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Abstract. We reformulate Milgram’s model of a double loop suspension
in terms of a preoperad of posets, each stage of which is the poset of all ordered
partitions of a finite set. Using this model, we give a combinatorial model for

the evaluation map and use it to study the Cohen representation for the group
of homotopy classes of maps between double loop suspensions. Demonstrating
the general theory, we recover Wu’s shuffle relations and further provide a type
of secondary relations in Cohen groups by using Toda brackets. In particular,

we prove certain maps are null-homotopic by combining our relations and the
classical James–Hopf invariants.

1. Introduction.

In the 1990s, Cohen developed a combinatorial method to study homotopy theory

based on the classical James construction. Recall for any based space (Y, ∗), the James

construction J(Y ) is the free monoid generated by points in Y modulo the relation ∗ = 1.

If Y is path connected, then a theorem of James [9] claims that J(Y ) is weakly homotopy

equivalent to ΩΣY and there is a suspension splitting

ΣΩΣY ≃
∞∨
n=1

ΣY ∧n.

Using these nice descriptions, Cohen [5] studied the combinatorial structure of [J(Y ),ΩZ]

and introduced a universal pro-group h (now konwn as a special example of Cohen groups)

such that there exists a functorial group homomorphism

ef : h → [J(Y ),ΩZ]
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for any given f : Y → ΩZ. The importance of the Cohen groups is that ef is a faithful

representation in good cases. For instance, if Z = ΣY with Y a co-H-space and f = E

is the suspension map, then h is isomorphic to the group of natural coalgebra self-

transformations of the tensor functor T over Z, Z(p), or Q depending on the context

[21]. Then many classical maps such as Whitehead products, Hopf invariants, power

maps and the loop of degree maps can be studied through h. In particular, this faithful

representation can be used to study homotopy exponent problems in unstable homotopy

theory (e.g., see [7]). Indeed, Cohen’s combinatorial program was originally aimed to

attack a strong form of Barratt conjecture:

Barratt–Cohen Conjecture. Let f : Σ2X → Z be map such that pr[f ] = 0

in the group [Σ2X,Z]. Then

Ω2f : Ω2Σ2X → Ω2Z

has order bounded by pr+1 in the group [Ω2Σ2X,Ω2Z].

Cohen’s program has two steps: first decompose the powers of [Ωf ] as a product of

other types of maps (possibly by Cohen groups [7], [21] or the distributivity law [4]),

and second, investigate the group homomorphism

Ω : [ΩΣ2X,ΩZ] → [Ω2Σ2X,Ω2Z]

in the hope of showing that some of the factors in the decomposition of powers of [Ωf ]

vanish after looping (e.g., [11]). For this second step, one reasonable approach is to find

a suitable normal subgroup n of the Cohen group h that detects pr+1[Ω2f ] and fits into

the following commutative diagram

h

����

ef // [J(ΣX),ΩZ]

Ω

��
h/n

Ωef // [Ω2Σ2X,Ω2Z].

(1.1)

In principle, this program is enough for proving or disproving the Barratt–Cohen Conjec-

ture. Indeed, Cohen’s program is basically a type of encoding-decoding process, and we

only need the functorial information of [Ω2Σ2X,Ω2Z]. Furthermore, it is also possible to

apply this program for concrete examples, in which case we need to shrink the category

of spaces and then add more functorial conditions.

The diagram (1.1) is our major goal. In order to obtain such a diagram, it is

natural to apply some suitable model of Ω2Σ2X and hope to get nice descriptions of

[Ω2Σ2X,Ω2Z] and the loop homomorphism Ω. Indeed, general iterated loop suspen-

sions have been widely investigated, and several topologists have constructed models for

ΩnΣnX. For instance, May [10] constructed an elegant model CnX using the little cube

operads Cn and then developed a recognition principle for n-fold loop spaces. Smith

[16] gave a simplicial model Γ(n)X by construting a natural filtration of Barratt–Eccles’

model ΓX [1] of the infinite loop space Ω∞Σ∞X. In this paper, we will work with

Milgram’s model [12] which is built up by permutohedra Pk (see Section 2.1).
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These various models can be organized into a general framework by using the lan-

guage of preoperad by Berger [2], which was previously known as a coefficient system in

[6]. A preoperad is basically an operad without multiplicative structures. In this way,

Berger restated Milgram’s model as the premonad construction (namely coend) of the

preoperad J (2) with

J
(2)
k = Pk × Σk/ ∼,

where Σk is the k-th symmetric group and the equivalence relation identifies certain

boundary cells. However, this form of Milgram’s model is not good enough for our com-

binatorial analysis, for the equivalence relations are defined by using cosets of subgroups

of Σk. In order to study unstable homotopy along Cohen’s combinatorial program, we

then reformulate Milgram’s model in terms of particular posets related to Pk [14].

Theorem 1.1 (Theorem 2.3, Proposition 2.7, Theorem 2.9). There exists a pre-

operad of posets L such that for any connected CW complex X,

Ω2Σ2X ≃
⨿
k

|L(k)| ×X×k/ ∼,

where the right hand side is defined by the usual premonad construction for the geometric

realization of L, and each piece L(k) of L is the set of all the ordered partitions of a set

of size k.

Through this purely combinatorial description, the group [Ω2Σ2,Ω2Σ2] of natural

transformations are completely determined by the preoperad L. We immediately get the

following corollary concerning functorial homotopy decompositions.

Corollary 1.2. For any idempotent e : L → L of preoperads of posets, there

exists a natural decomposition

Ω2Σ2X ≃ E(X)× I(X),

such that

E(X) ≃
⨿
k

|Im(e)k| ×X×k/ ∼ .

Continuing with Cohen’s program, we need to study the loop homomorphism Ω :

[J(ΣX),ΩZ] → [Ω2Σ2X,Ω2Z], which it is equivalent to studying the evaluation map

ev : ΣΩ2Σ2X → ΩΣ2X,

as the adjoint of the identity map. Now let us denote

F(k) = |L(k)|, F(X) =
⨿
k

F(k)×X×k/ ∼,

Fn(X) =
⨿

1≤k≤n

F(k)×X×k/ ∼, Dn(X) = Fn(X)/Fn−1(X).
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As we can see from the poset of F(k), F(k) is a k−1 dimensional polyhedron with k! top

cells, and in general has k! ·
(
k−1
i

)
cells of dimension i. Following an elegant explanation

of Milgram’s model in [13], we obtain a clear model of the evaluation map.

Lemma 1.3 (Section 4.1). We can choose a filtration preserving evaluation map

ev : ΣF(X) → J(ΣX)

such that the quotient map

ēvn : ΣDn(X) ≃ ΣF(n)+ ∧Σn X
∧n → Jn(ΣX)/Jn−1(ΣX) ≃ (ΣX)∧n

is the natural projection

Σq ∧ id : ΣF(n)+ ∧Σn X
∧n → Σ

∨
n!

Sn−1 ∧Σn X
∧n ≃ (ΣX)∧n,

where q maps all the cells except the ones of highest dimension to the basepoint.

This nice choice of evaluation map allows us to detect certain subgroups n ⊆ h

which act trivially on double loop suspensions (as in [21], we also call such vanishing

subgroups relations in Cohen groups). For this purpose, we need a systematic way to

handle subgroups of a so-called bi-∆-group, which is exactly the notion needed in Cohen’s

combinatorial program. Indeed, bi-∆-groups were defined and used by the second author

[21] to detect shuffle relations in Cohen groups. A bi-∆-group is basically a sequence of

groups with both ∆- and co-∆-structures subject to some natural coherency conditions.

For each bi-∆-group there is a natural notion of a (general) Cohen group (See Section 3).

In particular, [J(Y ),ΩZ] and h are the Cohen groups of some bi-∆-groups. Thanks to

these notions and examples, Cohen’s theory was largely generalized in [21], and is further

generalized in this paper.

Instead of choosing a particular class of maps [f ] in [Y,ΩZ], we start with any group

homomorphism

ϕ : G→ [Y ∧(n+1),ΩZ].

Indeed, the sequence ΩZ∗(Y ) = [Y ×(i+1),ΩZ]i≥0 has a natural bi-∆-structure such that

[Y ∧(i+1),ΩZ] = ZiΩZ∗(Y ) is the group of Moore cycles. For any ∆-group G, there is a

natural Cohen group hG which is a subgroup of ZG. It then can be shown that

hΩZ∗(Y ) ∼= [J(Y ),ΩZ].

In order to study the group [J(Y ),ΩZ] through the representation ϕ, we then associate

a bi-∆-group ΦnG as a bi-∆-extension of G and extend ϕ to a morphism of bi-∆-groups

ϕ : ΦnG→ ΩZ∗(Y ),

which induces a filtration preserving homomorphism of Cohen groups
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Double loop spaces and Cohen groups 851

hϕ : hΦnG→ [J(Y ),ΩZ],

such that hnϕ = ϕ : G → [Jn+1(Y ),ΩZ]. In this context, we then can detect vanishing

subgroups n by the following procedure.

Detect relations in Cohen groups (Section 3.2, Section 4.3).

• Relations for [J(Y ),ΩZ].

– find a sequence of representable elements, subsets, or subgroups k which are

null-homotopic in {Map(Y ×(i+1),ΩZ)}i≥0.

– find representatives of k and take normal closure to get a sequence of groups

h in ΦnG.

– take the normal bi-∆-extension of h to get a normal bi-∆-subgroup H of ΦnG.

– the Cohen group hH consists of all the relations determined by k.

• Relations for Ω : [J(ΣX),ΩZ] → [Ω2Σ2X,Ω2Z] (Y = ΣX).

– find a sequence of elements, subsets, or subgroups s in ΩZ∗(ΣX) which are

trivial after looping.

– take the pullback of s along ϕ and obtain a sequence of subgroups r of ΦnG.

– take the normal bi-∆-extension of r to get a normal bi-∆-subgroup R of ΦnG.

– hR∩Ker(Ω ◦ hϕ) consists of all the relations determined by s.

The procedure for [J(Y ),ΩZ] can be used to cover Cohen’s original theory easily; in

contrast, the procedure for the loop homomorphism is our main concern here. Thanks

to Lemma 1.3, we can detect the shuffle relations of Wu [21] in Cohen groups using the

cell structure of the permutohedra Pm.

Theorem 1.4 (Lemma 4.2, Lemma 4.3, Proposition 4.6). Let

β :
∨
m!

Sm−2 → skm−2F(m)/skm−3F(m) ≃
∨

(m−1)·m!

Sm−2

be the attaching map. Then the composite

sh ◦ ēvm : ΣDm(X)↠ (ΣX)∧m −→
∨
m−1

(ΣX)∧m

is null homotopic. Here, Σ2β ∧ id ≃ sh and the shuffle map sh is defined by

sh (y1 ∧ · · · ∧ ym) =
∑

σ∈sh⊆Σm

yσ(1) ∧ · · · ∧ yσ(m).

These null homotopic compositions for m ≥ 2 determine a group bNΦnGSh such that the

diagram
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hΦnG
hϕ //

����

[J(ΣX),ΩZ]

Ω

��
hΦnG/bNΦnGSh

Ωhϕ // [Ω2Σ2X,Ω2Z]

commutes.

We notice that for shuffle relations we only use the cells of Pm in the top two

dimensions. The whole cell complex of Pm should provide more relations. Indeed, we

can obtain a type of secondary relations using the cells in the top four dimensions in

terms of classical Toda brackets.

Theorem 1.5 (Section 5, Theorem 5.5). The top four dimensions of Pm determine

a vanishing Toda bracket, and hence a subgroup

Indetm ⊆ [(ΣX)∧m,
∨

(m−1
3 )

Σ−1(ΣX)∧m]

such that

ēv∗m(Indetm) = {0} ⊂ [ΣDm(X),
∨

(m−1
3 )

Σ−1(ΣX)∧m].

We then have a commutative diagram of groups

hΦnG
hϕ //

����

[J(ΣX),ΩZ]

Ω

��
hΦnG/bNΦnGT

Ωhϕ // [Ω2Σ2X,Ω2Z],

where bNΦnGT is determined by our procedure for Indetm.

