χ2 + χ4 + χk, or

χ = χ5 + χ3 + χ4 + χk where k ∈ {1, 2, 3, 4}. Then one of the three traces tr(4a), tr(4b),

or tr(4c) (by abuse of notation, we use tr(4a) etc. to denote the trace of a representative

of a conjugacy class) must be −1 or −3, a contradiction to Table 2, number 4. Thus,

Case a) is impossible.

Case b): χ = 2χ5 + χi. Then tr(2a) = −3, a contradiction to Table 2, number 1.

Thus, this case is impossible.

Therefore, Q8 is not a subgroup of Aut(X). □
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Next, similar to 2-groups, we classify 3-groups in Aut(X). Let G3 be the set of the

following 12 groups: C3, C9, C
2
3 , C9×C3, C

2
3 ⋊C3 ([27,3]), C9⋊C3 ([27,4]), C3

3 , C
3
3 ⋊C3

([81,7]), C3× (C2
3 ⋊C3) ([81,12]), C3× (C9⋊C3) ([81,13]), C

4
3 , C3× (C3

3 ⋊C3) ([243, 51]).

Note that a 3-group G is isomorphic to a subgroup of one of the 6 groups in Theorem 3.2

if and only if G ∈ G3.

Lemma 6.2. Let G ⊂ Aut(X) be a 3-group. If G contains either C9 or C4
3 , then

G is isomorphic to a subgroup of the automorphism group of Fermat cubic threefold (in

particular, G ∈ G3 ).

Proof. It is well known that the automorphism group of Fermat cubic threefold

X1 is isomorphic to C4
3 ⋊ S5 (see Section 3 for explicit description of generators of

Aut(X1)). On the other hand, if G contains either C9 or C4
3 , then, by Table 2 (see

also the proof of Theorem 5.4), X is isomorphic to X1 and hence G is isomorphic to a

subgroup of Aut(X1). □

Theorem 6.3. Let G ⊂ Aut(X) be a 3-group. Then G ∈ G3. In particular,

|G| ≤ 35.

Proof. As in the proof of Theorem 6.1, by sub-test, it suffices to rule out the

following 14 3-groups: C27, C
2
9 , (C9 ×C3)⋊C3 ([81,3]), C9 ⋊C9 ([81,4]), (C9 ×C3)⋊C3

([81,8]), (C9×C3)⋊C3 ([81,9]), C3.(C
2
3 ⋊C3) ([81,10]), C9×C2

3 , (C9×C3)⋊C3 ([81,14]),

C4
3 ⋊ C3 ([243,37]), (C3 × (C9 ⋊ C3)) ⋊ C3 ([243,56]), C2

3 × (C2
3 ⋊ C3) ([243,62]), (C3 ×

(C2
3 ⋊C3))⋊C3 ([243,65]), C5

3 . By Theorem 5.4, now we only need to ruling out the 10

non-abelian 3-groups in the list above. It turns out that all the 10 non-abelian 3-groups

G except (C3×(C2
3⋊C3))⋊C3 ([243,65]) satisfy both of the following two properties: i) G

contains either C9 or C4
3 , ii) G is not isomorphic to any subgroup of Aut(X1). Thus, by

Lemma 6.2, we are reduced to rule out (C3× (C2
3 ⋊C3))⋊C3 ([243,65]). It turns out the

group (C3×(C2
3⋊C3))⋊C3 ([243,65]) has no 5-dimensional faithful linear representation.

Thus, by Theorem 4.11, it cannot be a subgroup of Aut(X) (since otherwise, its F -lifting

would be a 5-dimensional faithful linear representation of it). □

Proposition 6.4. Let G ⊂ Aut(X) be a subgroup of order 35k for some positive

integer k. Then G is isomorphic to a subgroup of Aut(X1).

Proof. By Theorem 6.3, a Sylow 3-subgroup G3 of G must be isomorphic to

C3 × (C3
3 ⋊ C3). Then C4

3 is a subgroup of G. Then by Table 2, number 33, X ∼= X1.

