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Abstract. We reformulate Milgram’s model of a double loop suspension
in terms of a preoperad of posets, each stage of which is the poset of all ordered
partitions of a finite set. Using this model, we give a combinatorial model for
the evaluation map and use it to study the Cohen representation for the group
of homotopy classes of maps between double loop suspensions. Demonstrating
the general theory, we recover Wu'’s shuffle relations and further provide a type
of secondary relations in Cohen groups by using Toda brackets. In particular,
we prove certain maps are null-homotopic by combining our relations and the
classical James—Hopf invariants.

1. Introduction.

In the 1990s, Cohen developed a combinatorial method to study homotopy theory
based on the classical James construction. Recall for any based space (Y, *), the James
construction J(Y) is the free monoid generated by points in ¥ modulo the relation * = 1.
If Y is path connected, then a theorem of James [9] claims that J(Y") is weakly homotopy
equivalent to QXY and there is a suspension splitting

(o]
YONY ~ \/ YY",

n=1

Using these nice descriptions, Cohen [5] studied the combinatorial structure of [J(Y"), QZ]
and introduced a universal pro-group h (now konwn as a special example of Cohen groups)
such that there exists a functorial group homomorphism

ef:h—=[J(Y),QZ]
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for any given f :Y — QZ. The importance of the Cohen groups is that e; is a faithful
representation in good cases. For instance, if Z = XY with Y a co-H-space and f = F
is the suspension map, then b is isomorphic to the group of natural coalgebra self-
transformations of the tensor functor 1" over Z, Z,), or Q depending on the context
[21]. Then many classical maps such as Whitehead products, Hopf invariants, power
maps and the loop of degree maps can be studied through h. In particular, this faithful
representation can be used to study homotopy exponent problems in unstable homotopy
theory (e.g., see [7]). Indeed, Cohen’s combinatorial program was originally aimed to
attack a strong form of Barratt conjecture:

BARRATT-COHEN CONJECTURE. Let f : X2X — Z be map such that p"[f] = 0
in the group [%2X,Z]. Then

Q%f - O*0%X — 0?7
has order bounded by p"*' in the group [Q*°¥?X,0?Z].

Cohen’s program has two steps: first decompose the powers of [Q2f] as a product of
other types of maps (possibly by Cohen groups [7], [21] or the distributivity law [4]),
and second, investigate the group homomorphism

Q:[OX2X, Q7] — (22X, Q7]

in the hope of showing that some of the factors in the decomposition of powers of [ f]
vanish after looping (e.g., [11]). For this second step, one reasonable approach is to find
a suitable normal subgroup n of the Cohen group h that detects p"*1[Q? f] and fits into
the following commutative diagram

h—— L~ [J(EX),0Z] (1.1)
i |
b/no 22X, 027,

In principle, this program is enough for proving or disproving the Barratt—Cohen Conjec-
ture. Indeed, Cohen’s program is basically a type of encoding-decoding process, and we
only need the functorial information of [22%2X, Q2Z]. Furthermore, it is also possible to
apply this program for concrete examples, in which case we need to shrink the category
of spaces and then add more functorial conditions.

The diagram (1.1) is our major goal. In order to obtain such a diagram, it is
natural to apply some suitable model of 2232X and hope to get nice descriptions of
[2%2X,02Z] and the loop homomorphism Q. Indeed, general iterated loop suspen-
sions have been widely investigated, and several topologists have constructed models for
O"¥"X. For instance, May [10] constructed an elegant model C, X using the little cube
operads C, and then developed a recognition principle for n-fold loop spaces. Smith
[16] gave a simplicial model '™ X by construting a natural filtration of Barratt-Eccles’
model I'X [1] of the infinite loop space Q°°X>°X. In this paper, we will work with
Milgram’s model [12] which is built up by permutohedra Py (see Section 2.1).
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These various models can be organized into a general framework by using the lan-
guage of preoperad by Berger [2], which was previously known as a coefficient system in
[6]. A preoperad is basically an operad without multiplicative structures. In this way,
Berger restated Milgram’s model as the premonad construction (namely coend) of the
preoperad J?) with

J,£2) = Pk X Zk/ ~,

where X is the k-th symmetric group and the equivalence relation identifies certain
boundary cells. However, this form of Milgram’s model is not good enough for our com-
binatorial analysis, for the equivalence relations are defined by using cosets of subgroups
of ¥i. In order to study unstable homotopy along Cohen’s combinatorial program, we
then reformulate Milgram’s model in terms of particular posets related to Py [14].

THEOREM 1.1 (Theorem 2.3, Proposition 2.7, Theorem 2.9).  There exists a pre-
operad of posets L such that for any connected CW complex X,

22X ~ JTILR)] x XF/ ~,
k

where the right hand side is defined by the usual premonad construction for the geometric
realization of L, and each piece L(k) of L is the set of all the ordered partitions of a set
of size k.

Through this purely combinatorial description, the group [Q22%2 Q2%2] of natural
transformations are completely determined by the preoperad £. We immediately get the
following corollary concerning functorial homotopy decompositions.

COROLLARY 1.2.  For any idempotent e : L — L of preoperads of posets, there
exists a natural decomposition

O*¥2X ~ B(X) x I(X),
such that

E(X) =[] m(e)x] x X</ ~ .
k

Continuing with Cohen’s program, we need to study the loop homomorphism €2 :
[J(3X), Q7] — [Q2°22X,02Z], which it is equivalent to studying the evaluation map
ev: XO2Y2X — O¥N2X,

as the adjoint of the identity map. Now let us denote

Fk)=1Lk)l, FX) =] Fk) x X/ ~,
k

FuX)= [ Fk)x X%/~ Dp(X) = Fu(X)/Fnr(X).

1<k<n
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As we can see from the poset of F(k), F(k) is a k— 1 dimensional polyhedron with &! top
cells, and in general has k! - (kjl) cells of dimension ¢. Following an elegant explanation
of Milgram’s model in [13], we obtain a clear model of the evaluation map.

LEMMA 1.3 (Section 4.1).  We can choose a filtration preserving evaluation map
ev: YF(X) — J(EX)
such that the quotient map
&Vt 2D, (X) = BF ()T Ag, XM = Ju(B2X)/Jp1(2X) ~ (ZX)M
1s the natural projection

SqAid: BF ()t Ag, XM= 2\ 8" Ag, XN~ (SX)M
nl

where ¢ maps all the cells except the ones of highest dimension to the basepoint.

This nice choice of evaluation map allows us to detect certain subgroups n C b
which act trivially on double loop suspensions (as in [21], we also call such vanishing
subgroups relations in Cohen groups). For this purpose, we need a systematic way to
handle subgroups of a so-called bi-A-group, which is exactly the notion needed in Cohen’s
combinatorial program. Indeed, bi-A-groups were defined and used by the second author
[21] to detect shuffle relations in Cohen groups. A bi-A-group is basically a sequence of
groups with both A- and co-A-structures subject to some natural coherency conditions.
For each bi-A-group there is a natural notion of a (general) Cohen group (See Section 3).
In particular, [J(Y),QZ] and h are the Cohen groups of some bi-A-groups. Thanks to
these notions and examples, Cohen’s theory was largely generalized in [21], and is further
generalized in this paper.

Instead of choosing a particular class of maps [f] in [Y, Q2Z], we start with any group
homomorphism

¢:G— [Y D 7]

Indeed, the sequence QZ*(Y) = [Y (1) Q7];5¢ has a natural bi-A-structure such that
[YAHD Q7] = 2,Q7*(Y) is the group of Moore cycles. For any A-group G, there is a
natural Cohen group hG which is a subgroup of ZG. It then can be shown that

hQZ* (V) = [J(Y), QZ].

In order to study the group [J(Y),2Z] through the representation ¢, we then associate
a bi-A-group ®,,G as a bi-A-extension of G and extend ¢ to a morphism of bi-A-groups

b B,G — QI (Y),

which induces a filtration preserving homomorphism of Cohen groups
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ho : §®,G — [J(Y),QZ],

such that h,¢ = ¢ : G — [Jp+1(Y),QZ]. In this context, we then can detect vanishing
subgroups n by the following procedure.

DETECT RELATIONS IN COHEN GROUPS (Section 3.2, Section 4.3).
e Relations for [J(Y),QZ].

— find a sequence of representable elements, subsets, or subgroups k which are
null-homotopic in {Map(Y >+ Q7)},50.

find representatives of k and take normal closure to get a sequence of groups
hin ¢,G.

take the normal bi-A-extension of h to get a normal bi-A-subgroup H of ®,,G.

— the Cohen group h7H consists of all the relations determined by k.
e Relations for Q : [J(XX),QZ] — [2?¥2X,027] (Y = XX).
— find a sequence of elements, subsets, or subgroups s in 2Z*(XX) which are
trivial after looping.
— take the pullback of s along ¢ and obtain a sequence of subgroups r of ®,,G.
— take the normal bi-A-extension of r to get a normal bi-A-subgroup R of ®,,G.
— hR N Ker(Q o ho) consists of all the relations determined by s.
The procedure for [J(Y'), Q7] can be used to cover Cohen’s original theory easily; in
contrast, the procedure for the loop homomorphism is our main concern here. Thanks

to Lemma 1.3, we can detect the shuffle relations of Wu [21] in Cohen groups using the
cell structure of the permutohedra P,,.

THEOREM 1.4 (Lemma 4.2, Lemma 4.3, Proposition 4.6).  Let

B:\) S = sk o F(m)/skpy s F(m)~ \/ "2
m! (m—1)-m!

be the attaching map. Then the composite

sh o v, : B0 (X) - (EX) — \/ (SX)""
m—1
is null homotopic. Here, 28 Nid ~ sh and the shuffle map sh is defined by
sh (yl /\/\ym) = Z Yo (1) /\"'/\ya(nL)'

oeshCx,,

These null homotopic compositions for m > 2 determine a group bNg, oSh such that the
diagram
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ho

6D, G [J(2X), 7]
i g
6P, G/bNp,cSh 0 = [2%2X, 027

commutes.

