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Abstract. This paper is a continuation of the first paper. The aim
of this second paper is to discuss the non-vanishing of the theta lifts to the

indefinite symplectic group GSp(1, 1), which have been shown to be involved
in the Jacquet–Langlands–Shimizu correspondence with some theta lifts to the
Q-split symplectic group GSp(2) of degree two. We study an explicit formula
for the square norms of the Bessel periods of the theta lifts to GSp(1, 1) in

terms of central L-values. This study involves two aspects in proving the non-
vanishing of the theta lifts. One aspect is to apply the results by Hsieh and
Chida–Hsieh on “non-vanishing modulo p” of central L-values for some Rankin
L-functions. The other is to relate such non-vanishing with studies on some

special values of hypergeometric functions. We also take up the theta lifts to
the compact inner form GSp∗(2). We provide examples of the non-vanishing
theta lifts to GSp∗(2), which are essentially due to Ibukiyama and Ihara.

1. Introduction.

1.1. The aim of the paper.

Let B be a definite quaternion algebra over Q with the discriminant dB and D a

divisor of dB . Let (f, f
′) be a pair consisting of an elliptic cusp form f of weight κ1 and

level D (cf. [19, Section 3.1]) and an automorphic form f ′ on B×
A of weight κ2 (cf. [19,

Section 3.2]). For such (f, f ′) we have introduced the theta lifts to the non-compact in-

ner form GSp(1, 1) and the compact inner form GSp∗(2) of the Q-split symplectic group

GSp(2) of degree two uniformly denoted by L(f, f ′) in the previous paper [21]. In this

paper we denote the former and the latter by Lnc(f, f ′) and Lc(f, f ′) respectively. In [21],

assuming that f and f ′ are Hecke eigenforms, we have shown that the automorphic repre-

sentations generated by the theta lifts Lnc(f, f ′) and Lc(f, f ′) are involved in the Jacquet–

Langlands–Shimizu correspondence with the theta lift π′(f, JL(f ′)) to GSp(2) (for the

definition of π′(f, JL(f ′)) see [21, Section 4.4]), where JL(f ′) denotes the primitive cusp

form corresponding to f ′. We have remarked that the Jacquet–Langlands–Shimizu corre-

spondence just mentioned should preserve a correspondence between paramodular level
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structures for GSp(2) and some invariance conditions with respect to maximal open com-

pact subgroups for the inner forms (cf. [21, Conjecture 4.2]) and that the automorphic

representation generated by Lnc(f, f ′) or Lc(f, f ′) corresponds to π′(f, JL(f ′)) in this

manner.

We now describe the two theta lifts Lnc(f, f ′), Lc(f, f ′) by the following:

(f, f ′) 7→

{
Lnc(f, f ′) (1 < κ1 < κ2 + 2),

Lc(f, f ′) (1 < κ2 + 2 < κ1).

The inequality of (κ1, κ2) is due to the regularity of the Harish-Chandra parameters for

the archimedean representation generated by (f, f ′). In fact, the archimedean parts of

the lifts Lnc(f, f ′) and Lc(f, f ′) are understood in terms of the theta correspondence of

discrete series representations for (Sp(1, 1)(R), O∗
4(R)) and (Sp∗(2)(R), O∗

4(R)) respec-

tively (see [15, Theorem 5.1, Part 1] and [21, Remark 3.4 (1)]). We should remark that

(f, f ′) cannot have the non-vanishing theta lifts to GSp(1, 1) and GSp∗(2) simultane-

ously under the same inequality condition on (κ1, κ2) (see [15, Theorem 5.1, Part 3] and

[21, Remark 3.4 (2)]). Taking the Jacquet–Langlands correspondence mentioned above

into account, some experts would try to understand the two lifts in terms of the global

Arthur L-packets of GSp(2) studied by Roberts [23]. In fact, the corresponding Galois

sides of our lifts belong to “Type (B) parameters” in the sense of [23].

The main goal of this paper is to discuss the non-vanishing of the theta lift Lnc(f, f ′)

to GSp(1, 1). For the non-vanishing of theta lifts to classical groups we should remark

that Yamana [29] has established a general criterion in terms of their local non-vanishing

and some analytic properties of the automorphic L-functions. Our method is quite

different, i.e. to study the Bessel periods of Lnc(f, f ′) explicitly. As we will see, this

method yields the positivity of some central L values for Lnc(f, f ′)s as well as several

results on the non-vanishing of Lnc(f, f ′)s. For this we remark that the non-vanishing

of the theta lifts π′(f, JL(f ′)) is already known as is pointed out in [21, Section 4.4]. We

also take up the theta lifts Lc(f, f ′)s to GSp∗(2). For the case of GSp∗(2) we will remark

that Ibukiyama and Ihara [13] essentially provide examples of the non-vanishing theta

lifts. We furthermore remark that the non-vanishing of the theta lifts in our concern is

not an immediate consequence from the known general results like Yamana [29] since

they deal with the cases of the groups of isometry while this paper deals with the cases

of groups of similitudes.

1.2. Two aspects on the non-vanishing of the theta lifts.

For the non-vanishing of the theta lift Lnc(f, f ′) to GSp(1, 1) we verify the exis-

tence of a non-vanishing Bessel period Lnc(f, f ′)χξ of Lnc(f, f ′) (for the definition of

the Bessel periods see Section 2.3), where χ denotes a Hecke character of an imaginary

quadratic field Q(ξ) generated by a non-zero pure quaternion ξ in B. We can study

the non-vanishing of the Bessel periods by reducing the problem to the simultaneous

non-vanishing of two toral integrals of f and f ′ with respect to χ (cf. Theorem 2.3 and

Corollary 2.4). We provide two aspects of studying such non-vanishing of the two inte-

grals, for which we note that there is a general formula byWaldspurger [27, Proposition 7]

relating the square norms of the toral integrals to the central values of Rankin–Selberg

L-functions for GL(2).
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One aspect is to use the results by Hsieh [11] and Chida–Hsieh [2] on “non-vanishing

modulo p” of central values of some Rankin–Selberg L-functions for GL(2) (cf. Theo-

rem 3.3 and Theorem 3.5), where p is an appropriate prime number. We remark that

the idea of this approach is originally due to Hsieh–Namikawa [12]. To explain another

aspect we specify B and Q(ξ) so that both class numbers of these are one. More specif-

ically, we consider B with the prime discriminant p and Q(ξ) with the discriminant −p
or −4p. The assumption on the class numbers implies p = 2, 3 or 7 as we will see later.

An essential point for this approach is to relate the non-vanishing of the toral integral

for f ′ to the study of special values of some hypergeometric functions (cf. Lemma 3.9).

For GSp∗(2) we remark that Ibukiyama and Ihara [13, Section 3.2] essentially pro-

vide examples of non-vanishing Lc(f, f ′)s (cf. Proposition 3.18). In our previous paper

[21] we have defined the theta lift Lc(f, f ′) to GSp∗(2), modifying the formulation by

Löschel [16]. The theta lifts are vector-valued and their coefficient functions turn out

to be the Petersson inner product of f and a theta series attached to some harmonic

polynomial on two copies of the Hamilton quaternion algebra. In Ibukiyama–Ihara [13,

Section 3.2] we find examples of non-zero such theta series, which lead to the existence

of non-zero Lc(f, f ′).

For GSp(2) we have remarked in [21, Section 4.4] that the lifts π′(f, JL(f ′)) to

GSp(2)(A) are non-vanishing. We remind the readers that we follow the formulation of

the theta lifts by Roberts [23] and Harris–Kudla [9] to define π′(f, JL(f ′)).

1.3. The main results.

Now let us explain the detail on the case of GSp(1, 1). We deal with an explicit

formula for the square norm of a Bessel period Lnc(f, f ′)χξ in terms of some convolution

type L-function L(Lnc(f, f ′), χ−1, s) (cf. Section 4.2). We can define the convolution

type L-function L(π′(f, JL(f ′)), χ−1, s) also for the theta lift π′(f, JL(f ′)) to GSp(2).

We have L(Lnc(f, f ′), χ−1, s) = L(π′(f, JL(f ′)), χ−1, s) (cf. Proposition 4.3). We now

state the following theorem.

Theorem 1.1 (Theorem 4.4). Let ξ ∈ B \ {0} be a pure quaternion and assume

it to be primitive (for the definition see Section 2.4 (2)). With an explicit constant

C(f, f ′, ξ, χ) of proportionality and an explicitly given g0 ∈ GSp(1, 1)(Af ), we have

∥Lnc(f, f ′)χξ (g0)∥2

⟨f, f⟩⟨f ′, f ′⟩
= C(f, f ′, ξ, χ)L

(
Lnc(f, f ′), χ−1,

1

2

)
= C(f, f ′, ξ, χ)L

(
π′(f, JL(f ′)), χ−1,

1

2

)
,

where ⟨f, f⟩ and ⟨f ′, f ′⟩ denote the norms of f and f ′ respectively.

This is a generalization of [20, Theorem 2.11], in which the weights κ1 and κ2 of f

and f ′ are assumed to equal. Such assumption is removed for the theorem. It should be

remarked that this result controls the central L-values of the cuspidal representations of

GSp(2) (as well as those of GSp(1, 1)) by means of the Bessel periods of GSp(1, 1) and

of the explicit Jacquet–Langlands correspondence in the previous paper [21].
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Theorem 1.1 is useful to show the existence of non-vanishing Lnc(f, f ′)s, and also

yields the positivity of the central value of the convolution type L-function for some non-

zero Lnc(f, f ′). The approach we shall first take up is to use the results by Hsieh [11]

and Chida–Hsieh [2], which enable us to discuss the non-vanishing of Lnc(f, f ′) and the

positivity of L(Lnc(f, f ′), χ−1, 1/2) = L(π′(f, JL(f ′)), χ−1, 1/2) in a general situation.

Let Π and Π′ be the base change lifts to Q(ξ) of automorphic representations generated

by f and JL(f ′) respectively. Then we have

L(Lnc(f, f ′), χ−1, s) = L(π′(f, JL(f ′)), χ−1, s) = L(Π, χ−1, s)L(Π′, χ−1, s)

(cf. Proposition 4.3), where L(Π, χ−1, s) (respectively L(Π′, χ−1, s)) denotes the L-

function of Π (respectively Π′) twisted by χ−1. With a suitable prime number p Hsieh

[11] and Chida–Hsieh [2] discuss the non-vanishing modulo p of L(Π, χ−1, 1/2) and

L(Π′, χ−1, 1/2) in the spirit of the Iwasawa theory, where the conductor of χ is assumed

to be a power of some fixed prime number l ∤ p. Let Xξ(l)f be the set of Hecke characters

on A×Q(ξ)×\A×
Q(ξ) of finite order whose conductor is a power of l. As a result of [11,

Theorem C], [2, Theorem 5.9] and Theorem 1.1 we have the following:

Theorem 1.2 (Theorem 3.5 and Corollary 4.6). Let f (respectively f ′ ) be a non-

zero primitive form (respectively a non-zero Hecke eigenform).

(1) Assume that f and f ′ have the same signature of the Atkin–Lehner involution at

finite primes p dividing D (cf. Section 2.4). Suppose that the discriminant of Q(ξ) is

divisible by dB and that Q(ξ) is not isomorphic to Q(
√
−1) or Q(

√
−3). Fix a prime

number l which splits in Q(ξ), and assume that χ has a power of l as the conductor

and the weight w∞(χ) = −κ1 at the archimedean place. We furthermore make the local

assumptions on (f, f ′) with respect to χ at finite primes dividing dB as follows :

• S1 = S+
2 (f, χ) = ∅ (this is equivalent to [2, (ST)]),

• π′′
p |E×

p
= χp for p|DB (this is equivalent to [11, Hypothesis A]),

where see Section 3.1 for the notation.

Then Lnc(f, f ′) is non-vanishing and satisfies L(Π, (χν)−1, 1/2) > 0, L(Π′, (χν)−1,

1/2) > 0, thus

L

(
Lnc(f, f ′), (χν)−1,

1

2

)
= L

(
π′(f, JL(f ′)), (χν)−1,

1

2

)
> 0

for infinitely many ν ∈ Xξ(l)f .

(2) The theta lift Lnc(f, f ′) is non-vanishing if and only if the signatures of the Atkin–

Lehner involutions of f and f ′ are the same at p dividing D (for the condition on the

signature see [21, Proposition 3.3 (1)] and Section 2.4 (1)). In particular, the non-

vanishing of Lnc(f, f ′) holds without the condition on the signatures when D = 1.

For the first assertion of this theorem we note that the local assumptions on (f, f ′)

with respect to χ ensure the non-vanishing of the constant C(f, f ′, ξ, χ) in the formula

of Theorem 1.1. In fact, as the proof of Theorem 3.5 indicates (see also the remark just

before it), we can show that there are infinitely many ν ∈ Xξ(l)f with C(f, f ′, ξ, χν) ̸= 0.
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We remark that the second assertion is what should be called “ϵ-dichotomy” (cf. [10])

for our theta lifts Lnc(f, f ′)s.

