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Abstract. The Cuntz–Toeplitz algebra En+1 for n ≥ 1 is the universal

C*-algebra generated by n+1 isometries with mutually orthogonal ranges. In
this paper, we determine the homotopy groups of the automorphism group of
En+1.

1. Introduction.

The Cuntz–Toeplitz algebra En+1 for n ≥ 1 is the universal C*-algebra generated

by n + 1 isometries with mutually orthogonal ranges. In this paper, we investigate

the automorphism groups of the Cuntz–Toeplitz algebras and determine their homotopy

groups.

The homotopy groups of the automorphism groups are necessary to classify the

locally trivial continuous fields of C*-algebras. However, there are only few classes of

C*-algebras whose homotopy groups of the automorphism groups are determined. To the

best knowledge of the author, the homotopy groups are known only for Kirchberg algebras

[4], [7], [13], strongly self-absorbing C*-algebras [10], and simple AF-algebras [22], [30].

The rough strategy of computation of the homotopy groups in the previous work is

as follows. First, we show the weak homotopy equivalence between the automorphism

group and the endomorphism semi-group. Then we compute the homotopy groups of the

endomorphism semi-group from the K-theoretic or KK-theoretic data of the C*-algebra.

We illustrate the strategy in the case of Kirchberg algebras where we have a powerful

tool, Kirchberg–Phillips’ classification theorem. Regarding a continuous map ρ : X →
EndA ⊗ K as an element in Hom(A ⊗ K, C(X) ⊗ A ⊗ K), we can associate a KK-class

KK(ρ) ∈ KK(A,C(X) ⊗ A) to ρ. Therefore the homotopical data of End(A ⊗ K)

are recovered from the KK-theoretic data, and we can directly compute the general

homotopy sets by the map [X,AutA⊗K] → KK(A,C(X)⊗A) (see [7, Proposition 5.8,

Theorem 4.6]).

In general, there is no such powerful tool and the homotopy groups are computed

for only exceptional classes of C*-algebras. The strongly self-absorbing C*-algebras are

such examples. Dadarlat and Pennig show in [10, Theorem 2.3] that the automorphism

group AutD is contractible for every unital strongly self-absorbing C*-algebra D. Using

a certain fibration, they determine the homotopy groups of Aut(D ⊗K). In this paper,

we use similar fibrations in the case mentioned above.
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Let {Ti}n+1
i=1 be the canonical generators of En+1 and let End0 En+1 be the path

component of idEn+1 of the semi-group of unital endomorphisms of En+1. We denote by e

the minimal projection 1−
∑n+1

i=1 TiT
∗
i . Then the map End0 En+1 ∋ ρ 7→

∑n+1
i=1 ρ(Ti)T

∗
i ∈

UEn+1(1− e) is a homeomorphism where UEn+1 is the unitary group of En+1. Our proof

of the main result is based on the fact that the map UEn+1 → UEn+1(1 − e) defined by

the right multiplication by 1− e gives a fibration with a fibre S1.

Theorem 1.1. The homotopy groups of AutEn+1 are as follows :

π1(AutEn+1) = Zn, π2k+1(AutEn+1) = Z, π2k(AutEn+1) = 0, k ≥ 1.

To prove Theorem 1.1, we show that the inclusion map AutEn+1 → End0 En+1 is

a weak homotopy equivalence (Theorem 3.14).

Corollary 1.2. Let X be a CW complex. The following sequence is an exact

sequence of pointed sets and the first four terms give an exact sequence of groups :

H1(X) → K1(X) → [X,AutEn+1] → H2(X)

→ [X,BAute En+1] → [X,BAutEn+1] → H3(X).

The group Aute En+1 is the subgroup of all automorphisms that fix the minimal projection

e ∈ En+1.

The original motivation of this work is to investigate the structure of continuous fields

of the Cuntz algebras beyond Dadarlat’s work [11] using the Cuntz–Toeplitz extensions,

and we will hopefully come back to this subject in the near future. We discuss the group

structure of the homotopy sets [X,AutEn+1] and [X,AutOn+1] in [16]. We organize

this paper as follows. In Section 2, we give some preliminaries to compute the homotopy

groups. We introduce several fibration sequences with the help of [10, Lemmas 2.8, 2.16

and Corollary 2.9]. As a consequence, the homotopy groups of the connected component

of the endomorphism semi-group, denoted by End0 En+1, are obtained.

In Section 3, we show the weak homotopy equivalence of End0 En+1 and AutEn+1.

The main ingredient of the proof is Pimsner–Popa–Voiculescu’s non-commutative Weyl–

von Neumann type theorem.

2. Preliminaries.

2.1. Notation and the basic facts of the theory of C*-algebras.

Let A be a unital C*-algebra and let UA be the group of unitary elements in A.

We denote by U0A the path component of 1A of UA. For a non-unital C*-algebra B, we

denote its unitization by B∼. The K-groups of A are denoted by Ki(A), i = 0, 1. We

denote by [p]0 the class of the projection p in K0(A), and denote by [u]1 the class of the

unitary u in K1(A). Let SA be the suspension of A, the set of A-valued functions on

[0, 1] that vanish at 0 and 1. For the K-theory, we refer to [1], [17]. We denote by K the

algebra of compact operators of the infinite dimensional separable Hilbert space H.

For a topological space Y and two elements y0 and y1, we denote y0 ∼h y1 in Y if
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there is a continuous path from y0 to y1. Two unitaries u, v ∈ UA are homotopy equivalent

if u ∼h v in UA. There is a natural map UA/ ∼h→ K1(A) from the set of homotopy

classes of unitaries to the K1-group. We say A is K1-injective if the map is injective.

For the non-unital C*-algebra B, it is K1-injective if the natural map UB∼/ ∼h→ K1(B)

is injective. For example, the algebra A ⊗ K is K1-injective by the definition of the

K1-group.

For A ⊗ K, we denote by M(A ⊗ K) the multiplier algebra of A ⊗ K, and denote

by Q(A ⊗ K) its quotient by A ⊗ K. We denote the quotient map by π. We remark

that Q(A ⊗ K) is K1-injective (see [21, Section 1.13]). We identify M(K) with B(H)

where B(H) is the algebra of the bounded operators on H. For A = C(X), we denote by

Cb
s∗(X,B(H)) the set of B(H)-valued bounded continuous functions on X with respect

to the strong* operator topology (abbreviated to SOT*). This is a realization of the

multiplier algebra M(C(X)⊗K) (see [29, Proposition 2.57]).

We refer to [5, Theorem 1] for the K-theory of the multiplier algebra, and a gener-

alization of Kuiper’s theorem.

Theorem 2.1. Let A be a unital C*-algebra. Then UM(A⊗K) is contractible with

respect to the norm topology, and we have Ki(M(A⊗K)) = 0, i = 1, 2.

Let A, B and C be C*-algebras. An extension C of A by B⊗K is an exact sequence

0 → B ⊗K → C → A → 0,

and the Busby invariant of the extension is the induced map τ : A → Q(B ⊗ K). We

refer to [1] for the definition of the Busby invariant. The extension is called trivial if the

above exact sequence splits. The extension is called essential if τ is injective, and called

unital if τ is unital. We refer to [1] for the basic facts of the theory of extensions of

C*-algebras. There are two equivalence relations of unital extensions, the strong unitary

equivalence and the weak unitary equivalence.

Definition 2.2. Let A and B be C*-algebras. Two Busby invariants τi : A →
Q(B ⊗ K), i = 1, 2 are said to be strongly unitarily equivalent if there exists a unitary

U ∈ UM(B⊗K) satisfying τ1 = Adπ(U)◦τ2. They are said to be weakly unitarily equivalent

if there exists a unitary u ∈ UQ(B⊗K) with τ1 = Adu ◦ τ2. We denote the strong unitary

equivalence by ∼s.u.e and denote the weak unitary equivalence by ∼w.u.e. We denote

τ1 ∼s τ2 if there exists two trivial extensions ρ1 and ρ2 satisfying τ1 ⊕ ρ1 ∼s.u.e τ2 ⊕ ρ2.

We denote by Ext(A,B ⊗ K) the set of the equivalence classes of the Busby invariants

with respect to the equivalence relation ∼s.

We note that the weak unitary equivalence, ∼w.u.e induces the equivalence ∼s (see

[1, Proposition 5.6.4]). In this paper, we deal with the extensions of the Cuntz algebras

by C(X)⊗K. One has a universal coefficient theorem of Ext-groups.

Theorem 2.3 ([1, Theorem 23.1.1]). Let A and B be separable C*-algebras, with

A in the bootstrap class. Then there is an unnaturally splitting short exact sequence
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0 →
⊕
i=0,1

Ext1Z(Ki(A),Ki(B)) → Ext(A,B ⊗K) →
⊕
i=0,1

Hom(Ki(A),Ki+1(B)) → 0.

If
⊕

i=0,1 Hom(Ki(A),Ki+1(B)) = 0, we have an isomorphism Ext(A,B ⊗ K) →⊕
i=0,1 Ext

1
Z(Ki(A),Ki(B)) that sends a class of Busby invariant [τ ] of an extension

0 → B ⊗ K → Cτ → A → 0 to the class of group extension of the commutative groups

[Ki(B) → Ki(Cτ ) → Ki(A)] ∈ Ext1Z(Ki(A),Ki(B)) for i = 0, 1.

Let En+1 be the universal C*-algebra generated by n + 1 isometries with mutu-

ally orthogonal ranges and let {Ti}n+1
i=1 be the canonical generators of En+1. It is

called the Cuntz–Toeplitz algebra. The closed two-sided ideal generated by the mini-

mal projection e := 1 −
∑n+1

i=1 TiT
∗
i is isomorphic to the compact operators K, which is

known to be the only closed non-trivial two-sided ideal. Consider the full Fock space

F(Cn+1) and the left creation operators {Ti}n+1
i=1 (see [26, Section 1]). Then one has

K ⊂ C∗({Ti}n+1
i=1 ) = En+1 ⊂ B(F(Cn+1)). In this paper, we frequently identify K∼ with

K + C1En+1
⊂ B(F(Cn+1)). Let π : En+1 → On+1 be the quotient map by the ideal

K, and let Si := π(Ti). The quotient algebra On+1 is the universal simple C*-algebra

generated by n+1 isometries with the relation : S∗
j Si = δij , 1 =

∑n+1
i=1 SiS

∗
i . We denote

by O∞ the universal C*-algebra generated by the countably infinite isometories with

mutually orthogonal ranges. The algebras On+1 and O∞ are called the Cuntz algebras,

whose K-groups are the following:

K0(On+1) = Zn, K1(On+1) = 0, K0(O∞) = Z, K1(O∞) = 0.

See [4, Theorems 3.7, 3.8, Corollary 3.11].

The Cuntz algebras are the Kirchberg algebras, and they tensorially absorb O∞,

On+1 ⊗O∞ ∼= On+1. The algebra that tensorially absorbs O∞ has K1-injectivity by the

lemma below.

Lemma 2.4 ([25, Lemma 2.1.7]). Let A be a unital C*-algebra. Then the natural

map UA⊗O∞/ ∼h→ K1(A⊗O∞) is bijective. In particular, every unital C*-algebra that

tensorially absorbs O∞ is K1-injective.

Definition 2.5. We denote by τ0 the Busby invariant of the extension

0 → K → En+1 → On+1 → 0.