In conclusion, we have constructed the vanishing subgroup

n = ⟨bNΦnGSh, bNΦnGT⟩N

for the key diagram (1.1). In particular, we have the following proposition which describes

a way to construct null-homotopic maps by using the classical James–Hopf invariants.

Proposition 1.6 (Proposition 6.7). The loop of any map

g : ΩΣ2X → ΩZ

with [g] ∈ Im (hϕ : n → [J(ΣX),ΩZ]) is null homotopic.

Further, for any map f ∈ ShNm(ΣX; ΩZ) + TNm(ΣX; ΩZ) ⊆ [(ΣX)∧(m+1),ΩZ], the

loop of the composition
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ΩΣ2X
Hm+1−−−−→ ΩΣ

(
(ΣX)∧(m+1)

) J(f)−−−→ ΩZ

is null homotopic on the natural (m+1)-th filtration Fm+1(X) of Ω2Σ2X ≃ F(X), where

Hm+1 is the James–Hopf invariant, J(f) is the H-map such that J(f)|(ΣX)∧(m+1) =

f , and ShNm(ΣX; ΩZ)(m ≥ 1) and TNm(ΣX; ΩZ)(m ≥ 4) are defined to be the normal

closures of the subgroups

Shm(ΣX; ΩZ) = [(ΣX)∧(m+1) sh→
∨
m

(ΣX)∧(m+1) g→ ΩZ | ∀g :
∨
m

(ΣX)∧(m+1) → ΩZ],

Tm(ΣX; ΩZ) = [(ΣX)∧(m+1) h→
∨
(m3 )

Σ−1(ΣX)∧(m+1) g→ ΩZ | ∀ g, and ∀ h ∈ Indetm+1],

in [(ΣX)×(m+1),ΩZ] respectively.

Computations on homotopy exponent problems may be done by first writing the

explicit formula for the shuffle relations and the secondary relations in the Cohen group

hΦnG, and then trying to check if the representative of pr+1[Ω2f ] can be expressed as

compositions of these relations.

The paper is organized as follows. In Section 2, we prove our combinatorial re-

formulation of Milgram’s model by showing L is a preoperad of posets. We also prove

some combinatorial aspects of our model. In Section 3, we review Cohen’s combinatorial

homotopy theory and also its generalization by Wu with our further study. We provide

some useful definitions and lemmas to detect relations in Cohen groups which allow us

to cover Cohen’s original construction easily. In Section 4, our aim is to develop a sys-

tematic way to detect relations in Cohen groups. We first use our model of a double loop

suspension to give a nice description of the evaluation map. Then we turn to study the

shuffle map of Wu as an example. We prove that our definition of the shuffle map using

the attaching map of a permutohedron coincides with the original definition of Wu up to

homotopy. We then construct shuffle relations in Cohen groups to illustrate our method.

Section 5 is devoted to higher relations in Cohen groups by using more information of

the cell complex of permutohedra. To this end, we introduce the notion of ladder spaces

whose associated Toda brackets are always vanishing, and a type of secondary relations

for Cohen groups are given. We end the paper with an appendix (Section 6), where we

discuss various aspects of combinatorial James–Hopf operations of abelian bi-∆-groups

and also prove a proposition concerning the loop homomorphism.

2. Milgram’s model.

2.1. Permutohedron and Milgram’s combinatorial model of real config-

uration.

Since we adopt a combinatorial approach to study the double loop suspension, we

first recall some background information on the permutohedra which serve as the building

blocks of Milgram’s model. The material in this subsection follows Section 1 of [14].

Definition 2.1. The permutohedron Pn is the convex hull of the set of points
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{vσ ∈ Rn | σ ∈ Σn}.
Here Σn is the n-th symmetric group, and vσ := (σ−1(1), σ−1(2), . . . , σ−1(n)).

One can check that Pn is a polytope of dimension n − 1 which is contained in the

hyperplane in Rn determined by x1+x2+· · ·+xn = (n+1)n/2, and its faces of dimension

n− k are affinely isomorphic to some Pm1
× Pm2

× · · · × Pmk
.

Now we want to describe the face poset of Pn for which we will use shuffles and

unshuffles.

Definition 2.2. An unshuffle of a sequence ϕ = (ϕ1, ϕ2, . . . , ϕn) of integers is an

ordered list of subsequences s1, s2, . . . , sk of ϕ for some k such that their disjoint union

is equal to ϕ. We call ϕ a shuffle of s1, s2, . . . , sk, and may denote the unshuffle by

s1|s2| · · · |sk.

Let dShϕ be the set of the unshuffles of ϕ, we can endow a partial order ≺ on dShϕ
by removing bars and shuffling the lists. That is, ≺ is the transitive closure of the relation

s1| · · · |si−1|si|si+1|si+2| · · · |sk ≺ s1| · · · |si−1|h|si+2| · · · |sk,

where h is a shuffle of si and si+1.

Now the face poset of Pn can be identified with the poset of the unshuffles of

[n] = (1, 2, . . . , n) which we denote by Lid = (dSh[n],≺) (we identify a permuta-

tion with the sequence of its images). Under the identification, the vertex vσ =

(σ−1(1), σ−1(2), . . . , σ−1(n)) corresponds to σ1|σ2| · · · |σn. For any face f , there is an

unique minimal element a ∈ Lid such that a ≻ b for any vertex b of f under the identifi-

cation. Indeed, f = Pm1 × Pm2 × · · · × Pmk
corresponds to some unshuffle s1|s2| · · · |sk

with each si of lengthmi. Hence, we may define the dimension (or degree) of s1|s2| · · · |sk
to be n− k = (the length of the unshuffle) − (the number of bars) −1. In particular, we

may view this Pn as labelled by id ∈ Σn under the correspondence. Then similarly for

any σn ∈ Σn, we can define a poset Lσ = (dShImσ,≺) corresponding to a Pn labelled by

σ. If we view the poset Lσ as a category in the standard way, this correspondence gives

a geometric realization functor F from Lσ to the category of topological spaces.

Now we can describe Milgram’s model of the real configuration space F (R2, n).

Theorem 2.3 (Theorem 3.13 in [3]). The geometric realization F(n) = F(L(n))
is homeomorphic to a strong deformation retract of F (R2, n), where

L(n) =
∪
σ∈Σn

Lσ

as posets and the geometric realization functor F is the natural generalization of the one

over each Lσ.

We notice that by definition, the poset L(n) consists of all the permutations of

length n with any arrangement of possible bars as sets, and there is a natural action

of Σn on F(n). Furthermore, since the geometric realization is affine, F(n) inherits a

Σn-action which is also free. Indeed, the homotopy in the last theorem can be chosen to
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Double loop spaces and Cohen groups 855

be Σn-equivariant by Fox–Neuwirth stratification.

2.2. Milgram’s preoperad and the model of double loop suspensions.

In this subsection, we use the language of preoperads to reproduce Milgram’s model

for double loop suspensions. One version of this approach is made by Berger in [2], where

the permutohedron Pn is viewed as the set of right cosets of subgroups Σi1⊕Σi2⊕· · ·⊕Σik
of Σn with inclusion as the partial order. In contrast, here we use the geometric realization

in Section 2.1 to obtain a combinatorial model.

Definition 2.4. A (based) preoperad with values in a category C is a contravariant

functor O : Λ → C, where Λ is defined to be the category whose objects are based finite

sets k = {0, 1, 2, . . . , k} with 0 the based point and whose morphisms are based injective

maps. A map of preoperads is a natural transformation of functors.

We may write Ok to be the image of k and ϕ∗ : Ol → Ok to be the image of ϕ : k → l

under O.

Remark 2.5. The terminology preoperad was suggested by Berger according to

the fact that an operad is a preoperad by forgetting all the composition operations.

This point was observed even much earlier by Cohen, May and Taylor [6] who called a

preoperad a coefficient system and used it to generalize May’s method [10] to a larger

context.

For the category Λ, we notice that for each morphism ϕ ∈ Λ(k, l), we have a unique

decomposition

k
ϕ //

ϕ♯
��>

>>
>>

>>
> l

k
ϕinc

@@��������

such that ϕ♯ ∈ Λ(k,k), ϕinc ∈ Λ(k, l) and ϕ♯ is a permutation in Σk (by forgetting the

based point) and ϕinc is an increasing map.

Example 2.6 (cf. Example 1.5 in [2]). (1) The collection of configuration spaces

defines a topological preoperad F (Rn,−) : Λ → Top, where F (Rn,−) sends k to

F (Rn, k), and for any morphism ϕ ∈ Λ(k, l), we have

ϕ∗ : F (Rn, l) → F (Rn, k)
(t1, t2, . . . , tl) 7→ (tϕ(1), tϕ(2), . . . , tϕ(k)).

We call F (Rn,−) defined as above the configuration preoperad.

(2) The collection of symmetric groups defines a set-valued preoperad Σ : Λ → Sets,

where Σ sends k to Σk, and for any morphism ϕ ∈ Λ(k, l), we have

ϕ∗ : Σl → Σk

σ 7→
(
(σ−1 ◦ ϕ)♯

)−1
.
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We call Σ defined as above the permutation preoperad.

In order to obtain a combinatorial model of the double loop suspension, we want

to endow a preoperadic structure on the collection of L(l)’s which are Σl-equivariant

homotopy deformation retracts of F (R2, l)’s respectively. As we have pointed out before,

L(l) roughly is Σl plus bar arrangements. Hence, we introduce the following diagram

notation to represent each element a ∈ L(l):

l
ã //

πa

����

l

¯
t,

where ã is obtained by removing all the bars in a,
¯
t = {1, 2, . . . , t}, and the morphism

πa is the numbering of ordered subsequences of a (by ignoring the base element 0). For

instance, 235|741|6 ∈ L(7) is presented by 2357416 and the map π :
¯
7 ↠

¯
3 defined by

1, 2, 3 7→ 1, 4, 5, 6 7→ 2 and 7 7→ 3. We see πa is a nondecreasing map in general.

Now for any map ϕ ∈ Λ(k, l), we have the commutative diagram

l
ã−1

// l
πa // //

¯
t

k
(ã−1◦ϕ)♯=ϕ∗(ã)−1

//

ϕ

OO

k
πϕ∗a

// //

(ã−1◦ϕ)inc

OO

¯
t′,

πinc

OO (2.1)

where in the right square the morphisms πϕ∗a and πinc are uniquely determined by the

other two maps and πinc is an increasing map. We then can define a morphism

ϕ∗ : L(l) −→ L(k)
a = (ã, πa) 7−→ ϕ∗a = (ϕ∗(ã), πϕ∗a).

Proposition 2.7. The above construction defines a preoperad L : Λ → PSet

where PSet is the category of poset and order preserving morphisms.

Proof. It is straightforward to check the axioms of a functor once we prove that

ϕ∗ is order preserving. Hence we only prove this part. Suppose a ≺ b in L(l), we want

to show ϕ∗(a) ≺ ϕ∗(b) in L(k). Since we use pairs of morphisms to present elements

of L(l), we need to describe the order relation under this setting. Suppose a and b are

respectively presented by

l
ã //

πa

����

l l
b̃ //

πb

����

l

¯
t and

¯
s ,

then it is not hard to show that a ≺ b if and only if the following two conditions hold:
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1) there exists some nondecreasing surjection ρ :
¯
t ↠

¯
s such that ρ ◦ πa ◦ ã−1 =

πb ◦ b̃−1;

2) whenever πa(i) = πa(i+ 1), then b̃−1(ã(i)) < b̃−1(ã(i+ 1)).

(Notice that condition 1) just means that the subsequences in a can be transformed

to that in b by merging some adjacent ones under ρ, and condition 2) means this trans-

formation preserves the order of elements in each subsequence of a.)

