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Ohno-type identities for multiple harmonic sums
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Abstract. We establish Ohno-type identities for multiple harmonic
(g-)sums which generalize Hoffman’s identity and Bradley’s identity. Our re-
sult leads to a new proof of the Ohno-type relation for A-finite multiple zeta
values recently proved by Hirose, Imatomi, Murahara and Saito. As a further
application, we give certain sum formulas for As- or As-finite multiple zeta
values.

1. Introduction.

Let N be a positive integer. Euler [5] proved the following identity for the N-th
harmonic number:

> () -3 8

It is known today that there are various generalizations of Euler’s identity. We call a
tuple of positive integers an index. For an index k = (k1,..., k), we write it in the form

E= {1y by 4+ 1, {1 b + 1, {1}%"1by),

where a1, ...,as,b1,...,bs are positive integers and {1}* means 1, ..., 1 repeated a times,
and then we define its Hoffman dual k¥ by

kv = (alv {1}b1717 az + ]-7 {1}b2717 sy Qs + ]-7 {1}b571)'

Let k = (k1,...,k.) and kY = (I1,...,l5). After Roman [12] (the case r = 1) and
Hernandez [1] (the case s = 1), Hoffman [8] proved

(=1)m=t (N 1
Z L mE \m, ) Z RN R (2)
1<my < <me <N YL T " 1<n;<-<n <N L s

There are also g-analogs of these identities. Let ¢ be a real number satisfying 0 <
g < 1. For an integer m, we define the ¢-integer [m], := (1 — ¢™)/(1 — ¢). When
0 < m < N, we define the g-factorial [m],! := []"",[a]y ([0],! := 1) and the g-binomial
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coefficient (z)q = [N]g!/[m]g![N — m],!. Van Hamme [19] proved a g-analog of Euler’s
identity (1)

N — m(m N n
Z (71)777, lq (m+1)/2 <N) _ Z q"
m=1 [m]q m q n=1 [n]q

After Dilcher [4] (the case r = 1) and Prodinger [11] (the case s = 1), Bradley [3] proved
a g-analog of Hoffman’s identity (2)

>

q(k1—1)m1+~~+(kr—k1)mr . (_1)mr—1q7”7‘(7n7‘+1)/2 ( N)
" q

k
l<mi<emen Mg’ - [melg m,
gt
= > PR (3)
1<n <<ns<N [n1lq -+ [ns]g

The equality (2) or (3) is a kind of duality for multiple harmonic (¢-)sums. Since
the duality relations for (¢-)multiple zeta values are generalized to Ohno’s relations (][9],
[2]), it is natural to ask whether (and how) we can generalize (2) and (3) to Ohno-type
identities. This question was considered by Oyama [10] and more recently by Hirose,
Imatomi, Murahara and Saito [7]. More precisely, they treated identities of the A-finite
multiple zeta values, that is, congruences modulo prime numbers.

In this article, we prove Ohno-type identities which generalize (3) (Theorem 2.1)
and (2) (Corollary 2.2). We stress that our formulas are true identities, not congruences.
This allows us to give, besides a new proof of Hirose-Imatomi—Murahara—Saito’s relation
for A-finite multiple zeta values, sum formulas for As- or As-finite multiple zeta values,
which are congruences modulo square or cube of primes.

2. Main results.

2.1. Ohno-type identity.

For a tuple of non-negative integers e = (eq, ..., e,), we define its weight wt(e) and
depth dep(e) to be eq + --- + e, and 7, respectively. Let J., be the set of all tuples
of non-negative integers e such that wt(e) = e, dep(e) = r, and set J,, := (Jor g Je,r-
For e1, ez € J,r, €1 + e3 denotes the entrywise sum. Similarly, let Ij; , be the set of all
indices k such that wt(k) = k, dep(k) = r, and set I, := Uy Ix,r- By convention,
I.o = {0} is the set consisting only of the empty index.