The inclusion map C(X) ⊗ K ↪→ C(X) ⊗ En+1 induces the Busby invariant τ =

idC(X) ⊗ τ0 : C(X)⊗On+1 ↪→ Q(C(X)⊗K) of the unital essential extension

0 → C(X)⊗K → C(X)⊗ En+1

idC(X)⊗π
−−−−−−→ C(X)⊗On+1 → 0.

Since K and En+1 are KK-equivalent to C (see [26, Theorem 4.4]) the above exact

sequence induces the following 6-term exact sequence:
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K0(C(X))
−n // K0(C(X))

ρ // K0(C(X)⊗On+1)

��
K1(C(X)⊗On+1)

ind

OO

K1(C(X))
ρ

oo K1(C(X)).
−n

oo

For a pointed topological space (X,x0), we denote by ΣX its reduced suspension

with the base point x0. We denote by C0(X,x0) the set of continuous functions vanishing

at x0. For pointed topological spaces (X,x0), (Y, y0), we denote the set of continuous

maps from X to Y by Map(X,Y ) and denote the set of base point preserving continuous

maps by Map0(X,Y ). We denote the homotopy set Map(X,Y )/ ∼h by [X,Y ] and

denote Map0(X,Y )/ ∼h by [X,Y ]0. We remark that if Y is an H-space, the natural map

[X,Y ]0 → [X,Y ] is bijective.

Lemma 2.6. Let (X,x0) be a based compact Hausdorff space. Then the natural map

U(C0(X,x0)⊗On+1)
∼/ ∼h→ K1(C0(X,x0)⊗On+1)

is a surjective isomorphism.

Proof. SinceK1(On+1) = 0, we haveK1(C0(X,x0)⊗On+1) = K1(C(X)⊗On+1).

By Lemma 2.4, the natural map

[X,UOn+1 ] = UC(X)⊗On+1
/ ∼h→ K1(C(X)⊗On+1)

is an isomorphism. Since UOn+1 is an H-space, we have

U(C0(X,x0)⊗On+1)∼/ ∼h= [X,UOn+1 ]0 = [X,UOn+1 ].

Therefore we have the conclusion. □

Lemma 2.7 ([2, Proposition 6.6]). Let A be a C*-algebra and let I be a two-

sided closed ideal of A. If A/I and I are K1-injective and the natural map US(A/I)∼ →
K1(S(A/I)) is surjective, then A is K1-injective.

We refer to [28] for the proof of the surjectivity. We also refer to [28] for the

definition of the properly infinite full projections and the properly infinite C*-algebras.

Lemma 2.8 ([28, Exercise 8.9]). Let A be a unital properly infinite C*-algebra.

Then the natural map UA/ ∼h→ K1(A) is surjective.

Lemma 2.9 ([28, Exercise 4.9]). Let A be a unital C*-algebra, and let p and q be

properly infinite full projections. Then there exists a partial isometry v with p = vv∗, q =

v∗v, if and only if [p]0 = [q]0 in K0(A).

We show that the algebra C(X)⊗ En+1 is K1-injective.

Proposition 2.10. Let X be a compact Hausdorff space. Then, the map
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UC(X)⊗En+1
/ ∼h→ K1(C(X)⊗ En+1)

is an isomorphism.

Proof. Surjectivity follows from the fact that C(X)⊗En+1 is properly infinite and

Lemma 2.8. We identify SC0(X,x0)⊗On+1 with C0(ΣX,x0)⊗On+1. Since C(X)⊗On+1

is K1-injective by Lemma 2.4 and C(X)⊗K is K1-injective, it is sufficient to prove the

surjectivity of the natural map U(SC(X)⊗On+1)∼ → K1(SC(X) ⊗ On+1). For the space

Y := [0, 1] × X/({0} × X ⊔ {1} × X), we have SC(X) = C0(Y, y0). So we have the

conclusion by Lemma 2.7. □

Let EndEn+1 be the semi-group of unital ∗-endomorphisms of En+1. We topologize

EndEn+1 by the point-wise norm topology, and let End0 En+1 be the path component of

idEn+1 in EndEn+1. We denote by Ende En+1 (resp. Aute En+1) the subset of EndEn+1

(resp. AutEn+1) consisting of all elements fixing the minimal projection e. Every auto-

morphism of En+1 preserves the ideal of compact operators and induces an automorphism

of On+1. For α in AutEn+1, we denote by α̃ the induced automorphism of On+1. This

gives a group homomorphism AutEn+1 → AutOn+1.

Lemma 2.11. The set End0 En+1 is equal to a subset {ρ ∈ EndEn+1 | ρ(e) is a

minimal projection of K} of EndEn+1, and the map

End0 En+1 ∋ ρ 7→ uρ :=

n+1∑
i=1

ρ(Ti)T
∗
i ∈ UEn+1(1− e) := {u(1− e) ∈ En+1 | u ∈ UEn+1}

is a homeomorphism.

Proof. First, we show End0 En+1 ⊃ {ρ ∈ EndEn+1 | ρ(e) : minimal projection}
because the converse is trivial. Consequently, the map End0 En+1 ∋ ρ 7→ uρ ∈ UEn+1(1−
e) is well-defined. If ρ(e) is a minimal projection, there exists a partial isometry v with

vv∗ = ρ(e), v∗v = e. Then the unitary v + uρ is in the path component of 1En+1
by the

K1-injectivity of En+1. We take a norm continuous path of unitaries {ut}t∈[0,1] in UEn+1

from v + uρ to 1En+1 , and we have the continuous path ρt : Ti 7→ utTi from ρ to idEn+1 .

Second, we show the map End0 En+1 ∋ ρ 7→ uρ ∈ UEn+1(1−e) is a homeomorphism.

For every w ∈ UEn+1(1 − e), we have the map ρw : Ti 7→ wTi by the universality of

En+1. The map UEn+1(1 − e) ∋ w 7→ ρw ∈ End0 En+1 is continuous because {Ti}n+1
i=1

is the generator of En+1. This gives the inverse of the map End0 En+1 ∋ ρ 7→ uρ ∈
UEn+1(1− e). □

2.2. Section algebras and the theory of extensions of C*-algebras.

We use the following elementary fact.

Lemma 2.12. Let A be a unital C*-algebra, and let X be a compact metrizable

space. Let P1 and P2 be principal AutA bundles over X. Let A1 and A2 be the section

algebras of the associated bundles of P1 and P2 with fibre A respectively. Then P1 and

P2 are isomorphic if and only if there exists a C(X)-linear isomorphism φ : A1 → A2.
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Let π : M(C(X)⊗K) → Q(C(X)⊗K) be the quotient map by the ideal C(X)⊗K.

We need the following technical theorem of the theory of extensions of C*-algebras.

Theorem 2.13 ([27, Theorem 2.10]). Let X be a finite CW complex. Let A

be a separable simple unital C*-algebra, and let µ : A → M(C(X) ⊗ K) and σ : A →
Q(C(X)⊗K) be unital ∗-homomorphisms. Then σ ⊕ π ◦ µ and σ are strongly unitarily

equivalent.

The theorem above is a special case of [27, Theorem 2.10]. Since A is simple, the

assumptions for it are satisfied.

Lemma 2.14. Let X be a finite CW complex. Let A be a separable simple unital

C*-algebra. Suppose that A has a unital essential trivial extension π ◦ µ where µ : A ↪→
M(C(X)⊗K) is a unital embedding. Then two unital essential extensions τ1 and τ2 are

weakly unitarily equivalent if and only if [τ1] = [τ2] in Ext(A,C(X)⊗K).

Proof. We show that [τ1] = [τ2] implies τ1 ∼w.u.e τ2 as the other implication is

always the case. By definition, there exists a trivial extension π ◦ ρi such that τ1 ⊕ π ◦
ρ1 ∼s.u.e τ2 ⊕ π ◦ ρ2. Adding π ◦ µ to the both side, we may assume that ρi(1A) is a

properly infinite full projection in M(C(X) ⊗ K). Since K0(M(C(X) ⊗ K)) = 0 and

ρi(1A) is properly infinite full, there exists an isometry Vi with ViV
∗
i = ρi(1A). Now we

have τ1 ⊕ π ◦ (AdV ∗
1 ◦ ρ1) ∼w.u.e τ2 ⊕ π ◦ (AdV ∗

2 ◦ ρ2). It follows from Theorem 2.13 that

τi ∼s.u.e τi ⊕ π ◦ (AdV ∗
i ◦ ρi), and we have the conclusion. □

We have the following theorem of Paschke and Valette.

Theorem 2.15 ([32, Proposition 3], [23, Theorem 6]). Let A and B be unital

separable C*-algebras, and assume that A is nuclear. Let µ : A → M(K) be a unital

embedding with µ(A) ∩K = {0}. For the unital ∗-homomorphism τ := π ◦ (1B ⊗ µ), we

have an isomorphism

ατ : K1(τ(A)′ ∩Q(B ⊗K)) → Ext(SA,B ⊗K)

which sends the class of a unitary u ∈ τ(A)′ ∩Q(B ⊗K) to the class of extension

τu : SA ∋ (e2πit − 1)a 7→ (u− 1)τ(a) ∈ Q(B ⊗K).

The following theorem holds from the argument of [24, Section 1, Theorem 1.5].

Theorem 2.16 ([24, Section 1]). Let τ1 and τ2 be unital extensions of On+1 by K.

Then τ1 ∼s.u.e τ2 if and only if τ1 ∼h τ2.

Proposition 2.17. Let X be a compact Hausdorff space with

Tor(K0(C(X)),Zn) = 0, and let σ : On+1 → Q(C(X) ⊗ K) be an arbitrary unital

extension. Then every element of K1(σ(On+1)
′ ∩ Q(C(X) ⊗ K)) is an n-torsion

element, and the set U(σ(On+1)′∩Q(C(X)⊗K)) is contained in the path component of 1 of

UQ(C(X)⊗K).



966(294)

966 T. Sogabe

Proof. By Theorem 2.3, all elements of Ext(SOn+1, C(X) ⊗ K) are n-torsion

elements. We define τ := π ◦ (1C(X)⊗µ) where µ : On+1 → M(K) is a unital embedding.

Since On+1 is simple, we have µ(On+1) ∩K = {0}. By Theorem 2.15, we have

K1(τ(On+1)
′ ∩Q(C(X)⊗K)) ∼= Ext(SOn+1, C(X)⊗K).

So we have [σ⊕n] = n[σ] = [τ ] = 0, and Lemma 2.14 gives a unitary w ∈ UQ(C(X)⊗K)

with σ⊕n = Adw ◦ τ . We have an isomorphism

Adw : (σ⊕n(On+1)
′ ∩Q(C(X)⊗K)) ∼= (τ(On+1)

′ ∩Q(C(X)⊗K)).

We also have (σ(On+1)
′ ∩Q(C(X)⊗K))⊗Mn

∼= (σ⊕n(On+1)
′ ∩Q(C(X)⊗K)). So we

have

K1(σ(On+1)
′ ∩Q(C(X)⊗K)) ∼= K1(τ(On+1)

′ ∩Q(C(X)⊗K)).