Then by hypothesis, we can form the following commutative diagram

k
ϕ //

(ã−1◦ϕ)♯
��

l

ã−1

��

l

b̃−1

��

k
ϕoo

(b̃−1◦ϕ)♯
��

k
(ã−1◦ϕ)inc

//

πϕ∗a

����

l

πa

����

l

πb

����

k
(b̃−1◦ϕ)inc

oo

πϕ∗b

����

¯
t′

πinc

//

ρ′

33
¯
t

ρ // //
¯
s

¯
s′,

πinc

oo

where the left squares and right squares indicate the effect of ϕ∗ on a and b respectively,

and the middle squares reflect condition 1). Our goal is to construct a nondecreasing

surjection ρ′ :
¯
t′ ↠

¯
s′, such that ρ ◦ πinc = πinc ◦ ρ′, which is sufficient to prove the

proposition. For if such ρ′ exists, then

πinc ◦ ρ′ ◦ πϕ∗a ◦ ϕ̃∗a
−1

= ρ ◦ πinc ◦ πϕ∗a ◦ (ã−1 ◦ ϕ)♯

= ρ ◦ πa ◦ ã−1 ◦ ϕ

= πb ◦ b̃−1 ◦ ϕ

= πinc ◦ πϕ∗b ◦ ϕ̃∗b
−1
.

Since πinc is an injection, we have ρ′ ◦ πϕ∗a ◦ ϕ̃∗a
−1

= πϕ∗b ◦ ϕ̃∗b
−1

, i.e., condition 1) is

satisfied. For condition 2), we have ϕ̃∗b
−1

◦ ϕ̃∗a = ((ã−1 ◦ ϕ)inc)−1 ◦ b̃−1 ◦ ã ◦ (ã−1 ◦ ϕ)inc
where the first and the last maps are increasing maps. Hence condition 2) is also satisfied,

and we have ϕ∗(a) ≺ ϕ∗(b).

Now the remainder of the proof is devoted to constructing the required map ρ′, for

which we introduce two elements of L(l) related to a and b:

a′ := l
ã′=b̃ //

πa′=πa

����

l b′ := l
b̃′=ã //

πb′=πb

����

l

¯
t and

¯
s .

We see that a′ can be obtained by adding more bars in b, and b′ can be obtained by

removing some bars in a. Hence, a′ ≺ b and a ≺ b′ (but a′ ̸≺ b′. For instance, let

a = 235|71|4|6 and b = 235|471|6, then a′ = 235|47|1|6 and b′ = 235|714|6). For a′ and

b, we have the commutative diagram
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l
b̃−1

// l
πa // //

πb

)) ))
¯
t

ρ // //
¯
s

k
(b̃−1◦ϕ)♯

//

ϕ

OO

k
πϕ∗a′

// //

(b̃−1◦ϕ)inc

OO

πϕ∗b

55 55
¯
t′′

πinc

OO

ρ′′
// //
¯
s′,

πinc

OO

where the unique existence of ρ′′ is ensured by the definition of π and the injection

(b̃−1◦ϕ)inc (because we may view the effect of ρ as removing bars or merging subsequences,

then under (b̃−1 ◦ ϕ)inc : k → l the effect of ρ restricts to the effect of some morphism

ρ′′ and the commutativity follows from the uniqueness of the morphisms). Similarly, we

have the following commutative diagram for a and b′:

l
ã−1

// l
πa // //

πb

)) ))
¯
t

ρ // //
¯
s

k
(ã−1◦ϕ)♯

//

ϕ

OO

k
πϕ∗a

// //

(ã−1◦ϕ)inc

OO

πϕ∗b′

55 55
¯
t′

πinc

OO

ρ′′′
// //
¯
s′′.

πinc

OO

Since a ≺ b, we have πb ◦ b̃−1 ◦ ã = πb, which implies πϕ∗b′ ◦ ϕ̃∗b
−1

◦ ϕ̃∗a = πϕ∗b by

combining the above two diagrams together. In particular, we have
¯
s′′ =

¯
s′ and ρ′ = ρ′′′

is what we want. □

Corollary 2.8 (cf. Definition 1.6 in [2]). There exists a topological preoperad

F = F2 : Λ → Top∗ sending n to F(n), which is the geometric realization of the

preoperad L.

Proof. This corollary follows by the combination of the discussion in Section 2.1,

Theorem 2.3 and Proposition 2.7. □

We can now construct the combinatorial model of double loop suspensions in a

standard way which is essentially the well-known Milgram model [12].

Theorem 2.9 (cf. Proposition 1.7 in [2]). For any connected space X, form the

coend F(X) :=
⨿
n≥1 F(n) × X×n/ ∼ (Definition 2.1 in [6]∗ ), where the equivalence

relation is specified by

(ϕ∗a, (x1, x2, . . . , xk)) ∼ (a, ϕ∗(x1, x2, . . . , xk)) for ϕ ∈ Λ(k, l), a ∈ F(l),

and ϕ∗(x1, x2, . . . , xk) = (x′1, x
′
2, . . . , x

′
l) such that x′ϕ(i) = xi and x′j = ∗ if j ̸∈ Imϕ.

Then we have

F(X) ≃ Ω2Σ2X.
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Proof. As in the proof of Proposition 1.7 in [2], we want to compare the

poset determined by the cell structure of F (R2, l) with L(l). We start with an anti-

lexicographical ordering on R2. Explicitly, for any two points x, y ∈ R2, we may define

x = (x1, x2) ≺ y = (y1, y2) if and only if either x2 < y2 or x2 = y2 but x1 < y1, and

write x ≺2 y for the first case and x ≺1 y for the second. Then for any a ∈ L(l)

l
ã //

πa

����

l

¯
t ,

we can define an associated contractible subspace of F (R2, l) by

F al = {(t1, t2, . . . , tl) ∈ F (R2, l) | tã(1) ≺
λ1,2

tã(2) ≺
λ2,3

· · · ≺
λl−1,l

tã(l)},

where λi,j ∈ {1, 2} and λi,j = 1 if πa(i) = πa(j), λi,j = 2 if πa(i) ̸= πa(j). By the

proof of Theorem 3.13 of [3] (Theorem 2.3), {F al | a ∈ L(l)} gives an equivariant cellular

decomposition for F (R2, l), and the reverse of the poset determined by this stratification

is precisely L(l), whose geometric realization (in the sense of [3]) is the deformation

retract of F (R2, l). Hence we get a homotopy equivalence F(l) → F (R2, l) for each l.

Furthermore, this equivalence is indeed compatible with the preoperad structures.

Indeed, by the preoperadic structure of F (R2,−), we have

ϕ∗(t1, t2, . . . , tl) = (tϕ(1), tϕ(2), . . . , tϕ(k)),

for any ϕ ∈ Λ(k, l). Then by the diagram (2.1) which defines ϕ∗a, we see that Fϕ
∗a

l is

the cell exactly corresponding to

ϕ∗(F al ) = {(tϕ(1), tϕ(2), . . . , tϕ(k)) ∈ F (R2, k) |
tã(ϕ(1)) ≺

λϕ(1),ϕ(2)

tã(ϕ(2)) ≺
λϕ(2),ϕ(3)

· · · ≺
λϕ(k−1),ϕ(k)

tã(ϕ(k))}.

Hence, after geometric realization we have a homotopy equivalence of topological preop-

erads between F and F (R2,−). Then by Lemma 2.7 of [6], F(X) ≃ F (R2, X), where

the latter is the classical May-Segal model for Ω2Σ2X [10]. □

2.3. Combinatorial structure of L(S).

In this subsection, we continue to study the preoperad L; the reader may wish to

skip this subsection at first reading. It is easy to see that each increasing map ψ : k → l is

generated by elementary so-called degeneracy operators Di = kD
i : k → k+ 1 (0 ≤ i ≤

k) sending j to j for j ≤ i and j to j +1 for j ≥ i+1. Hence, any morphism ϕ ∈ Λ(k, l)

can be uniquely written as the composition of a permutation and some degeneracies,

and then the category Λ is determined by the collection of symmetric groups Σk’s and

degeneracies kD
i for all 0 ≤ i ≤ k subject to some relations. Explicitly, these relations

are
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DjDi = Di+1Dj if j ≤ i,

σ ◦Di = Dσ(i+1)−1 ◦ diσ,

where σ ∈ Σk+1 and diσ = (σ ◦Di)♯. Accordingly, we can describe preoperadic structure

in terms of the images of these morphisms and the induced relations. For our L, it is

easy to check that for any a ∈ L(k + 1)

k+1
ã //

πa

����

k+1

¯
t ,

and σ ∈ Σk+1, we have σ∗(a) = (σ−1 ◦ ã, πa) (hence we may also write σ∗(a) = σ−1 ◦ a),
and the commutative diagram

k+1
ã−1

// k+1
πa // //

¯
t

k
di(ã

−1)

//

Di

OO

k
πi
a

// //

Dã−1(i+1)−1

OO

¯
t′

πinc

OO (2.2)

shows that Di∗(a) = (di(ã
−1)−1, πia).

Now we turn to study the combinatorial coend L(S) =
⨿
n≥1 L(n) × S×n/ ∼ for

any based set S where the equivalence relation is similarly defined as that of F(X) in

Theorem 2.9. We start with constructing some special morphisms eϵi,j : L(k) → L(k+1),

0 ≤ i, j ≤ k and ϵ ∈ {−1, 0, 1} by the following commutative diagram:

k+1
ei,j(b̃

−1)
// k+1

πeϵ
,j

(b)

// // s′

k
b̃−1

//

Di

OO

k
πb

// //

Dj

OO

¯
s,

πinc

OO

i.e., eϵi,j(b) = ((ei,j(b̃
−1))−1, πeϵ,j(b)). Explicitly, ei,j(b̃

−1) maps i + 1 to j + 1, and there

are several cases for defining πeϵ,j(b).

(1) 0 < j < k

(a) ϵ = 0

(i) If πb(j) = πb(j +1), then πeϵ,j(b)(j) = πeϵ,j(b)(j +1) = πeϵ,j(b)(j +2), s′ = s

and πinc is identity.

(ii) If πb(j) = πb(j+1)−1, then πeϵ,j(b)(j)+1 = πeϵ,j(b)(j+1) = πeϵ,j(b)(j+2)−1,

s′ = s+ 1.

(b) ϵ = 1

(i) If πb(j) = πb(j + 1), defined as in (1.a.i).
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(ii) If πb(j) = πb(j+1)−1, then πeϵ,j(b)(j) = πeϵ,j(b)(j+1) = πeϵ,j(b)(j+2)−1,

s′ = s.

(c) ϵ = −1

(i) If πb(j) = πb(j + 1), defined as in (1.a.i).

(ii) If πb(j) = πb(j+1)−1, then πeϵ,j(b)(j+1) = πeϵ,j(b)(j+2) = πeϵ,j(b)(j)+1,

s′ = s.

(2) j = k, there are only two possible values for ϵ.

(a) ϵ = 0, then πeϵ,j(b)(k) + 1 = πeϵ,j(b)(k + 1), s′ = s+ 1.

(b) ϵ = 1, then πeϵ,j(b)(k) = πeϵ,j(b)(k + 1), s′ = s.

(3) j = 0, there are only two possible values for ϵ.

(a) ϵ = 0, then πeϵ,j(b)(1) + 1 = πeϵ,j(b)(2) = 2, s′ = s+ 1.

(b) ϵ = −1, then πeϵ,j(b)(1) = πeϵ,j(b)(2) = 1, s′ = s.

These morphisms can be interpreted by Figure 1 where the numbers refer to the locations.

The numbers j and j + 1 lie in the same box if and only if they have same image under

the morphism πb. The left image presents the case (1.a.i) while the right one presents

the case (1.a.ii). We should notice that the morphisms e0i,j , e
1
i,k and e−1

i,0 preserve the

partial order while the others do not. For the simplicity of notation, we may further

define e−1
i,k = e0i,k and e1i,0 = e0i,0. Also, D

i∗ ◦ eϵi,j = id and therefore eϵi,j is injective.

Figure 1. The morphism e0i,j with 0 < j < k.

On the other hand, we also have the morphism Di
∗ : S×k → S×(k+1) defined by

Di
∗(x1, x2, . . . , xk) = (x1, x2, . . . , xi, ∗, xi+1, . . . , xk).