For k = (ki,...,k;) € I, , and e = (e1,...,€,) € Jy», put

sy = [ (000002,

e
i=1 v

where d;; is Kronecker’s delta. Here, we use the convention that

(-0 oo
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For a positive integer N, k = (k1,...,k-) € I, and e = (e1,...,¢e,) € Jy,, we define
the multiple harmonic g-sums H} (k;¢) and 2} (k;e; q) by

(kl—l)ml-'r”--'r(klr—l)m,,, N
q my—1_m,(m,
Hy(kig) = > D 1y +1>/2( )
q

k
1< <gmeey Ml ey

Akeq = Y

1<m<--<mp <N

q(el+1)m1+~~-+(er+1)mr

[ml]k1+61 . [mT]§r+er ’

We set 2% (k; q) := 25 (k; {0}"; ¢) and 2}, (0; ¢) :== 1. The first main result is the following:

THEOREM 2.1. Let N be a positive integer, e a non-negative integer and k € I, ,
an index. Set s := dep(k"). Then we have

Z b(k;e)Hy(k +e;q) Zz ({1}, Z 2n(kY € q). (4)

ecJe,r e'eJ;s

The case e = 0 gives Bradley’s identity H (k;q) = 24 (k";q). We will prove (4) by
using a certain connected sum in Section 3, based on the same idea used in another paper
of the authors [17]. This proof is new even if one specializes it to Hoffman’s identity.

Let
. _1 m,—1 N
HY (k) := 1%H§(k;q) = Z (k1)k<m )
a 1<my <<m, <N T e AT
1
(n(k) == lim 2y (k; q) = Z ko ke (5)
a—1 L<my < <m, <N T

By taking the limit ¢ — 1 in (4), we obtain the following:

COROLLARY 2.2. Let N be a positive integer, e a non-negative integer and k € I, ,
an index. Set s := dep(k"). Then we have

> bk;e)Hy(k +e) = ZCN {1379) Y (kY +€). (6)
e€e,r e’'ejs

The case e = 0 gives Hoffman’s identity H% (k) = (x (k).
For an application of (6), we recall A-finite multiple zeta values. First we define a

Q-algebra A by
A:< 11 Z/pz>/< P Z/pz>.
p: prime p: prime

For a positive integer N and an index k = (k1,..., k) € L.,, we define the multiple
harmonic sum (y (k) by
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(v (k) == Z %

1<mi<<mp<N T T

(compare with (X (k) given in (5)). We set {n () = (x (@) = 1 by convention. Then the
A-finite multiple zeta values 4(k) and (% (k) are defined by

Ca(k) = (Gp-1(k) mod p) , (k) := (¢5_1 (k) mod p) € A.

Since (—1)m~1 (p;ll) = —1 (mod p) holds for any prime p greater than m, we have

(H;_y (k) mod p) | = —C4 (k).

Moreover, it is known that (% ({1}¢) = 0 for e > 0, while (%(0) = 1. Hence we obtain
the following relation among A-finite multiple zeta values as a corollary of (6).

COROLLARY 2.3 (Hirose-Imatomi-Murahara—Saito [7]). Let e be a non-negative
integer and k € L., an index. Set s := dep(k"). Then we have

> bkie)(k+e)=— > k' +é).

ecJe,r e'€de,s

2.2. Sum formulas for finite multiple zeta values.
Before stating our second main result, let us recall the sum formulas for A-finite
multiple zeta values. First, it is easily seen that

> calk)= Y k) =0, (7)

kel , kel

but this is not an analog of the sum formula for the multiple zeta values [6], since
the admissibility condition k, > 2 is ignored in (7). A more precise analog (and its
generalization) is due to Saito—-Wakabayashi [14]. For integers k,r and i satisfying 1 <
i<r<k,weputly,; ={(ki,....k) €Ixr | ki >2}and Bp_j := (Bp_p mod p), € A,
where B,, denotes the n-th Seki-Bernoulli number. Note that B,_; = 0 if £ is even.

THEOREM 2.4 (Saito-Wakabayashi [14]). Let k,r and i be integers satisfying 1 <
i <r < k. Then, in the ring A, we have equalities

= () (o)

kel v

> am=co{ (D) o (P B

kiGIk,T,i

In particular, if k is even, we see that

Yo k)= Y k) =o0. (8)

kely, r; kely, v
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Our aim is to lift the identities (7) and (8) in A, which represent systems of congruences
modulo (almost all) primes p, to congruences modulo p? or p3, by using the identity (6).
Let n be a positive integer. In accordance with [13], [16], [21], we define a Q-algebra

A, by
A, ::( II Z/p”Z)/( b Z/p"Z>
p: prime p: prime

and the A,-finite multiple zeta values (4, (k) and ¢ (k) by

Ca, (k) = (Cp-1(k) mod p")p, (4, (K) := (¢ (k) mod p")p, € An.