SinceK0(C(X)) = K1(Q(C(X)⊗K)) has no n-torsion, we have [w]1 = 0 ∈ K1(Q(C(X)⊗
K)) for every w ∈ U(σ(On+1)′∩Q(C(X)⊗K)). So we have the conclusion by K1-injectivity of

Q(C(X)⊗K) (see [21, Section 1.13]). □

As an application of Lemma 2.14, we show in Proposition 2.22 that the group

AutEn+1 is path connected. A straightforward computation yields the lemma below.

Lemma 2.18. We have the following isomorphisms of K-groups and Ext-groups :

evpt∗ : Ext(On+1, C(S2m−1)⊗K) → Ext(On+1,K),

K1(evpt) : K1(Q(C(S2m−1)⊗K)) → K1(Q(K)),

K1(evpt) : K1(Q(C([0, 1])⊗K)) → K1(Q(K)),

for m ≥ 1.

We need the following lemma.

Lemma 2.19 ([19, Lemma 2.3]). Let τ0 : On+1 → Q(K) be the Busby invariant in

Definition 2.5. If a unitary u in UM(K) commutes with En+1 up to compact operators

(i.e. [u, d] ∈ K for every d in En+1 ), there exists a self adjoint element h in Q(K) such

that e2πih = π(u) and [h, a] = 0 for every a in On+1.

Corollary 2.20. The group N := {u ∈ UM(K) | [u,En+1] ⊂ K} is path connected.

Let {eij}ij be a system of matrix units of K.

Lemma 2.21. Let α be an automorphism of En+1, and Uα :=
∑

i α(ei1)ve1i be an

implementing unitary of α ↾K where v is a partial isometry with vv∗ = α(e), v∗v = e.

Then we have α = AdUα ↾En+1 .

Proof. We show AdUα ↾En+1= α. Let F ⊂ K be the set of all finite rank projec-

tions. Since α is an automorphism, the image α(K) = K contains a net {α(p)}p∈F that
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weakly converges to 1. For every d ∈ En+1, we have α(p)α(d) = α(pd) = AdUα(pd) =

α(p)AdUα(d), and α = AdUα ↾En+1 holds. □

Proposition 2.22. The group AutEn+1 is path connected.

Proof. Let α be an automorphism of En+1 and let α̃ be an induced automorphism

of On+1. Since AutOn+1 is path connected, we take a path ht with h0 = α̃, h1 = idOn+1 .

We take two unital essential extensions

τ1 := idC[0,1] ⊗ τ0 : C[0, 1]⊗On+1 ∋ f(t) 7→ f(t) ∈ Q(C[0, 1]⊗K)

τ2 := τ1 ◦ h : C[0, 1]⊗On+1 ∋ f(t) 7→ ht(f(t)) ∈ Q(C[0, 1]⊗K),

where τ0 is the Busby invariant in Definition 2.5, and we regard h : C[0, 1] ⊗ On+1 →
C[0, 1] ⊗ On+1 as a C[0, 1]-linear isomorphism. Since τ1 ∼h τ2, we have [τ1] = [τ2] in

Ext(C[0, 1]⊗On+1, C[0, 1]⊗K). We have [τ1 ◦(1C[0,1]⊗ idOn+1)] = [τ2 ◦(1C[0,1]⊗ idOn+1)]

in Ext(On+1, C[0, 1]⊗K). By Lemma 2.14, there exists a unitary v ∈ UQ(C[0,1]⊗K) with

τ2 ◦ (1C[0,1] ⊗ idOn+1) = Adv ◦ τ1 ◦ (1C[0,1] ⊗ idOn+1). Since C[0, 1] is in the center of

Q(C[0, 1]⊗K), we have τ2 = Adv ◦ τ1.
We show [v]1 = 0 in K1(Q(C[0, 1]⊗K)). By the construction of τ2 and v, the unitary

v1 is in τ0(On+1)
′ ∩ Q(K). By Proposition 2.17, we have [v1]1 = 0 in K1(Q(K)). Since

the map ev1∗ : K1(Q(C[0, 1] ⊗ K)) → K1(Q(K)) is an isomorphism from Lemma 2.18,

we have [v]1 = 0.

We take a unitary lift V ∈ UM(C[0,1]⊗K) of v. It follows that AdV is a C[0, 1]-

linear isomorphism of C[0, 1] ⊗ En+1. Therefore the map [0, 1] ∋ t 7→ AdVt ∈ AutEn+1

is continuous. Let Uα :=
∑

i α(ei1)we1i be an implementing unitary of α restricted

to K where w is a partial isometry satisfying ww∗ = α(e11), w∗w = e11, and {eij}
is a system of matrix units. By Lemma 2.21, we have AdUα ↾En+1= α. We have

Adπ(V0) = h0 = α̃ = Adπ(Uα), and it follows that V ∗
0 Uα commutes with En+1 up

to compact operators. By Corollary 2.20, the automorphism AdV ∗
0 Uα is in the path

component of idEn+1 in AutEn+1. Similarly there is a continuous path from idEn+1 to

AdV1 in AutEn+1. Therefore we have

α ∼h AdV1 ◦AdV ∗
0 Uα ∼h AdV1 ∼h idEn+1 . □

2.3. Implementing unitaries of AutC(X)(C(X) ⊗ En+1).

Let AutC(X)(C(X)⊗En+1) be the group of C(X)-linear automorphisms of C(X)⊗
En+1. We remark that the homotopy set [X,AutEn+1] is identified with the set of

homotopy equivalence classes of the elements of AutC(X)(C(X)⊗ En+1).

Let G be a compact topological group. We denote by BG its classifying space, and

denote by EG the universal principal G-bundle over BG. One realization of those spaces

is as follows. For a contractible space X equipped with a free G action, the quotient map

X → X/G gives the universal bundle. We refer to [14] for the basic facts about the

classifying spaces.

Let H1 be the set of vectors of norm 1 in a separable Hilbert space with the norm

topology. We identify H1 with the set {f ∈ L2[0, 1] | ||f ||2 = 1}. There is a map

ht : H1×[0, 1] → H1 that sends (f, t) to (1[0,t]f+1[t,1])/||1[0,t]f+1[t,1]||2 where 1[a,b] is the
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characteristic function of [a, b]. This gives the deformation retraction to the set {1[0,1]},
and the space H1 is contractible, (see [29]). The group S1 freely acts on H1 by the scalar

multiplication. Therefore we can adopt H1 as a model of ES1. We identify BS1 with the

set consisting of all minimal projections, and the map ES1 = H1 ∋ ξ 7→ ξ ⊗ ξ∗ ∈ BS1

gives the universal bundle where we denote by ξ ⊗ η∗ the operator H ∋ x 7→ ⟨x, η⟩ξ ∈ H

for ξ, η ∈ H. The space BS1 is the Eilenberg–MacLane space K(Z, 2) and we identify

the homotopy set [X,BS1] with H2(X) via the Chern classes of the line bundles.

Proposition 2.23. Let X be a compact Hausdorff space, and let α : X →
AutEn+1 be a continuous map. Let η be the map AutEn+1 ∋ α 7→ α(e) ∈ BS1. If

the image of [α] by the map [X,AutEn+1]
η∗−→ [X,BS1] is zero, then there exists a

unitary U in UM(C(X)⊗K) such that AdUx = αx.

Proof. Let ξ0 be a norm 1 eigenvector corresponding to the minimal projection

e. By assumption, there exists a norm continuous section ξ : X → H1 with ξx ⊗ ξ∗x =

αx(e). Using a system of matrix units {1C(X) ⊗ eij} with e = e11 := ξ0 ⊗ ξ∗0 , we

have a unitary Ux :=
∑

i αx(ei1)ξx ⊗ ξ∗0e1i. Since ξx is norm continuous, U : X ∋ x 7→
Ux ∈ M(K) is SOT-continuous. In particular, U : X → UM(K) is SOT*-continuous and

U ∈ UM(C(X)⊗K). Lemma 2.21 shows AdUx ↾En+1= αx for every x ∈ X. □

Lemma 2.24. Let X be a compact Hausdorff space and let α be an element of

Map(X,AutOn+1). Then the map α : C(X) ⊗ En+1 → C(X) ⊗ En+1 induces the

identity map of the K-groups, Ki(α) = idKi(C(X)⊗En+1), i = 1, 2.

Proof. Since α is C(X)-linear, we have the commutative diagram below:

C(X)

��

C(X)

��
C(X)⊗ En+1

α // C(X)⊗ En+1.

We have the conclusion from the KK-equivalence of C and En+1. □

Let r : AutEn+1 → AutK be the restriction map. Then we have a commutative

diagram below

[X,AutEn+1]

η∗

''OO
OOO

OOO
OOO

r∗ // [X,AutK]

η∗

[X,BS1].

We remark that the map η : AutK → BS1 gives the homotopy equivalence (see [10,

Lemma 2.8]).

Lemma 2.25. The map η∗ : [S
k,AutEn+1] → [Sk,BS1] is the zero map for k ≥ 1.

Hence the map r∗ : [S
k,AutEn+1] → [Sk,AutK] is also zero.
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Proof. If k ̸= 2, we have [Sk,BS1] = H2(Sk) = 0. We show the statement in the

case of k = 2. For every α in Map(S2,AutEn+1), the map K0(α) : K0(C(S2)⊗En+1) →
K0(C(S2) ⊗ En+1) is the identity by Lemma 2.24. Since the map K0(C(S2) ⊗ K)

−n−−→
K0(C(S2) ⊗ En+1) is injective, [e]0 = [α(e)]0 in K0(C(S2) ⊗ K). Therefore we have

η∗([α]) = 0 in H2(S2). □

2.4. Some fibration sequences.

In this section, we introduce several fibrations to compute the homotopy groups

of AutEn+1. We refer to [6, Chapter 6] for the definition and the basic facts about

fibrations.

Definition 2.26. Let X,Y and Z be topological spaces, and let π : X → Y be

a continuous map. The map π has the homotopy lifting property (abbreviated to HLP)

for Z, if for every commuting diagram

{0} × Z
g //

��

X

π

��
[0, 1]× Z

f // Y,

there exists a continuous map g̃ : [0, 1] × Z → X such that g̃(0, z) = g(z) for every z in

Z and π ◦ g̃ = f .

The map π : X → Y is a Serre fibration, if π has HLP for every n-disc, Dn.

We remark that a Serre fibration has HLP for every CW complex. A fibration gives

a long exact sequence of homotopy sets. We denote by ΩX or Ωx0X the loop space of

the pointed set (X,x0).

Theorem 2.27. Let (Z, z0) be a pointed CW complex. Let π : (X,x0) → (Y, y0)

be a Serre fibration with the fibre F := π−1(y0). Then, there is a long exact sequence of

groups (i ≥ 1), and exact sequence of pointed sets (i ≥ 0)

→ [Z,ΩiF ]0 → [Z,ΩiX]0 → [Z,ΩiY ]0 → · · · → [Z,F ]0 → [Z,X]0 → [Z, Y ]0.

In particular, we have a long exact sequence of the homotopy groups in the case of

Z = {z0}.

We have the following fact.

Proposition 2.28 ([6, Theorem 6.42]). Let (X,x0), (Y, y0) be pointed topological

spaces. Then the natural map [ΣX,Y ]0 → [X,ΩY ]0 is a bijection.

By the theorem of Hurewicz, every principal G-bundle is a fibration. Therefore we

use the long exact sequence to compute the homotopy groups of the topological group G.