Then there exist morphisms eϵi,j ×Di
∗ : L(k)× S×k → L(k + 1)× S×(k+1), and we want

to show that each of these morphisms induces a morphism between the sets of the orbits

L(k)×Σk
S×k and L(k + 1)×Σk+1

S×(k+1).

Lemma 2.10. There exists a map fi,j,ϵ such that the diagram
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L(k)× S×k
eϵi,j×D

i
∗ //

π
����

L(k + 1)× S×(k+1)

π
����

L(k)×Σk
S×k fi,j,ϵ // L(k + 1)×Σk+1

S×(k+1)

commutes.

Proof. By construction, we may view Σk acting diagonally on L(k)× S×k by

σ · (b, (x1, x2, . . . , xk)) = (σ−1 ◦ b, (xσ(1), xσ(2), . . . , xσ(k))), (2.3)

for any σ ∈ Σk, b ∈ L(k) and xi ∈ S. Then

(eϵi,j ×Di
∗)(σ

−1 ◦ b, (xσ(1), xσ(2), . . . , xσ(k))) =
(eϵi,j(σ

−1 ◦ b), (xσ(1), xσ(2), . . . , xσ(i), ∗, xσ(i+1), . . . , xσk
)).

We then define a permutation σ̃i ∈ Σk+1 such that the diagram

k
Di

//

σ

��

k+ 1

σ̃i

��
k

Di
// k+ 1

(2.4)

commutes. Hence we have

σ̃iDi
∗(x1, x2, . . . , xk) = σ̃i(x1, x2, . . . , xi, ∗, xi+1, . . . , xk)

= (xσ(1), xσ(2), . . . , xσ(i), ∗, xσ(i+1), . . . , xσk
),

and the commutative diagram

k+ 1
σ̃i

//

ei,j(b̃
−1◦σ)

++
k+ 1

ei,j(b̃
−1)

// k+ 1
πeϵ

,j
(b)=πeϵ

,j
(σ−1◦b)

// // s′

k
σ

//

Di

OO

k
b̃−1

//

Di

OO

k
πb=πσ−1◦b

// //

Dj

OO

s,

πinc

OO

which implies

eϵi,j(σ
−1 ◦ b) = ((ei,j(b̃

−1 ◦ σ))−1, πeϵ,j (b))

= ((σ̃i)−1 ◦ (ei,j(b̃−1))−1, πeϵ,j (b))

= (σ̃i)−1 ◦ eϵi,j(b).

By combining the above together, we have
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(eϵi,j ×Di
∗)(σ · (b, (x1, x2, . . . , xk))) = (eϵi,j ×Di

∗)(σ
−1 ◦ b, (xσ(1), xσ(2), . . . , xσ(k)))

= ((σ̃i)−1 ◦ eϵi,j(b), σ̃iDi
∗(x1, x2, . . . , xk))

= σ̃i ·
(
(eϵi,j ×Di

∗)(b, (x1, x2, . . . , xk))
)
,

which shows that fi,j,ϵ can be well-defined. □

We now want to study the structure of L(S) by using the morphisms fi,j,ϵ of

Lemma 2.10.

Proposition 2.11. Let Lk+1(S) =
⨿

1≤n≤k+1 L(n) × S×n/ ∼ be the (k + 1)-

st ‘skeleton’ of L(S), then the coequalizer of the well-defined morphisms fi,j,ϵ for all

0 ≤ i ≤ k and all possible ϵ ∈ {0,±1} is isomorphic to Lk+1(S). Moreover, the sequence

0 L(k)×Σk
S×k L(k + 1)×Σk+1

S×(k+1) Lk+1(S) 0

f0,0,ϵ
...

fk,k,ϵ

q

is exact.

Proof. First, we notice that q is surjective by Lemma 2.2 of [6]. Also by defini-

tion, the relation for defining Lk+1(S) is

(ϕ∗a, (x1, x2, . . . , xk)) ∼ (a, ϕ∗(x1, x2, . . . , xk)) for ϕ ∈ Λ(k, l), a ∈ L(l).

Specializing to the case l = k + 1, we see the relation can be written as

(Di∗a, (x1, x2, . . . , xk)) ∼ (a, (x1, x2, . . . , xi, ∗, xi+1, . . . , xk)), (2.5)

for each 0 ≤ i ≤ k and a ∈ L(k + 1). For this a, there exists a unique j such that

ã(j + 1) = i+ 1. Hence, we see that eϵi,j(D
i∗a) = a for some ϵ. Then by Lemma 2.10 we

have a commutative diagram

0 L(k)× S×k L(k + 1)× S×(k+1) L̃k+1(S) 0

0 L(k)×Σk
S×k L(k + 1)×Σk+1

S×(k+1) Lk+1(S) 0,

eϵ0,0×D
0
∗

...
eϵk,k×D

k
∗

q̃

f0,0,ϵ
...

fk,k,ϵ

q

where the first row is defined to be exact. The injectivity of fi,j,ϵ can be argued as follows.

Suppose we have fi,j,ϵ[a, x] = fi,j,ϵ[b, y] for some a, b ∈ L(k) and x, y ∈ S×k. Then by

the diagram there exists τ ∈ Σk+1 such that τ · (eϵi,j(a), Di
∗(x)) = (eϵi,j(b), D

i
∗(y)). In

particular, we have

τ(x1, . . . , xi, ∗, xi+1, . . . , xk) = (y1, . . . , yi, ∗, yi+1, . . . , yk),
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which implies τ = σ̃i, σ(x) = y for some σ ∈ Σk in the sense of diagram 2.4. Then

τ · eϵi,j(a) = σ̃i · eϵi,j(a) = eϵi,j(σ
∗(a)) by the proof of Lemma 2.10. Then eϵi,j(σ

∗(a)) =

eϵi,j(b) implies σ∗(a) = b and [a, x] = [σa, σx] = [b, y]. Hence, fi,j,ϵ is injective. Similar

arguments will show that the second row of the diagram is exact. □

Lemma 2.12. The collection of morphisms {fi,j,ϵ | 0 ≤ i, j ≤ k, ϵ ∈ {±1, 0}}
satisfies the following relations :

fi,j,ϵ ◦ fi′,j′,ϵ′ = fi′+1,j′+1,ϵ′fi,j,ϵ if i ≤ i′, j ≤ j′;

fi,j+1,ϵ ◦ fi′,j′,ϵ′ = fi′+1,j′,ϵ′fi,j,ϵ if i ≤ i′, j ≥ j′.

Proof. These relations follow from the corresponding relations for eϵi,j and Di
∗

which can be easily obtained from their definitions and the relation

DjDi = Di+1Dj if j ≤ i. □

3. Combinatorial homotopy theory: Cohen groups.

In this section, we review Cohen’s combinatorial homotopy theory and Wu’s bi-∆-

group approach with our further generalization. The material here presents a basic way

to study homotopy exponent problems.

3.1. Cohen’s original approach ([5]).

Given f : Y → ΩZ, we can construct some canonical maps in [Y ×(n+1),ΩZ]. Define

Y ×(n+1) πi−→ Y
f−→ ΩZ,

where πi(y1, y2, . . . , yn+1) = yi. We may denote the homotopy class of this map by yi.

Then there is a natural representation

ef : Fn+1 = Fn+1(x1, x2, . . . , xn+1) → [Y ×(n+1),ΩZ]

defined by ef (xi) = yi, where Fn+1(x1, x2, . . . , xn+1) is the free group of rank n + 1

generated by x1, x2, . . . , xn+1. This group homomorphism may have nontrivial kernel

depending on the choice of the maps and spaces involved, and there are two typical

cases:

• If the reduced diagonal ∆̄ : Y → Y ∧Y is null homotopic (for instance when Y is a

co-H-space), then the iterated commutator [[yi1 , yi2 ], . . . , yit ] = 1 in [Y ×(n+1),ΩZ]

when yia = yib for some a ̸= b. Then

Nn+1 = ⟨[[xi1 , xi2 ], . . . , xit ] | yia = yib for some a ̸= b⟩N ⊴ Fn+1

lies in the kernel of ef .

• If pr[f ] = 0, then yp
r

i = 1 for each i. Then

Nn+1 = ⟨xp
r

1 , . . . , x
pr

n+1⟩N ⊴Ker(ef ).

864(192)



Double loop spaces and Cohen groups 865

On the other hand, the sequence of sets {[Y ×(n+1),ΩZ]}n≥0 can be endowed with a ∆-

group structure induced from the co-∆ structure of the sequence of spaces {Y ×(n+1)}n≥0,

the structural morphisms of which are defined by for any 0 ≤ i ≤ n

di : Y ×n → Y ×(n+1), (y1, y2, . . . , yn) 7→ (y1, . . . , yi, ∗, yi+1, . . . , yn).

Similarly, there is a ∆-group structure on {Fn+1}n≥0 defined by for any 0 ≤ i ≤ n

d̃i : Fn+1 → Fn, d̃i(xj) =


xj j ≤ i,

1 j = i+ 1,

xj−1 j ≥ i+ 2.

By direct computations, there is a commutative diagram

Nn+1
� � //

d̃i|

��

Fn+1
// //

d̃i

��

ef

,,
Kn+1 ef

//

d̄i

��

[Y ×(n+1),ΩZ]

di∗

��
Nn

� � // Fn // //

ef

22Kn

ef // [Y ×n,ΩZ],

where Nn is chosen depending on the condition, Kn = Fn/Nn. Now the sequence of

groups {Kn+1, d̄i}n≥0 is a ∆-group, and we have commutative diagram

0 [Jn+1(Y ),ΩZ] [Y ×(n+1),ΩZ] [Y ×n,ΩZ] 0

0 hn+1 Kn+1 Kn 0,

q∗n+1
d0∗
...
dn∗

ef

d̄0
...
d̄n

ef ef

where qn+1 is the natural projection, q∗n+1 is an injection by Corollary 1.1.4 of [21],

[Jn+1(Y ),ΩZ] is the equalizer of {di∗ | 0 ≤ i ≤ n} by Lemma 2.9 of [20], and hn+1 is

defined to be the equalizer of {d̄i | 0 ≤ i ≤ n}. Then there is an induced morphism

p̄n+1 = d̄i| : hn+1 → hn which is indeed an epimorphism for each n. Similarly, we have

an epimorphism pn+1 : [Jn+1(Y ),ΩZ] ↠ [Jn(Y ),ΩZ] for each n. Now by the above

diagram we have the so-called Cohen representation at infinity

ef : h = lim
n

hn → lim
n
[Jn(Y ),ΩZ] ∼= [J(Y ),ΩZ],

where h is the desired Cohen group. The Cohen representation can be functorially faithful

due to a suitable choice of category and a beautiful characterization of the group h has

been proved by Cohen.

Theorem 3.1 ([5]). When h1 = Z or Z/pr,
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Ker(p̄n : hn ↠ hn−1) ∼= Lie(n),

where Lie(n) is the h1-submodule of (V = ⟨x1, x2, . . . , xn⟩h1)
⊗n spanned by Lie elements

[[xσ(1), xσ(2)], . . . , xσ(n)]

for any σ ∈ Σn.

3.2. Wu’s approach: bi-∆-extension and skeleton filtration of bi-∆-

groups ([21]).

3.2.1. The machinery.

According to the construction in Section 3.1, for any ∆-set (group) S = {Sn, di}n≥0

we may define a Cohen set (group) for each n by

hnS = {x ∈ Sn | d0x = d1x = · · · = dnx},

and also the total Cohen set (group) by

hS = lim
n
{pn = di| : hnS → hn−1S}.

We should notice that hn+1 defined in Section 3.1 is denoted by hn here. The construc-

tions are functorial.

Lemma 3.2. Given a morphism of ∆-sets (groups)

e : S → T ,

there is an induced filtration preserving morphism of total Cohen sets (groups)

he : hS → hT .

Lemma 3.3. The functor h is left exact, i.e., given any short exact sequence of

∆-groups

{1} → H → G → K → {1},

the induced sequence

{1} → hH → hG → hK

is exact.