We use the symbol B,_j again to denote the element (B,_j; mod p"), of A,, and put
p = (p mod p"), € A,,. Then our second main result is the following:

THEOREM 2.5 (= Proposition 4.6 + Theorem 5.2 + Theorem 4.7). Let k,r be pos-
itive integers satisfying r < k. Then, in the ring As, we have

> el = o (D) e ¥ cut = (1) S

kel , kel

If k is odd, in the ring As, we have

k+1(k\ Bp_j_ . k+1(k\ Bpi_
5 ety =0 (M) Pz 5 g =S (D) Pt

kel . kel ,

Furthermore, let i be an integer satisfying 1 < i < r and we assume that k is even and
greater than r. Then the equalities

1 0kri Bp_r—1 brri Bp—k—1
k = (=1 r lakv ), P * k — AL Y4
3 Gy = (e B, s gy = e Bt
kelk,m ke]k‘,r,i

hold in As. Here the coefficients ay r; and by r; are given by

= () e {on(F)+ (7)) v (D)
by i <k ; 1) n (_1)“{(k —) <r ]j Z) + <]; B 21> + (=1 (I:: 11) }

We will prove this theorem in Section 4 and Section 5.

3. The proof of Theorem 2.1.

DEFINITION 3.1 (connected sum). Let N be a positive integer, ¢ a real number
satisfying 0 < ¢ < 1 and z an indeterminate. Let r > 0 and s > 0 be integers. For
k= (ki,...,ky) € Jo, satisfying ki, ..., k,—1 > 1and l = (lh,...,l5) € I, 5, we define a
formal power series Z3, (k;l; ¢; z) in « by
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ZN(kslgix) = > Fy(k;m; g 2)C(my, na, g, 2) Fa (I m; g5 2),

1<m < <mp<ny<--<ng<ngp1=N
where

T

megr) = [ml]q .
Fl(k, 5 45 ) . [ml]q _ qmlx Z];[ [ml]q([ml]q — qmix)kq‘,—l
ni . h.’E
C’(mr, ni,q, J,‘) = (_1)m7‘—1qm:7‘(m7‘+1)/2 l[gfr_];'([yzl]q Tgr]q? 7

n;

S q i
By(lin;qz) = H -1
i=1 ([n]

il — a1 2)[nlg
for m = (my,...,m;) and n = (ny,...,ng).

REMARK 3.2. The sum Z%(k;1; ¢; x) consists of two parts

> Fi(k;m;q;z) and > F(ln; g ),

1<my < <mp <N 1<y <-<ns <N

connected by the factor C(m,,n1, ¢, z) (and the relation m, < n1). We call it a connected
sum with the connector C(m,.,n1,q,z). In [17], another type of connected sums is used
to give a new proof of Ohno’s relation for the multiple zeta values and Bradley’s g-analog

of it.

THEOREM 3.3.  For (ki,...,k;) € Jup with ky,..., ke—1 > 1 and (Iy,...,15) € L. 5,

we have

Ik, oo ke + Ll ol q52) = Zn (ke ooy ke L, oo

Moreover, if s > 0, we also have

Ik, o ke + 1,050, .. lssqsx) = Zn(kyy oo ke 1+ 1,

PROOF. The equality (9) follows from the telescoping sum

g €
B a_%l(m]qq% Clm,a,q,2) - [m}qqmqmgj - C(m,
g O
= 3 conaan)

applied to m = m,, n = ny and a = ny in the definition of Z3, (k4, ...,

Similarly, the equality (10) follows from the telescoping sum

Asiqx). (9)

a — 17q,!L‘))

kr; 15l17 cee 7137Q)x)
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L q_aC’(a,n,q7m)
[m]q a—=m
m 1 1 1
= L ([alq . C(CL’I’L,C],!E) T T [a —E:_l]q : C(a+ 1,7’L,q,$) : )
[m]q a—m [n]q q [n]q
1
:C(mvnvq’x) 1
[n]q
applied to m = m,, n = ni, a = my41 in the definition of Z} (k1,...,k +
1a07l177lsaQ’x) O

REMARK 3.4. Let r,s be as in Definition 3.1 and we omit ¢ and x from notation.
If we put Z% (k1 ... keily, ..o ls) == Zi (koo ke — 1, 1) for (ka, ... k) € Loy
and (l1,...,ls) € I s, then we can rewrite the transport relations (9) and (10) into the
following symmetrical form:

Z\]:\/'(kla"'vk?"—i_l;lla-"als):ZJ{}'(kla-"akT;17lla"'alS)7
Zi (ke ke Gl 1) = Z5 (K, o ks 1400, 1) (s> 0).