We refer to the argument in [10, Lemmas 2.8, 2.16, Corollary 2.9] for the proof of the

following 4 lemmas.
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Lemma 2.29. Let p : UEn+1 → UEn+1(1− e) be the multiplication by 1− e. Then,

the map p is a principal S1-bundle that has the S1 action by the right multiplication of

(1− e) + ze, z ∈ S1.

Lemma 2.30. Let H1 be the set of vectors of norm 1 of the Hilbert space H, and

ξ0 ∈ H1 be a vector corresponding the minimal projection e. The map q : UEn+1 → H1

that sends a unitary u to uξ0 is a fibration with the fiber U(1−e)En+1(1−e).

Remark 2.31. Since H1 is contractible, it follows from the long exact sequence of

the homotopy groups induced by the fibration of Lemma 2.30 that the map

U(1−e)En+1(1−e) ∋ w 7→ w + e ∈ UEn+1

is a weak homotopy equivalence. Hence the map Ende En+1 ∋ ρ 7→ e +
∑

i ρ(Ti)T
∗
i ∈

UEn+1 is a weak homotopy equivalence.

Lemma 2.32. Let η : End0 En+1 → BS1 be the map that sends α to α(e) and

let Aute En+1 be the stabilizer subgroup of the minimal projection e. Then there is a

principal Aute En+1-bundle

Aute En+1 → AutEn+1
η−→ BS1.

Remark 2.33. Since the map η∗ : [Sk,AutEn+1] → [Sk,BS1] is the zero map for

k ≥ 1 by Lemma 2.25, it follows from Lemma 2.32 that for every α in Map(Sk,AutEn+1),

there exists α′ in Map(Sk,Aute En+1) that is homotopic to α in Map(Sk,AutEn+1).

Lemma 2.34. The following sequence gives a fibration :

Ende En+1 → End0 En+1
η−→ BS1.

Remark 2.35. In Section 3, we show that the map AutEn+1 → End0 En+1

is a weak homotopy equivalence. Hence the groups Aute En+1 and Ende En+1 are

weakly homotopy equivalent from the long exact sequences and 5-lemma. Then the

map Aute En+1 ∋ α 7→ e +
∑

i α(Ti)T
∗
i ∈ UEn+1 is a weak homotopy equivalence by

Remark 2.31.

By the fibration in Lemma 2.29, we know the homotopy groups of End0 En+1.

Theorem 2.36. The homotopy groups of End0 En+1 are as follows :

π1(End0 En+1) = Zn, π2k+1(End0 En+1) = Z,
π2k(End0 En+1) = 0, where k ≥ 1.

Proof. By Lemma 2.11, it is sufficient to compute the homotopy groups of

UEn+1(1− e). By the fibration sequence

S1 → UEn+1

p−→ UEn+1(1− e),
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we have the long exact sequence of the homotopy groups

· · · → 0 → πk(UEn+1) → πk(UEn+1(1− e)) → · · ·
→ π1(S

1) → π1(UEn+1) → π1(UEn+1(1− e)) → 0.

The map S1 → UEn+1 sends a complex number z to a unitary 1 − e + ze. We have

[Sk, UEn+1 ]0 = [Sk, UEn+1 ] = K1(Sk) by K1-injectivity of C(Sk)⊗ En+1. The map

Z = [S1, S1]0 ∋ [z] 7→ [1− e+ ze] ∈ [S1, UEn+1 ]0 = Z

is the multiplication by −n, and so we have the conclusion. □

We remark that a generator of π1(End0 En+1) = Zn is the canonical gauge action

of S1 that is λz : Ti 7→ zTi for every z ∈ S1.

3. The main result.

3.1. The homotopy groups of AutEn+1.

In this section, by using the theory of extensions, we show that the inclusion map

AutEn+1 → End0 En+1 is a weak homotopy equivalence. First, we show [S2m,AutEn+1]

is trivial, for m ≥ 1. Second, we show the surjectivity of the map [S2m−1,AutEn+1] →
[S2m−1,End0En+1] for m ≥ 1. Finally, we show the injectivity of the map.

LetX be a compact Hausdorff space. It is well-known in homotopy theory that every

principal AutEn+1 bundle P over X comes from the classifying map X → BAutEn+1

[14, Section 4, Proposition 10.6]. So we identify the isomorphism class of a principal

bundle [P] with the homotopy equivalence class of its classifying map and denote [P] ∈
[X,BAutEn+1]. For a bundle P, the section algebra of the associated bundle P×AutEn+1

En+1 is a locally trivial continuous C(X)-algebra Γ(X,P ×AutEn+1 En+1).

Let k be a natural number. For every α ∈ Map(Sk,AutEn+1), there is a principal

AutEn+1-bundle Pα representing the class [α] in [Sk,AutEn+1] ∼= [Sk+1,BAutEn+1].

We construct a continuous field of En+1 over Sk+1 corresponding to Pα as follows. We

denote the interior of the closed k + 1-disc by (Dk+1)◦. We view Sk+1 as a non-reduced

suspension of Sk, that is, (Dk+1)◦ ∪Sk ∪ (Dk+1)◦, and view α a clutching function on Sk

of two trivial bundles over (Dk+1)◦ ∪ Sk and Sk ∪ (Dk+1)◦. By the following lemma, we

have [Sk,AutEn+1] = [Sk+1,BAutEn+1].

Lemma 3.1 ([14, Corollary 8.3]). Let G be a path connected group. Let X be a

topological space, and let SX be its non-reduced suspension. Then the map

[X,G] ∋ [α] 7→ [Pα] ∈ [SX,BG]

is bijective.

Definition 3.2. We identify the section algebra of Pα ×AutEn+1 En+1 with the

following algebra:

Bα := {(F1, F2) ∈ (C([0, 1]× Sk)⊗ En+1)
⊕2 |
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Fi(0) ∈ 1C(Sk) ⊗ En+1, F1(1) = α(F2(1)) ∈ C(Sk)⊗ En+1},

and denote by Cα the essential ideal

Cα := {(F1, F2) ∈ (C([0, 1]× Sk)⊗K)⊕2 |

Fi(0) ∈ 1C(Sk) ⊗K, F1(1) = α(F2(1)) ∈ C(Sk)⊗K}.

Let Aα be the quotient algebra of Bα by Cα:

Aα := {(a1, a2) ∈ (C([0, 1]× Sk)⊗On+1)
⊕2 |

ai ∈ 1C(Sk) ⊗On+1, a1(1) = α̃(a2(1)) ∈ C(Sk)⊗On+1}.

The algebra Aα is isomorphic to the section algebra Γ(Sk+1,Pα̃ ×AutOn+1 On+1),

where α̃ is the induced map in Map(Sk,On+1). We remark that C(Sk+1) is identified

with the algebra

{(f1, f2) ∈ (C([0, 1]× Sk))⊕2 | fi(0) ∈ C, f1(1) = f2(1) ∈ C(Sk)},

which is the center of Bα. Since the map [Sk,AutEn+1] → [Sk,AutK] is zero map by

Lemma 2.25, the associated bundle Pα ×AutEn+1 K is trivial. We fix a trivialization and

obtain θα : Cα → C(Sk+1)⊗K. Thus we get a unital essential extension τθα

Cα
//

θα
��

Bα
πα //

θα
��

Aα

τθα
��

C(Sk+1)⊗K // M(C(Sk+1)⊗K)
π // Q(C(Sk+1)⊗K)

where the isomorphism θα : Cα → C(Sk+1) ⊗ K depends on the trivialization of the

bundle Pα ×AutEn+1
K.

Lemma 3.3. Let m ≥ 1 be a natural number. Then we have [S2m,AutEn+1] = 0.

Proof. Since [S2m,AutOn+1] = 0 by [13, Theorem 7.4], there is a trivializa-

tion φα : C(S2m+1) ⊗ On+1 → Aα that is C(S2m+1)-linear isomorphism for every

α ∈ Map(S2m,AutOn+1). Consider two extensions of On+1 by C(S2m+1)⊗K:

σα := τθα ◦ φα ◦ (1C(S2m+1) ⊗ idOn+1),

σ := 1C(S2m+1) ⊗ τ0,

where the map τ0 is the Busby invariant in Definition 2.5. It follows from the construction

that [evpt ◦ σα] = [evpt ◦ σ] in Ext(On+1,K). By Lemma 2.18, we have [σα] = [σ]

in Ext(On+1, C(S2m+1) ⊗ K), and Lemma 2.14 yields that there exists a unitary w

in UQ(C(S2m+1)⊗K) satisfying Adw ◦ σ = σα. There is another unitary U in UM(K)

with Adπ(U) ◦ evpt ◦ σ = evpt ◦ σα by Theorem 2.16. By Proposition 2.17, we have

[evpt(w)]1 = [evpt(w)π(U
∗)]1 = 0 in K1Q(K), and Lemma 2.18 yields that [w]1 = 0.

Therefore we have a unitary W that is a lift of w, and the map AdW : C(S2m+1) ⊗
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En+1 → θα(Bα) is a C(S2m+1)-linear isomorphism. From Lemma 2.12, the bundle Pα is

isomorphic to the trivial bundle, and we have [α] = 0 in [S2m,AutEn+1] by Lemma 3.1

and Proposition 2.22. □

Lemma 3.4. Let m ≥ 1 be a natural number. Then the map

[S2m−1,AutEn+1] ∋ [α] 7→ [α̃] ∈ [S2m−1,AutOn+1]

is surjective.

Proof. Let τ be the map idC(S2m−1) ⊗ τ0 where τ0 is the Busby invariant in

Definition 2.5. We show that for every γ ∈ Map(S2m−1,AutOn+1) there exists a

lift Γ ∈ Map(S2m−1,AutEn+1) with Γ̃x = γx for every x ∈ S2m−1. We recall

the notation that Γ̃x is an induced automorphism of On+1 from Γx. For every γ in

Map(S2m−1,AutOn+1), we regard γ as an element of AutC(S2m−1)(C(S2m−1)⊗On+1),

and there are two extensions of On+1

σγ := τ ◦ γ ◦ (1C(S2m−1) ⊗ idOn+1
),

σ := τ ◦ (1C(S2m−1) ⊗ idOn+1).

For every x ∈ S2m−1, the map γx is homotopic to idOn+1 in AutOn+1 because AutOn+1

is path connected by [13, Theorem 1.1]. Hence we have evx ◦ σγ ∼s.u.e evx ◦ σ by

Theorem 2.16 because evx ◦ σγ ∼h evx ◦ σ. From Lemma 2.18, we have [σγ ] = [σ] in

Ext(On+1, C(S2m−1)⊗K), and σγ ∼w.u.e σ by Lemma 2.14. We have two unitaries v ∈
Q(C(S2m−1)⊗K) and V ∈ M(K) satisfying σγ = Adv◦σ and evpt◦σγ = Adπ(V )◦evpt◦σ.
So we have [evpt(v)]1 = [π(V )∗evpt(v)]1 = 0 by Proposition 2.17, and Lemma 2.18 yields

[v]1 = 0 ∈ K1Q(C(S2m−1) ⊗ K). Therefore we have σγ ∼s.u.e σ, and there is a unitary

Uγ ∈ UM(C(S2m−1)⊗K) with

Adπ(Uγ)(τ(1⊗ a)) = τ(γ(1⊗ a)), a ∈ On+1.