We notice that for shuffle relations we only use the cells of P, in the top two
dimensions. The whole cell complex of P,, should provide more relations. Indeed, we
can obtain a type of secondary relations using the cells in the top four dimensions in
terms of classical Toda brackets.

THEOREM 1.5 (Section 5, Theorem 5.5).  The top four dimensions of P, determine
a vanishing Toda bracket, and hence a subgroup

Indet,, C [(EX)", \/ ©71(ZX)""]
(")
such that

av’ (Indet,,) = {0} C [ED,, \/ LY EX)N.

We then have a commutative diagram of groups

ho

he,G [J(3X), Q7]
| |
0P, G/bNs, T 0= [0252X, 027,

where bNg, T is determined by our procedure for Indet,,
In conclusion, we have constructed the vanishing subgroup
n = (bNg,Sh, bNg, ¢ T) N

for the key diagram (1.1). In particular, we have the following proposition which describes
a way to construct null-homotopic maps by using the classical James—Hopf invariants.

PROPOSITION 1.6 (Proposition 6.7).  The loop of any map
g:O¥’X - QZ

with [g] € Im (ho : n — [J(XX),QZ]) is null homotopic.
Further, for any map f € ShY (2X;0Q7) + TN(2X;Q2) C (X)), QZ], the
loop of the composition
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(

axn2x 2 on((ex)remn) LY gz

is null homotopic on the natural (m+1)-th filtration Fp41(X) of 0?¥2X ~ F(X), where
Hyi1 is the James—Hopf invariant, J(f) is the H-map such that J(f)|zx)rem+n =
f, and ShY(SX;Q2Z)(m > 1) and TN(SX;QZ)(m > 4) are defined to be the normal
closures of the subgroups

Sh,, (BX;Q7) = [(SX)Nm+D) & \/(EX) (mt) 50z | vg: \/ (X)) - 7],

T(2X;02) = [(BX)NmHD 2 \/ “ExX)NmHD 5 07 |V g,and ¥ h € Indet,, 1],
(%)
n [(X)*(m+D Q7] respectively.

Computations on homotopy exponent problems may be done by first writing the
explicit formula for the shuffle relations and the secondary relations in the Cohen group
h®,G, and then trying to check if the representative of p"™1[Q? f] can be expressed as
compositions of these relations.

The paper is organized as follows. In Section 2, we prove our combinatorial re-
formulation of Milgram’s model by showing L is a preoperad of posets. We also prove
some combinatorial aspects of our model. In Section 3, we review Cohen’s combinatorial
homotopy theory and also its generalization by Wu with our further study. We provide
some useful definitions and lemmas to detect relations in Cohen groups which allow us
to cover Cohen’s original construction easily. In Section 4, our aim is to develop a sys-
tematic way to detect relations in Cohen groups. We first use our model of a double loop
suspension to give a nice description of the evaluation map. Then we turn to study the
shuffle map of Wu as an example. We prove that our definition of the shuffle map using
the attaching map of a permutohedron coincides with the original definition of Wu up to
homotopy. We then construct shuffie relations in Cohen groups to illustrate our method.
Section 5 is devoted to higher relations in Cohen groups by using more information of
the cell complex of permutohedra. To this end, we introduce the notion of ladder spaces
whose associated Toda brackets are always vanishing, and a type of secondary relations
for Cohen groups are given. We end the paper with an appendix (Section 6), where we
discuss various aspects of combinatorial James—Hopf operations of abelian bi-A-groups
and also prove a proposition concerning the loop homomorphism.

2. Milgram’s model.

2.1. Permutohedron and Milgram’s combinatorial model of real config-
uration.
Since we adopt a combinatorial approach to study the double loop suspension, we
first recall some background information on the permutohedra which serve as the building
blocks of Milgram’s model. The material in this subsection follows Section 1 of [14].

DEFINITION 2.1.  The permutohedron P, is the convex hull of the set of points
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{v, eR™ | 0 € E,,}.
Here ¥, is the n-th symmetric group, and v, := (¢71(1),071(2),...,07(n)).

One can check that P, is a polytope of dimension n — 1 which is contained in the
hyperplane in R” determined by 1 +x2+-- -+, = (n+1)n/2, and its faces of dimension
n — k are affinely isomorphic to some P,,, X P, X --- X Pp,..

Now we want to describe the face poset of P, for which we will use shuffles and
unshuffles.

DEFINITION 2.2.  An unshuffle of a sequence ¢ = (¢1, ¢a, ..., ¢dn) of integers is an
ordered list of subsequences s1, s3, ..., si of ¢ for some k such that their disjoint union
is equal to ¢. We call ¢ a shuffle of si, sa2,..., Sk, and may denote the unshuffle by
81|82‘---|Sk.

Let dShg be the set of the unshuffles of ¢, we can endow a partial order < on dShg
by removing bars and shuffling the lists. That is, < is the transitive closure of the relation

s1|-o|sicalsilsivilsivel o Isk < s1lc - [sicalhlsival - |sk,

where h is a shuffle of s; and s;41.

Now the face poset of P, can be identified with the poset of the unshuffles of
[n] = (1,2,...,n) which we denote by Liq = (dShp,), <) (we identify a permuta-
tion with the sequence of its images). Under the identification, the vertex v, =
(c71(1),071(2),...,071(n)) corresponds to oi|os|---|o,. For any face f, there is an
unique minimal element a € L;q such that a > b for any vertex b of f under the identifi-
cation. Indeed, f = Py, X Pp, X -+ X Py, corresponds to some unshuffle sq|sq|---|sg
with each s; of length m;. Hence, we may define the dimension (or degree) of s1|sa| - - |s
to be n — k = (the length of the unshuffle) — (the number of bars) —1. In particular, we
may view this P, as labelled by id € %,, under the correspondence. Then similarly for
any o, € %, we can define a poset L, = (dShyy,, <) corresponding to a P, labelled by
o. If we view the poset L, as a category in the standard way, this correspondence gives
a geometric realization functor F from L, to the category of topological spaces.

Now we can describe Milgram’s model of the real configuration space F'(R?,n).

THEOREM 2.3 (Theorem 3.13 in [3]).  The geometric realization F(n) = F(L(n))
is homeomorphic to a strong deformation retract of F(R?,n), where

L) = J Lo

ocEYX,

as posets and the geometric realization functor F is the natural generalization of the one
over each L.

We notice that by definition, the poset L£(n) consists of all the permutations of
length n with any arrangement of possible bars as sets, and there is a natural action
of ¥, on F(n). Furthermore, since the geometric realization is affine, F(n) inherits a
Y.,-action which is also free. Indeed, the homotopy in the last theorem can be chosen to
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be ¥,,-equivariant by Fox—Neuwirth stratification.

2.2. Milgram’s preoperad and the model of double loop suspensions.

In this subsection, we use the language of preoperads to reproduce Milgram’s model
for double loop suspensions. One version of this approach is made by Berger in [2], where
the permutohedron P, is viewed as the set of right cosets of subgroups ¥;, ®3;,®- - - &%,
of ¥, with inclusion as the partial order. In contrast, here we use the geometric realization
in Section 2.1 to obtain a combinatorial model.

DEFINITION 2.4. A (based) preoperad with values in a category C is a contravariant
functor O : A — C, where A is defined to be the category whose objects are based finite
sets k ={0,1,2,...,k} with 0 the based point and whose morphisms are based injective
maps. A map of preoperads is a natural transformation of functors.

We may write Oy, to be the image of k and ¢* : O; — Oy, to be the image of ¢ : k — 1
under O.

REMARK 2.5. The terminology preoperad was suggested by Berger according to
the fact that an operad is a preoperad by forgetting all the composition operations.
This point was observed even much earlier by Cohen, May and Taylor [6] who called a
preoperad a coefficient system and used it to generalize May’s method [10] to a larger
context.

For the category A, we notice that for each morphism ¢ € A(k,1), we have a unique

decomposition
k v . 1
h %
k

such that ¢* € A(k, k), ¢ € A(k,1) and ¢* is a permutation in ¥, (by forgetting the
based point) and ¢'™° is an increasing map.

EXAMPLE 2.6 (cf. Example 1.5 in [2]). (1) The collection of configuration spaces
defines a topological preoperad F(R™, —) : A — Top, where F(R"™ —) sends k to
F(R™, k), and for any morphism ¢ € A(k,1), we have

o*: FR™"I) — FR"k)
(t1,tay..., 1) — (t¢(1), to2)s- - ,t¢(k)).
We call F(R™, —) defined as above the configuration preoperad.

(2) The collection of symmetric groups defines a set-valued preoperad 3 : A — Sets,
where ¥ sends k to X, and for any morphism ¢ € A(k, 1), we have

¢* P — Xk

o ((071 o gb)ﬁ)

-1
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We call ¥ defined as above the permutation preoperad.

In order to obtain a combinatorial model of the double loop suspension, we want
to endow a preoperadic structure on the collection of £(I)’s which are ¥;-equivariant
homotopy deformation retracts of F(R?,1)’s respectively. As we have pointed out before,
L(1) roughly is ¥; plus bar arrangements. Hence, we introduce the following diagram
notation to represent each element a € £(1):

where a is obtained by removing all the bars in a, t = {1,2,...,¢}, and the morphism
7, is the numbering of ordered subsequences of a (by ignoring the base element 0). For
instance, 235(74116 € L£(7) is presented by 2357416 and the map 7 : 7 — 3 defined by
1,2,3—1, 4,5,6 — 2 and 7 +— 3. We see 7, is a nondecreasing map in general.