COROLLARY 3.5. Let N be a positive integer and k = (k1,...,kr) an index. We
define Py (k;q;x), Qn(k;q;x) and Ry (q;x) by

[mi]q - glki=tm: [my]q
Py (k;q;x) i= ——
o2z Tl amn W ey — e Gy - 0
. (71)mrflqmr(mT+1)/2 ( N >
my) ’
q
T qm7
Qn(k;q; ) = —
1§m1§2mrSN};[1 ([milg = qmsa)[milg ™
N th’ —1
Ry(g;x) := H (1 — []) .
h=1 4
Then we have
Py(k;q;z) = Qn (k' ¢; )Ry (g; ). (11)

PrROOF. By applying equalities in Theorem 3.3 wt(k) times, we see that
Z5 (k0 w) = - = Zy (0 kY g3 )
holds by the definition of the Hoffman dual. For example,

251,120 2 201,110 C 25 1,01,10) Y z5a,0:2.1) D 25,(0:3,1)

here we abbreviated Z% (k;l;q;x) as Z3 (k;l)). By definition, we have
N N
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Z% (k0 q; @) > Fy(k;m; g;2)C(my, N, g, )

1<my < <m, <N

= Py(k;q;z)Ry(q;2) "

and
i
Z3(0; kY g w) = > [q]_HqC(m n1, ¢, 2)Fa (kY n; g5 )
1<m<ny < <n, <N "
=Qn(k';q;2).

In the last equality, we have used the partial fraction decomposition

ni

Z [m]q (_1)m—1qm(m—1)/2 B 1
= Imlg —qma Imlglng —mlg! ne1([hlg = ¢hx)
The proof is complete. a

PrOOF OF THEOREM 2.1. By using the expansion formula

e ()

e=0

for a positive integer m and a non-negative integer k, we see that
Z Z (k;e)Hy(k+ e;q)x°
e=0 ecJ. r

and

Q 7Q7 Z ZZN eq

e=0 ecJ. s

Since Ry (q;2) = > oe g 25 ({1}¢; ¢)2*, we obtain the identity (4) by comparing the coef-
ficients of ¢ in (11). O

4. Sum formulas for A,-finite multiple zeta values.

4.1. Auxiliary facts.
We prepare some known facts for finite multiple zeta values.

PROPOSITION 4.1 ([8, Theorems 6.1, 6.2], [20, Theorems 3.1, 3.5]).  Let k1, ko and
ks be positive integers, and assume that | := ki + ko + k3 is odd. Then

k1 +k2\ Bp—ki—k
*k‘,k‘ — _1k2 P—FR1—R2
Gl ) = (- (1 ) B

Gtk k) = {0 () = () P 13

(12)

)
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PROPOSITION 4.2 ([22], [20, Theorem 3.2]).  Let k,r, k1 and ko be positive integers,
and assume that | := k1 + ko is even. Then

* ry B —rk—1
§A2({k} )= k;}ﬂiﬂp, (14)
1 [+1 [+1 B,__

PROPOSITION 4.3 ([15, Corollary 3.16 (42)]). Let n be a positive integer and
k= (k1,...,k.) an index. Then

T

Z(—l)jCAn(kj, s k) o, (Bjas - kr) = 0. (16)
=0

4.2. Computations of sums for A-finite multiple zeta values.
DEFINITION 4.4. Let k,r and ¢ be positive integers satisfying ¢ < r < k. We define
four sums Sk, Sy ., Sk,ri and Sy ., in As by

k,ri

Sk,r’ = Z C.Az(k)7 Sl:,r = Z C;lg(k)7

kel ke[k,'r
Sk?,r,i = Z C.Az (k)7 Sl:,r,i = Z C;‘z (k)
kElk v kel r

For an index k = (ki,...,k,), we set k© := (k1,..., k.1, k. 4+ 1). We can calculate
Sk, and S ., by using the following identity.