We have the following commutative diagram

C(S2m−1)⊗ En+1

π

��

AdUγ // C(S2m−1)⊗ En+1

π

��
C(S2m−1)⊗On+1

γ // C(S2m−1)⊗On+1.

The map Γ : S2m−1 ∋ x 7→ Ad(Uγ)x ∈ AutEn+1 is continuous and it is a lift of the map

γ. □

For α′ in Map(S2m−1,Aute En+1) with m ≥ 1, we take the map θα′ as follows. Let

Uα′ be a unitary in UM(C(S2m−1)⊗(1−e)K(1−e)) of the form Uα′ =
∑

i ̸=1 α
′((1C(S2m−1) ⊗

ei1))(1C(S2m−1) ⊗ e1i) where {eij} is a system of matrix units with e11 = e. By Theo-

rem 2.1, there is a norm continuous path from 1 − e to Uα′ in UM(C(Sk)⊗(1−e)K(1−e)).

Adding the projection 1C(S2m−1) ⊗ e to the path, we have a norm continuous path
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U ∈ C[0, 1]⊗M(C(S2m−1)⊗K) satisfying

Ut ∈ UM(C(S2m−1)⊗K), AdU1 ↾En+1= α′, U0 = 1, eUt = Ute = e, t ∈ [0, 1],

where we write 1C(S2m−1) ⊗ e simply by e. We define two C(S2m)-algebras M and Mα′ :

M := {(F1, F2) ∈ M(C([0, 1]× S2m−1)⊗K)⊕2 |
Fi(0) ∈ 1⊗M(K), F1(1) = F2(1) ∈ M(C(S2m−1)⊗K)},

Mα′ := {(F1, F2) ∈ M(C([0, 1]× S2m−1)⊗K)⊕2 |
Fi(0) ∈ 1⊗M(K), F1(1) = AdU1(F2(1)) ∈ M(C(S2m−1)⊗K)}.

The algebras M and Mα′ are C(S2m)-linearly isomorphic to M(C(S2m) ⊗ K) and we

identify M with M(C(S2m)⊗K).

Definition 3.5. We define a map θα′ : Mα′ → M by the C(S2m)-linear isomor-

phism

θα′(F1, F2) := (F1,AdU(F2)), Fi ∈ M(C(S2m−1)⊗K).

The algebras Bα′ and Cα′ defined in Definition 3.2 are subalgebras of Mα′ .

We denote by l the constant map S2m−1 → {idEn+1} and denote by l̃ the induced

map S2m−1 → {idOn+1}. If α′ is homotopic to l in Map(S2m−1,Ende En+1), then [α̃′] = 0

in [S2m−1,AutOn+1] because of [S
2m−1,EndOn+1] = [S2m−1,AutOn+1] by [13, Propo-

sition 6.1], and there is a trivialization φα′ : C(S2m)⊗On+1 → Aα′ . We can explicitely

construct φα′ from the homotopy between α̃′−1
and l̃.

Definition 3.6. Let α′ be an element of Map(S2m−1,Aute En+1) homotopic to

l in Map(S2m−1,Ende En+1), and let ht : [0, 1] × S2m−1 → AutOn+1 be a path from

l̃ = h0 to α̃′−1
= h1. Then we define the map φα′ as a C(S2m)-linear isomorphism of

the form

φα′ : C(S2m)⊗On+1 ∋ (a1(s), a2(t)) 7→ (a1(s), ht(a2(t))) ∈ Aα′ , s, t ∈ [0, 1],

where C(S2m)⊗On+1 is identified with the algebra

Al = {(a1, a2) ∈ (C([0, 1]× S2m−1)⊗On+1)
⊕2 |

ai(0) ∈ 1C(S2m−1) ⊗On+1, a1(1) = a2(1) ∈ C(S2m−1)⊗On+1}.

The map τθα′ ◦φα′ is the Busby invariant of a unital essential extension of C(S2m)⊗
On+1. The following lemma says that τθα′ ◦φα′ ∼w.u.e τ = idC(S2m) ⊗ τ0 where τ0 is the

Busby invariant in Definition 2.5.

Lemma 3.7. Let m ≥ 1 be a natural number and let α′ be an element of

Map(S2m−1,Aute En+1) which is homotopic to l in Map(S2m−1,Ende En+1). Let

τθα′ ◦ φα′ and τ be as above. Let i : C(S2m) ∋ (f1, f2) 7→ (f1, f2) ∈ Bα′ be the canonical

unital embedding and let j : C(S2m) ⊗ K ⊂ θα′(Bα′) be the inclusion map. Then the
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following hold.

(1) (θα′ ◦ i)∗ : K0(C(S2m)) ∼= K0(θα′(Bα′)).

We denote g1 := (θα′ ◦i)∗([1C(S2m)]0) and g2 := (θα′ ◦i)∗(b1), where b1 is a generator

of K0(C(S2m)).

(2) We have j∗([1C(S2m) ⊗ e]0) = −ng1, and there exists a generator b2 ∈
K0(C(S2m)⊗K) with j∗(b2) = −ng2.

In particular, it follows that [τα′ ◦ φα′ ] = [τ ] in Ext(C(S2m)⊗On+1, C(S2m)⊗K). We

note that both b1 ∈ K0(C(S2m)) and b2 ∈ K0(C(S2m) ⊗ K) correspond to the generator

of K0(C0(S
2m, pt)) = Z.

Proof. We identify the sphere S2m with the space (D∪S2m−1∪D) where D is the

interior of the 2m-disc, and we identify C0(D) with the algebra {F ∈ C0[0, 1)⊗C(S2m−1) |
F (0) ∈ C1C(S2m−1)}. Let x0 ∈ S2m−1 be the base point of S2m and S2m−1. The map

ι0 : C0(D) ∋ F 7→ (F, 0) ∈ C0(S
2m, x0) induces an isomorphism of K-groups. An element

b1 is the generator of K0(C0(S
2m, x0)). Let ι : (C0(D)⊗En+1)

⊕2 ∋ (F1, F2) 7→ (F1, F2) ∈
Bα′ be an embedding, and let r : Bα′ ∋ (F1, F2) 7→ F1(1) ∈ C(S2m−1) ⊗ En+1 be the

restriction map.

First, we show (1). We have the following commutative diagram

(C0(D)⊗ En+1)
⊕2 ι // Bα′

r // C(S2m−1)⊗ En+1

C0(D)⊕2 //

OO

C(S2m) //

i

OO

C(S2m−1).

OO

From the KK-equivalence of En+1 and C, the vertical maps (idC0(D) ⊗ 1En+1)
⊕2 and

idC(S2m−1) ⊗ 1En+1 induce isomorphisms of K-groups. Therefore the map K0(i) :

Ki(C(S2m)) → Ki(Bα′) is an isomorphism by 6-term exact sequences and the 5-lemma.

Second, we find b2. We denote by ι1 the inclusion C0(D) ⊗ En+1 ∋ F1 7→ (F1, 0) ∈
(C0(D) ⊗ En+1)

⊕2 and denote by ι1 ↾ the ristriction to C0(D) ⊗ K. We consider the

following commutative diagram

C0(D)⊗K
ι1↾ //

��

(C0(D)⊗K)⊕2
θα′◦ι↾ //

��

C0(S
2m, x0)⊗K

j

��
C0(D)⊗ En+1

ι1 // (C0(D)⊗ En+1)
⊕2

θα′◦ι // θα′(Bα′)

C0(D)
ι0 //

id⊗1En+1

OO

C0(S
2m, x0).

θα′◦i

OO

Since θα′ ◦ι◦ι1 ↾= ι0⊗idK and K0(ι0) is an isomorphism of K-groups, from diagram chas-

ing we can find a generator b′2 ∈ K0(C0(D)⊗K) that is sent to −nb1 ∈ K0(C0(S
2m, x0))

by the map K0(θα′)−1◦K0(j)◦K0(θα′ ◦ι◦ι1 ↾). Hence we have b2 := K0(θα′ ◦ι◦ι1 ↾)(b′2).
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Third, we show j∗([1⊗e]0) = −ng1. From the assumptions, there exists the map h′ :

[0, 1]× S2m−1 → Ende En+1 with h′
1 = α′, h′

0 = l. We have the unital ∗-homomorphism

η : Bα′ ∋ (F1(s), F2(t)) 7→ (F1(s), h
′
t(F2(t)) ∈ Bl = C(S2m)⊗ En+1

which sends (e, e) ∈ Bα′ to (e, e) ∈ Bl = C(S2m) ⊗ En+1. We have θ−1
α′ (j(1C(S2m) ⊗

e)) = (e, e) ∈ Bα′ and (e, e) = 1C(S2m) ⊗ e ∈ Bl = C(S2m) ⊗ En+1, and the following

commutative diagram holds

K0(Bα′)
K0(η) // K0(Bl)

K0(C(S2m))

K0(i)

OO

K0(C(S2m)).

K0(id⊗1En+1
)

OO

We have

K0(η)([θ
−1
α′ (j(1C(S2m) ⊗ e))]0) = [(e, e)]0 = −n[1Bl

]0 = K0(η)((−n)[1Bα′ ]0).

Since i∗ is an isomorphism, the map η∗ is also an isomorphism, and we have [j(1C(Sk+1)⊗
e)]0 = −n[1θα′ (Bα′ )]0 = −ng1.

Finally, we show that [τθα′ ◦φα′ ] = [τ ]. By Theorem 2.3, we identify Ext(C(S2m)⊗
On+1, C(S2m) ⊗ K) with Ext1Z(K0(C(S2m) ⊗ On+1),K0(C(S2m) ⊗ K)). The element

[τθα′ ◦ φα′ ] is identified with the class of extension

[K0(C(S2m)⊗K) → K0(θα′(Bα′)) → K0(C(S2m)⊗On+1)].

By the computation above, it is equal to the class [Z⊕2 −n−−→ Z⊕2 → Z⊕2
n ] = [τ ]. □

We have the Busby invariants of two extensions of On+1 by C(S2m)⊗K:

σα′ := τα′ ◦ φα′ ◦ (1C(S2m) ⊗ idOn+1),

σ := 1C(S2m) ⊗ τ0.

From the lemma above, we have

[σα′ ] = (1⊗ idOn+1)
∗([τα′ ◦ φα′ ]) = (1⊗ idOn+1)

∗([τ ]) = [σ]

in Ext(On+1, C(S2m)⊗K). Hence there exists a unitary wα′ in UQ(C(S2m)⊗K) satisfying

σα′ = Adwα′ ◦ σ by Lemma 2.14.

Let w0 : H → H⊕n+1 be a unitary operator and let w be an element of the form

1C(S2m) ⊗ w0. The element w ∈ Mn+1,1(M(C(S2m) ⊗ K)) is a partial isometry with

ww∗ = 1n+1 and w∗w = 1 in Mn+1(M(C(S2m) ⊗ K)). For a unital essential extension

ν : On+1 → Q(C(S2m)⊗K), we take a unitary Vν introduced in [24, Section 1]:

Vν =

(
0 ν(S)

π(w) 0n+1

)
∈ Mn+2(Q(C(S2m)⊗K)).
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We denote (S1, . . . , Sn+1) by S. We claim that, for the above σ, we have ind([Vσ]1) =

−[1C(S2m) ⊗ e]0 ∈ K0(C(S2m)⊗K). Indeed, there is a unitary lift
0 1C(S2m) ⊗ T 1C(S2m) ⊗ e 0

w 0n+1 0 0n+1

01 w∗

On+2 1C(S2m) ⊗ T∗ 0n+1


of Vσ ⊕ V ∗

σ , where T = (T1, . . . , Tn+1).