To state the result on the second aspect let B be a definite quaternion algebra with

the discriminant dB = 2, 3 or 7 and specify the primitive ξ so that Q(ξ) is isomorphic

to Q(
√
−1), Q(

√
−2) (for dB = 2), Q(

√
−3) (for dB = 3) or Q(

√
−7) (for dB = 7)

(cf. Section 3.3). Then the class numbers of B and Q(ξ) are one. Let χ be a Hecke

character of Q(ξ) unramified at every finite place and of weight w∞(χ) = −κ1 at the

infinite place. These assumptions reduce the toral integrals of f and f ′ to the special

values of f and f ′ at some CM -points. Under this convenient situation we are able

to show the following result, which includes a generalization of [20, Proposition 2.12,

Theorem 2.13 and Theorem 2.14] without assuming κ1 = κ2.

Theorem 1.3 (Theorem 3.14, Corollary 4.5). (1) In addition to the assumption

on χ, ξ and dB just mentioned assume that D = 1 or D = dB and that (κ1, κ2) ∈ (4Z>0)
2

with κ2 ≥ κ1. When dB = 2 or 3 we further assume the following :(
(κ1 + κ2)/2

(κ2 − κ1)/2

)
2F1

(
−κ2 − κ1

2
,−κ2 − κ1

2
;κ1 + 1;−1

)
̸= (−1)κ1/4+12(κ2−4)/2 (for dB = 2),(

(κ1 + κ2)/2

(κ2 − κ1)/2

)
2F1

(
−κ2 − κ1

2
,−κ2 − κ1

2
;κ1 + 1;−3

)
̸= −2κ1−1 (for dB = 3),

where 2F1 denotes Gauss’s hypergeometric function. Then (under some extra assump-

tions on (κ1, κ2)) there exist Hecke eigenforms (f, f ′) such that

1. Lnc(f, f ′)χξ ̸≡ 0(⇒ Lnc(f, f ′) ̸≡ 0),

2. L(Π, χ−1, 1/2) > 0, L(Π′, χ−1, 1/2) > 0,

thus L(Lnc(f, f ′), χ−1, 1/2) = L(π′(f, JL(f ′)), χ−1, 1/2) > 0.

(2) (Ebisu, Haagerup–Schlichtkrull) When dB = 2 the assumption on the hypergeomet-

ric function is satisfied for (κ1, κ2) ∈ (4Z>0)
2 with κ2 ≥ 4κ1 except for (κ1, κ2) = (4, 16)

or for (κ1, κ2) ∈ (4Z>0)× (2Z>0) with κ2 ≥ κ1 and κ2 ≥ 164 · 34 − 1. When dB = 3 this

is satisfied for any (κ1, κ2) ∈ (4Z>0)
2 with κ2 ≥ κ1.

As a reference relevant to Theorems 1.2, 1.3 we cite Saha–Schmidt [24], which

provides some quantitative results on simultaneous non-vanishing of central L-values like

L(Π, χ−1, 1/2) and L(Π′, χ−1, 1/2) by using holomorphic Siegel modular forms given as

Yoshida lifts. However, as far as the author knows, it seems that there are only quite

a few papers finding automorphic forms satisfying the positivity on the central L-values

in a specific manner like ours. We further note that Lnc(f, f ′)s are non-holomorphic.

Maybe the arithmetic studies of non-holomorphic automorphic forms can be said to be

quite rare. In fact, it seems that several difficulties caused by the non-holomorphy often

give rise to obstructions for such studies to be active.

As we have seen, the first approach leads to a general criterion on the non-vanishing

of Lnc(f, f ′) as well as the positivity of the central L-values. As for the second approach

there seem to be no results controlling the positivity of central L-values of automorphic

L-functions by means of special values of the hypergeometric functions. The assertion (2)



130

130 H. Narita

of the above theorem for the cases of dB = 2 with κ2 ≥ 4κ1 and dB = 3 is given by Ebisu

[4] (cf. Proposition 3.11) and the inequality κ2 ≥ 4κ1 is due to the limitation arising from

the technique using the three term relations of the hypergeometric series. The rest of the

assertion (2) (for dB = 2) is due to Haagerup–Schlichtkrull [8] (cf. Proposition 3.12). The

author hopes that the second approach has its own significance drawing the attention of

experts not necessarily specialized to the number theory.

1.4. Outline of the paper.

This paper begins with studying an explicit formula for Bessel periods of the theta

lifting Lnc(f, f ′) in Section 2. As an application of this we discuss the non-vanishing

of the theta lifts in the two aspects mentioned above in Section 3. More specifically

we review some results on the toral integrals necessary for us in Section 3.1. The Sec-

tions 3.2, 3.3 are devoted to studying the non-vanishing of the theta lifts Lnc(f, f ′)s in

terms of the two aspects. Section 3.4 takes up examples of non-vanishing theta lifts

for Lc(f, f ′)s after Ibukiyama–Ihara [13]. In Section 4 we provide an explicit formula

for the square norms of the Bessel periods of Lnc(f, f ′)s in terms of central L-values

L(Lnc(f, f ′), χ−1, 1/2)s. From this we deduce several consequences on the positivity of

the central L-values. Sections 4.1, 4.2 take up these topics. In Section 4.3 we provide

examples of Hecke eigenforms (f, f ′) satisfying L(Lnc(f, f ′), χ−1, 1/2) > 0.

As we have explained, the results on the theta lifts Lnc(f, f ′)s in this paper are

viewed as a generalization of the work [20]. This paper often uses results in [18] and

[19]. We therefore require more or less familiarity with these works [18], [19] and [20]

as well as the paper [21] of the first part.

2. Bessel periods of theta lifts to GSp(1, 1).

In the first paper [21], we have used the notation L(f, f ′) uniformly for the theta

lifts to GSp(1, 1)(A) and GSp∗(2)(A) from (f, f ′) ∈ Sκ1(D)×Aκ2 . Instead we denote it

by Lnc(f, f ′) for GSp(1, 1) and Lc(f, f ′) for GSp∗(2) respectively (cf. Sections 2.1, 2.2).

In Section 2.6 we state and prove an explicit formula for Bessel periods (or Fourier coef-

ficients) of Lnc(f, f ′)s on GSp(1, 1)(A) in terms of the toral integrals of (f, f ′) (cf. Theo-

rem 2.3). In Sections 2.1 and 2.2 we first introduce basic notation and then make a review

on the theta lifts Lnc(f, f ′) and Lc(f, f ′) in some detail. After this the explanation of the

Bessel periods begins with Section 2.3. The non-archimedean part of the explicit formula

is the same as that of the formula in [19, Theorem 5.2.1]. For Sections 2.4 to 2.6 we

review the notation of [19, Theorem 5.2.1], following the arrangement of [20, Section 1].

2.1. Basic notation.

In this paper we keep the notation used in [21]. Let B be a definite quaternion

algebra over Q and dB denote the discriminant of B. For x ∈ B we denote by tr(x)

and n(x) its reduced trace and reduced norm respectively. We write H and H ′ for Q-

algebraic groups GL2 and B× respectively. For a number field F we denote its adele

ring by AF . Following [21] we denote AQ simply by A and the ring of finite adeles in

A by Af . For a divisor D of dB we let Sκ1(D) be the space of elliptic cusp forms f

of weight κ1 and level D (cf. [19, Section 3.1]). Given a maximal order O of B, Aκ2

denotes the space of automorphic forms f ′ on H ′(AQ) of “weight σκ2 and level O×”
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(cf. [19, Section 3.2]), where σκ2 denotes the κ2-th symmetric tensor representation of

H(1) := {b ∈ B×(R) | n(b) = 1} ≃ SU(2) with the representation space Vκ2 (for σκ2

see [19, Section 1.2]). Here note that (f, f ′) have the trivial central character by the

definition of Sκ1(D) and Aκ2 . Therefore κ1 and κ2 have to be even.

Let us recall that the non-compact Q-inner form GSp(1, 1) and the compact Q-

inner form GSp∗(2) of the Q-split symplectic group GSp(2) of degree two have been

introduced in [21, Section 2.1]. Recall also that Sp(1, 1), Sp∗(2) and Sp(2) denote the

corresponding isometry groups. For (λ1, λ2) ∈ Z2
>0 such that λ1 > λ2 we have intro-

duced the space Snc
τΛ(D) of cusp forms on GSp(1, 1)(A) with Λ = (λ1, λ2 − 1) (respec-

tively the space Ac
τΛ(D) of automorphic forms on GSp∗(2)(A) with Λ = (λ1 − 2, λ2 − 1))

generating the square integrable representation (modulo center) of GSp(1, 1)(R) (re-

spectively GSp∗(2)(R)) parametrized by (λ1, λ2) (cf. [21, Definitions 3.1, 3.2]). Here

τΛ denotes the irreducible representation of the maximal compact subgroup with high-

est weight Λ, which is viewed as the square integrable representation (modulo center)

of GSp∗(2)(R) for the case of the compact inner form (respectively which is called

the minimal K-type of the square integrable representation for the case of GSp(1, 1)).

According to [21, Proposition 3.3 (2)], the theta lift Lnc(f, f ′) on GSp(1, 1)(A) (re-

spectively Lc(f, f ′) on GSp∗(2)(A)) belongs to Snc
τΛ(D) (respectively Ac

τΛ(D)) for Λ =

((κ1 + κ2)/2, (κ2 − κ1)/2) with (κ1, κ2) ∈ (2Z≥0)
2 such that 1 < κ1 < κ2 + 2 (re-

spectively Λ = ((κ1 + κ2)/2 − 2, (κ1 − κ2)/2 − 2) with (κ1, κ2) ∈ (2Z≥0)
2 such that

1 < κ2 + 2 < κ1). For this we remark that, when κ1 = κ2, the square-integrable repre-

sentations of GSp(1, 1)(R) are induced from quaternionic discrete series representations

of Sp(1, 1)(R). Such cases are taken up in [18], [19] and [20].

2.2. Review on the theta lifts.

We review the theta lifts Lnc(f, f ′) and Lc(f, f ′) from (f, f ′) ∈ Sκ1(D) × Aκ2 to

GSp(1, 1)(A) and GSp∗(2)(A) respectively based on [21, Section 3.2.2]. Though this

paper mainly takes up the case of GSp(1, 1) we also review the case of GSp∗(2), which

is taken up at Section 3.4.

Let us recall that, at the archimedean place, we have modified the metaplectic rep-

resentation r introduced in [18, Sections 3, 4] to formulate the theta lift Lnc(f, f ′) and

Lc(f, f ′) to GSp(1, 1)(A) and GSp∗(2)(A) respectively in our concern. The representa-

tion space of r is given as the restricted tensor product
⊗′

p<∞ Vp × V∞ over places of Q
of the local Schwartz spaces Vv at v = p < ∞ or v = ∞ with respect to local Schwartz

functions {φ0,p}p<∞. To explain φ0,p for p <∞ let Op be the integer ring of the p-adic

completion Bp of B at p and Pp the prime ideal of Op. We put

Lp :=

{
Op ⊕Op (p ∤ dB/D),

Op ⊕P−1
p (p|dB/D).

Then φ0,p is the function on Bp×Q×
p defined to be the characteristic functions of Lp×Z×

p

for each finite prime p <∞. The local Schwartz space Vp at a finite prime p is the space

of locally constant functions on Bp ×Q×
p with a compact support. This definition is the

same as that of [18, Section 3].

In [21, Section 3.2.2], the Schwartz space V∞ is modified for both of GSp(1, 1) and
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GSp∗(2). For both modifications we need the usual Schwartz space S(H2) on H2. For

the case of GSp(1, 1)(A), letting κ2 ≥ κ1, V∞ stands for the space of smooth functions

φ on H2 × R× such that, for each fixed t ∈ R×, H2 ∋ X 7→ φ(X, t) belongs to S(H2) ⊗
End(V(κ1+κ2)/2 ⊠ V(κ2−κ1)/2), where Vκ denotes the representation space of the κ-th

symmetric tensor representation σκ for a non-negative integer κ. For this case we remark

that the paper [18] considers the case of κ1 = κ2. For the case of GSp∗(2) we need the

space Hκ1−4 of harmonic polynomials on H2 of degree κ1 − 4 with κ1 ≥ 4. For this

case the definition V∞ is given similarly with replacing End(V(κ1+κ2)/2 ⊠ V(κ2−κ1)/2) by

Hκ1−4.

We next review the test functions φnc
0 =

∏
p<∞ φ0,p × φnc

0,∞ and φc
0 =

∏
p<∞ φ0,p ×

φc
0,∞ of the theta integral kernel for the theta lifts. For both of GSp(1, 1) and GSp∗(2)

we put φ0,p to be the aforementioned characteristic function of Lp ×Z×
p for each p <∞.

For the case of GSp(1, 1) the archimedean part φnc
0,∞ is defined as

φnc
0,∞(X, t) :=


t(κ2+3)/2σ(κ1+κ2)/2(X1 +X2)⊠ σ(κ2−κ1)/2(X1 −X2) exp(−2πtX̄X)

(t > 0),

0 (t < 0).

On the other hand, for the case of GSp∗(2), we need the reproducing kernel function

H2 ∋ X 7→ CX ∈ Hκ−4. More specifically, given a fixed inner product (∗, ∗) of Hκ1−4,

this is characterized by (CX ,Φ) = Φ(X) for Φ ∈ Hκ1−4. Then φ
c
0,∞ is defined as

φc
0,∞(X, t) :=

{
t(κ1−1)/2 exp(−2πt tX̄X)CX (t > 0),

0 (t < 0).