1T7Z

COROLLARY 4.5. Let e be a non-negative integer, k € I, an inder and s :=
dep(kY). Then we have

DG Y Gk e

7=0 E/EJ]'YS

= > bk~ k+e) — G,k +e )+ (R +e)Ipf. (17)

ecJer
PROOF. Since a congruence
_(p—1Y\ _ P, P 2
o (71 > 242 (modp?)
m<n<p—1

holds for any odd prime p and any positive integer m with m < p (cf. [16, Lemma 4.1]),
this corollary is a direct consequence of (6). O

PROPOSITION 4.6.  For positive integers k and r such that r < k, we have

k\ Bp_j—
(17t = i = (1) Pt

E+1
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Proor. Let k= (r) and e =k — 7 in (17). Then k¥ = ({1}") and we have
k—r ] k
> Gl 08 = (1) {0 - ok Dp + Calis 0p) 18)
=0

For 0 < j < k—r, ¢4 ,{1}F"9)8*,, . = 0 since both ¢%,({1}*7"77) and S},
are divisible by p by (14) and (7). Therefore, the left hand side of (18) is equal to Sy ,.

On the other hand, the right hand side of (18) is equal to

k Bp_k—1 k+1\ Bp_k-1 k\ Bp—r—1
_pop P _ P
(e () e} - () e
by (14) and (12). Hence we obtain the second equality of the proposition.
By taking .., . of (16), we obtain

r—1 k—r+j
Shr+ Y (=17 >SSk, 4 (—1) Sk, = 0.
j=1 I=j

We see that 5;,;S;_;,_; =0for1<j<r—1andj<Il<k—r+j,since both 5 ; and
Sk_1,r—; are divisible by p by (7). This gives (—1)" 1S, = Sk O
Next we compute S,:’T’i and Sk ;.

THEOREM 4.7. Let k,r and i be positive integers satisfying i < r < k, and assume
that k is even. Then we have

1 0kri Bp_k—1 brri Bp—k—-1
S, = (—1)y—1 ki Dp . i Dp
ki ( ) 2 k+1 D, k,ryi 2 k+1 p,

where

p,ri = (k ; 1) + (—1)7'_14{(]‘; -7 (l f 1) + (]:_11> DT (Ij" - j) }7
O R s e

PrROOF. Letk = (i,r—i+1) and e = k—r—1in (17). Then k" = ({1}*~1,2,{1}"7)
and we have

k—r—1
Y LU TS
j=0
k—r—1 ,. -
i+e—1\(k—i—e—1 . . )
- ; < e )(k:—r—l—e>{c“4"‘(l+6’kze)

~Culitek—ime D+ litek—i—c+pf.  (19)
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For 0 < j < k—r—1, we see that (%, ({1}*77=179)S*, ., ., is a rational multiple of
Bp_t+4rt+jBp—j—r—1p by (14) and Theorem 2.4. Since k is even, one of Bp_p4r4; OF
Byp—j—r—1 is zero. Therefore, the left hand side of (19) is equal to Sj, ..

On the other hand, we can calculate the right hand side of (19) as follows. By (15),
(12) and (13), we have

—Clit+ek—i—e)=C,li+ek—i—el)p+y,(i+ek—i—e+1)p

_;{(_1)”% —i—e) Cjel) (=R (i e) <k ’ji €> n k}

1 L (k+1 e k+1\| Bp_p_1
=) _ 1) — (=1 i+e _1k 1—e—+1 P
2{ (k+1) = (=1) (i+e)}+( ) <i+e> k+1
1 , , k+1 o E+1 \|Bp_r_1
=_1|1- _11+e i 1 1 ite p
2[ (D™ (ke —i—es )(i+e)+( ) (Z+e)<k—i—e) k+1
1 . k+1 Bp_k—1
=211 _l’L 1+4e P
1R (z‘+e+1) k+1
Therefore, the right hand side of (19) is equal to
1P fite—1\ (k—i—e—1 k+1 \|B
1 (e Y g e phdp (2
Z ( )(krle) +(=1) <i+e+1) k+1 (20)

By comparing the coefficient of zF~"=1 in (1 — 2)7*(1 — )~ =D = (1 — z)=(+1),

we see that
kfl ite—1\(k—i—e—1\ (k-1
e k—r—1—¢) r )’
e=0
and by using the partial fraction decomposition

& (—1)° 1 1

Fla) = ;) elk—r—1—-e) z+e az(@+1)--(z+k—7r—-1)

we see that

’“fl ite—1\[k—i—e—1 S(=1)i e e
e=0 e k—r—1—e ite+l

k+1) L

(=D°
(i —D(r—1) Z (k—r—1-e)li+e)i+e+1)(k—i—c¢)

= (-1~

o en 11 Ot
=D e —a {kF() rril U D+ “)}

_ <—1)“{<k—r> <k) * (k_1> * (‘”H(lz_ll)}'
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Thus we have proved the desired formula for Sy ..