Thus, G is isomorphic to a subgroup of Aut(X1). This completes the proof of the

proposition. □

7. Solvable subgroups of order 2a3b5c.

Theorem 7.1. Let G ⊂ Aut(X) be a solvable group of order 2a3b5c ≤ 2000, where

a, b, c ≥ 0. Then, as an abstract group, G is isomorphic to a subgroup of Aut(Xi) for

some i ∈ {1, . . . , 6}.

Proof. By Theorems 6.1, 6.3, 5.2, a ≤ 4, b ≤ 5, c ≤ 1. Moreover, we may assume
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at least two of a, b, c are not zero. Then, by |G| = 2a3b5c ≤ 2000, |G| has the following 41

possibilities: 6, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 48, 54, 60, 72, 80, 90, 108, 120, 135,

144, 162, 180, 216, 240, 270, 324, 360, 405, 432, 486, 540, 648, 720, 810, 972, 1080, 1215,

1296, 1620, 1944. When |G| ∈ {486, 972, 1215, 1944}, Theorem 7.1 is just a consequence

of Proposition 6.4. Thus, we only need to consider the remaining 37 possibilities for |G|.
By sub-test and Theorem 5.4, we are reduced to ruling out the following 24 non-abelian

groups: D18, C3⋊C8, D24, C2×(C3⋊C4), D30, C9⋊C4 ([36,1]), C
2
2⋊C9 ([36,3]), C

2
3⋊C4

([36,7]), C2 × (C2
3 ⋊ C2) ([36,13]), C3 ⋊ C16, (C

2
3 ⋊ C3)⋊ C2 ([54,5]), C3

3 ⋊ C2 ([54,14]),

C15 ⋊C4 ([60,7]), C2
3 ×D8, C

2
3 ⋊C8 ([72,39]), (C3 ×A4)⋊C2 ([72,43]), (C2

3 ⋊C3)⋊C4

([108,11]), C4 × (C2
3 ⋊ C3) ([108,13]), C2

6 ⋊ C3 ([108,22]), C2
2 × (C2

3 ⋊ C3) ([108,30]),

C2
3 × (C3 ⋊ C4), C

2
3 × A4, C6 × (C2

3 ⋊ C3) ([162,48]), C
2
3 × (C2

3 ⋊ C4) ([324,161]). Then

by considering character tables of these groups and by using Table 2, one can rule out

these 24 non-abelian groups (see the proof of Theorems 5.4, 6.1 and 6.3), and we leave

the details to the readers. □

In the proof of Theorem 7.3, we will need the following known result in group theory:

Theorem 7.2 (See, for example, [Su86, Chapter 4, Theorem 5.6]). Let G be a

finite solvable group. We can write

|G| = mn (m,n) = 1.

Then, the following propositions hold.

(i) There are subgroups of order m.

(ii) Any two subgroups of order m are conjugate.

(iii) Any subgroup whose order divides m is contained in a subgroup of order m.

Theorem 7.3. Let G ⊂ Aut(X) be a solvable group of order 2a3b5c > 2000, where

a, b, c ≥ 0. Then, as an abstract group, G is isomorphic to a subgroup of Aut(Xi) for

some i ∈ {1, . . . , 6}.

Proof. By Theorems 6.1, 6.3, 5.2, a ≤ 4, b ≤ 5, c ≤ 1. Moreover, we may assume

at least two of a, b, c are not zero. Then, by |G| = 2a3b5c > 2000, |G| has the following

8 possibilities: 2160, 2430, 3240, 3888, 4860, 6480, 9720, 19440.