Now for any map ¢ € A(k,1), we have the commutative diagram

1
I

k
(

@ tog)f=¢"(a)”

~ 1

a Ta

(2.1)

inc

s

(&_1O¢)inc

et ——— |+

PR

Trd)*a.

inc

where in the right square the morphisms g+, and 7'"¢ are uniquely determined by the
other two maps and 7" is an increasing map. We then can define a morphism

o : L) — Lk
0= (@, 70) — ¢ = (6" (@), m5r0).

ProproOSITION 2.7.  The above construction defines a preoperad L : A — PSet
where PSet is the category of poset and order preserving morphisms.

PRrROOF. It is straightforward to check the axioms of a functor once we prove that
¢* is order preserving. Hence we only prove this part. Suppose a < b in £(1), we want
to show ¢*(a) < ¢*(b) in L(k). Since we use pairs of morphisms to present elements
of L(1), we need to describe the order relation under this setting. Suppose a and b are
respectively presented by

| 1i>1

1
iﬂa Th
t

and

1]

)

then it is not hard to show that a < b if and only if the following two conditions hold:



Double loop spaces and Cohen groups 857

1) there exists some nondecreasing surjection p : t — s such that pom, oa~! =
mobl

2) whenever 7, (i) = m, (i + 1), then b=1(a()) < b~ (a(i + 1)).

(Notice that condition 1) just means that the subsequences in a can be transformed
to that in b by merging some adjacent ones under p, and condition 2) means this trans-
formation preserves the order of elements in each subsequence of a.)

Then by hypothesis, we can form the following commutative diagram

k— 2 1 - % x
(alowl J/a—l lgl l@lw)”
Kk | 1<k
(d710¢)11m (b—lo¢)lnc
ng*ai Lﬂ'a iﬂ'b iﬂ@*b
Vot s~ ¥,

where the left squares and right squares indicate the effect of ¢* on a and b respectively,
and the middle squares reflect condition 1). Our goal is to construct a nondecreasing
surjection p’ : t —» 8/, such that p o 7' = 7" o p/. which is sufficient to prove the
proposition. For if such p’ exists, then

1

T o p’ o Tpra O q/b*x&i =pom™o Tgeq O (d_l o ¢)’i

=pomaoa tod

zwbog_loqb

= ﬂ_IIIC O7'['¢*b O¢*b

Since 7" is an injection, we have p’ o Tg*q O 5;717 = Tg+p O gi)"‘bil7 i.e., condition 1) is
satisfied. For condition 2), we have %_1 ogra=((@log)n)loblodo (@t og)ne
where the first and the last maps are increasing maps. Hence condition 2) is also satisfied,
and we have ¢*(a) < ¢*(b).

Now the remainder of the proof is devoted to constructing the required map p’, for
which we introduce two elements of L(I) related to a and b:

;| @=h_, Yo

T/ =Tq Ty =Tp

o+t <<— =
N <<—— —

and

We see that a’ can be obtained by adding more bars in b, and b’ can be obtained by
removing some bars in a. Hence, ' < b and a < b (but «’ £ . For instance, let
a = 235|71|4|6 and b = 235|471|6, then o’ = 235|47|1|6 and b’ = 235|714/6). For ¢’ and
b, we have the commutative diagram
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T
S R S e
T R
k i k t//' - S/,
(b o) e ST
Tp*b

where the unique existence of p” is ensured by the definition of = and the injection
(5_1o¢)inc (because we may view the effect of p as removing bars or merging subsequences,
then under (I;_l o )" : k — 1 the effect of p restricts to the effect of some morphism
p" and the commutativity follows from the uniqueness of the morphisms). Similarly, we
have the following commutative diagram for a and b':

b

- T

1 t s
e
k k s

(&—1o¢)u 7T<1>*a - b///

fa—
S|

- — 1 —
Since a < b, we have 7, 0 b~! o @ = m,, which implies Tg=py © P*b o @*a = g by
combining the above two diagrams together. In particular, we have s” = ¢’ and p’ = p"”

is what we want. O

COROLLARY 2.8 (cf. Definition 1.6 in [2]). There exists a topological preoperad
F = F? : A — Top. sending n to F(n), which is the geometric realization of the
preoperad L.

PRrROOF.  This corollary follows by the combination of the discussion in Section 2.1,
Theorem 2.3 and Proposition 2.7. g

We can now construct the combinatorial model of double loop suspensions in a
standard way which is essentially the well-known Milgram model [12].

THEOREM 2.9 (cf. Proposition 1.7 in [2]).  For any connected space X, form the
coend F(X) := [[,5; F(n) x X*"/ ~ (Definition 2.1 in [6]*), where the equivalence
relation is specified by

(9 a, (1,2, ..., x1)) ~ (a,pu(x1,22,...,7%)) for ¢ € A(k,1),a € F(I),

and ¢.(x1,2,...,x5) = (zh,25,...,2]) such that x;(i) = z; and 2 = x if j & Img.
Then we have

F(X) ~ Q?%2X.
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PROOF. As in the proof of Proposition 1.7 in [2], we want to compare the
poset determined by the cell structure of F(R?,1) with £(I). We start with an anti-
lexicographical ordering on R2. Explicitly, for any two points =, y € R?, we may define
z = (z1,22) <y = (y1,y2) if and only if either x5 < ys or o = ys but x; < 31, and
write & <9 y for the first case and x <; y for the second. Then for any a € £(1)

|

1
t

we can define an associated contractible subspace of F(R?,1) by

)

Ff = {(t1,ta,...,t;) € F(R%,1) | ta(1) /\'1<2 ta(2) /\jg e :<1 l ta) )

Al
where A, ; € {1,2} and \;; = 1 if 7,(i) = 7a(j), \ij = 2 if ma(d) # m.(j). By the
proof of Theorem 3.13 of [3] (Theorem 2.3), {F* | a € L(I)} gives an equivariant cellular
decomposition for F(R?,1), and the reverse of the poset determined by this stratification
is precisely L£(1), whose geometric realization (in the sense of [3]) is the deformation
retract of F(R?,1). Hence we get a homotopy equivalence F(I) — F(R?,1) for each .

Furthermore, this equivalence is indeed compatible with the preoperad structures.
Indeed, by the preoperadic structure of F(R?, —), we have

d)*(tlatQa s 7tl) = (td)(l)?td)(Q)? s 7td>(k))7

for any ¢ € A(k,1). Then by the diagram (2.1) which defines ¢*a, we see that Fﬁ*a is
the cell exactly corresponding to

O*(F') = {(to(1) to(2): - - - tory) € F(R? k) |
tapay , = tae)y, < o < tage )
Ag(1).6(2) Ao(2).0(3) Ab(k=1),0(k)
Hence, after geometric realization we have a homotopy equivalence of topological preop-
erads between F and F(R? —). Then by Lemma 2.7 of [6], F(X) ~ F(R?, X), where
the latter is the classical May-Segal model for Q22X [10]. O

2.3. Combinatorial structure of L(S).

In this subsection, we continue to study the preoperad L; the reader may wish to
skip this subsection at first reading. It is easy to see that each increasing map ¢ : k — 1is
generated by elementary so-called degeneracy operators D' = D' :k — k+1 (0<i<
k) sending j to j for j <i and j to j+ 1 for j > i+ 1. Hence, any morphism ¢ € A(k,1)
can be uniquely written as the composition of a permutation and some degeneracies,
and then the category A is determined by the collection of symmetric groups ¥;’s and
degeneracies D’ for all 0 < i < k subject to some relations. Explicitly, these relations
are
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DIDt=DHDI if j<i,
oo Dl — Do'(i+1)7l o dia

9

where o € Y341 and d;o = (00 D?)*. Accordingly, we can describe preoperadic structure
in terms of the images of these morphisms and the induced relations. For our L, it is
easy to check that for any a € L(k + 1)

k41 %> k41

im

t )
and o € Y11, we have 0*(a) = (07t o a,7m,) (hence we may also write o*(a) = o~ o a),
and the commutative diagram
- -
k+1 2 k+1 t (2.2)
TDi TDal(H_l)_l Tﬂ_inc
k . t’
i@ i

shows that D™ (a) = (d;(a=1)~1, 7).

Now we turn to study the combinatorial coend L£(S) = [],~; £(n) x S*"/ ~ for
any based set S where the equivalence relation is similarly defined as that of F(X) in
Theorem 2.9. We start with constructing some special morphisms ef ; : £L(k) — L(k+1),

0<i,j<kandeec{-1,0,1} by the following commutative diagram:

e; ; (071 Te€; (b)
k+1 k+1 s’
k . k s,
1 Tp

ie., ef ;(b) = ((em(g_l))_l,weej(b)). Explicitly, ei,j(l;_l) maps ¢ + 1 to j + 1, and there
are several cases for defining Te<, (b)-

(1) 0<j<k
(a) e=0
(1) If ,/Tb(j) = 7Tb(j + 1)7 then ﬂefj(b)(j) = ’/Tefj(b)(j + 1) = ,/Tefj(b) (] + 2)3 s'=s
and 7" is identity.

(i) Ifmy(j) = mp(j+1)—1, then e ) (5)+1 = Tee (5 (F+1) = Tee 1) (1+2)—1,
s'=s+1.

(b) e=1
(i) If mp(j) = mp(j + 1), defined as in (1.a.).
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(i) () = mp(j+1) — 1, then mee ) (§) = Tee, 1y (1) = Tee, 1y (1 +2) = 1,
s’ =s.

(2) j = k, there are only two possible values for e.

(a) € =0, then Wefj(b)(k) +1= Wefj(b)(k +1), s =s+1.
(b) € =1, then Wefj(b)(k) = ’/Tefj(b)(k + 1), s’ =s.

(3) j =0, there are only two possible values for e.