Here X = t(X1, X2) ∈ H2 and tX̄ = (X̄1, X̄2) with X1, X2 ∈ H.

For the review about the case of GSp∗(2) we need a further discussion. From [21,

(3.1)] we recall that Hκ1−4 admits a decomposition

Hκ1−4 =
⊕

a≥b≥0
a+b=κ1−4

Wa,b ⊗ Va−b

as a Sp∗(2)(R)×H(1)-module, whereWa,b (respectively Va−b) denotes the representation

space of τ(a,b) (respectively the representation space of the (a − b)-th symmetric tensor

representation of H(1)) (for τ(a,b) see Section 2.1). From this decomposition we know that,

up to constant multiples, there is a Sp∗(2)(R)-equivariant W(a,b)-valued paring (∗, ∗)a,b
of Hκ1−4 × Va−b.

We are now able to formulate the theta lifts Lnc(f, f ′) and Lc(f, f ′) for G :=

GSp(1, 1) and GSp∗(2) as in [21, Section 3.2.2]. We introduce the theta integral kernels{∑
(X,t)∈B2×Q× r(g, h, h′)φnc

0 (X, t) (G = GSp(1, 1))∑
(X,t)∈B2×Q× r(g, h, h′)φc

0(X, t) (G = GSp∗(2))
, ∀(g, h, h′) ∈ G(A)×H(A)×H ′(A).

We denote these by θncκ1,κ2
(g, h, h′) and θcκ1,κ2

(g, h, h′) for GSp(1, 1) and GSp∗(2) respec-

tively. The theta lifts Lnc(f, f ′) and Lc(f, f ′) are thus defined by



133

Jacquet–Langlands–Shimizu correspondence 133
Lnc(f, f ′)(g) :=

∫
R2

+(H×H′)(Q)\(H×H′)(A)
f(h)θncκ1,κ2

(g, h, h′)f ′(h′)dhdh′,

Lc(f, f ′)(g) :=

∫
R2

+(H×H′)(Q)\(H×H′)(A)

f(h)(θcκ1,κ2
(g, h, h′), f ′(h′))(κ1+κ2)/2−2,(κ1−κ2)/2−2dhdh

′,

respectively.

2.3. Fourier expansions of theta lifts to GSp(1, 1).

We now review the Fourier expansion of Lnc(f, f ′) on GSp(1, 1)(A) described in [19,

Section 1.3] and [20, Section 1.2]. We introduce the set B− := {x ∈ B | tr(x) = 0} of

pure quaternions in B and have

Lnc(f, f ′)(g) =
∑

ξ∈B−

Lnc(f, f ′)ξ(g),

where

Lnc(f, f ′)ξ(g) :=

∫
B−\B−(A)

Lnc(f, f ′)

((
1 x

0 1

)
g

)
ψ(− tr(ξx))dx

with the standard additive character ψ on Q\A. Here we normalize the measure dx so

that the volume of B−\B−(A) is one. For ξ ∈ B− \ {0} we let Eξ := Q(ξ), which is

isomorphic to an imaginary quadratic field, and Xξ be the set of unitary characters on

A×E×
ξ \A×

Eξ
with the idele group A×

Eξ
for Eξ, which are called Hecke characters. Note

that Lnc(f, f ′) is cuspidal, namely Lnc(f, f ′)0 = 0. The Fourier expansion is then refined

as follows:

Lnc(f, f ′)(g) =
∑

ξ∈B−\{0}

∑
χ∈Xξ

Lnc(f, f ′)χξ (g),

with

Lnc(f, f ′)χξ (g) := vol(R×
+A×\A×

Eξ
)−1

∫
R×

+E×
ξ \A×

Eξ

Lnc(f, f ′)ξ(s12 · g)χ(s)−1ds.

We call Lnc(f, f ′)χξ the Fourier coefficient or the Bessel period of Lnc(f, f ′) indexed by ξ

and χ.

2.4. Working assumptions.

To deduce our formula for Lnc(f, f ′)χξ , we assume the following two for (f, f ′) ∈
Sκ1(D)×Aκ2 :

(1) The two forms f and f ′ are Hecke eigenforms and have the same eigenvalue for the

“Atkin–Lehner involution” (cf. [19, Section 5.1], [20, Section 1.3 (1)]), namely ϵp = ϵ′p
holds for (f, f ′), where ϵp and ϵ′p denotes the eigenvalue (or signature) for f and f ′

respectively. Otherwise Lnc(f, f ′) ≡ 0 (cf. [21, Proposition 3.3 (1)]).

(2) We assume that ξ ∈ B− \ {0} is primitive. Namely, for each finite prime p, we let



134

134 H. Narita

ap :=

{
Op (p ∤ dB or p|D)

Pp (p|dB/D)
, (a−p )

∗ := {z ∈ B−
p | tr(z̄w) ∈ Zp, for any w ∈ ap ∩B−

p }

with the p-adic completion B−
p of B− and assume that

ξ ∈ (a−p )
∗ \ p(a−p )∗,

where recall that Pp has denoted the maximal ideal of Op for p|dB (cf. Section 2.2). For

this assumption see [19, Section 4.1] and [20, Section 1.3 (2)]. For the assumption we

note that, in general, a Fourier coefficient Fξ of an automorphic form F on GSp(1, 1)(A)
satisfies

Fξ

((
t 0

0 1

)
g

)
= Ftξ(g) (t ∈ Q×).

We then see that the problem determining Fξ is reduced to the case where ξ is primitive.

2.5. Notations for the quadratic extensions.

In what follows, we denote Eξ = Q(ξ) simply by E for ξ ∈ B− \ {0}. Towards the

statement of the explicit formula for the Bessel periods we prepare notations for this

quadratic extension.

Let dξ denote the discriminant of E = Eξ. We introduce two rational numbers

a :=

{
2
√
−n(ξ)

√
dξ (dξ is odd)√

−n(ξ)
√
dξ (dξ is even)

, b := ξ2 − a2

4
.

With these a and b we define ιξ : E× ↪→ GL2(Q) by

ιξ(x+ yξ) = x · 12 + y ·
(
a/2 b

1 −a/2

)
(x, y ∈ Q).

Put r = 2
√
n(ξ)/

√
dξ ∈ Q× and θ := r−1(ξ − a/2). Then {1, θ} forms a Z-basis of the

integer ring OE of E (cf. [19, Lemma 4.3.1 (i)]). We can rewrite ιξ as

ιξ(x+ yθ) =

(
x −rNE/Q(θ)y

r−1y x+TrE/Q(θ)y

)
(x, y ∈ Q).

The p-adic completion Ep = Qp + Qpθ is a field for an inert or ramified p. If p is split,

we identify Ep with Qp × Qp. The p-adic completion OE,p of OE is Zp + Zpθ, which is

identified with Zp × Zp for a split prime p. The completion E∞ of E at ∞ is identified

with C by

δξ : E∞ ∋ x+ yξ 7→ x+ y
√
−n(ξ) ∈ C (x, y ∈ R).

For a Hecke character χ =
∏

v≤∞ χv of R×
+E

×\A×
E , we let w∞(χ) ∈ Z be such that

χ∞(u) = (δξ(u)/|δξ(u)|)w∞(χ) (u ∈ E∞).
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We call w∞(χ) the weight of χ. Furthermore, for each prime v = p < ∞, we let pip(χ)

be the conductor of χ at p and

µp :=
ordp(2ξ)

2 − ordp(dξ)

2
,

which coincides with ordp(r).

2.6. An explicit formula for Bessel periods : Further notations and the

result.

We need further notations to state our formula for Lnc(f, f ′)χξ .

We define γ0 = (γ0,p)p≤∞ ∈ H(A) and γ′0 = (γ′0,p)p<∞ ∈ H ′(Af ) as follows:

γ0,p :=



(
1 0

0 p−µp+ip(χ)

)
(p ∤ D),

12 (p|D and p is inert in E),(
1 0

0 p

)(
0 1

−1 0

)
(p|D and p ramifies in E),(

1 a/2

0 1

)(
n(ξ)1/4 0

0 n(ξ)−1/4

)
(p = ∞),

γ′0,p :=


(
1 0

0 p−µp+ip(χ)

)
(p ∤ dB),

ϖ−1
B,p (p|dB).

Here ϖB,p denotes a prime element of Bp.

In addition, we introduce the following local constants:

Cp(f, ξ, χ) :=



p2µp−ip(χ)(1− δ(ip(χ) > 0)ep(E)p−1) (p ∤ dB),

1

(
p

∣∣∣∣dBD
)
,

2ϵp (p|D and p is inert in E),

(p+ 1)−1 (p|D and p ramifies in E),

where

ep(E) =


−1 (p is inert in E),

0 (p ramifies in E),

1 (p splits in E).

For (f, f ′) ∈ Sκ1(D)×Aκ2 we introduce their toral integrals with respect to χ (cf. [27]):

Pχ(f ;h) :=

∫
R×

+E×\AE

f(ιξ(s)h)χ(s)
−1ds, Pχ(f

′;h′) :=

∫
R×

+E×\A×
E

f ′(sh′)χ(s)−1ds,

where (h, h′) ∈ H(A)×H ′(A). As in [19, Section 2.4] and [20, Section 1.5] we normalize

the measure ds of A×
E so that



136

136 H. Narita

vol(O×
E,p) = 1 for any p <∞, vol(E1

∞) = 1,

where O×
E,p (respectively E1

∞) denotes the unit group of the p-adic completion OE,p of

OE (respectively the group of complex numbers with the norm one). In addition we

normalize the measure of A× so that

vol(Z×
p ) = 1 for any p <∞.

Recall that (σκ, Vκ) denotes the κ-th symmetric tensor representation of H(1) with

the representation space Vκ (cf. Section 2.1). For the forthcoming discussion we need to

describe weight vectors of Vκ explicitly. We realize Vκ by the C-vector space of degree κ

homogeneous polynomials of two variables (X,Y ). We fix a unitary inner product (∗, ∗)κ
of Vκ. For v ∈ Vκ we denote by v∗ the dual vector of Vκ with respect to (∗, ∗)κ. For each
0 ≤ i ≤ κ let vκ,i := XiY κ−i, which is a vector of weight 2i− κ in Vκ.

For a non-zero pure quaternion ξ ∈ H\{0}, namely tr(ξ) = 0, take another non-zero

pure quaternion ρξ ∈ H \ {0} so that ξρξ = −ρξξ. By the well known Skolem–Nöther

theorem, there is a uξ ∈ H(1) such that

uξ{1, i, j, k}u−1
ξ =

{
1, ξ

/√
n(ξ), ρξ

/√
n(ρξ), ξρξ

/√
n(ξρξ)

}
,

where {1, i, j, k} denotes the standard basis of H, which is identical to the Q-basis of

B for dB = 2. With this uξ we put vκ,i(ξ) := σκ(uξ)vκ,i, which is a weight vector for

the R(ξ)×-action via σκ. We will use these notations in the proof of Theorem 2.3 and

Proposition 3.8.

We now recall that we have introduced the local Schwartz–Bruhat space Vv for each

place v of Q and have put V to be the restricted tensor product
⊗′

p<∞Vp × V∞ (see

Section 2.2 or [21, Section 3.2.2]). For each place v let Iv : Vv → Vv be an intertwining

operator of Vv given by the following partial Fourier transform:

Ivφ
((

X1

X2

)
, t

)
:=

∫
Bv

ψv(−t tr(Y X1))φ

((
Y

X2

)
, t

)
dY (φ ∈ Vv, X1, X2 ∈ Bv, t ∈ Q×

v ),

where dY is the Haar measure on Bv self-dual with respect to the paring Bv × Bv ∋
(X,Y ) 7→ ψv(tr(XY )). We put I :=

⊗
v≤∞ Iv ∈ End(V). For ξ ∈ B− \ {0} let us

introduce a Q-algebraic group S(ξ) by

S(ξ)(Q) = {(ιξ(s), s̄−1) | s ∈ Q(ξ)×} ⊂ H(Q)×H ′(Q).

We denote by h(E) and w(E) the class number of E and the number of the roots of

unity in E respectively. By the same reasoning as the proof of [19, Proposition 2.4.1] we

then verify the following integral formula for the Bessel periods (or Fourier coefficients)

of Lnc(f, f ′):

Proposition 2.1. For ξ ∈ B− \ {0} and χ ∈ Xξ, we have

Lnc(f, f ′)χξ (g) =
w(E)

h(E)

∫
(R×

+)2S(ξ)(A)\(H×H′)(A)
Φξ(g, h, h

′)Pχ(f ;h)Pχ(f
′;h′)dhdh′,



137

Jacquet–Langlands–Shimizu correspondence 137

where

Φξ(g, h, h
′) := (I · r(g, h, h′)φnc

0 )

((
ξ + a/2

1

)
, 1

)
(for φnc

0 see Section 2.2).

By the same reasoning as in [19, Theorem 5.1.1] we see the following:

Proposition 2.2. For ξ ∈ B− \ {0}, Lnc(f, f ′)χξ ≡ 0 unless ip(χ) = 0 for any

p|dB and w∞(χ) = −κ1.