From direct computation of the index map, we have ind([Vσ]1) = −[1C(S2m) ⊗ e]0 ∈
K0(C(S2m)⊗K). Direct computation yields

Vσα′V
∗
σ =

(
n+1∑
i=1

wα′σ(Si)w
∗
α′σ(S∗

i )

)
⊕ 1n+1

= (wα′ ⊕ 1n+1)

(
S 01

0n+1 S∗

)(
w∗

α′ ⊗ 1n+1 0

0 11

)(
S∗ 0n+1

01 S

)
.

Hence we have [Vσα′ ]1 − [Vσ]1 = −n[wα′ ]1 in K1(Q(C(S2m)⊗K)).

We show [wα′ ]1 = 0 ∈ K1(Q(C(S2m) ⊗ K)) in Theorem 3.11, and we need the

following three lemmas for that. Recall the path h : [0, 1] × S2m−1 → AutOn+1 from

l̃ = h0 to α̃′−1
= h1 in Definition 3.6. Here and subsequently, we write the unitary∑n+1

i=1 h(1⊗Si)1⊗S∗
i ∈ U(C([0,1]×S2m−1)⊗On+1) by v where we denote 1C([0,1]×S2m−1)⊗Si

by 1⊗ Si for simplicity. We denote

W =


0 0 On+2

w 0n+1

01 w∗

On+2 0 0n+1

 ∈ M2n+4(M).

By the definition of τθα′ and φα′ , the following lemma holds.

Lemma 3.8. Let yα′ be an element of the form

yα′ :=




01 S On+2

0 0n+1

01 0

On+2 S∗ 0n+1

 ,


01 vS On+2

0 0n+1

01 0

On+2 S∗v∗ 0n+1


 ∈ M2n+4(Aα′)

where we write 1C([0,1]×S2m−1) ⊗ S simply by S. Then we have

Vσα′ ⊕ V ∗
σα′ = π(W ) + τθα′ ⊗ idM2n+4(yα′).

In the lemma below, we regard an element x ∈ C([0, 1] × S2m−1) ⊗ En+1 as a

C(S2m−1) ⊗ En+1 valued continuous function on [0, 1] and denote this by xt, t ∈ [0, 1],

and frequently write 1C(S2m−1)⊗En+1
by 1C(S2m−1) for simplicity.



978(306)

978 T. Sogabe

Lemma 3.9. Let V ∈ UC([0,1], C(S2m−1)⊗En+1) be a unitary with V0 =

1C(S2m−1)⊗En+1
. Then we can choose a unitary V ∈ UC([0,1], C(S2m−1)⊗K)∼ satisfying

the following

V0 =1C(S2m−1)⊗En+1
,

1C(S2m−1)⊗En+1
−Vt ∈ C(S2m−1)⊗K,

V∗
t Vt(1C(S2m−1) ⊗ e) =(1C(S2m−1) ⊗ e)V∗

t Vt = (1C(S2m−1) ⊗ e), t ∈ [0, 1].

Proof. There is a partition 0 = t0 < t1 < · · · < tm = 1 satisfying,

||Vt(1C(S2m−1) ⊗ e)V ∗
t − Vtk(1C(S2m−1) ⊗ e)V ∗

tk
|| < 1, t ∈ [tk, tk+1].

We construct the unitary V by induction. For t ∈ [t0, t1], we have a polar decomposition

Vt(1C(S2m−1) ⊗ (1− e))V ∗
t (1C(S2m−1) ⊗ (1− e))

= w0
t |Vt(1C(S2m−1) ⊗ (1− e))V ∗

t (1C(S2m−1) ⊗ (1− e))| (1)

for t ∈ [t0, t1], and there exists a unitary

V0
t :=

{
w0

t + Vt(1C(S2m−1) ⊗ e), t ∈ [t0, t1]

w0
t1 + Vt1(1C(S2m−1) ⊗ e), t ∈ [t1, tm].

with V0
0 = 1C(S2m−1). Since π(Vt(1C(S2m−1) ⊗ (1 − e))V ∗

t (1C(S2m−1) ⊗ (1 − e))) =

1C(S2m−1)⊗On+1
and (1), we have 1C(S2m−1) − V0

t ∈ C(S2m−1) ⊗ K. The unitary

V0∗V ∈ UC([0,1], C(S2m−1)⊗En+1) satisfies the following

V0
t
∗
Vt(1C(S2m−1) ⊗ e) = (1C(S2m−1) ⊗ e)V0

t
∗
Vt = (1C(S2m−1) ⊗ e), t ∈ [t0, t1],

V0
0
∗
V0 = 1C(S2m−1)⊗En+1

,

||V0
t
∗
Vt(1C(S2m−1) ⊗ e)V ∗

t V0
t − V0

tk

∗
Vtk(1C(S2m−1) ⊗ e)V ∗

tk
V0
tk
|| < 1,

t ∈ [tk, tk+1], m− 1 ≥ k ≥ 0. (2)

The condition (2) is satisfied by the computation below

V0
t
∗
Vt(1C(S2m−1) ⊗ e)V ∗

t V0
t − V0

tk

∗
Vtk(1C(S2m−1) ⊗ e)V ∗

tk
V0
tk

=

{
0, t ∈ [t0, t1] ∩ [tk, tk+1]

AdV0
t1

∗
(Vt(1C(S2m−1) ⊗ e)V ∗

t − Vtk(1C(S2m−1) ⊗ e)V ∗
tk
), t ∈ [t1, tm] ∩ [tk, tk+1].

Let l be a number with m − 1 ≥ l ≥ 0. Assume that there exist unitaries V0, . . . ,V l

satisfying

1C(S2m−1)⊗En+1
− Vi

t ∈ C(S2m−1)⊗K,

Vi
0 = 1C(S2m−1)⊗En+1

, l ≥ i ≥ 0,

U l
t

∗
(1C(S2m−1) ⊗ e) = (1C(S2m−1) ⊗ e)U l

t

∗
= (1C(S2m−1) ⊗ e), t ∈ [t0, tl+1],
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||U l
t
∗
(1C(S2m−1) ⊗ e)U l

t − U l
tk

∗
(1C(S2m−1) ⊗ e)U l

tk
|| < 1,

t ∈ [tk, tk+1], m− 1 ≥ k ≥ 0, (3)

where we denote U l
t := V ∗

t V0
t · · · V l

t . Now we construct a unitary V l+1 satisfying

1C(S2m−1)⊗En+1
− V l+1

t ∈ C(S2m−1)⊗K,

V l+1
0 = 1C(S2m−1)⊗En+1

, (4)

V l+1
t

∗
U l
t

∗
(1⊗ e) = (1⊗ e)V l+1

t

∗
U l
t

∗
= (1⊗ e), t ∈ [t0, tl+2], (5)

||V l+1
t

∗
U l
t
∗
(1⊗ e)U l

tV l+1
t − V l+1

tk

∗
U l
tk

∗
(1⊗ e)U l

tk
V l+1
tk

|| < 1,

t ∈ [tk, tk+1], m− 1 ≥ k ≥ 0, (6)

where we write 1C(S2m−1) ⊗ e simply by 1⊗ e. By the assumption (3), we have a partial

isometry wl+1 from a polar decomposition

(1C(S2m−1) − U l
t

∗
(1⊗ e)U l

t)(1C(S2m−1) − U l
tl+1

∗
(1⊗ e)U l

tl+1
)

= wl+1
t |(1C(S2m−1) − U l

t

∗
(1⊗ e)U l

t)(1C(S2m−1) − U l
tl+1

∗
(1⊗ e)U l

tl+1
)|, t ∈ [tk+1, tk+2].

(7)

Let V l+1 be a unitary of the form

V l+1
t :=


1C(S2m−1), t ∈ [0, tl+1]

wl+1
t + U l

t
∗
(1C(S2m−1) ⊗ e)U l

tl+1
, t ∈ [tl+1, tl+2]

wl+1
tl+2

+ U l
tl+2

∗
(1C(S2m−1) ⊗ e)U l

tl+1
, t ∈ [tl+2, tm].

Since π((1C(S2m−1) − U l
t
∗
(1 ⊗ e)U l

t)(1C(S2m−1) − U l
tl+1

∗
(1 ⊗ e)U l

tl+1
)) = 1C(S2m−1)⊗On+1

and (7), we have (4). By the construction of V l+1, we have

V l+1∗
tU

l
t

∗
(1⊗ e) =


(1⊗ e)V l+1∗

tU
l
t
∗
= (1⊗ e), t ∈ [t0, tl+1],

U l
tl+1

∗
(1⊗ e)U l

tU
l
t
∗
(1⊗ e) = (1⊗ e) = (1⊗ e)U l

tl+1

∗
(1⊗ e)U l

tU
l
t
∗

= (1⊗ e)V l+1
t

∗
U l
t
∗
, t ∈ [tl+1, tl+2],

and V l+1 satisfies (5). For every k, m− 1 ≥ k ≥ 0, direct computation yields

V l+1∗
tU

l
t

∗
(1⊗ e)U l

tV l+1
t − V l+1∗

tk+1
U l
tk

∗
(1⊗ e)U l

tk
V l+1
tk+1

=

{
0, t ∈ [t0, tl+2] ∩ [tk, tk+1]

AdV l+1
tl+2

(U l
t
∗
(1⊗ e)U l

t − U l
tk

∗
(1⊗ e)U l

tk
), t ∈ [tl+2, tm] ∩ [tk, tk+1],

and the condition (6) is satisfied by (3). Now we have a sequence of unitaries

V0, . . . ,Vm−1 by induction, and a unitary V := V0 · · · Vm−1 satisfies the assertion of

the lemma. □

In the sequel, we denote by uα′−1 the element
∑n+1

i=1 α′−1
(Ti)T

∗
i . The element uα′−1

is in UC(S2m−1)⊗(1−e)En+1(1−e) because α′ ∈ Map(S2m−1,Aute En+1). We remark that
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π(uα′−1) =
∑
i

h1(1C(S2m−1) ⊗ Si)1C(S2m−1) ⊗ S∗
i = v1 ∈ C(S2m−1)⊗On+1.

We also note v ∈ U0(C([0,1]×S2m−1)⊗On+1) because v0 = 1C(S2m−1).

Lemma 3.10. There exists a unitary V ∈ UC([0,1]×S2m−1)⊗En+1
satisfying the fol-

lowing

π(V ) =v, V0 = 1, V1 = uα′−1 + 1C(S2m−1) ⊗ e,

Vt(1C(S2m−1) ⊗ e) =(1C(S2m−1) ⊗ e)Vt = (1C(S2m−1) ⊗ e), t ∈ [0, 1].

In particular, the element Yα′ of the form

Yα′ :=




01 T e 0

0 0n+1 0 0n+1

01 0

On+2 T∗ 0n+1

 ,


01 V T e 0

0 0n+1 0 0n+1

01 0

On+2 T∗V ∗ 0n+1


 ∈ M2n+4(Bα′)

is sent to yα′ by the quotient map πα′ : Bα′ → Aα′ where we write 1C([0,1]×S2m−1) ⊗ T
and 1C([0,1]×S2m−1) ⊗ e by T and e respectively for simplicity.