(a) e = 0, then ﬂ-efj(b)(]') +1= Trefj(b)(2) =2, s =s+1.
(b) e =—1, then Wefj(b)(].) = Tee,(b) (2)=1,5¢ =s.

These morphisms can be interpreted by Figure 1 where the numbers refer to the locations.
The numbers j and j + 1 lie in the same box if and only if they have same image under
the morphism m,. The left image presents the case (1.a.1) while the right one presents

the case (1.a.ii). We should notice that the morphisms e ;,
partial order while the others do not. For the simplicity of notation, we may further

-1_ .0 1 _ .0 gt — € i intect
define e;; = e€;, and e;, = €; . Also, D™ o¢f ; =id and therefore €5 ; is injective.

1 -1
e;r and e, o preserve the

il 42 j @ 2
j 1 i) i1

Figure 1. The morphism e?J- with 0 < j < k.

On the other hand, we also have the morphism D? : §*% — §*(#+1) defined by
Di(xy,xo,. .., xk) = (L1, To, ...\ iy %, Tig1,. s Th).

Then there exist morphisms €5 ; x DL : L(k) x S*F — L(k+1) x Sx(k+1) “and we want
to show that each of these morphisms induces a morphism between the sets of the orbits
L:(k) XSy SX]c and ,C(k + 1) XEk-H Sx(k+1).

LEMMA 2.10.  There exists a map f; j such that the diagram
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€ i
€5 ;XD

L(k) x SF — = > L(k+1) x §¥+D)
L(k) x5, Sk Foge o L(k+1) x5,,, S<¢+D
commutes.
PROOF. By construction, we may view Y acting diagonally on L(k) x S** by
o- (b, (z1,x2,. .. ,xk)) = (0_1 ob, (xg(l), To(2)s -+ mg(k))), (2.3)
for any o € Xy, b € L(k) and x; € S. Then
(eze',j X Di)(ail ° b7 (‘xa(l)a Ly(2)y--- 7xa'(k))) =
(e;j (U_l © b)7 (1‘0(1), To2)s-+rTo(i)s *, To(id1)s--- ,.’I)a-k)).
We then define a permutation ° € ¥, such that the diagram

P Lkt (2.4)

o l&i

4)@)1{_'_1

<~

commutes. Hence we have

~1 1) ~1
0'Dl(x1, T, ..., Tk) = F (L1, T2y« ooy Ty %, Tit 1y - -5 Th)
= (xa(l)va(Q)a s La(i)y ¥y Lo(id1)s - - -axak)a

and the commutative diagram

ei‘j(b’loo)

71'63 (b):Tresj (o™ b ob)

~

k+1=————=k+1 _ k+1

g €ij O
Di Di Di pine

k k - k

o p-1 TH=T, 14,

[ ——— [n

which implies

By combining the above together, we have
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(€5, X DL)(o - (b, (w1, 22, .., x1))) = (€55 X D) (0" 0 b, (T(1), Ta(2)s- - -+ To(k)))
= ((5’1)_ J(b>,5'iDi($1,$2,...,$k))
:&i ((e% XDi)(b, ($1,$2,...7$k))>7
which shows that f; ;. can be well-defined. O

We now want to study the structure of £(S) by using the morphisms f; ;. of
Lemma 2.10.

PROPOSITION 2.11.  Let Li11(S) = [[1<,cprs £(n) x S*/ ~ be the (k + 1)-
st ‘skeleton’ of L(S), then the coequalizer of the well-defined morphisms fi j. for all
0 <i <k and all possible € € {0, £1} is isomorphic to L11(S). Moreover, the sequence

f0,0,e
0 —— L(k) x5, S*F — 13 L(k+1) x5, S¥FHD Ly £ 1(S) —— 0
frk e

18 exact.

PRrROOF. First, we notice that ¢ is surjective by Lemma 2.2 of [6]. Also by defini-
tion, the relation for defining L£;41(5) is

(9" a, (x1,2,...,2%)) ~ (a, dx(z1, T2, ..., x1)) for ¢ € A(k,1),a € L(I).

Specializing to the case [ = k + 1, we see the relation can be written as
(D™a, (z1, T2, ..., x1)) ~ (a, (L1, Ta, . .., iy %, Tig1, ..., T)), (2.5)

for each 0 < ¢ < k and a € L(k + 1). For this a, there exists a unique j such that
a(j+1) =i+ 1. Hence, we see that ef ;(D™*a) = a for some e. Then by Lemma 2.10 we
have a commutative diagram

eSYOXDB )
00— LE)xS*F X L(k+1) x S¥B+) T L F(S) — 0

c 3
ek, kX Dy

f0,0,e
0 —— L(k) xx, S*F — 15 L(k+1) x5, S¥EHD Ly £41(S) —— 0,
fk k,e

where the first row is defined to be exact. The injectivity of f; ; . can be argued as follows.
Suppose we have fi jcla,z] = fi;[b,y] for some a, b € L(k) and z, y € S**. Then by
the diagram there exists 7 € 311 such that 7 - (e ;(a), Di(x)) = (ef ;(b), Di(y)). In
particular, we have

T(T1, ooy iy kT 1y e ooy Tk) = (Y1 e e vy Yiy Ky Yit 1y -« s Yk )
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which implies 7 = ¢¢, o(z) = y for some o € ¥, in the sense of diagram 2.4. Then
7-ef(a) =" €5 ;(a) = ef ;(0"(a)) by the proof of Lemma 2.10. Then ef ;(c"(a)) =
€5 ;(b) implies 0*(a) = b and [a,z] = [0a,0x] = [b,y]. Hence, f; ;. is injective. Similar
arguments will show that the second row of the diagram is exact. O

LEMMA 2.12.  The collection of morphisms {fijc | 0 < i,j < k,e € {£1,0}}
satisfies the following relations:

e
Jigeo firjre = fitry41,e fige U 1<0,5 <75

T,
Jigtteo firjre = figrj,e fige U 1<0,527.

PROOF.  These relations follow from the corresponding relations for ef ; and D:
which can be easily obtained from their definitions and the relation
DD =D DI if j <. O

3. Combinatorial homotopy theory: Cohen groups.

In this section, we review Cohen’s combinatorial homotopy theory and Wu’s bi-A-
group approach with our further generalization. The material here presents a basic way
to study homotopy exponent problems.

3.1. Cohen’s original approach ([5]).
Given f:Y — QZ, we can construct some canonical maps in [YX(”“), QZ]. Define

yxmt) Ty Ty oy

where m;(y1, Y2, -, Ynt1) = yi- We may denote the homotopy class of this map by ;.
Then there is a natural representation

ef: Fri1 = Fop1 (21,22, ..., 2ppr) — [Y XD Q7]

defined by ef(x;) = y;, where F,4q(z1,22,...,Tp41) is the free group of rank n + 1
generated by x1,x9,...,2p4+1. This group homomorphism may have nontrivial kernel
depending on the choice of the maps and spaces involved, and there are two typical
cases:

e If the reduced diagonal A : Y — Y AY is null homotopic (for instance when Y is a
co-H-space), then the iterated commutator [[ys,, ¥i,], . .., vi,] = 1 in [Y X+ Q7]
when y;, = y;, for some a # b. Then

Npt1 = ([[iy, Tin)s - - -, i) | ¥4, = yi, for some a # b)ny < Fyqq
lies in the kernel of ef.

e If p"[f] = 0, then yfr =1 for each i. Then

Npy1 = (b ..., 20 ) v IKer(ey).
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On the other hand, the sequence of sets {[Y*("*1) QZ]},>¢ can be endowed with a A-
group structure induced from the co-A structure of the sequence of spaces {Y * (”"’1)}”20,
the structural morphisms of which are defined by for any 0 <i <n

di (Y — YX(TL+1)7 (yla Yz, ... >yn) — (y17 s Y K Yig 1, - 7yn)
Similarly, there is a A-group structure on {F,,11},>0 defined by for any 0 <i <n
Zj Jj<i,
di:Fn+1_>Fn7 dz(mj): 1 J=1+1,
Tj—1 ] Z 7+ 2.

By direct computations, there is a commutative diagram

ef
//h\
Nypy/&———F g — K, o [YX(n+l)7 Q7]
ldi lri, ldi \Ldi*
Ni© L, K oo [Yx", QZ],
e
ef

where N,, is chosen depending on the condition, K,, = F,/N,. Now the sequence of
groups {K,+1,d;}n>0 is a A-group, and we have commutative diagram

dO*

0 —— [Jopa(Y), Q2] 255 [yx(t) Q7] 1% [y X", Q7] —— 0
/‘\ d‘n.*
€fi Ef Ef
i o
_
0+ by ——————— Kpiy : K, 0,
%)
d

where ¢,41 is the natural projection, ¢}, is an injection by Corollary 1.1.4 of [21],
[Jni1(Y), Q7] is the equalizer of {d** | 0 < i < n} by Lemma 2.9 of [20], and ;1 is
defined to be the equalizer of {d; | 0 < i < n}. Then there is an induced morphism
Dnt1 = (L‘ : Bnt1 — by which is indeed an epimorphism for each n. Similarly, we have
an epimorphism pp41 @ [Jpt1(Y), QZ] — [J.(Y),QZ] for each n. Now by the above
diagram we have the so-called Cohen representation at infinity

es + b =limb, — lim[J,(Y),02] = [J(Y),22],

where b is the desired Cohen group. The Cohen representation can be functorially faithful
due to a suitable choice of category and a beautiful characterization of the group h has
been proved by Cohen.

THEOREM 3.1 ([5]). When by =Z or Z/p",
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Ker(py : b = bp_1) = Lie(n),
where Lie(n) is the by-submodule of (V = (x1,x2,...,Tn)p,)®™ spanned by Lie elements
[[xa(l)a xa(Q)L CER xo(n)]
for any o € X,,.