In general pn may not be surjective (see Theorem 1.2.2 of [21]). However, it may

be surjective if the objects involved have more structures, for instance, the bi-∆-group

structure.

Definition 3.4. A bi-∆-set (group) S = {Sn, dj , di}n≥0 is a ∆- and co-∆-set

(group) with dj and d
i as the structural morphisms respectively such that
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djd
i =


di−1dj j < i,

id j = i,

didj−1 j > i.

A weak bi-∆-group G = {Gn}n≥0 is a bi-∆-set such that each Gn is a group and all faces

dj are group homomorphisms.

Proposition 3.5 (Proposition 1.2.1 in [21]). For any weak bi-∆-group G and each

n, the map pn : hnG → hn−1G is an epimorphism with kernel the Moore cycles group

Zn(G), where

Zn(G) =
n∩
i=0

Ker(di : Gn → Gn−1).

Definition 3.6. An n-partial bi-∆-group G = {Gk}0≤k≤n is a finite sequence of

groups with faces dj and cofaces di satisfying all of the structural relations of a bi-∆-group

up to dimension n.

Definition 3.7. Given an n-partial bi-∆-group G = {Gk}0≤k≤n, the bi-∆-

extension of G is a bi-∆-group ΦnG with inclusion G ↪→ ΦnG such that the following

universal property holds:

For any bi-∆-group K and any n-partial bi-∆-group morphism f : G → K, there

exists a unique morphism of bi-∆-groups f̃ : ΦnG → K such that f̃|G = f .

The existence of the bi-∆-extension was guaranteed by the explicit construction of ΦnG
in [21]. Roughly speaking, we first construct an (n + 1)-partial bi-∆-group Φn+1

n G by

defining the (n+1)-stage to be the (n+2)-fold self free product of Gn module the coface

relations. The faces are then induced by the usual projections as we did for free groups.

We then can iterate the process to get a tower of partial bi-∆-groups

G = ΦnnG ⊆ Φn+1
n G ⊆ Φn+2

n G ⊆ · · · ,

and set ΦnG =
∪∞
k=0 Φ

n+k
n G. It is then straightforward to check that ΦnG satisfies the

universal property.

Definition 3.8. Let G = {Gn}n≥0 be a bi-∆-group, the n-skeleton of G is defined

to be

sknG = ΦnParnG,

where ParnG = {Gk}0≤k≤n is an n-partial bi-∆-group with the induced faces and cofaces

from G.

Lemma 3.9. Given any bi-∆-group morphism f : G → K, we have a commutative

diagram
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sknG
skn(f) //

��

sknK

��
G

f // K.

Proof. The lemma follows from the diagram

ParnG
Φn

//

Parn(f)

��

% � ++sknG //

skn(f)

��

G

f

��
ParnK

Φn

//
y�

33sknK // K,

which is ensured by the universal property of Φn. □

Given any group G, we may view it as a trivial n-partial bi-∆-group for any finite

n by defining the top stage to be G and the remaining ones to be trivial groups. Then

the only choices for the faces and cofaces are the trivial morphisms, i.e.,

By abuse of notation, we may write Φn(G) to denote the bi-∆-extension of this trivial

n-partial bi-∆-group. Now suppose we have a bi-∆-group K and a group homomorphism

ϕ : G → ZnK. Since G is trivial as a partial bi-∆-group, the composition G → ZnK ↪→
hnK ↪→ Kn determines a morphism of n-partial bi-∆-groups:

ϕ : G→ ParnK.

We then have a bi-∆-extension of ϕ by the diagram

G
ϕ //

��

ParnK_�

��

� t

''OO
OOO

OOO
OOO

OO

ΦnG
ϕ // sknK // K,

which induces a homomorphism of the total Cohen groups

hϕ : hΦnG→ hsknK → hK,

such that hnϕ = i ◦ ϕ : G→ ZnK ↪→ hnK.

There is another type of bi-∆-extension which concerns relations in Cohen groups.

Definition 3.10. Suppose we have a bi-∆-group G and an inclusion of n-partial

bi-∆-groups i : H −→ ParnG with Hn ⊴ Gn, then the normal bi-∆-extension of H in G
is a bi-∆-group NGH such that
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ParnNGH = H,

and also the following property holds:

For any sub-bi-∆-groups K of G with ParnK = H and Kj ⊴ Gj for any j ≥ n, we

have an injection of bi-∆-groups NGH ↪→ K.

In particular, if H = H is the trivial n-partial bi-∆-subgroup of G and H ⊴ Gn, we may

call NG,nH = NGH the normal bi-∆-extension of the group H.

The explicit construction of such an extension can be described as follows. For such

H, we may define NGHn+1 ∈ Gn+1 to be the normal closure generated by dix for all

x ∈ Hn. It is easy to check that H
⨿

NGHn+1 with the induced faces and cofaces from G
is an (n+ 1)-partial bi-∆-group. Then we may iterate the process and get the required

bi-∆-extension NGH.

Now suppose we have a morphism of bi-∆-groups f : G → K and a composition map

of n-partial bi-∆-groups

H i
↪→ ParnG

Parnf−−−−→ ParnK,

which is trivial. If Hn is a normal subgroup of Gn, then we have the extension morphism

NGH
i
↪→ G f−→ K,

which is also trivial. Hence the induced homomorphism of Cohen groups

hNGH
hi
↪→ hG hf−→ hK

is also trivial.

We may summarize a useful case in the following lemma:

Lemma 3.11. Given a bi-∆-group K and a group G with a group homomorphism

ϕ : G → ZnK. Suppose we also have an m-partial bi-∆-subgroup H of ParmΦnG such

that Hm ⊴ ΦnGm and the composition morphism

H i
↪→ ParmΦnG

Parmϕ−−−−→ ParmK

is trivial, then the morphism of Cohen groups

hNΦnGH
hi
↪→ hΦnG

hϕ−→ hK

is trivial.

In particular, if we are given a trivial m-partial bi-∆-normal subgroup H of ΦnG

such that

H
i
↪→ ΦnGm

ϕm−→ Km

is trivial, then the morphism of Cohen groups
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hNΦnG,mH
hi
↪→ hΦnG

hϕ−→ hK

is trivial.

The case when n = 0 is of special interest. Now the given data is a bi-∆-group

K with a homomorphism ϕ : G → K0, and we have a homomorphism of Cohen groups

hϕ : hΦ0G→ hsk0K → hK. According to [21], the bi-∆-extension of G can be explicitly

described up to isomorphism. Indeed, we can define

(Φ0G)n =

n+1⨿
k=1

(Gk = G)

as the (n + 1)-fold self free product of G. We may denote ιk : G ↪→
⨿n+1
k=1 Gk as the

inclusion of the k-th component. Then the faces di : (Φ0G)n → (Φ0G)n−1 and coface

morphisms di : (Φ0G)n−1 → (Φ0G)n can be defined by group homomorphisms which are

uniquely determined by the relations

diιj =


ιj j ≤ i,

0 j = i+ 1,

ιj−1 j ≥ i+ 2,

diιj =

{
ιj j ≤ i,

ιj+1 j ≥ i+ 1.

By construction, we can easily see that

ιj+1 = dndn−1 · · · dj+2dj+1dj−1 · · · d1d0 : G→ (Φ0G)n.

We notice that whenG = Z, (Φ0G) = {Fn+1}n≥0 as bi-∆ groups which was discussed

in Section 3.1.

3.2.2. We now apply the above constructions to the bi-∆-group

ΩZ∗(Y ) = {[Y ×(n+1),ΩZ]}n≥0,

the co-∆-structure of which is induced by maps

di : Y
×(n+1) → Y ×n, (y1, y2, . . . , yn+1) 7→ (y1, . . . , yi, yi+2, . . . , yn+1).

We start with a representation ϕ : G → [Y ∧(n+1),ΩZ] = ZnΩZ∗(Y ). Then ac-

cording to the construction in Subsection 3.2.1, we have a bi-∆-extension ϕ : ΦnG →
sknΩZ

∗(Y ) → ΩZ∗(Y ) and then a group homomorphism of Cohen groups

hϕ : hΦnG→ hsknΩZ
∗(Y ) → hΩZ∗(Y ) ∼= [J(Y ),ΩZ].

When n = 0, Im(ϕm) ⊆ [Y ×(m+1),ΩZ] is the subgroup generated by

dmdm−1 · · · dj+2dj+1dj−1 · · · d1d0(ϕ(G)) = p∗j+1(ϕ(G)),

where pj+1 : Y ×(n+1) → Y is defined by pj+1(y1, . . . , ym+1) = yj+1 which exactly

corresponds to ιj+1. If further G = Z, the map ϕ is equivalent to a choice of map
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f = ϕ(1) : Y → ΩZ. Then the theory developed here covers Cohen’s approach. Indeed,

we may define

H = ⟨[[xi, xj ], xi], [[xi, xj ], xj ] | 1 ≤ i ̸= j ≤ 2⟩N ⊴ (Φ0Z)1 = F (x1, x2).

Then the composition

H ↪→ (Φ0Z)1
ϕ2→ ΩZ∗(Y )1 = [Y ×2,ΩZ]

is trivial if the reduced diagonal for Y is null homotopic. Hence by Lemma 3.11 the

composition of homomorphisms

hNΦ0Z,1H ↪→ hΦ0Z
hϕ→ [J(Y ),ΩZ]

is trivial. For other cases we can proceed similarly.

4. Evaluation map and shuffle relations in Cohen groups.

Since our goal is to detect relations in the group of homotopy classes of self maps of

double loop suspensions, we have to study the loop homomorphism

Ω : [ΩΣ2X,ΩZ] → [Ω2Σ2X,Ω2Z].

In this section, we give a combinatorial model of the evaluation map ev : ΣΩ2Σ2X →
ΩΣ2X as the adjoint of Ω(id). We then use this model to develop a general method to

detect relations in Cohen groups. As an illustration we construct the shuffle relations.

4.1. The evaluation map ev : ΣΩ2Σ2X → ΩΣ2X.

In [13], Milgram constructed his model for double loop suspensions with a different

method. Explicitly, he defined a space of paths in n-cube In by

Path(n) =
{
σ : [0, 1] → In | σ(0) = (0, . . . , 0), σ(1) = (1, . . . , 1)

}
.

Then for any connected space X, there is a map defined as the composition

ψn : Path(n)×X×n → Ω((ΣX)×n) → Ω(Jn(ΣX)),

where Jn is the n-th filtration of the classical James construction J , the first map is just

a shuffle of variables and the second map is the loop of the natural projection. On the

other hand, Milgram [12] also defined a family of maps

r′n : Pn → Path(n)

by induction on n. Indeed, the map sends each vertex to a regular combinatorial path

passing n (dimension 1) edges of In in an order determined by the coordinate of the

vertex. Any inner point y of Pn can be uniquely expressed as the linear combination of

the center cn of Pn and a point on the boundary, say z = (zi, zj) ∈ Pi×Pj with i+ j = n

and y = (1− t)cn+ tz for instance. By induction, we have defined r′i(zi) and r
′
j(zj) which

871(199)



872 R. Huang and J. Wu

determine a path r′n(z) in I
n through a canonical map

Path(i)× Path(j) → Path(n).

Then r′n(y) is obtained by shrinking r′n(z) to a path t · r′n(z) connecting (0, . . . , 0) and

(t, . . . , t), and then joining (t, . . . , t) with (1, . . . , 1) by a line segment. It is easy to see

this map can be equivariantly extended to F(n), and we have a map

rn : F(n) → Path(n),

whose adjoint map (rn)
♯ : I × F(n) → In is cellular and of degree plus or minus one

(Lemma 4.6 in [12]). Combining the above together, we have constructed a map

ϕn : F(n)×X×n rn×id−−−−→ Path(n)×X×n ψn−→ Ω(Jn(ΣX)).