Following the normalization of the measures as in [19, Section 3.3], we obtain our

formula for Lnc(f, f ′)χξ , which is a generalization of [19, Theorem 5.2.1] without assuming

κ1 = κ2.

Theorem 2.3. Let (f, f ′) be Hecke eigenforms with the same signature of the

Atkin–Lehner involutions and ξ ∈ B− \ {0} be primitive (cf. (1) and (2) in Section 2.4).

Suppose that χ satisfies ip(χ) = 0 for any p|dB and w∞(χ) = −κ1 (cf. Proposition 2.2).

We then have the following formula :

Lnc(f, f ′)χξ

(
g0,f

(√
η∞ 0

0
√
η∞

−1

))
=

w(E)

h(E)

( ∏
p<∞

Cp(f, ξ, χ)

)
Wκ1,κ2

ξ (η∞)Pχ(f ; γ0)Pχ(f
′; γ′0).

Here, for η∞ ∈ R×
+,

Wκ1,κ2

ξ (η∞) := 2κ1n(ξ)(κ2+2)/4(−
√
−1)κ2−κ1ηκ2/2+2

∞ exp
(
−4πη∞

√
n(ξ)

)
×

(κ2−κ1)/2∑
i=0

(κ2−κ1)/2−i∑
j=0

(
(κ2 − κ1)/2

i

)(
(κ2 − κ1)/2− i

j

)
2(κ2−κ1)−2(i+j)Γ(i+ 1/2)Γ(j + 1/2)

(2πη∞
√
n(ξ))i+j+1

and g0,f = (g0,p)p<∞ ∈ GAf
is given by

g0,p :=

{
diag(pip(χ)−µp , p2(ip(χ)−µp), 1, pip(χ)−µp) (p ∤ dB)
12 (p|dB)

.

Proof. The proof starts with the integral formula in Proposition 2.1. The cal-

culation of the integral is reduced to local ones since the integral is Eulerian. The

non-archimedean local calculations are already settled in [19, Section 6–Section 11]. The

archimedean local calculation is a generalization of [19, Proposition 13.2.2]. With the

reproducing kernel function wκ1 for Sκ1(D) (cf. [19, (12.2)]) the archimedean local part

can be written as
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(R×

+)2S(ξ)(R)\(H×H′)(R)
Φξ

((√
η∞ √

η∞
−1

)
, h∞, h

′
∞

)
wκ1(γ

−1
0,∞h∞)n(h′∞)κ1/2

× (σ(κ1+κ2)/2 ⊗ σ(κ2−κ1)/2(h
′
∞))−1v(κ1+κ2)/2,(κ1+κ2)/2(ξ)⊗ v(κ2−κ1)/2,0(ξ)dh∞dh

′
∞.

Here note that σκ (or the outer tensor product σκ ⊠ σ0) and vξ,κ in the proof of [19,

Proposition 13.2.2] are replaced by the outer tensor product σ(κ1+κ2)/2 ⊠ σ(κ2−κ1)/2 and

v(κ1+κ2)/2,(κ1+κ2)/2(ξ) ⊗ v(κ2−κ1)/2,0(ξ) respectively, and that Pχ(f ; γ0)Pχ(f
′; γ′0) is a

constant multiple of vκ2,(κ1+κ2)/2(ξ) for σκ2
, which is viewed as v(κ1+κ2)/2,(κ1+κ2)/2(ξ)⊗

v(κ2−κ1)/2,0(ξ) via the unique embedding of σκ2 into the inner tensor product σ(κ1+κ2)/2⊗
σ(κ2−κ1)/2, where it is a fundamental fact that the inner tensor product σ(κ1+κ2)/2 ⊗
σ(κ2−κ1)/2 decomposes into irreducible pieces with multiplicity one.

It follows from the argument in [19, Sections 13.2, 13.3] that the above integral is

verified to coincide with I(η∞)v(κ1+κ2)/2,(κ1+κ2)/2(ξ)⊗ v(κ2−κ1)/2,0(ξ), where

I(η∞) =
(
2n(ξ)1/4

)κ1
ηκ2/2+2
∞ (−

√
−1)κ2−κ1

×
∫ ∞

0

∫ ∞

−∞
y(κ1−κ2)/2

(
x2 +

(
y +

√
n(ξ)

)2)(κ2−κ1)/2

exp
(
−2πη∞(y−1(x2 + n(ξ)) + y)

)
dx
dy

y
.

We now carry out the integration with respect to x, and then have

I(η∞) =
(
2n(ξ)1/4

)κ1
ηκ2/2+2
∞ (−

√
−1)κ2−κ1

·
(κ2−κ1)/2∑

i=0

(
(κ2 − κ1)/2

i

)√
n(ξ)

(κ2−κ1)/2−i Γ(i+ 1/2)

(2πη∞)i+1/2

×
∫ ∞

0

√
y

(
y√
n(ξ)

+ 2 +

√
n(ξ)

y

)(κ2−κ1)/2−i

exp

(
−2πη∞

√
n(ξ)

(
y√
n(ξ)

+

√
n(ξ)

y

))
dy

y

=
(
2n(ξ)1/4

)κ1
ηκ2/2+2
∞ (−

√
−1)κ2−κ1

·
(κ2−κ1)/2∑

i=0

(
(κ2 − κ1)/2

i

) √
n(ξ)

(κ2−κ1)/2+1
Γ(i+ 1/2)(

2πη∞
√
n(ξ)

)i+1/2

×
∫ ∞

0

1

2
(
√
y +

√
y
−1

)(y + 2 + y−1)(κ2−κ1)/2−i

exp
(
−2πη∞

√
n(ξ)(y + y−1)

)dy
y
.

Putting t =
√
y −√

y−1, we rewrite this as

(
2n(ξ)1/4

)κ1
ηκ2/2+2
∞ (−

√
−1)κ2−κ1 ·

(κ2−κ1)/2∑
i=0

(
(κ2 − κ1)/2

i

) √
n(ξ)

(κ2−κ1)/2+1
Γ(i+ 1/2)

(2πη∞
√
n(ξ))i+1/2
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×
∫ ∞

−∞
(t2 + 4)(κ2−κ1)/2−i exp

(
−2πη∞

√
n(ξ)(t2 + 2)

)
dt.

Carrying out the integration with respect to t we obtain the formula. □

Clearly the constant w(E)/h(E)(
∏

p<∞ Cp(f, ξ, χ))W
κ1,κ2

ξ (η∞) is non-zero by defi-

nition. As an immediate consequence of the theorem we have the following:

Corollary 2.4. Under the same assumption in Theorem 2.3, the theta lift

Lnc(f, f ′) is non-vanishing if and only if there is a primitive ξ ∈ B− \ {0} and a Hecke

character χ ∈ Xξ of weight w∞(χ) = −κ1 such that

Pχ(f ; γ0)Pχ(f
′; γ′0) ̸= 0.

Remark 2.5. According to Sugano [25, Theorem 2-1], the Fourier coefficient

Lnc(f, f ′)χξ is determined by the evaluation at g0,f

(√
η∞ 0

0
√
η∞

−1

)
(see also [19, Lemma

1.4.2]).

3. Non-vanishing of the theta lifts.

3.1. Review on the results of the toral integrals.

We are going to take up two aspects on the non-vanishing of Lnc(f, f ′) for GSp(1, 1).

For that purpose we need explicit formulas for the square norms of the toral integrals in

terms of central L-values.

Denote by L(π,Ad, s) the adjoint L-function of an automorphic representation π

of GL2(A). We recall that, for Hecke eigenforms (f, f ′) ∈ Sκ1(D) × Aκ2 , π(f) denotes

the automorphic representation of GL2(A) generated by f and JL(π(f ′)) the Jacquet–

Langlands lift of the automorphic representation π(f ′) generated by f ′ (cf. [21, Sec-

tion 3.2.1]).

We now recall that we have used the notation E (respectively χ) to denote Q(ξ) for

a fixed ξ ∈ B− \ {0} (respectively a Hecke character for E). Let Π (respectively Π′) be

the base change lift of π(f) (resp. JL(π(f ′))) to GL2(AE) and let L(Π, χ−1, s) (respec-

tively L(Π′, χ−1, s)) be the L-function of Π (respectively Π′) twisted by χ−1, for which

see [20, Section 2.2]. We fix a unitary inner product (∗, ∗)κ2
of Vκ2

and denote by ∥ ∗ ∥
the norm of Vκ2 induced by this inner product. We denote the norm of f and f ′ by ⟨f, f⟩
and ⟨f ′, f ′⟩ respectively (cf. [20, Sections 2.3 and 2.4]), where we note that the norm

⟨f ′, f ′⟩ is induced by (∗, ∗)κ2 .

We define f ′∞, f ′∞,κ1
∈ Vκ2 as in [20, Section 2.4], where note that w∞(χ) is now

−κ1 instead of −κ in [20, Section 2.4].

We now introduce two finite subsets of rational primes

S1 = {p|D : p is inert in E}, S+
2 (f, χ) = {p|D : p is ramified in E and χp(ϖp) = −ϵp}

with a prime element ϖp of the p-adic completion Ep of E, where ϵp denotes the eigen-

value of the Atkin–Lehner involution of f at p|D (see [21, Proposition 3.3 (1)] and

Section 2.4 (1)). We put δ(D) := ♯{p : p|D} and A(χ) :=
∏

p<∞ pip(χ), which are also

used in [20, Section 2.3].
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Let rp be the ramification index of p in E, i.e.

rp :=

{
1 (p:non-ramified in E)

2 (p:ramified in E)
.

For the quadratic character η of A×/Q× attached to the extension E/Q, Lp(ηp, s) denotes

the p-factor of the L-function L(η, s) for η. We denote by π′′
p the p-component of π(f ′).

Proposition 3.1. Suppose that ip(χ) = 0 for p|dB and w∞(χ) = −κ1.
(1) For a non-zero primitive form f , we have

|Pχ(f ; γ0)|2

⟨f, f⟩
=

C(f, χ)L
(
Π, χ−1,

1

2

)
(S1 = S+

2 (f, χ) = ∅),

0 (otherwise),

with

C(f, χ) :=
2|d(D)|−2|dξ|

∏
p|A(χ) Lp(ηp, 1)

2

D3/2A(χ)L(π(f),Ad, 1)
.

(2) For a non-zero Hecke eigenform f ′, we have

∥Pχ(f
′; γ′0)∥2

⟨f ′, f ′⟩
=


C(f ′, χ)L

(
Π′, χ−1,

1

2

)
(π′′

p |E×
p
= χp when p divides dB and is ramified in E),

0 (otherwise),

where

C(f ′, χ) :=

√
|dξ|(κ2 + 1)

( κ2

(κ1+κ2)/2

)
4A(χ)L(JL(π(f ′)),Ad, 1)

·
∏

p|A(χ)

Lp(ηp, 1)
2 ·
∏
p|dB

rpp
−1 ·

(f ′∞,κ1
, f ′∞,κ1

)κ2

(f ′∞, f
′
∞)κ2

.

Both assertions are explicit versions of the general formula by Waldspurger [27,

Proposition 7]. The first assertion is nothing but [20, Proposition 2.6] and the second

one is obtained by modifying the formula of [20, Proposition 2.7] at the archimedean

place. Regarding the modification on the second formula we state the generalization of

[20, Lemma 3.14] to our case as follows:

Lemma 3.2. We have the following formula for special values of the archimedean

L-factors :

L∞(π′
∞,Ad, 1) = 2−(κ2+1)π−(κ2+3)(κ2 + 1)!,

L∞

(
Π′

∞, χ
−1
∞ ,

1

2

)
= 2−κ2π−(κ2+2)

(
κ1 + κ2

2

)
!

(
κ2 − κ1

2

)
!,

ζ∞(2) = L∞(η∞, 1) = π−1,

where π′
∞, Π′

∞, χ∞ and η∞ denote the archimedean factor of JL(π(f ′)), Π′, χ and η

respectively, and ζ∞ the archimedean factor of the Riemann zeta function.
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3.2. Non-vanishing of the theta lifts to GSp(1, 1) (I): An application of

the non-vanishing modulo p of central L-values.

As an application of the results by Hsieh [11] and Chida–Hsieh [2] we discuss the

non-vanishing of Lnc(f, f ′).

Hsieh [11, Theorem C] (respectively Chida and Hsieh [2, Theorem 5.9]) have

studied the “non-vanishing modulo p” of central L-values L(Π, χ−1, 1/2) (respec-

tively L(Π′, χ−1, 1/2)) in the spirit of the Iwasawa theory. We apply their results to

our situation and have the following:

Theorem 3.3. Let f be a non-zero primitive form and f ′ be a non-zero Hecke

eigenform, and suppose that (f, f ′) has the same signature of the Atkin–Lehner involu-

tions (cf. Section 2.4 (1)).

Take a primitive ξ ∈ B− \ {0} so that dB divides the discriminant of the imaginary

quadratic field E = Q(ξ). Choose a prime l so that l splits in E. In addition to the

assumption w∞(χ) = −κ1 in Proposition 3.1 we suppose that the conductor of χ is a

power of l.