3.2. Wu’s approach: bi-A-extension and skeleton filtration of bi-A-
groups ([21]).
3.2.1. The machinery.
According to the construction in Section 3.1, for any A-set (group) S = {S,,d;}n>0
we may define a Cohen set (group) for each n by

h,S ={x €S, | dox =dyx = =dya},
and also the total Cohen set (group) by
bS = lim{p, = d;| : b,S = 1S}

We should notice that b,,+1 defined in Section 3.1 is denoted by b,, here. The construc-
tions are functorial.

LEMMA 3.2.  Given a morphism of A-sets (groups)
e:S—T,
there is an induced filtration preserving morphism of total Cohen sets (groups)
he: hbS — HT.

LemMMA 3.3.  The functor b is left exact, i.e., given any short exact sequence of
A-groups

{1} = H—=>G— K — {1},
the induced sequence
{1} = bH — hG — HK
15 exact.

In general p, may not be surjective (see Theorem 1.2.2 of [21]). However, it may
be surjective if the objects involved have more structures, for instance, the bi-A-group
structure.

DEFINITION 3.4. A bi-A-set (group) 8 = {S,,dj,d"}n>0 is a A- and co-A-set
(group) with d; and d’ as the structural morphisms respectively such that
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_ di_ldj J <t
d;d" = q id j=1,
did;_y j>i.

A weak bi-A-group G = {G,, } >0 is a bi-A-set such that each G,, is a group and all faces
d; are group homomorphisms.

PROPOSITION 3.5 (Proposition 1.2.1 in [21]).  For any weak bi-A-group G and each
n, the map pn : bpG — b,_1G is an epimorphism with kernel the Moore cycles group
Z,.(G), where

2,(G) = [ Ker(d; : Gr, = Gp1).

=0

DEFINITION 3.6.  An n-partial bi-A-group G = {Gk}o<k<n is a finite sequence of
groups with faces d; and cofaces d’ satisfying all of the structural relations of a bi-A-group
up to dimension n.

DEFINITION 3.7. Given an n-partial bi-A-group G = {Gk}o<k<n, the bi-A-
extension of G is a bi-A-group ®,G with inclusion G — ®,G such that the following
universal property holds:

For any bi-A-group K and any n-partial kgi—A—group morphism f : G — K, there
exists a unique morphism of bi-A-groups f : ®,G — K such that fig = f.

The existence of the bi-A-extension was guaranteed by the explicit construction of ®,,G
in [21]. Roughly speaking, we first construct an (n + 1)-partial bi-A-group ®"*G by
defining the (n+ 1)-stage to be the (n+ 2)-fold self free product of G,, module the coface
relations. The faces are then induced by the usual projections as we did for free groups.
We then can iterate the process to get a tower of partial bi-A-groups

G=0rGgCortlgCertigc...

and set ©,G = [, @"T*G. It is then straightforward to check that @, G satisfies the
universal property.

DEFINITION 3.8. Let G = {G,,},,>0 be a bi-A-group, the n-skeleton of G is defined
to be

Skng = (I)nParnga

where Par,,G = {Gj }o<i<n is an n-partial bi-A-group with the induced faces and cofaces
from G.

LEMMA 3.9.  Given any bi-A-group morphism f: G — K, we have a commutative
diagram
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skn (f)
sk, G — sk, K

L,

K.

g

PROOF. The lemma follows from the diagram

which is ensured by the universal property of ®,,. O

Given any group G, we may view it as a trivial n-partial bi-A-group for any finite
n by defining the top stage to be G and the remaining ones to be trivial groups. Then
the only choices for the faces and cofaces are the trivial morphisms, i.e.,

0

0 — 0 0
— —= _.j —
) e ) R LI et el
0 o 0 0

By abuse of notation, we may write ®,,(G) to denote the bi-A-extension of this trivial
n-partial bi-A-group. Now suppose we have a bi-A-group K and a group homomorphism
¢: G — Z,K. Since G is trivial as a partial bi-A-group, the composition G — Z,K —
b, — K,, determines a morphism of n-partial bi-A-groups:

¢: G — Par, K.

We then have a bi-A-extension of ¢ by the diagram

G ¢ Par, KC
l é /l \
G —mm— sk, K ——— K,
which induces a homomorphism of the total Cohen groups
ho: ho, G — bsk, K — HKC,

such that b, =io¢: G — Z,K < h,K.
There is another type of bi-A-extension which concerns relations in Cohen groups.

DEFINITION 3.10. Suppose we have a bi-A-group G and an inclusion of n-partial
bi-A-groups i : H — Par, G with H,, <G, then the normal bi-A-extension of H in G
is a bi-A-group NgH such that
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Par, NgH = H,
and also the following property holds:

For any sub-bi-A-groups K of G with Par,,£ = H and K; < G; for any j > n, we
have an injection of bi-A-groups NgH — K.

In particular, if H = H is the trivial n-partial bi-A-subgroup of G and H < G,,, we may
call Ng ., H = NgH the normal bi-A-extension of the group H.

The explicit construction of such an extension can be described as follows. For such
H, we may define NgH,+1 € G,y1 to be the normal closure generated by d'z for all
x € Hy. It is easy to check that H ][ NgH,+1 with the induced faces and cofaces from G
is an (n + 1)-partial bi-A-group. Then we may iterate the process and get the required
bi-A-extension NgH.

Now suppose we have a morphism of bi-A-groups f : G — K and a composition map
of m-partial bi-A-groups

H < Par,,G PLf> Par, K,

which is trivial. If H,, is a normal subgroup of G,,, then we have the extension morphism
NgH &g i) K,
which is also trivial. Hence the induced homomorphism of Cohen groups
bi hf
HNGH — hG — hK

is also trivial.
We may summarize a useful case in the following lemma:

LEMMA 3.11.  Given a bi-A-group K and a group G with a group homomorphism
¢: G — Z,K. Suppose we also have an m-partial bi-A-subgroup H of Par,,®,G such
that H,, < ®,,G,, and the composition morphism

H ‘i> Par,,®,G Parmd, Par,,KC

is trivial, then the morphism of Cohen groups
bi
BN, M <5 §P,G 2% bk
1s trivial.
In particular, if we are given a trivial m-partial bi-A-normal subgroup H of ®,G
such that

H<S 0,6, 25 K,

is trivial, then the morphism of Cohen groups
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bNo, G H < 50,6 2% K
18 trivial.

The case when n = 0 is of special interest. Now the given data is a bi-A-group
K with a homomorphism ¢ : G — Ky, and we have a homomorphism of Cohen groups
ho : hPoG — hsko/X — HK. According to [21], the bi-A-extension of G can be explicitly
described up to isomorphism. Indeed, we can define

n+1
(@0G)n = [[(Gx =G)

k=1

as the (n + 1)-fold self free product of G. We may denote iy : G < I_[Z;l Gy as the
inclusion of the k-th component. Then the faces d; : (PoG), — (PoG),—1 and coface
morphisms d’ : (®¢G),,—1 — (®¢G), can be defined by group homomorphisms which are
uniquely determined by the relations

Lj ] < i7 . .
, , <
diy =40  j=i+1, d%jz{? j.;z.’+1
o i, R
By construction, we can easily see that

L =dmd" AP T Y G (D0 @G)

We notice that when G = Z, (2¢G) = {F,+1}n>0 as bi-A groups which was discussed
in Section 3.1.

3.2.2.  We now apply the above constructions to the bi-A-group
0z (V) = {[y "V, QZ]} 50,
the co-A-structure of which is induced by maps

di . Y><('n,+1) — Yxna (ylay27' .- ayn-i-l) — (ylv' s Yis Yiy2, - - 7yn+1)~

We start with a representation ¢ : G — [Y "D Q7] = Z,02*(Y). Then ac-
cording to the construction in Subsection 3.2.1, we have a bi-A-extension ¢ : ¢,G —
sk,QZ*(Y) — QZ*(Y) and then a group homomorphism of Cohen groups

b6 h®,G — hsk, QZ*(Y) — hQZ* (V) = [J(Y), QZ].
When n = 0, Im(¢,,) C [Y*(™*1D Q7] is the subgroup generated by
dmdm T PRI d O (9(G)) = piya (6(6)),

where p;i1 : Y*(+1) Y is defined by Pij+1(Y1s -, Ym+1) = Yj+1 which exactly
corresponds to ¢ji1. If further G = Z, the map ¢ is equivalent to a choice of map
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f=¢(1):Y — QZ. Then the theory developed here covers Cohen’s approach. Indeed,
we may define

H = ([[i, zj], ], [[ws, 2], 2] | 1 < i # 5 < 2)n D(RoZ)1 = F(z1,22).
Then the composition
H < (DoZ); B QZ* (V) = [V *2,Q0Z]

is trivial if the reduced diagonal for Y is null homotopic. Hence by Lemma 3.11 the
composition of homomorphisms

ONwoz1 H — h®oZ 23 [J(Y), Q2]

is trivial. For other cases we can proceed similarly.

4. Evaluation map and shuffle relations in Cohen groups.

Since our goal is to detect relations in the group of homotopy classes of self maps of
double loop suspensions, we have to study the loop homomorphism

Q:[O22X, Q7] — [Q?%2X, Q7]

In this section, we give a combinatorial model of the evaluation map ev : ¥Q2¥2X —
O¥?X as the adjoint of (id). We then use this model to develop a general method to
detect relations in Cohen groups. As an illustration we construct the shuffle relations.