Proof. Since v ∈ U0(C([0,1]×S2m−1)⊗On+1), one has a unitary lift V ′ ∈
U0(C([0,1]×S2m−1)⊗En+1) of v with V ′

0 = 1. By Lemma 3.9, we may assume the following

V ′
t (1C(S2m−1) ⊗ e) = (1C(S2m−1) ⊗ e)V ′

t = 1C(S2m−1) ⊗ e, t ∈ [0, 1] (8)

V ′
0 = 1C(S2m−1)⊗En+1

. (9)

Now we show that we can get the unitary V by a compact perturbation of V ′. By

(8), the element uα′−1V ′
1
∗
is a unitary in U(C(S2m−1)⊗(1−e)K(1−e))∼ with π(uα′−1V ′

1
∗
) =

1C(S2m−1)⊗On+1
. Since α′ is homotopic to l in Map(S2m−1,Ende En+1), the uni-

tary uα′−1 is in U0(C(S2m−1)⊗(1−e)En+1(1−e))
. Hence we have uα′−1 + 1C(S2m−1) ⊗ e ∈

U0(C(S2m−1)⊗En+1). Recall that the map K1(C(S2m−1) ⊗ K) ↪→ K1(C(S2m−1) ⊗ En+1)

is injective because Tor(K1(C(S2m−1)),Zn) = 0 and the map

K1(C(S2m−1)⊗(1−e) K(1−e)) ∋ [u]1 7→ [u+ 1⊗ e]1 ∈ K1(C(S2m−1)⊗K)

is an isomorphism. Therefore we have [uα′−1V ′
1
∗
]1 = 0 in K1(C(S2m−1) ⊗(1−e) K(1−e)),

and we get a continuous path c : [0, 1] → U(C(S2m−1)⊗(1−e)K(1−e))∼ from uα′−1V ′
1
∗
to

1C(S2m−1) ⊗ (1− e) by the K1-injectivity of C(S2m−1)⊗(1−e) K(1−e). For every t ∈ [0, 1],

we have λ(t) ∈ S1 with

λ(0) = λ(1) = 1, λ(t)1C(S2m−1) ⊗ (1− e)− c(t) ∈ C(S2m−1)⊗(1−e) K(1−e)

by (9) and π(uα′−1V ′
1
∗
) = 1C(S2m−1)⊗On+1

, and the function λ : [0, 1] → S1 is continuous.

Now we get the element V := (λ̄c + 1C([0,1]×S2m−1) ⊗ e)V ′ ∈ U(C([0,1]×S2m−1)⊗En+1)

satisfying the assertion of the lemma. Since V1(1C(S2m−1)⊗T) = uα′−1(1C(S2m−1)⊗T) =
α′−1(1C(S2m−1) ⊗ T) and α′(1C(S2m−1) ⊗ e) = (1C(S2m−1) ⊗ e), direct computation yields
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α′ ⊗ idM2n+4


01 V1T e 0

0 0n+1 0 0n+1

01 0

On+2 T∗V ∗
1 0n+1

 =


01 T e 0

0 0n+1 0 0n+1

01 0

On+2 T∗ 0n+1

 .

Hence Yα′ is an element ofM2n+4(Bα′) that is sent to yα′ by the quotient map πα′ : Bα′ →
Aα′ . □

We remark that Yα′ is a partial isometry. We have θα′(Yα′)θα′(Yα′)∗ = 1⊕ 0n+1 ⊕
01 ⊕ 1n+1 and θα′(Yα′)∗θα′(Yα′) = 01 ⊕ 1n+1 ⊕ 1 ⊕ 0n+1. Recall that W is a partial

isometry with WW ∗ = 01⊕1n+1⊕1⊕0n+1 and W ∗W = 1⊕0n+1⊕01⊕1n+1. Therefore

the element W + θα′(Yα′) is a unitary in UM2n+4(M).

Theorem 3.11. Let m ≥ 1 be a natural number. Let α′ be an element of

Map(S2m−1,Aute En+1) that is homotopic to l in Map(S2m−1,Ende En+1). Let wα′

be as mentioned above. Then we have [wα′ ]1 = 0 in K1(Q(C(S2m)⊗K)).

Proof. Let Yα′ , Vσα′ be as before. Recall the following commutative diagram

Bα′

��

πα′ // Aα′

τθ
α′

��

Mα′

θα′

��
M

π // Q(C(S2m)⊗K).

By Lemma 3.8 and Lemma 3.10, we have

Vσα′ ⊕ V ∗
σα′ = π ⊗ idM2n+4(W ) + τθα′ ⊗ idM2n+4(yα′)

= π ⊗ idM2n+4(W + θα′ ⊗ idM2n+4(Yα′)),

so W + θα′(Yα′) is a unitary lift of Vσα′ ⊕ V ∗
σα′ . Let P be the projection of the form

P := (W + θα′(Yα′))(1n+2 ⊕ 0n+2)(W + θα′(Yα′))∗.

We have ind[Vσα′V
∗
σ ]1 = ind[Vσα′ ]1 − ind[Vσ]1 = [P ]0 + [1C(S2m) ⊗ e]0 − [1n+2]0 ∈

K0((C(S2m) ⊗ K)∼) and we show that the index is 0. Recall Vt(1C(S2m−1) ⊗ e) =

(1C(S2m−1) ⊗ e)Vt = (1C(S2m−1) ⊗ e) and Ut(1C(S2m−1) ⊗ e) = (1C(S2m−1) ⊗ e)Ut =

(1C(S2m−1) ⊗ e) by Definition 3.5. Direct computation yields

P = W (1n+2 ⊕ 0n+2)W
∗ + θα′ ⊗ idM2n+4(Yα′(1n+2 ⊕ 0n+2)Y

∗
α′)

= 01 ⊕ 1n+1 ⊕ 0n+2 + (1− e)⊕ 0n+1 ⊕ 01 ⊕ 0n+1.

Now we have P = (1− e)⊕ 1n+1 ⊕ 0n+2 and get ind[Vσα′V
∗
σ ]1 = [P ]0 + [1C(S2m) ⊗ e]0 −

[1n+2]0 = 0. Therefore we have −n[wα′ ]1 = [Vσα′V
∗
σ ]1 = 0 and this proves the theorem
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because Tor(K1(Q(C(S2m)⊗K)),Zn) = 0. □

Corollary 3.12. For the above α′, we have [α′] = 0 in [S2m−1,AutEn+1].

Proof. Since [wα′ ]1 = 0, there is a unitary Wα′ in UM(C(S2m)⊗K) that is a lift of

wα′ . Therefore we have C(S2m)-linear isomorphism AdWα′ : Bl → Bα′ , and Pl
∼= Pα′

from Lemma 2.12. By Lemma 3.1, we have [α′] = [ l ] = 0. □

Lemma 3.13. Let m ≥ 1 be a natural number. Let α be an element in

Map(S2m−1,Aute En+1). If α ∼h l in Map(S2m−1,End0 En+1), then there exists α′

in Map(S2m−1,Aute En+1) satisfying the following :

α′ ∼h l in Map(S2m−1,Ende En+1), α ∼h α′ in Map(S2m−1,AutEn+1).

Proof. It follows from Lemma 2.34 that there is an exact sequence

[S2m,BS1] → [S2m−1,Ende En+1] → [S2m−1,End0 En+1] → [S2m−1,BS1],

and by Remark 2.31 the map [S2m−1,Ende En+1] → [S2m−1, UEn+1 ] which sends [α]

to [uα] := [e +
∑n+1

i=1 α(Ti)T
∗
i ] ∈ [S2m−1, UEn+1 ] is an isomorphism. Since BS1 is

K(Z, 2) space, if m ≥ 2 and α ∼h l in Map(S2m−1,End0 En+1), then we have [α] = 0 in

[S2m−1,Ende En+1] because [S2m−1,Ende En+1] = [S2m−1,End0 En+1], m ≥ 2.

Hence it is sufficient to show the claim in the case of m = 1. Let α be an element of

Map(S1,Aute En+1) with α ∼h l in Map(S1,End0 En+1). The computation in Theo-

rem 2.36 yields that there exists d ∈ Z with [uα] = −nd ∈ [S1, UEn+1 ] = Z. We define ρd
by

ρd := Ad(z̄dT1T
∗
1 + (1− T1T

∗
1 )) ∈ Map(S1,Aute En+1).

By Lemma 2.10, there is a continuous path from (z̄dT1T
∗
1 + (1 − T1T

∗
1 )) to z̄d in

UC(S1)⊗En+1
, and ρd ∼h Adz̄d = l in Map(S1,AutEn+1). We have [uρdα]1 =

[ρd(uα)]1 + [uρd
]1 in K1(C(S1) ⊗ En+1) = [S1, UEn+1 ]. By Lemma 2.24, it follows that

[ρd(uα)]1 = [uα]1. Hence we have [uρdα]1 = −nd + [uρd
]1. The following computations

yield [uρd
]1 = nd:

uρd
= e+

n+1∑
i=1

(z̄dT1T
∗
1 + (1− T1T

∗
1 ))Ti(z

dT1T
∗
1 + (1− T1T

∗
1 ))T

∗
i

= (z̄dT1T
∗
1 + (1− T1T

∗
1 ))

(
e+

n+1∑
i=1

Ti(z
dT1T

∗
1 + (1− T1T

∗
1 ))T

∗
i

)
,

(
e+

∑n+1
i=1 Ti(z

dT1T
∗
1 + (1− T1T

∗
1 ))T

∗
i ) 0

0 1n+1

)
=

(
T e

0n+1 T∗

)(
(zdT1T

∗
1 + (1− T1T

∗
1 ))⊗ 1n+1 0

0 1

)(
T∗ 0n+1

e T

)
.
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Therefore we have [uρdα] = 0 in [S1, UEn+1 ]. By Remark 2.31, we have the isomorphism

[S1,Ende En+1] ∋ ρdα 7→ [uρdα] ∈ [S1, UEn+1 ], and α′ := ρdα satisfies all assumptions of

the lemma. □

We show the weak homotopy equivalence.

Theorem 3.14. The inclusion map AutEn+1 → End0 En+1 is a weak homotopy

equivalence.

Proof. By Lemma 3.3 and Theorem 2.36, we consider only the case of odd ho-

motopy groups. Let k be an odd number.

First, we show the map [Sk,AutEn+1] → [Sk,End0 En+1] is injective. If α in

Map(Sk,AutEn+1) is homotopic to l in Map(Sk,End0 En+1), we may assume that there

exists α′ ∈ Map(Sk,Aute En+1) homotopic to α by Remark 2.33. From Lemma 3.13,

we may assume that α′ ∼h l in Map(Sk,Ende En+1), and we have [α′] = [α] = 0 in

[Sk,AutEn+1] by Corollary 3.12. Therefore the map [Sk,AutEn+1] → [Sk,End0 En+1]

is injective.

Second, we show the surjectivity. The following commutative diagram holds

[Sk,AutEn+1]
Lemma3.4 // //

��

[Sk,AutOn+1]

[Sk,End0 En+1] // [Sk,EndOn+1].