We assume that f (respectively f ′ ) satisfies the local condition S1 = S+
2 (f, χ) = ∅

(respectively π′′
p |E×

p
= χp for p|dB ). We furthermore let Xξ(l)f be the set of Hecke

characters in Xξ of finite order whose conductors are powers of l.

For all but finitely many ν ∈ Xξ(l)f we then have

L

(
Π, (χν)−1,

1

2

)
L

(
Π′, (χν)−1,

1

2

)
̸= 0.

Proof. We first explain the existence of ξ ∈ B− \{0} with the assumption above.

For an imaginary quadratic field E with the discriminant divisible by dB , the p-adic

completion Ep of E is a field for every prime p|dB. This implies that E can be regarded

as a subfield of B (cf. [26, Theoreme 3.8]). As ξ we may take a non-zero primitive element

in E ∩B−.

With the prime l in the assertion we next need the existence of an auxiliary prime

p ̸= l satisfying the assumptions in [2, Theorem 5.9] and [11, Theorem C], where, to

avoid the notational confusion, we should note that p is replaced by l in [2]. For [2,

Theorem 5.9] and [11, Theorem C] just mentioned we make remarks as follows:

1. Among those assumptions, there is an assumption on the existence of a prime

p at which residual Galois representations for f and f ′ modulo p are absolutely

irreducible. It is proved by Ribet [22, Theorem 2.1] that such existence holds for

all but finitely many prime numbers.

2. The condition “l splits in E” in the assertion of the theorem is due to the condition

“(ord)” in [11].

3. Under the assumption that the discriminant of Q(ξ) is divisible by dB, the local

condition “π′′
p |E×

p
= χp for p|dB” (respectively S1 = S+

2 (f, χ) = ∅) is equivalent

to the local condition “(ST)” (respectively Hypothesis A), which is assumed in [2,

Theorem 5.9] (respectively [11, Theorem C]).
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Without difficulty we then verify that we can choose the auxiliary p so that all the

assumptions in [2, Theorem 5.9] and [11, Theorem C] are satisfied. We therefore see

that the theorem is a consequence of [2, Theorem 5.9] and [11, Theorem C]. □

In order to apply this theorem to show the non-vanishing of Lnc(f, f ′) we need the

lemma as follows:

Lemma 3.4. Suppose that the imaginary quadratic field E ⊂ B is not isomorphic

to Q(
√
−1) or Q(

√
−3), and let ξ be a non-zero element of E ∩ B−. For any given

(ϵ0,p)p|dB
∈
∏

p|dB
{±1} and any even integer κ, there exists a Hecke character χ ∈ Xξ

satisfying the following condition :

• the conductor of χ is a power of a prime number l, where l does not divide the

discriminant of E.

• w∞(χ) = κ.

• for p|dB, χp(ϖp) = ϵ0,p with a prime element ϖp.

Proof. We can find a Hecke character χ1 ∈ Xξ (for Xξ see Section 2.3) satisfying

the first and second conditions. In fact, take a Hecke character in Xξ of finite order

with the conductor in the first condition and take a character of E×
∞/R

×
+ ≃ C×/R×

+

of weight κ. Since the cardinalities of unit groups of orders in E are at most two by

the assumption on E (saying E ̸≃ Q(
√
−1) or Q(

√
−3)), such character of E×

∞/R
×
+ is

invariant with respect to the unit group of the integer ring for E and can be thus viewed

as an element in Xξ unramified at every finite prime by the pull back via the projection

A×
E/E

× ·
∏

p<∞ O×
E,p · A× → E×

∞/R
×
+. Then χ1 can be taken as a product of the two

characters.

We next consider a character χ2 :=
∏

p|dB
χ2,p on

∏
p|dB

E×
p /Q×

p O
×
E,p defined by

χ2,p(ϖp) = ϵ0,p · χ1,p(ϖp) for p|dB,

with the unit group O×
E,p of the integer ring for Ep. Here note that χ1,p(ϖp) ∈ {±1}

with the p-component χ1,p of χ1. We now recall again that the assumption on E implies

that the unit group of the integer ring of E is {±1}. Taking this into account we can

show that the canonical map∏
p|dB

E×
p /Q×

p O
×
E,p → A×

E/E
× ·

∏
p<∞

O×
E,p · E

×
∞ · A×

is an injection. In fact, assume that the image of x ∈
∏

p|dB
E×

p belongs to E× ·∏
p<∞ O×

E,p · E×
∞ · A×. Then the E×-part of the image of x/x̄ with the Galois con-

jugate x̄ of x is proved to be in {±1} by the assumption. When it is −1, we can deduce

a contradiction that Ep/Qp is unramified at a prime p|dB . When it is 1, the E×-part of

x is in Q and we then see x ∈
∏

p|dB
QpO

×
E,p. It is then verified that χ2 can be extended

to a Hecke character in Xξ unramified at every finite prime.

As a Hecke character χ in the assertion we can take χ = χ1 · χ2. □
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This lemma implies that, for a non-zero primitive form f and a non-zero Hecke

eigenform f ′, there is a Hecke character χ ∈ Xξ with a suitable ξ ∈ B− \ {0} satisfying

the assumption of Theorem 3.3. With such a χ we see that C(f, χ) ̸= 0 and C(f ′, χ) ̸= 0

for f and f ′ (see Proposition 3.1 for C(f, χ) and C(f ′, χ)), for which we note that

L(π(f),Ad, 1) and L(JL(π(f ′)),Ad, 1) are non-zero since we can relate these to the non-

zero Petersson norms for the non-zero forms f and JL(f ′) (cf. [20, Proposition 2.5]). We

now obtain the following theorem.

Theorem 3.5. Let f and f ′ be a non-zero primitive form and a non-zero Hecke

eigenform respectively. Then the theta lift Lnc(f, f ′) is non-vanishing if and only if

ϵp = ϵ′p for p|D (for this condition see [21, Proposition 3.3 (1)] and Section 2.4 (1)),

for which we note that the non-vanishing of Lnc(f, f ′) holds without the condition on the

ϵ-factors when D = 1.

Proof. According to [21, Proposition 3.3 (1)] the condition “ϵp = ϵ′p for p|D” is

necessary for Lnc(f, f ′) ̸≡ 0. We are going to show that Theorem 3.3 and Lemma 3.4

imply that this condition is also sufficient in view of Corollary 2.4 and Proposition 3.1.

To explain the sufficiency in detail, let us recall that Xξ(l)f is introduced in Theorem 3.3

and consider

Xξ(l)
′
f := {ν ∈ Xξ(l)f : ν(ϖp) = 1 ∀p|dB},

where ϖp denotes a prime element of E = Q(ξ) at p|dB . This set is non-empty

by Lemma 3.4. In fact, it is infinite since Xξ(l)
′
f admits infinitely many conductors.

Lemma 3.4 also implies that there exists a Hecke character χ ∈ Xξ of weight −κ1 such

that χ(ϖp) = ϵ′p for each p|dB, for which we note that χ(ϖp) = ϵp = ϵ′p holds for p|D
by the assumption. Such a χ satisfies the assumptions in Theorem 3.3. Given a Hecke

character χ with the assumption of Theorem 3.3, χν also satisfies the same assumption

as χ for any ν ∈ Xξ(l)
′
f . As a result we see that there exists ν ∈ Xξ(l) such that

Pχν(f ; γ0)Pχν(f
′; γ′0) ̸= 0 for such a χ by virtue of Proposition 3.1 and Theorem 3.3, for

which note that C(f, χν)C(f ′, χν) ̸= 0 holds for ν ∈ Xξ(l)
′
f as is remarked just before

the statement of the theorem. Then Corollary 2.4 yields Lnc(f, f ′) ̸≡ 0. □

3.3. Non-vanishing of the theta lifts to GSp(1, 1) (II): A relation with

special values of hypergeometric functions.

Following the approach of [19, Section 14] we discuss the existence of a non-vanishing

Bessel period Lnc(f, f ′)χξ , which implies Lnc(f, f ′) ̸≡ 0. The approach explained soon is

to reduce the simultaneous non-vanishing of the toral integras (cf. Corollary 2.4) to two

simple conditions (cf. Proposition 3.8). What we stress now is that one of them turns out

to be controlled by some special values of hypergeometric functions. Now recall that the

definition of the hypergeometric function (cf. [28, Chapter XIV]) begins with the series

2F1(a, b; c; z) :=
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
,

where (a)n, (b)n, (c)n denote the shifted factorials often called the Pochhammer symbols.

This series is known to converge for |z| < 1. By the hypergeometric function we mean
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the function obtained by the analytic continuation of the series. What we need is the

hypergeometric functions with parameters a, b in negative integers. These are reduced

to polynomials. Thus we do not have to worry about the problem of the convergence for

such series and can therefore consider their evaluations at any complex numbers.

We let B be the definite quaternion algebra with the discriminant dB = 2, 3 or 7.

This condition of dB implies that dB is prime and the class number of B is equal to one,

which is deduced from Eichler’s trace formula for Brandt matrices (cf. [5, (64)]). The

quaternion algebra B can be expressed as Q+Qi+Qj +Qk with{
i2 = j2 = −1, ij = −ji = k (dB = 2),

i2 = −1, j2 = −dB , ij = −ji = k (dB = 3, 7)

(see [26, p.79, Exemple]). The maximal order O of B is given as
Z
1 + i+ j + k

2
+ Zi+ Zj + Zk (dB = 2),

Z+ Zi+ Z
1 + j

2
+ Z

i+ k

2
(dB = 3, 7)

(see [26, p.98, Exercise 5.2]). As a primitive ξ ∈ B− (cf. Section 2.4) we can take

ξ =

i/2 or
i+ j

2
(dB = 2),

j/2dB (dB = 3, 7).

We then have isomorphisms of quadratic extensions as follows:

Q(ξ) ≃



Q(
√
−1) (ξ = i/2, dB = 2),

Q(
√
−2)

(
ξ =

i+ j

2
, dB = 2

)
,

Q(
√
−3) (ξ = j/dB, dB = 3),

Q(
√
−7) (ξ = j/dB, dB = 7).

This choice of the primitive elements is justified by the following lemma, which is verified

by a direct calculation.

Lemma 3.6. Let (a−)∗ := {x ∈ B− | tr(z̄w) ∈ Z, ∀w ∈ a ∩B−}. We have

(a−)∗ =



Z
i

2
+ Z

j

2
+ Z

k

2
(dB = D = 2),

Z
i

2
+ Z

i− j + k

4
+ Z

i− j − k

4
(D = 1, dB = 2),

Z
dBi− k

2dB
+ Z

j

2dB
+ Z

k

dB
(dB = D = 3, 7),

Z
i

dB
+ Z

j

2dB
+ Z

(
i

2dB
+

k

2dB

)
(D = 1, dB = 3, 7),

where note that the level D of f is 1 or dB.
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Remark 3.7. This is a generalization of [19, Lemma 14.2.1]. The second formula

is a correction to the first formula in [19, Lemma 14.2.1]. However, the choice of the

primitive element i/2 in [19, Section 14] remains justified.

We now note that the class number of Q(ξ) is one for all primitive ξs above. In fact,

the prime p equals 2, 3 or 7 if and only if the class number of B with dB = p is one

and the class number of the imaginary quadratic field with the discriminant −p or −4p

is also one. This is valid for our Bs and Q(ξ)s.

Throughout this section we assume that ξ denotes a primitive element given above

and the Hecke character χ of Q(ξ) is unramified at every finite place. Now recall that

we have let (f, f ′) ∈ Sκ1
(D)×Aκ2

. Together with this assumption, assume that f ′ has

the eigenvalue ϵ′p ∈ {±1} with respect to the Atkin–Lehner involution. As in the proof

of [19, Proposition 14.2.2], we can then say in a rough manner that the toral integrals

Pχ(f ; γ0) and Pχ(f
′; γ′0) are reduced to the special values f(γ0) and f

′(γ′0uξ) = ϵ′pf
′(uξ)

(p = 2, 3, 7) respectively (see Section 2.6 for γ0, γ
′
0 and uξ) with the above choice

of B and ξ, where we note the identification uξQ(i)u−1
ξ = Q(ξ/

√
n(ξ)) to verify this.

More precisely, from the proof of [19, Proposition 14.2.2] we see that Pχ(f ; γ0) ̸= 0 and

Pχ(f
′; γ′0) ̸= 0 are equivalent to f(γ0) ̸= 0 and (f ′(uξ), (σκ2(uξ)vκ2,(κ1+κ2)/2)

∗)κ2 =

(σκ2(uξ)
−1f ′(1), σκ2(uξ)

−1v∗κ2,(κ1+κ2)/2
)κ2 = (f ′(1), v∗κ2,(κ1+κ2)/2

)κ2 ̸= 0 respectively

(see Section 2.6 for the inner product (∗, ∗)κ2 and the vector v∗κ2,(κ1+κ2)/2
).