4.1. The evaluation map ev : XQ232X — Q¥2X.
In [13], Milgram constructed his model for double loop suspensions with a different
method. Explicitly, he defined a space of paths in n-cube I"™ by

Path(n) = {J: [0,1] = I" | 0(0) = (0,...,0),0(1) = (1,...,1)}.
Then for any connected space X, there is a map defined as the composition
¥y, Path(n) x X" — Q((ZX)*") — Q(J,.(2X)),

where J,, is the n-th filtration of the classical James construction J, the first map is just
a shuffle of variables and the second map is the loop of the natural projection. On the
other hand, Milgram [12] also defined a family of maps

!, P, — Path(n)

by induction on n. Indeed, the map sends each vertex to a regular combinatorial path
passing n (dimension 1) edges of I"™ in an order determined by the coordinate of the
vertex. Any inner point y of P, can be uniquely expressed as the linear combination of
the center ¢, of P, and a point on the boundary, say z = (z;,2;) € P, x P; with i+j =n
and y = (1 —t)c, +1z for instance. By induction, we have defined ;(2;) and 7’ (z;) which
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determine a path r/,(z) in I" through a canonical map
Path(i) x Path(j) — Path(n).

Then 7/,(y) is obtained by shrinking 7] (z) to a path ¢ - r/ (z) connecting (0,...,0) and
(t,...,t), and then joining (¢,...,t) with (1,...,1) by a line segment. It is easy to see
this map can be equivariantly extended to F(n), and we have a map

Ty F(n) — Path(n),

whose adjoint map (r,)* : I x F(n) — I" is cellular and of degree plus or minus one
(Lemma 4.6 in [12]). Combining the above together, we have constructed a map

T Xid

b+ F(n) x X 229 pagh(n) x X" 2% (1, (SX)).

Then we can check that the map ¢,, for each n is compatible with the defining relations
of F(X), and the diagrams

Fln) x X — 2" Q(1,(2X)), [ Fny x xn L% ey
Fn(X) )

are commutative, where i, : J,(XX) — J(3XX) is the natural inclusion. The theorem
of Milgram (Corollary 0.20 in [13], Theorem 2.9) claims that the map ¢ is a homotopy
equivalence. We can then choose the adjoint map of ¢ as our evaluation map

ev = (¢)f : ZF(X) = J(EX).

According to the construction, we see that (5 preserves the natural filtrations and gives
the following commutative diagram:

eVE—1

SFe 1 (X) — s g 1 (5X)

evy

Z]:k(X) —_— Jk(EX)

L

SDR(X) — > (RX)M

where Dy (X) = F(k)T As, X"\F is the k-th divided power. Further, since the map ry,
sends any point on the boundary of F(k) to a path on the boundary of I*, ¢,, sends any
point [a,z] € (OF(n) x X*"/ ~) C Fp(X) to aloop in QJ;_1(EX) C QJ,(XX). Hence,
evy, can be factored as
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ED(X) = EF(k)* Ax, XM 2 2\ /S5 Ay, X~ (SX0)M S (£X)0F,
k!

where ¢ is the quotient map given by shrinking the (k — 2)-skeleton of F(k) to a point.
Also, since (r,) is of degree plus or minus one and evy is functorial in X, the map e
is of the form i x id : S¥ A X" — Sk A X" with degree (i) = 41. In particular, e is
a homotopy equivalence, and we may choose the natural quotient g = Xg A id as the
induced evaluation map €vy.

4.2. Shuffle map.

The shuffle map was defined in [21] to construct shuffle relations in Cohen groups.
Here, we recall the definition of the shuffle map and then give a combinatorial description
using Milgram’s model.

4.2.1. A convenient way to define the shuffle map is by working at the algebraic
level first. Let T'(V') be the tensor coalgebra with V' the primitive base (V will be realized
as the homology of a co- H-space later), where the reduced coalgebra morphism is denoted
by ¥ : T(V) = T(V)®T(V) = T(V) AT(V). The morphisms 1) preserves the usual
word length filtration. Let us denote

Tn(V) = éTj(V), T, (V) = Ven,
7=0

Then we have a commutative diagram

Je—1(V)C Je(V) ek (4.1)

llp]k_l l’lﬂjk ish

Fily_(T(V) ANT(V)) = Fily(T(V) ANT(V)) —== @, jo0.i1 -1 V' @ V.

The shuffle map can be defined by realizing the above diagram. Explicitly, suppose Y is
a co-H-space, then by definition we have a homotopy commutative diagram

Y A Y xY
X /
YVY :

where p’ is the comultiplication and A is the diagonal map. There is a homotopy com-
mutative diagram
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(Y VY)Xn o L y U, Y*iAY X

" ~ —

y xn A% YV % Y)xn % yxn Ay xn

n

Jn(p) \ ~ /

Jn(Y xY) =2 J,(Y) A Ju(Y)
\A—/

where A((y1,1), 5 (Uns¥n)) = W A= Ayn) Ay Ao Ay,

UY”/\Y”: U (Ya, X Yoy x - X Y, ) A (Vg X Y, X o X Yy,),

{a1,.pai,b1,0,05 3 ={1,...,n}
4,7>0, a1 <--<a;,b1 <---<bj;

Y,. =Y presents the as-th Y in the first Y*" of Y*" AY*™ and Y;, = Y presents the
bi-th Y in the second Y *™. All the maps in the diagram are natural, and the composition
map

ATy (Y) = LY VY) = [ JTi(Y) A J;(Y)

can be viewed as the reduced diagonal map. We then have a commutative diagram

Ji1(Y)C Je(Y) YAk

l& J{A lsh
Upor i(Y) A Li(YV )= Uy i(Y) A T3 (Y) ==V, jsgiqjmr YV AYY,

which exactly realizes Diagram 4.1. By straightforward computations, we may write the
formula of the shuffle map as

Sh(yl/\/\yk): Z Z yal/\.'./\yai/\ybl/\'.'/\yb]‘7
4,5>0 {a1,...,ai,b1,....b;}={1,...,n}
i+j=k ay<-<ag,by<--<b;

which means the (i, j)-component of image of y; A --- Ay in Y A Y under sh is

shyj(yr A= Ayk) = > Yar A Alag Aoy A A,
{a1,...,a:,b1,....b;}={1,...,n}
a1<~~<ui,b1<~~<bj
Since the loop of the reduced diagonal is null homotopic, we have the following lemma
which was used to detect the shuffle relations in Cohen groups [21]:
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LEMMA 4.1.  The loop of the composite

Je(Y) - YN S\ yNiay Nt 0z
,§>0,i4+j=Fk

s null-homotopic for any map g.

4.2.2. Now we will use Milgram’s model to get a combinatorial description of the
shuffle map. For the polyhedra F(k), we have the naive cofibration sequence

\/Skfz N skp—oF(k)/skp—sF(k) — F(k)/skp_3F(k) —
k!

F(k) [ski_aF (k) = \/ 5571 2B Sk oF (k) fski_s F (k),
A

where 3 is the attaching map. By applying (—)* As, X"* to the above sequence, we
have a cofibration

+ X/\k
yh=2 x Ak ﬂAE—"’>skk,2Dk(X)/skk,3Dk(X) < Dp(X)/skp_3Dp(X) —

Dy(X)/skp_oDp(X) =~ SF1X M 22 syl Dy (X) /ski_s Dio(X),

where sk; Dy (X) = sk, F(k)* Ay, X¥ is the natural filtration, and

Sskp_oDp(X) /skp—sDp(X) ~ % \/  SF72 Ay, XM~ \/ SF1XA
(k—1)-k! k-1

LEMMA 4.2.  There is a homotopy commutative diagram

sh

(DX)Nk (SX)N A (SX)N

- X

SV S8 Ag, XM s B2V SE 2 A, XA

\/i,j>0,i+j:k

Proor. In order to prove the lemma, we need to label the spheres involved by
their corresponding elements in the poset of F (k). Hence, we may write

F(k)/skp o F (k) = \/ St =551,
oeXy
sk o F (k) /skp_sF (k) = \/ S 2 =952,
(7.9)

where (7, ) € £F72(k) (the set of elements of degree k — 2 in L(k)) corresponds to
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.ok

5

N <—x

—1

such that 7;(i) = 1 for ¢ < j and 7;(i) = 2 for ¢ > j. Since v*(a = (a4, 7,)) = (v ' 0a, m,)

for any v € ¥ and a € L(k), then in our two wedge of spheres

—1y\* ., k—1 — k—1 k—2 — k—2
(@) 560 5@ > Stag) ~ St

On the other hand, we have a homotopy commutative diagram

ﬁ/:EQﬁAX%k
k—1 k | 2 k—2 k
BSGay A X" Ve pect2m S N X"
/ . \
SIBAX SE=2 A XAk Yy

. k—1
i DViex, Sy AN XMW ——————= 32V jepragy (T,j)/'

k—1 2B k—2
2 Voes, S Am XM Z2V (rdyeck-2m) S(rgy A X,

where the composition

k—1 Ak B2 k—2 Ak Pd) o qk—2 Ak
S AXN S B2\ SEE A XA 0 SER A X
(7,9)

is homotopic to the identity for any projection p(, ;) of the (7,j)-component. The com-
position

2\ St xt et \[ SspEAXM s\ SER Ay, X
j (rd)ELk=2 (k) (rd)ELk=2 (k)

is also homotopic to the identity, and then the homotopy inverse of this map with the
pre-composition of 0 defines a map

. y2 k—2 Nk 2 k—2 Ak
0:% Vo SEAXMN 2\ SEE A XN
(T.d)ELy (k) J
which essentially is the map
*\ . g2 E—2 Ak 2 E—2 Ak
\V o (Vo/m):x2 )/ Vo SEiAXM =\ S AX
1<j<k—1 (7.9) 1<j<k—1 (r,4)€sh(j.k—j) 1<j<k—1

such that

T*(tl/\'-'/\tk/\l‘l/\"'/\l‘k)z(t.,-(l)/\"'/\t.,-(k)/\LET(l)/\"'/\l‘T(k)),
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and V is the folding map. Hence under the equivalence 3.2 V; Sé“igi) AXNF \/j(EX)/\k
and other similar ones,

GoB ~( \/ (Vol\/719))op

1<j<k—1 (7.4)
~( N e el e
1<<k—1 (r.9) 1<j<k—1
o \/ (VO(\/ ) ou') ou/
1<i<k—1 (.5)
~ \/ shjpjou
1<j<k—1
~ sh,
where u'’s are the appropriate iterations of the co-multiplication of (XX )"*. O

According to this lemma, we may also denote the double suspended attaching map
%23 by sh. Combining the description of the evaluation map in Section 4.1 we have the
following corollary:

COROLLARY 4.3 (cf. Lemma 4.1).

shoevy : SDi(X) —» (SX)M — \/ (BX)"
k—1

18 null homotopic.