When |G| ∈ {2430, 3888, 4860, 9720, 19440}, Theorem 7.3 is just a consequence of

Proposition 6.4. Thus, we only need to consider the remaining 3 possibilities for |G|:
2160 = 24335, 3240 = 23345, 6480 = 24345. If |G| ∈ {2160, 3240, 6480}, then, by

Theorem 7.2, G contains a subgroup of order 235 or 245, a contradiction to Theorem 7.1

(note that, for any 1 ≤ i ≤ 6, Aut(Xi) contains no subgroup of order 235 or 245). □

8. Non-solvable subgroups of order 2a3b5c.

Theorem 8.1. Let G ⊂ Aut(X) be a non-solvable group of order 2a3b5c ≤ 2000,

where a, b, c ≥ 0. Then, as an abstract group, G is isomorphic to a subgroup of Aut(Xi)

for some i ∈ {1, . . . , 6}.
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Proof. By Theorems 6.1, 6.3, 5.2, a ≤ 4, b ≤ 5, c ≤ 1. A finite group with cyclic

Sylow 2-subgroups is solvable (see [OY19, Proposition 8.31]). By Burnside theorem, a

finite group of order pαqβ is solvable, where p, q are two distinct prime numbers and α, β

are non-negative integers. Thus, we may assume a ∈ {2, 3}, b ∈ {1, 2, 3, 4, 5}, c = 1. By

Proposition 6.4, we may assume b < 5. Thus, we only need to consider the following

cases for |G|: 60, 120, 180, 360, 540, 1080, 1620. Then, by sub-test, we are reduced

to ruling out the following two non-solvable groups: A6, C3.A6 ([1080,260]). Then by

considering character tables of these two groups and by using Table 2, one can rule out

these 2 groups (see the proof of Theorems 5.4, 6.1 and 6.3), and we leave the details to

the readers. □

Theorem 8.2. Let G ⊂ Aut(X) be a non-solvable group of order 2a3b5c > 2000,

where a, b, c ≥ 0. Then, as an abstract group, G is isomorphic to a subgroup of Aut(Xi)

for some i ∈ {1, . . . , 6}.

Proof. As in the proof of Theorem 8.1, we may assume a ∈ {2, 3}, b ∈ {1, 2, 3, 4},
c = 1. Then, by |G| > 2000, we only need to consider the case |G| = 23345 = 3240.

Suppose |G| = 3240. Let N be a maximal proper normal subgroup of G. Consider the

following exact sequence

1 −→ N −→ G −→ M −→ 1.

By choice of N , M is a finite simple group. By classification of finite simple groups,

M ∼= C2, C3, C5, A5, or A6.

SupposeM ∼= C2 (resp.M ∼= C3). ThenN ⊂ Aut(X) is non-solvable and |N | = 1620

(resp. |N | = 1080), a contradiction to Theorem 8.1 (in fact, for any 1 ≤ i ≤ 6, Aut(Xi)

does not contain a non-solvable subgroup of order 1620 (resp. 1080)).

Suppose M ∼= C5. Then |N | = 2334 and N is solvable. Then G is solvable, a

contradiction.

Suppose M ∼= A5. Then |N | = 2 · 33. Since C5 is a subgroup of M , it follows that

G contains a (solvable) subgroup of order 2 · 335 = 270, a contradiction to Theorem 7.1.

Suppose M ∼= A6. Then |N | = 32. Since A5 is a subgroup of M , it follows that G

contains a (non-solvable) subgroup of order 22335 = 540, a contradiction to Theorem 8.1.

This completes the proof of the theorem. □

9. Proof of main theorem.

In this section, we prove our main Theorem (Theorem 3.2).

Let G ⊂ Aut(X) be a subgroup, where X is a smooth cubic threefold. Then, by

Proposition 5.1 and Theorems 6.1, 6.3, 5.2, 5.3, it follows that

|G| = 2a23a35a511a11 ,

where 0 ≤ a2 ≤ 4, 0 ≤ a3 ≤ 5, 0 ≤ a5 ≤ 1, 0 ≤ a11 ≤ 1.

If a11 is not zero, by Theorem 5.3, G is isomorphic to a subgroup of Aut(X5).
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If a11 = 0, then, by Theorems 7.1, 7.3, 8.1, 8.2, G is isomorphic to a subgroup of

Aut(Xi) for some 1 ≤ i ≤ 6. This completes the proof of Theorem 3.2.

Appendix A. Computer program GAP.