In the case of k = 1, we have [S1,End0 En+1] = [S1,EndOn+1] = Zn because the

generators of the both groups are constructed from the canonical gauge actions of S1

that are of the form λz : Ti 7→ zTi and λ̃z : Si 7→ zSi. Therefore the surjectivity follows

from Lemma 3.4.

In the case of k ≥ 3, the map [Sk, UEn+1 ] → [Sk,End0 En+1] = Z in Theorem 2.36

is an isomorphism. Therefore the map Z = [Sk,End0 En+1] → [Sk,EndOn+1] =

[Sk, UOn+1 ] = Zn is the quotient by nZ. Hence the image of the map [Sk,AutEn+1] →
[Sk,End0 En+1] = Z contains an element nd+ 1 for some d ∈ Z by Lemma 3.4.

On the other hand, we show that the image contains nZ. For every V ∈ UC(Sk)⊗En+1
,

there exists V ′ ∈ UC(Sk)⊗En+1
with V ′(1C(Sk)⊗e) = (1C(Sk)⊗e)V ′ = (1C(Sk)⊗e) which

is homotopic to V in UC(Sk)⊗En+1
by Remark 2.31.

Since the isomorphism [Sk, UEn+1 ] → [Sk,End10 En+1] sends

−n[V ]1 =

[
1C(Sk) ⊗ e+

n+1∑
i=1

V ′(1⊗ Ti)V
′∗(1⊗ T ∗

i )

]
1

to [AdV ′] = [AdV ], the subset

{[AdV ] ∈ [Sk,AutEn+1] | V ∈ UC(Sk)⊗En+1
}

is mapped onto the subset
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{−n[V ]1 ∈ K1(C(Sk)⊗ En+1) | V ∈ U(C(Sk)⊗En+1)} = nZ ⊂ [Sk,End0 En+1] = Z.

Therefore the image contains nd+ 1 and nZ, and we have the conclusion. □

3.2. An exact sequence of homotopy sets.

We have the principal Aute En+1-bundle Aute En+1
i−→ AutEn+1

η−→ BS1. We

denote by f the classifying map of the bundle and denote by r the restriction map

AutEn+1 → AutK. In this section, we show the following theorem.

Theorem 3.15. Let X be a compact CW-complex. Then we have the following

exact sequence of pointed sets where the first four terms give the exact sequence of groups :

H1(X) → K1(X) → [X,AutEn+1]
η∗−→ H2(X)

f∗−→ [X,BAute En+1]
Bi∗−−→ [X,BAutEn+1]

Br∗−−→ H3(X).

It follows that Im η∗ ⊂ Tor(H2(X),Zn) and Im Br∗ ⊂ Tor(H3(X),Zn).

The following lemma is well-known in homotopy theory. We refer to [20, Chapter 3,

Section 6].

Lemma 3.16. Let X be a CW-complex. Let G be a topological group and let H be

a subgroup of G such that H → G → G/H is a principal H-bundle. Suppose that G/H

has a homotopy type of a CW-complex. Let f : G/H → BH be its classifying map. Then

we have an exact sequence of pointed sets :

[X,G] → [X,G/H]
f∗−→ [X,BH] → [X,BG].

Since BS1 has a homotopy type of a CW-complex, we can apply the above lemma

to Aute En+1 → AutEn+1 → BS1.

Lemma 3.17. Let X be a CW-complex. The following sequence of pointed sets is

exact :

[X,BAute En+1]
Bi∗−−→ [X,BAutEn+1]

Br∗−−→ [X,BAutK].

Proof. The group Aute K is identified with the group UM(K) by the map taking

the implementing unitary Uα =
∑

i̸=1 α(ei1)e1i for α ∈ Aute11 K. Hence it is contractible,

and [X,BAute K] = {pt}. From the commutative diagram below,

[X,BAute En+1] //

))RR
RRR

RRR
RRR

RR
[X,BAutEn+1] // [X,BAutK]

[X,BAute K],

66mmmmmmmmmmmm

Br∗ ◦ Bi∗ is trivial. Therefore it is sufficient to prove that for every P ∈
Map(X,BAutEn+1) with trivial associated bundle P ×AutEn+1 AutK, the structure

group of P is reduced to Aute En+1. Let P ∈ Map(X,BAutEn+1) be a principal
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AutEn+1-bundle with trivial associated bundle P×AutEn+1AutK. We take an open cov-

ering {Ui} of X giving a local trivialization of P, and denote by ϕji : Uj∪Ui → AutEn+1

the transition function. By the assumption, there exists a map hi : Ui × AutK →
Ui × AutK that is compatible with the transition functions, and is equivariant with

respect to the right multiplication of AutK. The diagram below holds

Ui ∩ Uj ×AutK

r(ϕji)

��

hi // Ui ∩ Uj ×AutK

Uj ∩ Ui ×AutK
hj // Uj ∩ Ui ×AutK.

We also denote by ϕji the map

Ui ∩ Uj ×AutK ∋ (x, α) 7→ (x, r(ϕji(x))α) ∈ Uj ∩ Ui ×AutK.

We denote hi(x) := Pri(hi(x, id)) where Pri : Ui × AutK → AutK. Since hi is equi-

variant, we have h−1
i (x) = hi(x)

−1. We have hj(x)r(ϕji(x))h
−1
i (x)(e) = e because

hj ◦ ϕji ◦ h−1
i (x, id) = (x, id) for every x ∈ Uj ∩ Ui. If we take an appropriate re-

finement of {Ui}, we may assume that for every i, there exists xi ∈ Ui satisfying

||h−1
i (x)(e) − h−1

i (xi)(e)|| < 1, x ∈ Ui. There is a unitary V ′
i (x) that is the sum

of partial isometries constructed from the polar decomposition of h−1
i (x)(e)h−1

i (xi)(e)

and (1 − h−1
i (x)(e))(1 − h−1(xi)(e)), and V ′

i (x)h
−1
i (xi)(e)V

′
i (x)

∗
= h−1

i (x)(e) holds.

We fix a unitary Wi ∈ UK∼ with WieW
∗
i = h−1

i (xi)(e). Then we have a unitary

Vi(x) = V ′
i (x)Wi ∈ UK∼ with Vi(x)eVi(x)

∗ = h−1
i (x)(e). The collection of the map

ui : Ui ×AutEn+1 ∋ (x, α) 7→ (x,AdViα) ∈ Ui ×AutEn+1

gives the following:

Ui ∩ Uj ×AutEn+1

ϕji

��

Ui ∩ Uj ×AutEn+1ui

oo

ϕ̃ji

��
Uj ∩ Ui ×AutEn+1 Uj ∩ Ui ×AutEn+1,uj

oo

where ϕ̃ji is of the form

ϕ̃ji : (x, α) 7→ (x,AdVj(x)
∗ϕji(x)AdVi(x)α).

We have the transition function

Uj ∩ Ui ∋ x 7→ AdVj(x)
∗ϕji(x)AdVi(x) ∈ Aute En+1

by the computation below:

AdVj(x)
∗ϕji(x)AdVi(x)(e) = AdVj(x)

∗ϕji(x)h
−1
j (x)(e)

= AdVj(x)
∗h−1

j (x)(e)



986(314)

986 T. Sogabe

= AdVj(x)
∗AdVj(x)(e)

= e.

The two bundles with transition maps ϕji(x) and ϕ̃ji(x) are isomorphic. Therefore the

structure group of P is reduced to Aute En+1. □

Lemma 3.18. Let X be a compact Hausdorff space. The map Aute En+1 ∋ α 7→
e+
∑n+1

i=1 α(Ti)T
∗
i ∈ UEn+1 induces a group isomorphism [X,Aute En+1] → [X,UEn+1 ] =

K1(X).

Proof. By Remark 2.35 and Theorem 3.14, the map is bijective. So we show

that it is a group homomorphism. Let α and β be elements of Map(X,Aute En+1), and

we denote uα := 1C(X) ⊗ e +
∑n+1

i=1 α(1C(X) ⊗ Ti)1C(X) ⊗ T ∗
i ∈ UC(X)⊗En+1

. We show

[uαβ ]1 = [uα]1 + [uβ ]1. Since α and β fix e, direct computation yields

uαβ = α

(
e+

∑
i

β(1C(X) ⊗ Ti)(1C(X) ⊗ T ∗
i )

)(
e+

∑
i

α(1C(X) ⊗ Ti)(1C(X) ⊗ T ∗
i )

)
= α(uβ)uα.

By Lemma 2.24, we have [α(uβ)]1 = K1(α)([uβ ]1) = [uβ ]1. □

We need the following fact to determine the second cohomology group of AutEn+1.

See Hatcher’s unpublished book [15, Proposition 5.11].

Proposition 3.19. Let X be a path connected space with finite homotopy groups.

Then its homology group Hn(X) is finite for all n > 0.

Lemma 3.20. We have the following cohomology groups :

H2(AutEn+1) = Zn, H
3(BAutEn+1) = Zn.

Proof. The two spaces AutEn+1 and AutOn+1 are path connected and the map

AutEn+1 → AutOn+1 gives

πi(AutEn+1) ∼= πi(AutOn+1), i = 0, 1, 2

π3(AutEn+1) ↠ π3(AutOn+1).

So we have

Hi(AutEn+1) ∼= Hi(AutOn+1), i = 0, 1, 2

H3(AutEn+1) ↠ H3(AutOn+1).

by Whitehead’s theorem (see [6, Corollary 6.69]). By the universal coefficient theorem,

we have

H2(AutEn+1) ∼= free(H2(AutEn+1))⊕ Tor(H1(AutEn+1))
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where free(H2(AutEn+1)) is the free part of the homology group. By Proposition 3.19,

the homology groups of AutOn+1 are finite, and free(H2(AutEn+1)) = 0. So we have

H2(AutEn+1) ∼= Tor(H1(AutOn+1)). Hurewicz’s theorem ([6, Theorem 6.66]) yields

H1(AutOn+1) = π1(AutOn+1) = Zn. Similarly, we have H3(BAutEn+1) = Zn. □

Now we prove Theorem 3.15.

Proof of Theorem 3.15. By Lemma 3.16 and the long exact sequence of the

principal bundle Aute En+1
i−→ AutEn+1

η−→ BS1, we have an exact sequence of pointed

sets where the first four terms give the exact sequence of groups:

H1(X) = [X,S1] → [X,Aute En+1] → [X,AutEn+1]
η∗−→ H2(X)

f∗−→ [X,BAute En+1]
Bi∗−−→ [X,BAutEn+1].

By Lemma 3.18 and Lemma 3.17, we have the exact sequence:

H1(X) → K1(X) → [X,AutEn+1]
η∗−→ H2(X)

f∗−→ [X,BAute En+1]
Bi∗−−→ [X,BAutEn+1]

Br∗−−→ H3(X),

where we identify H3(X) with [X,BAutK] because BAutK is the K(Z, 3)-space. We

identify [AutEn+1,BS1] with H2(AutEn+1). For every [α] ∈ [X,AutEn+1], it follows

that η∗([α]) = α∗([η]), and the element α∗([η]) is in the image of the map

α∗ : H2(AutEn+1) = [AutEn+1,BS1] ∋ [η] 7→ [η ◦ α] ∈ [X,BS1] = H2(X).

Therefore we have Im η∗ ⊂ Tor(H2(X),Zn) from Lemma 3.20. Similar argument yields

ImBr∗ ⊂ Tor(H3(X),Zn). □
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