Let us take the sum >, ; o1_; Of (16). Then we obtain

r—i k—r+j—1
Shrrr1—i T Z(_l)J Z S13Sh—tr—jr1—iej
j=1 I=j
r—1 k—r+j
+ > (=D SijgrirSto (1) Sk =0 (21)
j=r—itl l=j+1

We know that Sy ;5% ;i 15
r — ¢ and we also know that Sl,j7j+i_TS,:47T7j is a rational multiple of Bp_;Bp_f4i—1D

is a rational multiple of Bp_;_1Bp_p4ip for 1 < j <

forr—i+1<j <r—1by Theorem 2.4 and Proposition 4.6. Since k is even, these are
zero for every [. Therefore, we have

1 bkrrr1—i Bp_k—1 1 Okri Bpoka
Sri:_l’r‘l 3Ty ) P :_17“1 X Y4 . O
ki = (=1) 2 e N i
5. Sum formulas for Ajs-finite multiple zeta values.
For positive integers k£ and r such that r < k, we set
Tiw = Y Cay(k), Th.i= Y (k).
kel kel .
We can calculate Ty, by using the following identity.
COROLLARY 5.1.  Let e be a non-negative integer, k € I., an inder and s :=
dep(kY). Then we have
DoCLHT) Y Gk e
7=0 e'ct; s
= 3 vkie){~Ca, (k) — i (k+ e )p + 4, (R + ) )p
eeJe,r
ke L 1)p? + Gy (R + )T 1)p? . (22)

PROOF.  Since a congruence

o (P

1 1 1 1 1
=-1- Z E - E p— Z ning - E Z ﬁ p2 (mOd p3)

m<n<p—1 m<ni;<ny<p-—1 m<n<p—1

holds for any odd prime p and any positive integer m with m < p (cf. [16, Lemma 4.1]),
this corollary is a direct consequence of (6). O
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From now on, we assume that k& is odd. We recall a formula

k(k+1) Bp k-2 o
2 k42

Cag (k) = — (23)

proved by Sun [18, Theorem 5.1]. Here, p* = (p? mod p3), € As.

THEOREM 5.2. Let k and r be positive integers satisfying r < k, and assume that
k is odd. Then we have

_ k+1(k\ Bp_y—2
), =T = — P 2
( ) k, k,r 2 (T) k+2 p

Proor. Let k= (r) and e = k —r in (22). Then k" = ({1}") and we have
k—r .
> GO,
§=0

k * * * *
= () 4 = G D G (4 0 = Gy 1,1 G (4 1,17}

(24)
Let us fix 0 < j < k —r. By (14) and Proposition 4.6, ¢%,({1}*"77) and T}, . are
divisible by p. Furthermore, if j+r is even (resp. odd), then (%, ({1}F~777) (resp. T7,.,.,.)
is divisible by p?. Therefore, %, ({1}k_r_j)7;*+r7r = 0 and we see that the left hand side
of (24) is equal to T} .. On the other hand, by using Proposition 4.1, Proposition 4.2
and (23), we see that the right hand side of (24) is equal to

p—k—=2 2

O (0
—;{—(k+2)+ <k22>}—(k+2) =

2 k
k+2
__k+1 (k) Bp_k_2p2.

>+k2+3k+1}+(k+1)

2 2

2 \r) k+2
Hence we obtain the second equality of the theorem. By taking >, ., —of (16), we
obtain '

r—1 k—r+j
T+ (17 Y0 DT+ (-1) T = 0.
Jj=1 l=j

Let usfix 1 <j<r—1and j<Il<k-—r+j. By Proposition 4.6, 7 ; and T,j_l)r_j are
divisible by p. Furthermore, if [ is odd (resp. even), then T; ; (resp. Tk*_m_j) is divisible
by p?. Therefore, we see that 1Ty _,,—; = 0 and this gives (-1, = 17 . O
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