Then we can check that the map ϕn for each n is compatible with the defining relations

of F(X), and the diagrams

F(n)×X×n ϕn //

����

Ω(Jn(ΣX)),
⨿
n F(n)×X×n

⨿
n Ωin◦ϕn //

����

Ω(J(ΣX))

Fn(X)

ϕ̃n

55

F(X)

ϕ̃

44

are commutative, where in : Jn(ΣX) → J(ΣX) is the natural inclusion. The theorem

of Milgram (Corollary 0.20 in [13], Theorem 2.9) claims that the map ϕ̃ is a homotopy

equivalence. We can then choose the adjoint map of ϕ̃ as our evaluation map

ev := (ϕ̃)♯ : ΣF(X) → J(ΣX).

According to the construction, we see that ϕ̃ preserves the natural filtrations and gives

the following commutative diagram:

ΣFk−1(X)
evk−1 //

_�

��

Jk−1(ΣX)
_�

��
ΣFk(X)

evk //

����

Jk(ΣX)

����
ΣDk(X)

ēvk // (ΣX)∧k,

where Dk(X) = F(k)+ ∧Σk
X∧k is the k-th divided power. Further, since the map rk

sends any point on the boundary of F(k) to a path on the boundary of Ik, ϕ̃n sends any

point [a, x] ∈ (∂F(n)×X×n/ ∼) ⊂ Fn(X) to a loop in ΩJk−1(ΣX) ⊂ ΩJk(ΣX). Hence,

ēvk can be factored as
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ΣDk(X) = ΣF(k)+ ∧Σk
X∧k Σq∧id−−−−→ Σ

∨
k!

Sk−1 ∧Σk
X∧k ≃ (ΣX)∧k

e−→ (ΣX)∧k,

where q is the quotient map given by shrinking the (k − 2)-skeleton of F(k) to a point.

Also, since (rn)
♯ is of degree plus or minus one and ēvk is functorial in X, the map e

is of the form i × id : Sk ∧X∧n → Sk ∧X∧n with degree (i) = ±1. In particular, e is

a homotopy equivalence, and we may choose the natural quotient q̃k = Σq ∧ id as the

induced evaluation map ēvk.

4.2. Shuffle map.

The shuffle map was defined in [21] to construct shuffle relations in Cohen groups.

Here, we recall the definition of the shuffle map and then give a combinatorial description

using Milgram’s model.

4.2.1. A convenient way to define the shuffle map is by working at the algebraic

level first. Let T (V ) be the tensor coalgebra with V the primitive base (V will be realized

as the homology of a co-H-space later), where the reduced coalgebra morphism is denoted

by ψ̄ : T (V ) → T (V ) ⊗ T (V ) ↠ T (V ) ∧ T (V ). The morphisms ψ̄ preserves the usual

word length filtration. Let us denote

Jn(V ) =

n⊕
j=0

Tj(V ), Tn(V ) = V ⊗n.

Then we have a commutative diagram

Jk−1(V ) �
� //

ψ̄|Jk−1

��

Jk(V ) // //

ψ̄|Jk

��

V ⊗k

sh

��
Filk−1(T (V ) ∧ T (V )) �

� // Filk(T (V ) ∧ T (V )) // // ⊕
i,j>0,i+j=k V

⊗i ⊗ V ⊗j .

(4.1)

The shuffle map can be defined by realizing the above diagram. Explicitly, suppose Y is

a co-H-space, then by definition we have a homotopy commutative diagram

Y
∆ //

µ′
""F

FF
FF

FF
F Y × Y

Y ∨ Y
, �

::ttttttttt
,

where µ′ is the comultiplication and ∆ is the diagonal map. There is a homotopy com-

mutative diagram
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(Y ∨ Y )×n
∪
n Y

×i ∧ Y ×j

Y ×n (Y × Y )×n Y ×n ∧ Y ×n

Jn(Y ∨ Y )
∪
n Ji(Y ) ∧ Jj(Y )

Jn(Y ) Jn(Y × Y ) Jn(Y ) ∧ Jn(Y ) ,

h

∆×n

µ′×n

∆̄

λ

h̃

Jn(∆)

Jn(µ
′)

∆̄

λ̃

where λ((y1, y
′
1), . . . , (yn, y

′
n)) = (y1 ∧ · · · ∧ yn) ∧ (y′1 ∧ · · · ∧ y′n),∪

n

Y ×i ∧ Y ×j =
∪

{a1,...,ai,b1,...,bj}={1,...,n}
i,j>0, a1<···<ai,b1<···<bj

(Ya1 × Ya2 × · · · × Yai) ∧ (Yb1 × Yb2 × · · · × Yaj ),

Yas = Y presents the as-th Y in the first Y ×n of Y ×n ∧ Y ×n and Ybt = Y presents the

bt-th Y in the second Y ×n. All the maps in the diagram are natural, and the composition

map

∆̃ : Jn(Y ) → Jn(Y ∨ Y ) →
∪
n

Ji(Y ) ∧ Jj(Y )

can be viewed as the reduced diagonal map. We then have a commutative diagram

Jk−1(Y ) �
� //

∆̃

��

Jk(Y ) // //

∆̃

��

Y ∧k

sh

��∪
k−1 Ji(Y ) ∧ Jj(Y ) �

� // ∪
k Ji(Y ) ∧ Jj(Y ) // // ∨

i,j>0,i+j=k Y
∧i ∧ Y ∧j ,

which exactly realizes Diagram 4.1. By straightforward computations, we may write the

formula of the shuffle map as

sh (y1 ∧ · · · ∧ yk) =
∑
i,j>0
i+j=k

∑
{a1,...,ai,b1,...,bj}={1,...,n}

a1<···<ai,b1<···<bj

ya1 ∧ · · · ∧ yai ∧ yb1 ∧ · · · ∧ ybj ,

which means the (i, j)-component of image of y1 ∧ · · · ∧ yk in Y ∧i ∧ Y ∧j under sh is

shi,j(y1 ∧ · · · ∧ yk) =
∑

{a1,...,ai,b1,...,bj}={1,...,n}
a1<···<ai,b1<···<bj

ya1 ∧ · · · ∧ yai ∧ yb1 ∧ · · · ∧ ybj .

Since the loop of the reduced diagonal is null homotopic, we have the following lemma

which was used to detect the shuffle relations in Cohen groups [21]:
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Lemma 4.1. The loop of the composite

Jk(Y )↠ Y ∧k sh−→
∨

i,j>0,i+j=k

Y ∧i ∧ Y ∧j g99K ΩZ

is null-homotopic for any map g.

4.2.2. Now we will use Milgram’s model to get a combinatorial description of the

shuffle map. For the polyhedra F(k), we have the naive cofibration sequence∨
k!

Sk−2 β−→ skk−2F(k)/skk−3F(k) ↪→ F(k)/skk−3F(k)↠

F(k)/skk−2F(k) ≃
∨
k!

Sk−1 Σβ−→ Σskk−2F(k)/skk−3F(k),

where β is the attaching map. By applying (−)+ ∧Σk
X∧k to the above sequence, we

have a cofibration

Σk−2X∧k β+∧Σk
X∧k

−−−−−−−→ skk−2Dk(X)/skk−3Dk(X) ↪→ Dk(X)/skk−3Dk(X)↠

Dk(X)/skk−2Dk(X) ≃ Σk−1X∧k Σβ̃−→ Σskk−2Dk(X)/skk−3Dk(X),

where skiDk(X) = skiF(k)+ ∧Σk
X∧k is the natural filtration, and

Σskk−2Dk(X)/skk−3Dk(X) ≃ Σ
∨

(k−1)·k!

Sk−2 ∧Σk
X∧k ≃

∨
k−1

Σk−1X∧k.

Lemma 4.2. There is a homotopy commutative diagram

(ΣX)∧k
sh //

≃
��

∨
i,j>0,i+j=k(ΣX)∧i ∧ (ΣX)∧j

≃
��

Σ
∨
k! S

k−1 ∧Σk
X∧k Σ2β̃ // Σ2

∨
(k−1)·k! S

k−2 ∧Σk
X∧k.

Proof. In order to prove the lemma, we need to label the spheres involved by

their corresponding elements in the poset of F(k). Hence, we may write

F(k)/skk−2F(k) ≃
∨
σ∈Σk

Sk−1
(σ) = Sk−1,

skk−2F(k)/skk−3F(k) ≃
∨
(τ,j)

Sk−2
(τ,j) = Sk−2,

where (τ, j) ∈ Lk−2(k) (the set of elements of degree k − 2 in L(k)) corresponds to
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k
τ //

πj

����

k

¯
2

such that πj(i) = 1 for i ≤ j and πj(i) = 2 for i > j. Since γ∗(a = (ã, πa)) = (γ−1 ◦ ã, πa)
for any γ ∈ Σk and a ∈ L(k), then in our two wedge of spheres

(σ−1)∗ : Sk−1
(id) ⇝ Sk−1

(σ) , Sk−2
(id,j) ⇝ Sk−2

(σ,j).

On the other hand, we have a homotopy commutative diagram

ΣSk−1
(id) ∧X∧k

_�

��

β′=Σ2β∧X∧k
| //

id

''

Σ2
∨

(τ,j)∈Lk−2
id (k) S

k−2
(τ,j) ∧X

∧k

_�

��
θ

uu

Σ
∨
σ∈Σk

Sk−1
(σ) ∧X∧k

����

Σ2β∧X∧k

// Σ2
∨

(τ,j)∈Lk−2(k) S
k−2
(τ,j) ∧X

∧k

����
Σ
∨
σ∈Σk

Sk−1
(σ) ∧Σk

X∧k Σ2β̃ // Σ2
∨

(τ,j)∈Lk−2(k) S
k−2
(τ,j) ∧Σk

X∧k,

where the composition

ΣSk−1
(id) ∧X∧k β′

→ Σ2
∨
(τ,j)

Sk−2
(τ,j) ∧X

∧k p(τ,j)−−−→ Sk−2
(τ,j) ∧X

∧k

is homotopic to the identity for any projection p(τ,j) of the (τ, j)-component. The com-

position

Σ2
∨
j

Sk−2
(id,j) ∧X

∧k ↪→ Σ2
∨

(τ,j)∈Lk−2(k)

Sk−2
(τ,j) ∧X

∧k ↠ Σ2
∨

(τ,j)∈Lk−2(k)

Sk−2
(τ,j) ∧Σk

X∧k

is also homotopic to the identity, and then the homotopy inverse of this map with the

pre-composition of θ defines a map

θ̃ : Σ2
∨

(τ,j)∈Lk−2
id (k)

Sk−2
(τ,j) ∧X

∧k → Σ2
∨
j

Sk−2
(id,j) ∧X

∧k,

which essentially is the map∨
1≤j≤k−1

(
∇ ◦

∨
(τ,j)

τ∗
)
: Σ2

∨
1≤j≤k−1

∨
(τ,j)∈sh(j,k−j)

Sk−2
(τ,j) ∧X

∧k → Σ2
∨

1≤j≤k−1

Sk−2
(id,j) ∧X

∧k

such that

τ∗(t1 ∧ · · · ∧ tk ∧ x1 ∧ · · · ∧ xk) = (tτ(1) ∧ · · · ∧ tτ(k) ∧ xτ(1) ∧ · · · ∧ xτ(k)),
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and ∇ is the folding map. Hence under the equivalence Σ2
∨
j S

k−2
(id,j)∧X

∧k ≃
∨
j(ΣX)∧k

and other similar ones,

θ̃ ◦ β′ ≃
( ∨
1≤j≤k−1

(∇ ◦
∨
(τ,j)

τ∗)
)
◦ β′

≃
( ∨
1≤j≤k−1

(∇ ◦
∨
(τ,j)

τ∗)
)
◦ (

∨
1≤j≤k−1

u′) ◦ u′

≃
∨

1≤j≤k−1

(
∇ ◦ (

∨
(τ,j)

τ∗) ◦ u′
)
◦ u′

≃
∨

1≤j≤k−1

shj,k−j ◦ u′

≃ sh,

where u′’s are the appropriate iterations of the co-multiplication of (ΣX)∧k. □

According to this lemma, we may also denote the double suspended attaching map

Σ2β̃ by sh. Combining the description of the evaluation map in Section 4.1 we have the

following corollary:

Corollary 4.3 (cf. Lemma 4.1).

sh ◦ ēvk : ΣDk(X)↠ (ΣX)∧k −→
∨
k−1

(ΣX)∧k

is null homotopic.