Proposition 3.8. Let (f, f ′) ∈ Sκ1(D) × Aκ2 be Hecke eigenforms with the

working assumption on the signature (cf. Section 2.4 (1)), and let χ as above satisfy

w∞(χ) = −κ1. Suppose that f(γ0) ̸= 0 and (f ′(1), v∗κ2,(κ1+κ2)/2
)κ2 ̸= 0 (see Section 2.6

for v∗κ2,(κ1+κ2)/2
). Then we have

1. Lnc(f, f ′)χξ ̸= 0, thus Lnc(f, f ′) ̸≡ 0,

2. L

(
Π, χ−1,

1

2

)
> 0 and L

(
Π′, χ−1,

1

2

)
> 0.

Proof. The first assertion is verified by the same reasoning as in [19, Proposi-

tion 14.2.2], for which we can take uξ = 1 for the case of ξ = i/2 and dB = 2.

The second assertion follows from Propositions 3.1. In fact, the constants C(f, χ)

and C(f ′, χ) are verified to be positive. Therefore f(γ0) ̸= 0 and (f ′(1), vκ2,(κ1+κ2)/2)κ2 ̸=
0 meaning Pχ(f ; γ0) ̸= 0 and Pχ(f

′, γ′0) ̸= 0 (see the remark just before the proposition)

imply L(Π, χ−1, 1/2) > 0 and L(Π′, χ−1, 1/2) > 0 respectively. □

This is applied to finding examples of non-vanishing Lnc(f, f ′)s, which is stated in

Theorem 3.14. Towards the theorem we begin with the following lemma:

Lemma 3.9. Let (κ1, κ2) ∈ (4Z>0)× (2Z>0) and κ2 ≥ κ1.

(1) Suppose that dB = 2 or 3. Let 2F1(α, β; γ;x) be the hypergeometric functions with

parameters α, β, γ. Suppose that (κ1, κ2) satisfies C
(dB)
κ1,κ2 ̸= 0, where
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C(dB)
κ1,κ2

:=



1 + 2−(κ2−4)/2(−1)κ1/4

(
(κ1 + κ2)/2

(κ2 − κ1)/2

)
2F1

(
−κ2 − κ1

2
,−κ2 − κ1

2
;κ1 + 1;−1

)
(dB = 2),

1 + 2−(κ1−1)

(
(κ1 + κ2)/2

(κ2 − κ1)/2

)
2F1

(
−κ2 − κ1

2
,−κ2 − κ1

2
;κ1 + 1;−3

)
(dB = 3).

Then there is a Hecke eigenform f ′ ∈ Aκ2 such that (f ′(1), v∗κ2,(κ1+κ2)/2
)κ2 ̸= 0.

(2) Suppose that dB = 7. Then the same assertion holds (without the condition as

above on the hypergeometric functions).

Proof. We first note that, for all the dBs above, the class number of B is one,

which implies the isomorphism

Aκ2 ≃ V O×

κ2
:= {v ∈ Vκ2 | σκ2(u)v = v ∀u ∈ O×}.

We put v′ :=
∑

u∈O× σκ2(u)vκ2,(κ1+κ2)/2 ∈ V O×

κ2
. The condition (v′, v∗κ2,(κ1+κ2)/2

)κ2 ̸= 0

implies the existence of a Hecke eigenform f ′ ∈ Aκ2 such that (f ′(1), v∗κ2,(κ1+κ2)/2
)κ2 ̸= 0.

To consider (v′, v∗κ2,(κ1+κ2)/2
)κ2 we note that

R =



{
1, j,

1 + i+ j + k

2
,
1 + i− j + k

2
,
1 + i+ j − k

2
,
1 + i− j − k

2

}
(dB = 2){

1,
1 + j

2
,
−1 + j

2

}
(dB = 3)

{1} (dB = 7)

forms a complete set of representatives for O×/{±1,±i}. This can be referred to as a

well known fact or can be checked by a direct calculation. Since each element of the

subgroup {±1,±i} of O× acts on vκ2,(κ1+κ2)/2 trivially, the problem is thus reduced to

considering (∑
u∈R

σκ2(u)vκ2,(κ1+κ2)/2, v
∗
κ2,(κ1+κ2)/2

)
κ2

.

We only deal with the case of dB = 2 since the case of dB = 3 is considered similarly

and the case of dB = 7 is obvious. By a direct calculation we have the following:

(σκ2(u)vκ2,(κ1+κ2)/2, v
∗
κ2,(κ1+κ2)/2

)κ2

=


1 (u = 1)

0 (u = j)

2−κ2/2(−1)κ1/4

(κ2−κ1)/2∑
i=0

(−1)i
(
(κ1 + κ2)/2

i

)(
(κ2 − κ1)/2

i

)
(u ∈ R \ {1, j})

,

for which see the explanation of σκ2 in [19, Section 1.2]. We thereby obtain
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1

4
(v′, v∗κ2,(κ1+κ2)/2

)κ2

= 1 + 2−(κ2−4)/2(−1)κ1/4 ·
(κ2−κ1)/2∑

i=0

(−1)i
(
(κ1 + κ2)/2

i

)(
(κ2 − κ1)/2

i

)
.

Recalling the definition of the hypergeometric functions 2F1, we have

2F1

(
−κ2 − κ1

2
,−κ2 − κ1

2
;κ1 + 1;−1

)

=

(κ2−κ1)/2∑
i=0

(−1)i
(−(κ2 − κ1)/2)i(−(κ2 − κ1)/2)i

i!(κ1 + 1)i
.

We then verify by a direct calculation that 1/4(v′, v∗κ2,(κ1+κ2)/2
)κ2

coincides with

1 + 2−(κ2−4)/2(−1)κ1/4

(
(κ1 + κ2)/2

(κ2 − κ1)/2

)
2F1

(
−κ2 − κ1

2
,−κ2 − κ1

2
;κ1 + 1;−1

)
.

As a result we verify the assertion. □

Remark 3.10. For the proof above note that {±1, ±i} acts on vκ2,(κ1+κ2)/2 by a

non-trivial character of the cyclic group of order 4 when 4 ∤ κ1. This leads to( ∑
u∈O×

σκ2(u)vκ2,(κ1+κ2)/2, v
∗
κ2,(κ1+κ2)/2

)
κ2

= 0.

With our method we cannot therefore show the existence of a Hecke eigenform f ′ such

that (f ′(1), v∗κ2,(κ1+κ2)/2
)κ2 ̸= 0 for (κ1, κ2) ∈ (2Z>0)

2 such that 4 ∤ κ1.

We now cite the two results by Ebisu [4, Propositions 3.2 and 4.4] and Haagerup–

Schlichtkrull [8, Theorem 1.1] in order to study the non-vanishing of C
(dB)
κ1,κ2 . We first

cite Ebisu’s result:

Proposition 3.11 (Ebisu). Let (κ1, κ2) ∈ (4Z>0)
2. When κ2 ≥ 4κ1 and

(κ1, κ2) ̸= (4, 16) (respectively κ2 ≥ κ1 ) we have C
(dB)
κ1,κ2 ̸= 0 for dB = 2 (respec-

tively dB = 3).

A natural question is how much we can improve the condition κ2 ≥ 4κ1 for the case

of dB = 2, which is due to the limitation of the technique of [4] by means of the three

term relations of the hypergeometric series. We next review the result by Haagerup–

Schlichtkrull [8] to make some improvement of Ebisu’s result above for dB = 2. For that

purpose we need to introduce the Jacobi polynomials:

P (α,β)
n (x) :=

(
1 + x

2

)n
Γ(n+ α+ 1)

Γ(α+ 1)Γ(n+ 1)
2F1

(
−n,−n− β;α+ 1;

x− 1

x+ 1

)
for a non-negative integer n and two real numbers (α, β) with α > −1, β > −1. By

Pfaff’s transformation formula (cf. [1, Theorem 2.2.5]) this coincides with
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Γ(n+ α+ 1)

Γ(α+ 1)Γ(n+ 1)
2F1

(
−n, n+ α+ β + 1;α+ 1;

1− x

2

)
,

which is the definition in [8]. From [8, Theorem 1.1] we deduce the following formula:

Proposition 3.12. Let (κ1, κ2) ∈ (2Z>0)
2 satisfy κ2 ≥ κ1.

(1) We have ∣∣∣P (κ1,0)
(κ2−κ1)/2

(0)
∣∣∣ < 3 · 2κ1/2+2

4
√
κ2 + 1

.

(2) Suppose that 4|κ1. Let κ2 ≥ 164 · 34 − 1. We have C
(dB)
κ1,κ2 ̸= 0 for dB = 2.

Proof. The first assertion is a consequence of the formula in [8, Theorem 1.1] for

α = κ1, β = 0 and n = (κ2 − κ1)/2, where note that the constant C in [8, Theorem 1.1]

is estimated as C < 12 as is remarked in [8] just after the theorem. To verify the second

assertion, we note that C
(2)
κ1,κ2 ̸= 0 is equivalent to P

(κ1,0)
(κ2−κ1)/2

(0) ̸= (−1)κ1/4+12(κ1−4)/2.

For the assumption 4|κ1 see Remark 3.10. We then see by computing the inequality

(3 · 2κ1/2+2)/ 4
√
κ2 + 1 ≤ 2(κ1−4)/2 that the second assertion is a consequence of the first

assertion. □

We next show the lemma on the existence of Hecke-eigen cusp forms or primitive

cusp forms with non-zero toral integrals, which have been proved to be reduced to the

condition f(γ0) ̸= 0 mentioned above. It is not easy to find such Hecke-eigen cusp forms

in general. In our setting we are however able to show their existence by finding cusp

forms with non-zero toral integrals whose Hecke-eigen property are known only for cases

of small weights.

Lemma 3.13. (1) Let κ ≥ 12 be divisible by 4. There is a Hecke eigenform

f ∈ Sκ(1) such that f(γ0) ̸= 0.

(2) Let κ ≥ 8 be divisible by 8. There is a primitive form f ∈ Sκ(2) such that

f(γ0) ̸= 0 and ϵ2 = 1.

(3) Let D = 3 or 7 and let κ ≥ 6 be divisible by 12. There is a primitive form

f ∈ Sκ(D) such that f(γ0) ̸= 0 and ϵD = 1.

Proof. For the proof we view elements in Sκ(D) as elliptic cusp forms on the

complex upper half plane h in the usual manner. The first and second assertions are

already proved in [19, Proposition 14.4.1]. We only consider the third assertion, which is

also proved similarly. Let Sprim
κ (D) denote the subspace of Sκ(D) spanned by primitive

forms. For D = 3 or 7 it suffices to find φ ∈ Sprim
κ (D) such that φ is non-zero at the

CM-point of h corresponding to γ0. Let us introduce

(η(z)η(Dz))6l (l ∈ Z>0),

where η(z) denotes the Dedekind eta function on h. According to [3, Proposition 3.2.2],

[14, Chapter III, Section 3, Problems 13] and [17, Numerical Tables, Table A] we know

that S6(3) = Sprim
6 (3) = C(η(z)η(3z))6 and S3(7, (

∗
7 )) = Sprim

3 (7, (∗7 )) = C(η(z)η(7z))3,
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where S3(7, (
∗
7 )) denotes the space of the elliptic cusp forms with Neben-type character

(∗7 ). If we take (η(z)η(Dz))6l as φ, we verify that φ ∈ Sprim
6l (D) for D = 3 or 7 and that

it is non-zero at the CM-point. Furthermore assume that l is even. We can then prove

ϵD = 1 by calculating the signature of the automorphy factor for
((

0 1
−D 0

)
,
√
−1
)
, as we

did in the proof of [19, Proposition 14.4.1]. □

The argument so far leads to a result on the non-vanishing of Lnc(f, f ′)χξ together

with the positivity of the central L-values L(Π, χ−1, 1/2) and L(Π′, χ−1, 1/2) as follows:

Theorem 3.14. As we have assumed, let χ be unramified at every finite place, and

let (κ1, κ2) ∈ (4Z>0)
2. Let (κ1, κ2) satisfy κ2 ≥ 4κ1, κ1 = κ2 or κ2 ≥ 164 · 34 − 1 but

suppose (κ1, κ2) ̸= (4, 16) when dB = 2 (respectively κ2 ≥ κ1 when dB = 3 or dB = 7).

We make further assumptions on (κ1, κ2) as follows :

1. When D = 1, assume that κ1 ≥ 12.

2. When D = 2, assume that κ1 ≥ 8 holds together with 8|κ1.

3. When D = 3 or D = 7, assume that κ1 is divisible by 12.

Then there are Hecke eigenforms (f, f ′) ∈ Sκ1(D)×Aκ2 such that

1. Lnc(f, f ′)χξ ̸≡ 0, thus Lnc(f, f ′) ̸≡ 0,

2. L

(
Π, χ−1,

1

2

)
> 0 and L

(
Π′, χ−1,

1

2

)
> 0.

Proof. This is a consequence of Propositions 3.8, 3.11, 3.12 and Lemmas 3.9,

3.13 above. For the case of dB = 2 and κ1 = κ2 we remark that the assertion is included

in [19, Theorem 14.1.1]. We explain the case of D = 2 in detail since the proof is settled

for other Ds similarly. When κ1 is divisible by 8 the proof of [19, Proposition 14.4.1]

implies that there is a primitive form f of weight κ1 and level two with the signature

ϵ2 = 1. In a manner quite similar to the proof of [19, Lemma 14.3.4 (ii)], we see that

there is a Hecke eigenform f ′ with ϵ′2 = ϵ2 = 1 under the assumption on κ1 and κ2 in

the assertion. For this we note that the condition ϵ′2 = ϵ2 is necessary for Lnc(f, f ′) to

be non-vanishing. This is nothing but one of the working assumptions in Section 2.4.