In this paper, we extensively use the mathematical software GAP ([GAP2014]). In

GAP library, groups of order ≤ 2000 (except 1024) are stored. All the information we

need (structure descriptions, lists of subgroups, character tables, etc.) of these groups

are included in GAP.

A terminology used in GAP: SmallGroup(a, b):= the b-th group of order a (here a ≤
2000 and a ̸= 1024). For example, by classification, up to isomorphism, there are exactly

five different groups of order 8: C8, C4 × C2, D8, Q8, C
3
2 . In GAP, these five groups are

stored in a specific order. In fact, SmallGroup(8, 1) ∼= C8, SmallGroup(8, 2) ∼= C4 × C2,

SmallGroup(8, 3) ∼= D8, SmallGroup(8, 4) ∼= Q8, SmallGroup(8, 5) ∼= C3
2 .

Throughout this paper, if no confuse causes, we use the following convention: Let

0 < a ≤ 2000 and a ̸= 1024. Suppose, up to isomorphism, there are ka many different

finite groups of order a. Let 0 < b ≤ ka. Then we denote by [a, b] a group isomorphic to

SmallGroup(a, b). In fact, in GAP, [a, b] is regarded as the “ID” of SmallGroup(a, b). We

also call [a, b] the “GAP ID” of groups isomorphic to SmallGroup(a, b). For example, the

group [8, 3] is isomorphic to the dihedral group D8. When the group structure is clear

from the structure description of a group (e.g., C3
2 ), we often omit its GAP ID.

Appendix B. The table of abelian subgroups.

In the last column of Table 2, blank means we do not address uniqueness of X (so

could be either unique or not unique).

When Sylow 3-subgroup H3 is not trivial, H may admit several F -liftings (even

up to conjugation in GL(5,C)). However, if K1 and K2 are two F -liftings of H, then

⟨K1, ξ3I5⟩ = ⟨K2, ξ3I5⟩ ⊂ GL(5,C). Thus, a cubic monomial is invariant by K1 if and

only if it is invariant by K2. Because of this reason, for simplicity, in Table 2, when H3 is

not a trivial group, we do not give all possible F -liftings of H (but, at least one F -lifting

of H is given).

Note that one can determine fixed point loci XH using ideas and results in the

current paper (cf. [Yu17]).



1342(318)

1342 L. Wei and X. Yu

Table 2. F -lifting of abelian subgroups of Aut(X).

No. H ⊂ Aut(X) generator(s) of an F -lifting H̃ of H Uniqueness of X

1 C2 diag(−1, (−1)a, 1, 1, 1) a = 0, 1

2 C3 diag(1, 1, 1, ξ3, ξa3 ) a = 0, 1, 2

3 C3 diag(1, 1, ξ3, ξ3, ξ23)

4 C4 diag(ξ4,−1, 1, ξa4 , 1) a = 0, 2, 3

5 C2
2 diag(−1, (−1)a, 1, 1, 1), diag(1, (−1)a,−1, 1, 1), a = 0, 1

6 C5 diag(ξ5, ξ35 , ξ
4
5 , ξ

2
5 , 1)