4.3. The shuffle relations in Cohen groups.

In this subsection, we establish a canonical way to detect relations in Cohen groups
using generalized normal bi-A-extensions. We apply our method to derive shuffle rela-
tions as an example.

4.3.1. Generalized normal bi-A-extension.
Before discussing the shuffle relations, we need a more general concept of a normal
bi-A-extension (See Definition 3.10).

DEFINITION 4.4. Given a bi-A-group G and a sequence of subgroups H =
{H; | H; < G;}i>0, the normal bi-A-extension of H in G is a bi-A-group NgH such
that it is the minimal bi-A-subgroup of G with the properties:

NgH,, <G, and H,, < NgH,, for each n > 0.

The existence of such an extension can be confirmed by direct construction which
can be obtained by induction. Indeed, for Hy we have the usual normal bi-A-extension
Ng(Hp)n which we may denote by ./\/éo)H. Suppose we have constructed a sequence of
bi-A-groups

NOHENPHC N PHCG
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such that ./\/’éi)’H contains H; for j < i and the group in each stage is normal. Then
we construct Nén)’H as follows. First, we may add (H,)n to the n-stage of Ng("_l)H
and take group closure. Then add all the iterated face images of the elements of H,
into the lower stages and take normal closures. We denote this new sequence of groups
by ./\/l(gn)”H, and it is clearly that Parn/\/l(gn)’H is an n-partial A-normal subgroup of G.
For any such partial A-subgroup, we can make it into a partial bi-A-subgroup by adding
cofaces images from lower to higher stages. Further, by taking necessary normal closures,
we may obtain an n-partial bi-A-normal subgroup ”Pén)”;’-l of G. Then the usual normal

bi-A-extension NgPé”)H is the required Ng(”)”;'—l and we complete the inductive step.

LEMMA 4.5.  The bi-A-group NgH =, Nén)H constructed above is the normal
bi-A-extension of H in G.

ProOOF. The inductive step of the construction can be illustrated by the following
diagram:

_ N _
Parn_lNg(n Dy 2 o ./\/é” Dy

1+(<HH>N»dj)

ParnM(gn)HC—> ./\/l(gn)"H

]

PyHC ’ NGH.

Hence, NgH is a well defined bi-A-normal subgroup of G containing each H,, for n > 0.
The minimality of NgH is clear from the construction. 0

Note that when H = {H; | H; < G;}o<i<n is an n-partial bi-A-subgroup of G, the
two definitions of normal bi-A-extensions give the same results.

4.3.2. Now let us return to the homotopic context. For any m > 1, there is the
subgroup Sh,,,(XX;Q7) of Z,,Q7*(£X) = [(£X) "+ Q7] consisting of the homotopy
classes of the maps of the form

(EX)/\(erl) sh \/(EX)A("”U EN 0Z, forany f: \/(EX)/\(m+1) Oz

From Corollary 4.3, we have that
Vi =0:ShY(2X;02) — [£D,11(X), QZ],

where Sh? (£X;QZ) is the normal closure of Sh,,(£X;QZ) in [(£X)*(m+1) QZ]. (Note
[(2X)*(mtD) Q7] = [2(2X)*(™+1D) | Z] may be non-abelian but admits another abelian
group structure.) Recall that we have the commutative diagram
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NF(X) e J(2X)

J\ eVim+41

EFmit(X) ——————— S (E2X)
SDy 1 (X) Vi1 (EX)A(m+1)7
which implies that
evi10pt =0:ShN(2X;07) — [Jn41(2X), Q7] — [SFn11(X), Q7).

Now suppose we have a representation ¢ : G — Z,Q7*(XX). Then as before we
have a bi-A-extension ¢ : ¢,G — QZ*(XX) and a group homomorphism of Cohen
groups

ho : O, G — HQZ* (X)) = [J(£X), Q7).

Meanwhile, we may define a sequence of normal subgroups Sh = {Sh; };>¢ by the pullback
diagram

Sh; ——= ShY¥(2X;02)

|

3, G, bi

QZ*(SX);.

Then apply the generalized normal bi-A-extension, we have a commutative diagram of
bi-A-groups (Sh'V (2X;0Z2) = {Sh)¥ (2X;Q2)}i>0 and Shy) (2X;QZ) = {0})

Nas,cSh Naz-sx)Sh™ (£X;QZ7)
1 o )
P,G OZ*(2X),

which implies a commutative diagram of Cohen groups

hNTSh BNz (s x)Sh™ (X QZ)
hP, G he J(£X), Q2.

Since Sh,JX(EX; 0NZ) C Z,07*(XX), any element in NQZ*(EX)ShN(EX;QZ) is of the
form [],, dd® - - d*my,, with y,, € Sh) (X£X;QZ) and iy > iy > -~ > iy, which in
particular, implies that
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2 (Noz-sx)Sh"Y (£X;02)) = Sh)) (£X;Q2Z).
Then we see that
Z,,(Ng,cSh) = Sh,,.

Meanwhile at each m-th stage we have a commutative diagram

b, Ng, oSh mez%*(zx)Sh
b"YL
bmNe,cSh hm/\fnz*(zx)ﬁShN@X; Q7)
bmq)nG oo [Jm+1(ZX)7QZ]
eV:n+1

[Z]:m-l-l(X)?QZ]a

where b, Noz-(nx)Sh = Ker(ev}, ,; 0iy,) and the top square is defined by taking the
pullback. We then have a commutative diagram

Shiy (£X; 02) > buuNaz-(zx)Sh > b1 Naze (2x)Sh

bm bm—1

Pm

sk (x; 02— — thQZ*(EX)Sh hTrL—lN&Z*(ZX)Sh

im Im—1

Pm

(EX)NmH) Q7] o [0 (DX), Q7] — s [T (2X), QZ]

o * *
lcvm_'_l evo, i1 ev,,

[SDpi1(X), Q7] (S Fmi1(X), Q7] [SFm(X),Q2),

where the composition of maps in each column is zero, and the kernel of p,, in the top
row is ShY (2X;QZ). Then we have a morphism

Pm - bm./\ﬁpnGSh — bmleénGSh
with kernel Sh,,, and denote bNs, Sh = lim,, b,, N3, Sh.

ProprOSITION 4.6.  We have a commutative diagram of groups
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hP,,G he [J(2X),07]
i g
0, G /6N oSh 00 (252X, 027).

Proor. We have e,, o1, o b,, = 0 for each m which implies at the infinity

coiob=0:bNs,cSh— hd,G % [J(EX),02] Y% [BF(X),QZ7]. O
5. Higher relations in Cohen groups.

In the spirit of our combinatorial treatment in Section 4.3, we may find more relations
in Cohen groups for double loop suspensions using the cell structure of permutohedra.

5.1. Ladder spaces and Toda brackets.

DEFINITION 5.1. A (pointed) ladder space is a sequence of pairs of (pointed) topo-
logical spaces {(A;, B;) }o<i<n (n can be co) with structural (pointed) maps f; : B; — A;
such that

B; EiN Ai — Aipa

is a co-fibre sequence for each i. We may also call the total space A = colim;A; the
ladder space, and denote A = {(4;, B;) }i>o0-

For any such ladder space, we have an organised diagram

By 1> 4,

By s A, — P wB, 2 w4,

By —tto A, Poyp, Py, EPyep B so gy
i

Byt Ay —ewB, Zlosa, e, B sy P sap
i

Denote p; o f; = g; for each ¢ > 1. Then by definition ¥g; o g;+1 is null homotopic. The
constructions here obviously lead us to the Toda bracket [18]. For any sequence of based
maps
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such that 5o« and 7y o 8 are both null-homotopic, Toda defined a set
<’Y7/870‘>T g [ZXa W]a

which is a certain double coset of v, [EX, Z] and (Za)*[XY, W]. The higher oder gener-
alizations were defined and studied by Spanier [17] and Cohen [8], and generalized by
Shipley for any triangulated category in the new century [15]. For any sequence of based
maps

Yo S5y, 22 .. 2y, (5.1)
the classical higher Toda bracket
(.o ag,00)7

is a certain subset of [X"72Y},Y,]. The existence and vanishing of higher Toda brackets
are characterized by the following theorem of Spanier:

THEOREM 5.2 (Theorem 6.3 of [17]). The Toda bracket

<Oén, .. .,0&2,0(1>T

is well defined and vanishes (which means ‘0’ belongs to the set) if and only if the sequence
(5.1) splits in the sense of the following:

There exists a commutative diagram

Zo Z3 Zn—1
2 Y3 Yn—1
YAVAVEd
asz Ys asg Y. as . Tan Yoo an

Y

YO o1 4 Y’na

such that Bi11 0 for 2 < i < n—2 and the two end composites P 0 ay and o, © Yp—1
are null homotoptic.

COROLLARY 5.3.  For any ladder space A = {(A;, B;)}i>0, the associated sequence

Ygn—1 =iy

B, 2% ¥B,_1 X" By

gives an n-length Toda bracket
<En_lgla sy Egnflvgn>T
which is well defined and vanishes.