4.3. The shuffle relations in Cohen groups.

In this subsection, we establish a canonical way to detect relations in Cohen groups

using generalized normal bi-∆-extensions. We apply our method to derive shuffle rela-

tions as an example.

4.3.1. Generalized normal bi-∆-extension.

Before discussing the shuffle relations, we need a more general concept of a normal

bi-∆-extension (See Definition 3.10).

Definition 4.4. Given a bi-∆-group G and a sequence of subgroups H =

{Hi | Hi ≤ Gi}i≥0, the normal bi-∆-extension of H in G is a bi-∆-group NGH such

that it is the minimal bi-∆-subgroup of G with the properties:

NGHn ⊴ Gn and Hn ≤ NGHn for each n ≥ 0.

The existence of such an extension can be confirmed by direct construction which

can be obtained by induction. Indeed, for H0 we have the usual normal bi-∆-extension

NG⟨H0⟩N which we may denote by N (0)
G H. Suppose we have constructed a sequence of

bi-∆-groups

N (0)
G H ⊆ N (1)

G H ⊆ · · · ⊆ N (n−1)
G H ⊆ G
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such that N (i)
G H contains Hj for j ≤ i and the group in each stage is normal. Then

we construct N (n)
G H as follows. First, we may add ⟨Hn⟩N to the n-stage of N (n−1)

G H
and take group closure. Then add all the iterated face images of the elements of Hn

into the lower stages and take normal closures. We denote this new sequence of groups

by M(n)
G H, and it is clearly that ParnM(n)

G H is an n-partial ∆-normal subgroup of G.
For any such partial ∆-subgroup, we can make it into a partial bi-∆-subgroup by adding

cofaces images from lower to higher stages. Further, by taking necessary normal closures,

we may obtain an n-partial bi-∆-normal subgroup P(n)
G H of G. Then the usual normal

bi-∆-extension NGP(n)
G H is the required N (n)

G H and we complete the inductive step.

Lemma 4.5. The bi-∆-group NGH =
∪
nN

(n)
G H constructed above is the normal

bi-∆-extension of H in G.

Proof. The inductive step of the construction can be illustrated by the following

diagram:

Parn−1N (n−1)
G H � � NG //
_�

��

N (n−1)
G H

_�

+(⟨Hn⟩N ,dj)
��

ParnM(n)
G H � � //

_�

+(di)

��

M(n)
G H
_�

��
P(n)
G H � � NG // N (n)

G H.

Hence, NGH is a well defined bi-∆-normal subgroup of G containing each Hn for n ≥ 0.

The minimality of NGH is clear from the construction. □

Note that when H = {Hi | Hi ⊴ Gi}0≤i≤n is an n-partial bi-∆-subgroup of G, the
two definitions of normal bi-∆-extensions give the same results.

4.3.2. Now let us return to the homotopic context. For any m ≥ 1, there is the

subgroup Shm(ΣX; ΩZ) of ZmΩZ∗(ΣX) = [(ΣX)∧(m+1),ΩZ] consisting of the homotopy

classes of the maps of the form

(ΣX)∧(m+1) sh→
∨
m

(ΣX)∧(m+1) f→ ΩZ, for any f :
∨
m

(ΣX)∧(m+1) → ΩZ.

From Corollary 4.3, we have that

ēv∗m+1 = 0 : ShNm(ΣX; ΩZ) −→ [ΣDm+1(X),ΩZ],

where ShNm(ΣX; ΩZ) is the normal closure of Shm(ΣX; ΩZ) in [(ΣX)×(m+1),ΩZ]. (Note

[(ΣX)×(m+1),ΩZ] ∼= [Σ(ΣX)×(m+1), Z] may be non-abelian but admits another abelian

group structure.) Recall that we have the commutative diagram
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ΣF(X)
ev // J(ΣX)

ΣFm+1(X)
evm+1 //

p
����

?�

OO

Jm+1(ΣX)

p
����

?�

OO

ΣDm+1(X)
ēvm+1 // (ΣX)∧(m+1),

which implies that

ev∗m+1 ◦ p∗ = 0 : ShNm(ΣX; ΩZ) −→ [Jm+1(ΣX),ΩZ] −→ [ΣFm+1(X),ΩZ].

Now suppose we have a representation ϕ : G → ZnΩZ∗(ΣX). Then as before we

have a bi-∆-extension ϕ : ΦnG → ΩZ∗(ΣX) and a group homomorphism of Cohen

groups

hϕ : hΦnG→ hΩZ∗(ΣX) ∼= [J(ΣX),ΩZ].

Meanwhile, we may define a sequence of normal subgroups Sh = {Shi}i≥0 by the pullback

diagram

Shi //
_�

��

ShNi (ΣX; ΩZ)
_�

��
ΦnGi

ϕi // ΩZ∗(ΣX)i.

Then apply the generalized normal bi-∆-extension, we have a commutative diagram of

bi-∆-groups (ShN (ΣX; ΩZ) = {ShNi (ΣX; ΩZ)}i≥0 and ShN0 (ΣX; ΩZ) = {0})

NΦnGSh //
_�

��

NΩZ∗(ΣX)Sh
N (ΣX; ΩZ)
_�

��
ΦnG

ϕ // ΩZ∗(ΣX),

which implies a commutative diagram of Cohen groups

hNΦnGSh //
_�

��

hNΩZ∗(ΣX)Sh
N (ΣX; ΩZ)
_�

��
hΦnG

hϕ // [J(ΣX),ΩZ].

Since ShNm(ΣX; ΩZ) ⊆ ZmΩZ∗(ΣX), any element in NΩZ∗(ΣX)Sh
N (ΣX; ΩZ) is of the

form
∏
m d

i1di2 · · · dikm ym with ym ∈ ShNm(ΣX; ΩZ) and i1 > i2 > · · · > im, which in

particular, implies that
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Zm(NΩZ∗(ΣX)Sh
N (ΣX; ΩZ)) = ShNm(ΣX; ΩZ).

Then we see that

Zm(NΦnGSh) = Shm.

Meanwhile at each m-th stage we have a commutative diagram

bmNΦnGSh //
_�

bm

��

bmNΩZ∗(ΣX)Sh
_�

��
hmNΦnGSh //

_�

im

��

hmNΩZ∗(ΣX)Sh
N (ΣX; ΩZ)

_�

im

��
hmΦnG

hmϕ //

em ++VVVV
VVVV

VVVV
VVVV

VVVV
[Jm+1(ΣX),ΩZ]

ev∗
m+1

��
[ΣFm+1(X),ΩZ],

where bmNΩZ∗(ΣX)Sh = Ker(ev∗m+1 ◦ im) and the top square is defined by taking the

pullback. We then have a commutative diagram

ShNm(ΣX; ΩZ) �
� // bmNΩZ∗(ΣX)Sh

pm //
_�

bm

��

bm−1NΩZ∗(ΣX)Sh
_�

bm−1

��
ShNm(ΣX; ΩZ) �

� //
_�

��

hmNΩZ∗(ΣX)Sh
pm // //

_�

im

��

hm−1NΩZ∗(ΣX)Sh
_�

im−1

��
[(ΣX)∧(m+1),ΩZ] �

� //

ēv∗
m+1

��

[Jm+1(ΣX),ΩZ]
pm // //

ev∗
m+1

��

[Jm(ΣX),ΩZ]

ev∗
m

��
[ΣDm+1(X),ΩZ] // [ΣFm+1(X),ΩZ] // [ΣFm(X),ΩZ],

where the composition of maps in each column is zero, and the kernel of pm in the top

row is ShNm(ΣX; ΩZ). Then we have a morphism

pm : bmNΦnGSh → bm−1NΦnGSh

with kernel Shm, and denote bNΦnGSh = limm bmNΦnGSh.

Proposition 4.6. We have a commutative diagram of groups
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hΦnG
hϕ //

����

[J(ΣX),ΩZ]

Ω

��
hΦnG/bNΦnGSh

Ωhϕ // [Ω2Σ2X,Ω2Z].

Proof. We have em ◦ im ◦ bm = 0 for each m which implies at the infinity

e ◦ i ◦ b = 0 : bNΦnGSh → hΦnG
hϕ→ [J(ΣX),ΩZ]

ev∗

→ [ΣF(X),ΩZ]. □

5. Higher relations in Cohen groups.

In the spirit of our combinatorial treatment in Section 4.3, we may find more relations

in Cohen groups for double loop suspensions using the cell structure of permutohedra.

5.1. Ladder spaces and Toda brackets.

Definition 5.1. A (pointed) ladder space is a sequence of pairs of (pointed) topo-

logical spaces {(Ai, Bi)}0≤i≤n (n can be ∞) with structural (pointed) maps fi : Bi → Ai
such that

Bi
fi−→ Ai −→ Ai+1

is a co-fibre sequence for each i. We may also call the total space A = colimiAi the

ladder space, and denote A = {(Ai, Bi)}i≥0.

For any such ladder space, we have an organised diagram

B0
f0 // A0

��
B1

f1 // A1

��

p1 // ΣB0
Σf0 // ΣA0

��
B2

f2 // A2

��

p2 // ΣB1
Σf1 // ΣA1

Σp1 //

��

Σ2B0
Σ2f0 // Σ2A0

��
B3

f3 // A3

��

p3 // ΣB2
Σf2 // ΣA2

��

Σp2 // Σ2B1
Σ2f1 // Σ2A1

��

Σ2p1 // Σ3B0
// · · · .

...
...

...

Denote pi ◦ fi = gi for each i ≥ 1. Then by definition Σgi ◦ gi+1 is null homotopic. The

constructions here obviously lead us to the Toda bracket [18]. For any sequence of based

maps

X
α→ Y

β→ Z
γ→W
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such that β ◦ α and γ ◦ β are both null-homotopic, Toda defined a set

⟨γ, β, α⟩T ⊆ [ΣX,W ],

which is a certain double coset of γ∗[ΣX,Z] and (Σα)∗[ΣY,W ]. The higher oder gener-

alizations were defined and studied by Spanier [17] and Cohen [8], and generalized by

Shipley for any triangulated category in the new century [15]. For any sequence of based

maps

Y0
α1−→ Y1

α2−→ · · · αn−−→ Yn, (5.1)

the classical higher Toda bracket

⟨αn, . . . , α2, α1⟩T

is a certain subset of [Σn−2Y0, Yn]. The existence and vanishing of higher Toda brackets

are characterized by the following theorem of Spanier:

Theorem 5.2 (Theorem 6.3 of [17]). The Toda bracket

⟨αn, . . . , α2, α1⟩T

is well defined and vanishes (which means ‘0’ belongs to the set) if and only if the sequence

(5.1) splits in the sense of the following :

There exists a commutative diagram

Z2

γ2

��

Z3

γ3

��

· · · Zn−1

γn−1

��
Y0 α1

// Y1 α2

//
β2

>>~~~~~~~~
Y2 α3

//
β3

>>}}}}}}}}
Y4 α4

//

>>}}}}}}}}
· · ·

<<zzzzzzzzz
αn−1

// Yn−1 αn

// Yn,

such that βi+1 ◦ γi for 2 ≤ i ≤ n− 2 and the two end composites β2 ◦ α1 and αn ◦ γn−1

are null homotoptic.

Corollary 5.3. For any ladder space A = {(Ai, Bi)}i≥0, the associated sequence

Bn
gn−→ ΣBn−1

Σgn−1−−−−→ · · · Σn−1g1−−−−−→ ΣnB0

gives an n-length Toda bracket

⟨Σn−1g1, . . . ,Σgn−1, gn⟩T

which is well defined and vanishes.