7 C2 × C3 diag(−1, 1,−1, 1, 1), diag(1, 1, 1, ξ3, 1)

8 C2 × C3 diag(−1, 1,−1, 1, 1), diag(1, 1, ξ3, ξ3, ξa3 ), a = 0, 1, 2

9 C2 × C3 diag(−1, 1, 1, 1, 1), diag(1, 1, ξ3, ξa3 , ξ
b
3), 0 ≤ a ≤ b ≤ 2

10 C8 diag(ξ8, ξ68 ,−1, 1, ξa8 ), a = 0, 2

11 C4 × C2 diag(ξ4,−1, 1, 1, 1), diag(1, 1, 1,−1, 1)

12 C9 diag(ξ9, ξ79 , ξ
4
9 , ξ

a
3 , ξ

b
3), 0 ≤ a ≤ b ≤ 2 X ∼= X1

13 C2
3 diag(1, ξ3, 1, ξa3 , ξ

b
3), diag(1, 1, ξ3, ξ

c
3, ξ

d
3 ), 0 ≤ a ≤ b ≤ 2,

0 ≤ c ≤ d ≤ 2

14 C11 diag(ξ11, ξ911, ξ
4
11, ξ

3
11, ξ

5
11) X ∼= X5

15 C4 × C3 diag(ξ4,−1, 1, 1, 1), diag(1, 1, 1, ξ3, ξa3 ) a = 0, 1, 2

16 C4 × C3 diag(ξ4,−1, 1, 1,−1), diag(1, 1, 1, ξ3, ξ3)

17 C4 × C3 diag(ξ4,−1, 1, 1, ξ34), diag(1, 1, 1, ξ3, 1)

18 C2
2 × C3 diag(−1, 1, 1, 1, 1), diag(1, 1,−1, 1, 1), diag(1, 1, ξ3, ξ3, ξa3 ),

a = 0, 1, 2

19 C2
2 × C3 diag(−1, 1, 1, 1, (−1)a), diag(1, 1,−1, 1, (−1)a),

diag(1, 1, 1, ξ3, 1), a = 0, 1

20 C5 × C3 diag(ξ5, ξ35 , ξ
4
5 , ξ

2
5 , 1), diag(1, 1, 1, 1, ξ3) X ∼= X6

21 C16 diag(ξ16, ξ
−2
16 , ξ416,−1, 1) X ∼= X4

22 C9 × C2 diag(ξ9, ξ79 , ξ
4
9 , ξ

a
3 , ξ

a
3 ), diag(1, 1, 1,−1, 1), a = 0, 1, 2 X ∼= X1

23 C2 × C2
3 diag(−1, 1, 1, 1, 1), diag(1, 1, ξ3, 1, 1), diag(1, 1, 1, ξ3, ξa3 ),

a = 0, 1, 2
X ∼= X1 if a = 1

24 C2 × C2
3 diag(−1, 1, 1, 1, 1), diag(1, 1, ξ3, 1, ξa3 ), diag(1, 1, 1, ξ3, ξ

a
3 ),

a = 1, 2
X ∼= X1 if a = 1

25 C2 × C2
3 diag(−1, 1, 1, 1,−1), diag(1, 1, ξ3, 1, 1), diag(1, 1, 1, ξ3, ξ3) X ∼= X1

26 C8 × C3 diag(ξ8, ξ68 ,−1, 1, 1), diag(1, 1, 1, 1, ξ3) X ∼= X3

27 C4 × C2 × C3 diag(ξ4,−1, 1, 1, 1),diag(1, 1, 1,−1, 1), diag(1, 1, 1, ξ3, ξ3) X ∼= X2

28 C9 × C3 diag(ξ9, ξ79 , ξ
4
9 , 1, ξ

a
3 ), diag(1, 1, 1, ξ3, ξ

b
3), 0 ≤ a ≤ 2, b = 0, 2 X ∼= X1

29 C3
3 diag(1, ξ3, 1, 1, ξa3 ), diag(1, 1, ξ3, 1, ξ

b
3), diag(1, 1, 1, ξ3, ξ

c
3),

0 ≤ a ≤ b ≤ c ≤ 2

30 C4 × C2
3 diag(ξ4,−1, 1, 1, 1), diag(1, 1, 1, ξ3, 1), diag(1, 1, 1, 1, ξ3) X ∼= X2

31 C2
2 × C2

3 diag(−1, 1, 1, 1, 1), diag(1,−1, 1, 1, 1), diag(1, ξ3, 1, ξ3, 1),
diag(1, 1, 1, 1, ξ3)

X ∼= X1

32 C2 × C3
3 diag(−1, 1, 1, 1, 1), diag(1, 1, ξ3, 1, 1), diag(1, 1, 1, ξ3, 1),

diag(1, 1, 1, 1, ξ3)

X ∼= X1

33 C4
3 diag(1, ξ3, 1, 1, 1), diag(1, 1, ξ3, 1, 1), diag(1, 1, 1, ξ3, 1),

diag(1, 1, 1, 1, ξ3)
X ∼= X1
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