Under the assumption in the assertion, the three propositions and the two lemmas then

yield the theorem for the case of D = 2. □

Remark 3.15. As we have seen, the results above on C
(2)
κ1,κ2 does not fully cover

the remaining cases for κ2 < 164 · 34 − 1. A natural approach to settle them would

be a computer calculation. However, it seems to require an extremely long time to

carry out such calculation for all the remaining cases. In fact, as κ2 becomes larger, the

total amount of the calculation for all κ1 not larger than κ2 grows enormously. Within

author’s observation by Magma C
(2)
κ1,κ2 = 0 is checked for (κ1, κ2) = (4, 4), (4, 8), (4, 16)

and (12, 16) but any other example of C
(2)
κ1,κ2 = 0 has not been found yet. However,

author’s ability on the computer calculation have not resolved the problem completely.
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In addition, we remark that C
(2)
κ1,κ2s and C

(3)
κ1,κ2s for (κ1, κ2) ∈ (4Z>0)× (2Z>0) with

4 ∤ κ2 are out of Ebisu’s work [4]. The author does not know how to deal with these

remaining cases without a computer.

3.4. Non-vanishing theta lifts to GSp∗(2).

Using the notation of Section 2.2 (see also [21, Section 3.2.2]) we provide examples

of non-vanishing Lc(f, f ′)s for GSp∗(2)(A), which are essentially due to Ibukiyama and

Ihara [13, Section 3.2]. Here recall that (f, f ′) ∈ Sκ1(D)×Aκ2 , where 1 < κ2 + 2 < κ1
by the assumption.

Examples of the non-vanishing lifts by Ibukiyama and Ihara.

For our purpose we consider

θcκ1,κ2
(f ′)(h) :=

∫
R+H′(Q)\H′(A)

(θcκ1,κ2
(1, h, h′), f ′(h′))(κ1+κ2)/2−2,(κ1−κ2)/2−2dh

′

(h ∈ H(A))

for f ′ ∈ Aκ2
, where see Section 2.2 for θcκ1,κ2

and the paring (∗, ∗)(κ1+κ2)/2−2,(κ1−κ2)/2−2.

We have seen that this is a W(κ1+κ2)/2−2,(κ1−κ2)/2−2-valued function, where recall that

W(κ1+κ2)/2−2,(κ1−κ2)/2−2 denotes the representation space of τΛ with Λ = ((κ1+κ2)/2−
2, (κ1 − κ2)/2− 2) (for τΛ see Section 2.1). We now provide the transformation formula

satisfied by local test functions φc
0,∞ and φ0,p for all p < ∞. Since the proof is quite

similar to [18, Lemma 3.1, Lemma 3.2] we only state the formula:

Lemma 3.16. (1) For a finite prime p let Kp := {k ∈ GSp∗(2)(Qp) | gLp = Lp},
Up := {u = (uij) ∈ GL2(Zp) | u21 ∈ DZp} and U ′

p := O×
p . We have

r(kp, up, u
′
p)φ0,p = φ0,p

for any (kp, up, u
′
p) ∈ Kp × Up × U ′

p.

(2) For the infinite place ∞ let K∞ := Sp∗(2)(R), U∞ = SO(2)(R) and U ′
∞ = H(1).

We have

r(k∞, u∞, u
′
∞)φc

0,∞ = j(u∞,
√
−1)−κ1τΛ(k∞)−1 · φc

0,∞ · σκ2(u
′
∞)

for any (k∞, u∞, u
′
∞) ∈ K∞ × U∞ × U ′

∞. Here j(h, z) denotes the usual automorphy

factor for (h, z) ∈ SL2(R)× h with the complex upper half plane h.

The theta function θcκ1,κ2
satisfies the transformation formula exactly as in the above

lemma for each place. From this we can verify the following:

Lemma 3.17. Coefficient functions of θcκ1,κ2
(f ′)(h) are (adelizations of ) elliptic

modular forms of weight κ1 and level D given by theta series attached to harmonic poly-

nomials in Hκ1−4.

Proof. First recall that the representation space W(κ1+κ2)/2−2,(κ1−κ2)/2−2 ⊠ Vκ2

occurs in Hκ1−4 with non-zero multiplicity, in fact, multiplicity one (see Section 2.2, [13,

Section 1.2], [21, Section 3.2.2 (3.1)]). Thus w⊗ f ′(h′) ∈W(κ1+κ2)/2−2,(κ1−κ2)/2−2 ⊠Vκ2
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with w ∈ W(κ1+κ2)/2−2,(κ1−κ2)/2−2 and h′ ∈ H ′(A) can be regarded as a harmonic

polynomial in Hκ1−4. By Φw,f ′(h′) we denote the corresponding harmonic polyno-

mial. We put Lh′ := B2 ∩ (H2 ×
∏

p<∞ Lph
′
p), with h′ := (h′v)v≤∞ ∈ H ′(A). This

depends only on the coset of H ′(Q)\H ′(A)/U ′
∞ ×

∏
p<∞ U ′

p represented by h′, where

note that ♯(H ′(Q)\H ′(A)/U ′
∞ ×

∏
p<∞ U ′

p) is the finite number called the class num-

ber of B. In addition let hz ∈ SL2(R) such that hz ·
√
−1 = z. Given a suitably

normalized inner product (∗, ∗) of W(κ1+κ2)/2−2,(κ1−κ2)/2−2, we have Φw,f ′(h)(X) =

((CX , f
′(h))(κ1+κ2)/2−2,(κ1−κ2)/2−2, w) for X ∈ H2, where recall that H2 ∋ X 7→ CX ∈

Hκ1−4 denotes the reproducing kernel function for Hκ1−4 (cf. Section 2.2).

We can thus write down

j(hz,
√
−1)κ1(θcκ1,κ2

(f ′)(hz), w) =
∑
h′

∑
λ∈Lh′

Φw,f ′(h′)(λ) exp

(
2π

√
−1

n(λ)

n(h′)
z

)

as a function in z ∈ h ≃ SL2(R)/U∞. For the right hand side, the first sum runs

over a complete set of representatives for H ′(Q)\H ′(A)/U ′
∞ ×

∏
p<∞ U ′

p and by n(h′)

we denote the positive generator of the Z ideal generated by the reduced norms of

B ∩ (H ×
∏

p<∞ Ophp). The left hand side defines a well-defined function in z since

it is right U∞-invariant with respect to hz and the right hand side, which is nothing but

a sum of theta series attached to harmonic polynomials, does not depend on the choice

of representatives of H ′(Q)\H ′(A)/U ′
∞ ×

∏
p<∞ U ′

p. Now let us review the strong ap-

proximation theorem Γ0(D)\h ≃ GL(2)(Q)R×
+\GL(2)(A)/U∞ ×

∏
p<∞ Up, where Γ0(D)

denotes the congruence subgroup of level D and by R×
+ we mean the connected compo-

nent of the center of GL(2)(R). We then see from Lemma 3.16 that this is of weight κ1
and level D. □

Ibukiyama and Ihara [13, Section 3.2 (2)] gave examples of non-zero coefficients of

θcκ1,κ2
(f ′) for the following cases:

• (dB, D) = (2, 1), (κ1, κ2) = (12, 0),

• dB = D = 2, (κ1, κ2) = (12, 0),

• dB = D = 3, (κ1, κ2) = (8, 4), (10, 4), (10, 6), (12, 6).

These coefficients are verified to be cusp forms. In fact, for each of these examples, we

have θcκ1,κ2
(f ′)(h) ∈ Cw with a non-zero vector w ∈ W(κ1+κ2)/2−2,(κ1−κ2)/2−2 indepen-

dent of h ∈ H(A) (cf. [13, Section 3.2 (2)]). As an elliptic cusp form f let us take the

non-zero coefficient of θcκ1,κ2
(f ′) in these examples. We then see that the non-vanishing of

Lc(f, f ′)(1) with the identity element 1 ∈ GSp∗(2)(A) is reduced to that of the Petersson

inner product of f , from which the existence of non-zero Lc(f, f ′)s follows immediately.

Proposition 3.18. For the cases above, there are (f, f ′) such that Lc(f, f ′) ̸≡ 0

for GSp∗(2).
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A remark in terms of the Jacquet–Langlands correspondence.

For all the seven cases above dimAκ2 = 1 as is pointed out in [13, Section 3.2 (2)].

Hence Aκ2
for each case has a unique Hecke eigenbasis, say f ′, up to constant mul-

tiples. Together with a primitive form f ∈ Sκ1(D) we can consider the automorphic

representation πc(f, f ′) of GSp∗(2)(A) generated by Lc(f, f ′) and the cuspidal represen-

tation π′(f, JL(f ′)) of GSp(2)(A) given by the theta lift from the cuspidal representation

σ(f, JL(f ′)) of GO(2, 2)(A) (for σ(f, JL(f ′)) see [21, Section 4.4]). As we have shown in

[21, Propositions 4.4, 4.7, Theorem 4.13] these two automorphic representations are irre-

ducible and are involved in the global Jacquet–Langlands correspondence in the sense of

[21, Conjecture 4.2]. We can understand this correspondence explicitly for the seven cases

mentioned above. The archimedean components of π′(f, JL(f ′))s are square-integrable

representations (modulo center) of GSp(2)(R) induced from non-holomorphic discrete

series representation of Sp(2)(R) and these have the same L-parameters with those of

the archimedean components of πc(f, f ′). The archimedean L-parameters are given by

Harish-Chandra parameters (cf. [21, Section 2.3]). Corresponding to the seven cases, the

list of the Harish-Chandra parameters λ is given as follows:

• for (dB , D) = (2, 1), λ = (6, 5),

• for dB = D = 2, λ = (6, 5),

• for dB = D = 3, λ = (6, 1), (7, 2), (8, 1), (9, 2).

As the non-archimedean aspect of this we note that the aforementioned global Jacquet–

Langlands correspondence has the level preserving property meaning that the correspon-

dence should send an automorphic representation of GSp∗(2) (or GSp∗(1, 1)) with a

Kf (D)-invariant vector to an automorphic representation of GSp(2) with a paramodular

new vector of level dBD, where recall that Kf (D) :=
∏

p∤dB/DK1 ×
∏

p|dB/DK2 with

K1 := {g ∈ GSp∗(2)(Qp) | g(O2
p) = O2

p} and K2 := {g ∈ GSp∗(2)(Qp) | g(Op ⊕P−1
p ) =

Op ⊕ P−1
p } (cf. [21, Section 2.2]). We remark that, in the three cases above, Lc(f, f ′)

is Kf (D)-invariant with D = 2, 2, 3 and π′(f, JL(f ′)) has a unique paramodular new

vector of level dBD = 2, 22, 32 respectively.

4. A relation with central L-values.

This section deals with an explicit relation between the square norms of the Bessel

periods and the central values of some convolution type L-functions for Lnc(f, f ′)s, which

leads to the existence of positive central values of the L-functions. Our results here are

the generalizations of Theorem 2.8, Theorem 2.11 and Theorem 2.14 in [20].

4.1. A relation with central L-values I.

By virtue of Theorem 2.3 and Proposition 3.1 we can explicitly relate the square

norm of Lnc(f, f ′)χξ to the product of two central L-values for the two χ−1-twisted L-

functions for Π and Π′.

Theorem 4.1. Under the assumption in Theorem 2.3 we have
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∥Lnc(f, f ′)χξ (g0)∥2

⟨f, f⟩⟨f ′, f ′⟩
= C(f, f ′, ξ, χ)L

(
Π, χ−1,

1

2

)
L

(
Π′, χ−1,

1

2

)
,

where, if π(f ′)p|E×
p
= χp for p|dB ramified in E and S1 = S+

2 (f, χ) = ∅,

C(f, f ′, ξ, χ) =
2|δ(D)|−4(κ2 + 1)

( κ2

(κ1+κ2)/2

)
|dξ|3/2w(E)2

h(E)2A(χ)4D3/2 L(π(f),Ad, 1)L(JL(π(f ′)),Ad, 1)

×
∏
p∤dB

p4µp(1− δ(ip(χ) > 0)ep(E)p−1)−2
∏
p|dB

rpp
−1
∏
p|D

(p+ 1)−2

·Wκ1,κ2

ξ (1)2 ·
(f ′∞,κ1

, f ′∞,κ1
)κ2

(f ′∞, f
′
∞)κ2

,

and C(f, f ′, ξ, χ) = 0 otherwise.

Remark 4.2. In [20, Theorem 2.11] the exponent of 1− δ(ip(χ) > 0)ep(E)p−1 is

denoted mistakenly by 2, but this should be replaced by −2 as in the theorem above. For

this we remark that 1 − δ(ip(χ) > 0)ep(E)p−1 is nothing but Lp(ηp, 1)
−1 (for Lp(ηp, 1)

see Section 3.1).