5.2. Secondary relations in Cohen groups.
Now for Dy(X) = F(k) Ax, X"¥, there are natural cofibrations
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\ XM\ SiAg, XM Ly skiD(X) — skyy1 Dy (X)
(i) R L)
determined by the attaching maps of F(k) for any 0 < i < k — 2, where sk; Dy (X) =
sk; F(k)* A, X" . Hence Dy (X) is a ladder space such that
Di(X) = {sk;Dr(X), \/ "X }ocick 2.

(1)

However, this ladder space is not useful as we will see in a moment. Instead, we consider

the suspension of Dy (X) with the inherited ladder structure:

SDy(X) = {3sk; D(X), \/ ST XM ocichoa.

(1)

We then have a sequence of maps

Zskk_QDk(X) Ezskk_ng(X) ESSkk_4Dk(X)

Prk—2 Pk—-3 Prk—4

k=1 x Ak 2 \/ k=3 x Ak 3 v k=4 xy Ak 4 \/ k=5 y Ak
Egk—2 (k—1) 22 gk—3 ( ) $2gp_a (k—l)
2 3

which determines a Toda bracket (X3gx_4,3%gx_3,Xgk_2)7. By Corollary 5.3, we see
this bracket vanishes. Hence <Z?’gk,4, Y2g5_3, Ygk—2)7 as a group is isomorphic to the
subgroup

Indety, = Indet(( \/ YHEX)MN) =
(
(S2gr-2)"[\/ (ZX \/ STHEX)M] 4 (ZPgr_a) [(BX)M, |/ BTHEX)M
bt ("3 (2"

of [(ZX)"*, \/(k;l) Y1(ZX)"*]. The following lemma allows us to detect more relations

in Cohen groups for double loop suspensions.
LEMMA 5.4.  For any h € Indety, the composite h o evy is null homotopic.

PROOF. We have that Xgi_o is the desuspension of the shuffle map, and also the
composition of maps

P— =>"ltev _ Ygk— =>"1!sh _
Dk(X) H Zk 1X/\k L) \/ Ek) 1X/\k:
k—1

is null homotopic. On the other hand, Toda (Proposition 1.2 of [18]) proved that
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<7767Q>T026 g <7767a06>Ta

and

(v, B, a)r = {0}
if one of «, B or y is 0. Accordingly,
(X%gr—1,2%gr—3, Sgr—2)1 0 6V
C (2%gr—1,5g—3, Sgr—2 0 B~ Vi)
= {0},
and the lemma follows. 0

Now we may define T,,(XX;Q7) to be the subgroup

(£X)AHD B/ 212 x)AmD L Q7 | v £V b € Indetyi]
(3)

of Z,,Q7*(XX), and go through all the arguments in Subsection 4.3.2 using T, (XX ; Q7)
instead of Sh,, (XX;Q7). We then summarize the corresponding results in the following
theorem.

THEOREM 5.5.  Given a representation ¢ : G — Z,Q7*(XX) and hence its bi-A-
extension ¢ : ®,G — QZ* (X)), we have a bi-A-normal subgroup N, T of ®,G as the
normal bi-A-extension of T = {T;};>a, where T; is defined by the pullback diagram

T TN(SX;QZ)
3,0, YOz (5X)..

Moreover, we have a commutative diagram of groups

§®,G he [J(2X),07]
i |
b(I)nG/<bN<I>nGSh, bN@‘nGT>N Qh¢ R [QZEZX, QQZ],

where
b./\/.:pngT = lim bm./\/'cpngT,

and b, N3, T is defined by the pullback diagram
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b Ns, T bmNoz-=x)T
bm
bmNe,aT bmNaoz-=x) TV (2X;Q2)

with
bmNoz-mx)T = Ker(hnNoz: )TV (8X;Q2Z) = [SFn41(X), Q7).
In addition, the sequence
0— T — 6, No, 6T — b1 Ng, T

1s exact.

6. Appendix: James—Hopf operations of abelian bi-A-groups.

As we mentioned in the introduction, a Cohen representation can be used to study
many kinds of maps in homotopy theory. One of the classic tools to construct maps is
the James—Hopf invariant. In [21], the second author defined a combinatorial analogy to
James—Hopf operation for any (weak) bi-A-group. Given any bi-A-group G, the James—
Hopf homomorphism Hy, ., : G, — Gy, is defined by Hj, j, =id, and for n > k and = € G,

Hy () = 11 dinrdintt e d ()

0<iy <ip <+ <ip—p<n
with lexicographic order from right. We may also set Hj,,, =0 for k > n.

LEMMA 6.1.  Suppose G is an abelian bi-A-group, then the James—Hopf operations
induce a sequence of group homomorphisms of Cohen groups

Hk,n 1 bG — b6,
Moreover, there are combinatorial equalities

ank,n = Hk,nfl + kal,nflpk:a

Hn,mHk,n = (m a k) Hk’m.

m-—n
And the Hy,’s determine a well defined morphism (also in non-abelian case)
Hy, : Zk-g — [jg

PROPOSITION 6.2.  Given any abelian bi-A-group G such that ;G = 0 for any
i <k, and G is p-local for some prime p (which means each G; is p-local), then the short
exact sequence

0— 2,6 —=b,G =b,_1G—=0
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splits for any m < p+ k. Further, there is a short exact sequence for each m
0— Zm—i—lg S Z7n+2g DD ZnL-i—pg — hm+pg — hnLg — 0.

PrOOF. We only need to prove the second statement and for simplicity we may
omit G in the notation. By Lemma 6.1, we have

PnOn = id + On—1Pn—1,

Hn’man = (m —n+ 1)Hn71,’ma

d*. Hence,
0

where Op = Hp—1n =

n
i=
Hy m0nOp_1- 0541 =P Hg
where the combinatorial number
Pri=(m—s)---(m—n+2)(m—-—n+1).
In particular,

OnOn—1+ 0511 = (n—8)! Hg .

We then can show the following claims by straightforward calculations:

e Claim 1: pyynOmin = n-id on Z,,, where we view
Zm 8 Omtn—10ma4n—2"" " Om+12m € Dm+n—1-
e Claim 2:
Pm+1Pm+2 " Pm+nOm+n " " Om+20m+41|2,, = n!- id\zm~

Then we can inductively construct a sequence of commutative diagrams (D®)) for
0<i<p

Om+p,m+p—i

ie W) <

fi=1)C fi) Zmtp—i
. Pm+p—i,m+p

f(l e bm+p - - hm+p—i
0O ——— bm+p/f(i) > Dntpiot1,

where all the rows and columns are short exact sequences,

f(ifl) > Zip @Zm+p71 DD Zm+p7i+1a



Double loop spaces and Cohen groups 887
and
Pm+p—i,m+p = Pm+p—i+1 " Pm+p—1Pm+p>
Om+pm+p—i — Om+pOm+p—1"""Omtp—it+1-

Since pmtp—iym+p Omtpmip—i = i'-id|z, . _,, the top row of (D) splits which induces
the diagram (DU+1) for i 4 1 < p. Then middle column of (D®~1) is the desired short
exact sequence. Il

This proposition has direct implication for the homotopy exponent problem. Let Y
be a connected co-H-space. Suppose we have a morphism of bi-A-groups

G — QBY*(Y) = {[Y <D OxY]}s0

such that there exists some g € hG as the representative of [id] € [QXY, QXY]. Further,
suppose we have a commutative diagram of groups homomorphisms

bg [J(Y), J(Y)]
| |
(75— >~ (2%, Q2%Y],

where H is a normal bi-A-subgroup of G such that K = G/H is an abelian bi-A-group.
Then the problem of the p-exponent of [22XY,Q2XY] is equivalent to a sequence of
extension problems for m > 1:

0— Z,K—b,K—b,1K—0.

We may call these extensions the obstructions to the exponent problem for [22XY, Q2XY],
and then for m,(XY).

COROLLARY 6.3.  For the p-exponent of the homotopy groups m.(XY), the first
non-trivial obstruction can only appear when m = p. Further, it suffices to consider the
obstructions when m = (k+ 1)p — 1 for k > 1 associated to extensions

p—1
0— @ka+ilc — b(k+1)p—1’c — bkp,llC — 0.
=0

Now we turn to study some natural idempotents of abelian bi-A-groups. Our way
of constructing idempotents may be helpful for producing a functorial homotopy decom-
position of QXY

PROPOSITION 6.4.  Given any abelian bi-A-group G such that the sequence
0= ZmG ™ hnG = b 1G = 0

splits for some m, then the composition
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man Tom im Hyyn
e™ 5,6 2 5,06 T 2GS B — g

'"L

is an idempotent for any n > m, i.e., es,?) o e( ) — egf), where T, i a retraction such
that mp, o i, = id.
Proor. The lemma follows from py, n, © Hpy r © tyn = iy O

COROLLARY 6.5.  Given any abelian bi-A-group G such that ;G = 0 for any i < k,

(n)

and G is p-local for some prime p, then ey’ is an idempotent for any n > m and

m<p-+k.

COROLLARY 6.6.  Given any abelian bi-A-group G such that hG is completely split-
table, which means the sequence

0— Z,G = = bmG = by-1G =0

splits for each m, then the composition

Pn,co Zoc \n
is an idempotent for any n > m, where P, oloo,n = id.

To close the appendix, we construct some partially null homotopic self maps of
double loop suspensions in terms of topological James—Hopf operations which are closely
related to the combinatorial versions.

PROPOSITION 6.7.  For any map f € Sh) (2X;Q2)+TN(2X;QZ2) C Z,07*(£X),
the loop of the composition

an2x 2 on((ex) D) L gz

is null homotopic on the natural (m-+1)-th filtration Fp,11(X) of Q252X ~ F(X), where
H,, 11 is the James—Hopf invariant.

PrROOF. The proposition follows from Lemma 4.3 and 5.4 and the fact that ([21])
H,(f): Q22X — Q7

is represented by J(f) o Hypq1. O
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