5.2. Secondary relations in Cohen groups.

Now for Dk(X) = F(k)+ ∧Σk
X∧k, there are natural cofibrations
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(k−1
i+1)

ΣiX∧k ≃
∨

k!·( k−1
k−i−2)

Si ∧Σk
X∧k fi−→ skiDk(X) −→ ski+1Dk(X)

determined by the attaching maps of F(k) for any 0 ≤ i ≤ k − 2, where skiDk(X) =

skiF(k)+ ∧Σk
X∧k. Hence Dk(X) is a ladder space such that

Dk(X) = {skiDk(X),
∨
(k−1
i+1)

ΣiX∧k}0≤i≤k−2.

However, this ladder space is not useful as we will see in a moment. Instead, we consider

the suspension of Dk(X) with the inherited ladder structure:

ΣDk(X) = {ΣskiDk(X),
∨
(k−1
i+1)

Σi+1X∧k}0≤i≤k−2.

We then have a sequence of maps

Σskk−2Dk(X)

Σpk−2

��

Σ2skk−3Dk(X)

Σ2pk−3

��

Σ3skk−4Dk(X)

Σ3pk−4

��
Σk−1X∧k

Σfk−2

88qqqqqqqqqqqqqq

Σgk−2

// Σ2
∨

(k−1)

Σk−3X∧k

Σ2fk−3

77nnnnnnnnnnnnnnn

Σ2gk−3

// Σ3
∨
(k−1

2 )

Σk−4X∧k

Σ3fk−4

77nnnnnnnnnnnnnnn

Σ3gk−4

// Σ4
∨
(k−1

3 )

Σk−5X∧k

which determines a Toda bracket ⟨Σ3gk−4,Σ
2gk−3,Σgk−2⟩T . By Corollary 5.3, we see

this bracket vanishes. Hence ⟨Σ3gk−4,Σ
2gk−3,Σgk−2⟩T as a group is isomorphic to the

subgroup

Indetk = Indet((ΣX)∧k,
∨
(k−1

3 )

Σ−1(ΣX)∧k) =

(Σ2gk−2)
∗[
∨
k−1

(ΣX)∧k,
∨
(k−1

3 )

Σ−1(ΣX)∧k] + (Σ3gk−4)∗[(ΣX)∧k,
∨
(k−1

2 )

Σ−1(ΣX)∧k]

of [(ΣX)∧k,
∨
(k−1

3 ) Σ
−1(ΣX)∧k]. The following lemma allows us to detect more relations

in Cohen groups for double loop suspensions.

Lemma 5.4. For any h ∈ Indetk, the composite h ◦ ēvk is null homotopic.

Proof. We have that Σgk−2 is the desuspension of the shuffle map, and also the

composition of maps

Dk(X)
pk−1=Σ−1ēvk−−−−−−−−−→ Σk−1X∧k Σgk−2=Σ−1sh−−−−−−−−−→

∨
k−1

Σk−1X∧k

is null homotopic. On the other hand, Toda (Proposition 1.2 of [18]) proved that
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⟨γ, β, α⟩T ◦ Σδ ⊆ ⟨γ, β, α ◦ δ⟩T ,

and

⟨γ, β, α⟩T = {0}

if one of α, β or γ is 0. Accordingly,

⟨Σ3gk−4,Σ
2gk−3,Σgk−2⟩T ◦ ēvk

⊆ ⟨Σ3gk−4,Σ
2gk−3,Σgk−2 ◦ Σ−1ēvk⟩T

= {0},

and the lemma follows. □

Now we may define Tm(ΣX; ΩZ) to be the subgroup

[(ΣX)∧(m+1) h→
∨
(m3 )

Σ−1(ΣX)∧(m+1) f→ ΩZ | ∀ f,∀ h ∈ Indetm+1]

of ZmΩZ∗(ΣX), and go through all the arguments in Subsection 4.3.2 using Tm(ΣX; ΩZ)

instead of Shm(ΣX; ΩZ). We then summarize the corresponding results in the following

theorem.

Theorem 5.5. Given a representation ϕ : G → ZnΩZ∗(ΣX) and hence its bi-∆-

extension ϕ : ΦnG→ ΩZ∗(ΣX), we have a bi-∆-normal subgroup NΦnGT of ΦnG as the

normal bi-∆-extension of T = {Ti}i≥4, where Ti is defined by the pullback diagram

Ti //
_�

��

TNi (ΣX; ΩZ)
_�

��
ΦnGi

ϕi // ΩZ∗(ΣX)i.

Moreover, we have a commutative diagram of groups

hΦnG
hϕ //

����

[J(ΣX),ΩZ]

Ω

��
hΦnG/⟨bNΦnGSh, bNΦnGT⟩N

Ωhϕ // [Ω2Σ2X,Ω2Z],

where

bNΦnGT = lim
m

bmNΦnGT,

and bmNΦnGT is defined by the pullback diagram
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bmNΦnGT //
_�

bm

��

bmNΩZ∗(ΣX)T
_�

��
hmNΦnGT // hmNΩZ∗(ΣX)T

N (ΣX; ΩZ)

with

bmNΩZ∗(ΣX)T = Ker(hmNΩZ∗(ΣX)T
N (ΣX; ΩZ) → [ΣFm+1(X),ΩZ]).

In addition, the sequence

0 → Tm → bmNΦnGT → bm−1NΦnGT

is exact.

6. Appendix: James–Hopf operations of abelian bi-∆-groups.

As we mentioned in the introduction, a Cohen representation can be used to study

many kinds of maps in homotopy theory. One of the classic tools to construct maps is

the James–Hopf invariant. In [21], the second author defined a combinatorial analogy to

James–Hopf operation for any (weak) bi-∆-group. Given any bi-∆-group G, the James–

Hopf homomorphism Hk,n : Gk → Gn is defined by Hk,k = id, and for n ≥ k and x ∈ Gk

Hk,n(x) =
∏

0≤i1<i2<···<in−k≤n

din−kdin−k−1 · · · di1(x)

with lexicographic order from right. We may also set Hk,n = 0 for k > n.

Lemma 6.1. Suppose G is an abelian bi-∆-group, then the James–Hopf operations

induce a sequence of group homomorphisms of Cohen groups

Hk,n : hkG → hnG.

Moreover, there are combinatorial equalities

pnHk,n = Hk,n−1 +Hk−1,n−1pk,

Hn,mHk,n =

(
m− k

m− n

)
Hk,m.

And the Hk,n’s determine a well defined morphism (also in non-abelian case)

Hk : ZkG → hG.

Proposition 6.2. Given any abelian bi-∆-group G such that hiG = 0 for any

i ≤ k, and G is p-local for some prime p (which means each Gj is p-local), then the short

exact sequence

0 → ZmG → hmG → hm−1G → 0
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splits for any m ≤ p+ k. Further, there is a short exact sequence for each m

0 → Zm+1G ⊕ Zm+2G ⊕ · · · ⊕ Zm+pG → hm+pG → hmG → 0.

Proof. We only need to prove the second statement and for simplicity we may

omit G in the notation. By Lemma 6.1, we have

pnσn = id + σn−1pn−1,

Hn,mσn = (m− n+ 1)Hn−1,m,

where σn = Hn−1,n =
n∑
i=0

di. Hence,

Hn,mσnσn−1 · · ·σs+1 = Pm−s
n−s Hs,m,

where the combinatorial number

Pm−s
n−s = (m− s) · · · (m− n+ 2)(m− n+ 1).

In particular,

σnσn−1 · · ·σs+1 = (n− s)! ·Hs,n.

We then can show the following claims by straightforward calculations:

• Claim 1: pm+nσm+n = n · id on Zm, where we view

Zm as σm+n−1σm+n−2 · · ·σm+1Zm ∈ hm+n−1.

• Claim 2:

pm+1pm+2 · · · pm+nσm+n · · ·σm+2σm+1|Zm
= n! · id|Zm

.

Then we can inductively construct a sequence of commutative diagrams (D(i)) for

0 < i < p

f(i−1) �
� // f(i) // //

_�

��

Zm+p−i
_�

��

σm+p,m+p−i

ss

f(i−1) �
� //

��

hm+p

pm+p−i,m+p // //

����

hm+p−i

����
0 // hm+p/f

(i)
∼= // hm+p−i−1,

where all the rows and columns are short exact sequences,

f(i−1) ∼= Zm+p ⊕Zm+p−1 ⊕ · · · ⊕ Zm+p−i+1,
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and

pm+p−i,m+p = pm+p−i+1 · · · pm+p−1pm+p,

σm+p,m+p−i = σm+pσm+p−1 · · ·σm+p−i+1.

Since pm+p−i,m+p ·σm+p,m+p−i = i! · id|Zm+p−i
, the top row of (D(i)) splits which induces

the diagram (D(i+1)) for i+ 1 < p. Then middle column of (D(p−1)) is the desired short

exact sequence. □

This proposition has direct implication for the homotopy exponent problem. Let Y

be a connected co-H-space. Suppose we have a morphism of bi-∆-groups

G → ΩΣY ∗(Y ) = {[Y ×(n+1),ΩΣY ]}n≥0

such that there exists some g ∈ hG as the representative of [id] ∈ [ΩΣY,ΩΣY ]. Further,

suppose we have a commutative diagram of groups homomorphisms

hG

����

// [J(Y ), J(Y )]

Ω

��
h(G/H) // [Ω2ΣY,Ω2ΣY ],

where H is a normal bi-∆-subgroup of G such that K = G/H is an abelian bi-∆-group.

Then the problem of the p-exponent of [Ω2ΣY,Ω2ΣY ] is equivalent to a sequence of

extension problems for m ≥ 1:

0 → ZmK → hmK → hm−1K → 0.

Wemay call these extensions the obstructions to the exponent problem for [Ω2ΣY,Ω2ΣY ],

and then for π∗(ΣY ).

Corollary 6.3. For the p-exponent of the homotopy groups π∗(ΣY ), the first

non-trivial obstruction can only appear when m = p. Further, it suffices to consider the

obstructions when m = (k + 1)p− 1 for k ≥ 1 associated to extensions

0 →
p−1⊕
i=0

Zkp+iK → h(k+1)p−1K → hkp−1K → 0.

Now we turn to study some natural idempotents of abelian bi-∆-groups. Our way

of constructing idempotents may be helpful for producing a functorial homotopy decom-

position of ΩΣY .

Proposition 6.4. Given any abelian bi-∆-group G such that the sequence

0 → ZmG im−−→ hmG → hm−1G → 0

splits for some m, then the composition
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e(n)m : hnG
pm,n−−−→ hmG πm−−→ ZmG im

↪→ hm
Hm,n−−−→ hnG

is an idempotent for any n ≥ m, i.e., e
(n)
m ◦ e(n)m = e

(n)
m , where πm is a retraction such

that πm ◦ im = id.

Proof. The lemma follows from pm,n ◦Hm,n ◦ im = im. □

Corollary 6.5. Given any abelian bi-∆-group G such that hiG = 0 for any i ≤ k,

and G is p-local for some prime p, then e
(n)
m is an idempotent for any n ≥ m and

m ≤ p+ k.

Corollary 6.6. Given any abelian bi-∆-group G such that hG is completely split-

table, which means the sequence

0 → ZmG im−−→ hmG → hm−1G → 0

splits for each m, then the composition

em,n : hG pn,∞−−−→ hnG
e(n)
m−→ hnG

i∞,n−−−→ hG

is an idempotent for any n ≥ m, where pn,∞i∞,n = id.

To close the appendix, we construct some partially null homotopic self maps of

double loop suspensions in terms of topological James–Hopf operations which are closely

related to the combinatorial versions.

Proposition 6.7. For any map f ∈ ShNm(ΣX; ΩZ)+TNm(ΣX; ΩZ) ⊆ ZmΩZ∗(ΣX),

the loop of the composition

ΩΣ2X
Hm+1−−−−→ ΩΣ

(
(ΣX)∧(m+1)

) J(f)−−−→ ΩZ

is null homotopic on the natural (m+1)-th filtration Fm+1(X) of Ω2Σ2X ≃ F(X), where

Hm+1 is the James–Hopf invariant.

Proof. The proposition follows from Lemma 4.3 and 5.4 and the fact that ([21])

Hm(f) : ΩΣ2X → ΩZ

is represented by J(f) ◦Hm+1. □
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