4.2. A relation with central L-values II.

Let us introduce the global L-function

L(F, χ−1, s) := L∞(F, χ−1, s)×
∏
p<∞

Lp(F, χ
−1, s)

for a Hecke eigenform F ∈ Snc
τΛ(D) (cf. Section 2.1) and χ. Here, with the polynomial

QF,p introduced in [21, Section 4.5.1] for each finite prime p < ∞, the local factors

Lp(F, χ
−1, s) and L∞(F, χ−1, s) are defined for p <∞ and ∞ as follows:

Lp(F, χ
−1, s) :=

{
QF,p(α

χ
pp

−s)−1QF,p(β
χ
p p

−s)−1 (χ is unramified at p <∞),

1 (χ is ramified at p <∞),

L∞(F, χ−1, s) := ΓC

(
s+ κ1 −

1

2

)
ΓC

(
s+

1

2

)
ΓC

(
s+

κ1 + κ2 + 1

2

)
ΓC

(
s+

κ2 − κ1 + 1

2

)
,

where, when χ is unramified at p <∞,

(αχ
p , β

χ
p ) :=


(χp(ϖp,1)

−1, χp(ϖp,2)
−1) (p: split),

(χp(p)
−1,−χp(p)

−1) = (1,−1) (p: inert),

(χp(ϖp)
−1, 0) (p: ramified)

with a prime element ϖp for a ramified prime p and prime elements ϖp,1, ϖp,2 for a

split prime p such that p = ϖp,1ϖp,2. This L-function can be viewed as a convolution

type L-function of GSp(2)×GL(2) for the cuspidal representation generated by a Hecke

eigenform F and the dihedral representation attached of χ−1.

To explain the archimedean factor we remark that the archimedean local L-function

of GSp(2)×GL(2) is defined as
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ΓC

(
s+

λ1 − λ2
2

+ |l|
)
ΓC

(
s+

λ1 + λ2
2

+ |l|
)

ΓC

(
s+

∣∣∣∣λ1 − λ2
2

− |l|
∣∣∣∣) ΓC

(
s+

∣∣∣∣λ1 + λ2
2

− |l|
∣∣∣∣)

for a general Harish-Chandra parameter (λ1, λ2) ∈ ΞI (for the notation ΞI see [21, Sec-

tion 2.3]) and for a general χ of weight w∞(χ) = 2l (for w∞(χ) see Section 2.5). Putting

(λ1, λ2) = ((κ1 + κ2)/2, (κ2 − κ1)/2 + 1) and l = −κ1/2, we have the definition of the

archimedean factor L∞(F, χ−1, s), which coincides with that of L(Π, χ−1, s)L(Π′, χ−1, s).

On the other hand, according to [21, Proposition 4.9], we know that, at each finite

prime p, the polynomial QF,p defines the local spinor L-functions for all spherical repre-

sentations of GSp(1, 1)(Qp), which are (irreducible constituents of) unramified principal

series representations of GSp(2)(Qp) for p ∤ dB . This definition is justified by the explicit

classification of irreducible admissible representations of GSp(2)(Qp) involved in the local

Jacquet–Langlands correspondence with the spherical representations (cf. [21, Appen-

dix, A4]). Now recall that π′(f, JL(f ′)) denotes the cuspidal representation of GSp(2)(A)
given by the theta lift from σ(f, JL(f ′)) (cf. [21, Section 4.4]) and that all of its local com-

ponents fit into the local Jacqeut–Langlands correspondence with the local components

of the cuspidal representation π(f, f ′) generated by Lnc(f, f ′) (cf. [21, Theorem 4.13]).

We can thereby similarly define the L-function L(π′(f, JL(f ′)), χ−1, s) of convolution

type for π′(f, JL(f ′)) with the global spinor L-function L(π′(f, JL(f ′)), spin, s) (which

coincides with L(Lnc(f, f ′), spin, s)) and the Hecke character χ−1.

Proposition 4.3. We have

L(Lnc(f, f ′), χ−1, s) = L(π′(f, JL(f ′)), χ−1, s) = L(Π, χ−1, s)L(Π′, χ−1, s).

This is an entire function of s and satisfies the functional equation

L(Lnc(f, f ′), χ−1, s) = ϵ(Π, χ−1)ϵ(Π′, χ−1)L(Lnc(f, f ′), χ−1, 1− s),

where ϵ(Π, χ−1) (resp. ϵ(Π, χ−1 ) denotes the ϵ-factor of L(Π, χ−1, s) (resp.

L(Π′, χ−1, s)).

This is a generalization of [20, Proposition 2.10] for our situation. The L-function

L(Lnc(f, f ′), χ−1, s) = L(π′(f, JL(f ′)), χ−1, s) is obviously regular at s = 1/2. We are

now able to reformulate Theorem 4.1 as follows:

Theorem 4.4. Let the assumption and the notation be as in Theorem 2.3. We

have

∥Lnc(f, f ′)χξ (g0)∥2

⟨f, f⟩⟨f ′, f ′⟩
= C(f, f ′, ξ, χ) L

(
Lnc(f, f ′), χ−1,

1

2

)
= C(f, f ′, ξ, χ) L

(
π′(f, JL(f ′)), χ−1,

1

2

)
.

Now we take B, O and ξ ∈ B− as in Section 3.3. Suppose that χ ∈ Xξ is unramified
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at every finite place and of weight w∞(χ) = −κ1 at the infinite place. As a consequence

of Theorem 3.14, Theorem 4.4 and the positivity of C(f, f ′, ξ, χ) we have the following.

Corollary 4.5. Let the assumption be as in Theorem 3.14. There exist Hecke

eigenforms (f, f ′) such that L(Π, χ−1, 1/2) > 0 and L(Π′, χ−1, 1/2) > 0 hold simultane-

ously, and thus

L

(
Lnc(f, f ′), χ−1,

1

2

)
= L

(
π′(f, f ′), χ−1,

1

2

)
> 0.

On the other hand, from Theorem 3.3, Proposition 4.3, Theorem 4.4 and the positiv-

ity of C(f, f ′, ξ, χ), we know that the proof of Theorem 3.5 leads to another consequence

as follows:

Corollary 4.6. Under the assumption of Theorem 3.3, there exist infinitely many

ν ∈ Xξ(l)f such that L(Π, (χν)−1, 1/2) > 0 and L(Π′, (χν)−1, 1/2) > 0 hold simultane-

ously, and thus

L

(
Lnc(f, f ′), (χν)−1,

1

2

)
= L

(
π′(f, f ′), (χν)−1,

1

2

)
> 0.

Remark 4.7. The non-archimedean local factors of the convolution type L-

functions are defined also by the local Langlands correspondence of GSp(2) (or GSp(4)).

As is well known, it was established by Gan–Takeda [7]. The “Type I (or Type A)” case

in [7, Section 7] is valid for our case. We have defined non-archimedean local factors of

the spinor L-function of GSp(2) by the polynomial QF,p in the spirit of the classical Hecke

theory (cf. [21, Section 4.5.1]). The L-parameter defined by [7] certainly enables us to

reproduce the non-archimedean local spinor L-functions, and thus also the convolution

type L-functions. In fact, our definition of the non-archimedean local spinor L-functions

are justified by the representation theory in [21, Section 4.5.1], as is explained already.

4.3. Examples of positive central L-values.

To provide examples of Lnc(f, f ′) with the positive central L-values above, we need

examples of Hecke eigenforms (f, f ′) ∈ Sκ1(D)×Aκ2 with non-zero toral integrals, which

are not easy to find in general as we have remarked just before Lemma 3.13. In order

to find examples of Hecke eigenforms in Aκ2 we provide the formula for dimAκ2 with

dB = 2, 3 and 7 as follows:

Lemma 4.8. (1) Let dB = 2.

1. For κ2 divisible by 4 we have

dimAκ2 =


(κ2 + 12)/12 (κ2 ≡ 0 mod 12),

(κ2 − 4)/12 (κ2 ≡ 4 mod 12),

(κ2 + 4)/12 (κ2 ≡ 8 mod 12).
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2. For κ2 not divisible by 4 we have

dimAκ2 =


(κ2 + 6)/12 (κ2 ≡ 0 mod 6),

(κ2 − 2)/12 (κ2 ≡ 2 mod 6),

(κ2 − 10)/12 (κ2 ≡ 4 mod 6).

(2) Let dB = 3.

1. For κ2 divisible by 4 we have

dimAκ2 =


(κ2 + 6)/6 (κ2 ≡ 0 mod 12),

(κ2 + 2)/6 (κ2 ≡ 4 mod 12),

(κ2 + 4)/6 (κ2 ≡ 8 mod 12).

2. For κ2 not divisible by 4 we have

dimAκ2 =


κ2/6 (κ2 ≡ 0 mod 6),

(κ2 − 2)/6 (κ2 ≡ 2 mod 6),

(κ2 − 4)/6 (κ2 ≡ 4 mod 6).

(3) Let dB = 7. We have

dimAκ2 =

{
(κ2 + 2)/2 (4|κ2),
κ2/2 (4 ∤ κ2).

Here note that, for the formulas above, κ2 is non-zero and even when 4 ∤ κ2.

Proof. The formula in the part 1 of (1) is already stated in the proof of [19,

Proposition 14.3.1]. The other formulas in (1), (2) and (3) are proved similarly. These

are obtained by calculating Eichler’s trace formula for Brandt matrices [6, Theorem 5]

(see also[5, (63)]), for which note that dimAκ2 = sκ2(1; dB, 1) for dB = 2, 3 and 7 in

the notation of Eichler. □

Let dB = 2 or 3. Then D = 1, 2 or 3, for which note that D|dB . For dB = 2

(respectively dB = 3) we denote by χ a Hecke character of Q(i) ≃ Q(
√
−1) (respec-

tively Q(j) ≃ Q(
√
−3)) unramified at every finite place with weight w∞(χ) = −κ1. We

provide examples of Hecke eigenforms (f, f ′)s for small (κ1, κ2)s with non-zero toral in-

tegrals with respect to χ. Without one exception they yield examples of (f, f ′) with

L(Lnc(f, f ′), χ−1, 1/2) > 0. In the following examples, the Hecke eigenforms denoted by

f ′0, f
′
1, f

′
2, f

′
3 are realized as

∑
u∈O× σκ2(u)vκ,(κ1+κ2)/2 ∈ V O

κ2
(≃ Aκ2) (see the proof of

Lemma 3.9).

Example 1 ((dB , D) = (2, 1)). The case of D = 1 can be said to be the eas-

iest to find a Hecke eigenform f ∈ Sκ1(D) with the desired properties. In fact, the

non-archimedean local assumptions saying S1 = S+
2 (f, χ) = ∅ in Theorem 3.3 or Propo-

sition 3.1 can be removed. As such f , for example, we have cusp forms ∆, ∆E4, ∆E2
4
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of weight 12, 16, 20, with the Ramanujan delta function ∆ and the Eisenstein se-

ries E4 of weight 4. These three have non-zero toral integrals with respect to χ with

w∞(χ) = −12, −16, −20 respectively (see the proof of [19, Proposition 14.4.1]), and

are Hecke eigen cusp forms since dimSκ1(1) = 1 for κ1 = 12, 16, 20.

On the other hand, from Lemma 4.8, we deduce dimA14 = dimA16 = 1. Thus, up

to scalars, each of A14 and A16 has a unique Hecke eigenbasis, say f ′0 and f ′1 respectively.

We can verify that the Hecke eigenform f ′0 (respectively f
′
1) has the non-zero toral integral

with respect to χ of weight w∞(χ) = −12 (respectively w∞(χ) = −16) since C
(2)
12,14 =

5/8( ̸= 0) is checked by a direct calculation (respectively due to [19, Lemma 14.3.4]).

When (f, f ′) = (∆, f ′0), (∆E4, f
′
1) we have L(Lnc(f, f ′), χ−1, 1/2) > 0 and Corollary 4.6

holds for the unramified Hecke character χ of Q(i) just mentioned. As a further example

we note that, since C
(2)
12,16 = 0 (cf. Remark 3.15), L(Lnc(f, f ′), χ−1, 1/2) = 0 for (f, f ′) =

(∆, f ′1) and χ above with w∞(χ) = −12 though Lnc(f, f ′) is non-vanishing in view of

Theorem 3.5.

For the case of D = 1 we remark that there is no further example of dimAκ2 = 1 for

dB = 3, 7 and κ2 ≥ 12 as the formulas in Lemma 4.8 indicate. Now note that κ2 ≥ κ1
and we are taking κ1 as 12, 16, 20. By the approach above we are not thus able to

provide examples when dB = 3, 7.

Example 2 ((dB, D) = (2, 2)). We know that A8 is one dimensional (for in-

stance see [19, Lemma 14.3.2]) and has a unique Hecke eigenform f ′2, up to scalars.

Consider the eta product (η(z)η(2z))8 ∈ S8(2), which is a Hecke eigenform since

dimS8(2) = 1. In [19, Lemma 14.3.4, Proposition 14.4.1] and their proofs we have

seen that (f, f ′) = ((η(z)η(2z))8, f ′2) and the unramified Hecke character χ of Q(i) with

w∞(χ) = −8 satisfy the assumption of Theorem 3.3. With these (f, f ′) and χ the

positivity L(Lnc(f, f ′), χ−1, 1/2) > 0 and Corollary 4.6 hold.
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