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Abstract. We establish Ohno-type identities for multiple harmonic
(q-)sums which generalize Hoffman’s identity and Bradley’s identity. Our re-
sult leads to a new proof of the Ohno-type relation for A-finite multiple zeta
values recently proved by Hirose, Imatomi, Murahara and Saito. As a further

application, we give certain sum formulas for A2- or A3-finite multiple zeta
values.

1. Introduction.

Let N be a positive integer. Euler [5] proved the following identity for the N -th

harmonic number:

N∑
m=1

(−1)m−1

m

(
N

m

)
=

N∑
n=1

1

n
. (1)

It is known today that there are various generalizations of Euler’s identity. We call a

tuple of positive integers an index. For an index k = (k1, . . . , kr), we write it in the form

k = ({1}a1−1, b1 + 1, . . . , {1}as−1−1, bs−1 + 1, {1}as−1, bs),

where a1, . . . , as, b1, . . . , bs are positive integers and {1}a means 1, . . . , 1 repeated a times,

and then we define its Hoffman dual k∨ by

k∨ := (a1, {1}b1−1, a2 + 1, {1}b2−1, . . . , as + 1, {1}bs−1).

Let k = (k1, . . . , kr) and k∨ = (l1, . . . , ls). After Roman [12] (the case r = 1) and

Hernandez [1] (the case s = 1), Hoffman [8] proved

∑
1≤m1≤···≤mr≤N

(−1)mr−1

mk1
1 · · ·mkr

r

(
N

mr

)
=

∑
1≤n1≤···≤ns≤N

1

nl1
1 · · ·nls

s

. (2)

There are also q-analogs of these identities. Let q be a real number satisfying 0 <

q < 1. For an integer m, we define the q-integer [m]q := (1 − qm)/(1 − q). When

0 ≤ m ≤ N , we define the q-factorial [m]q! :=
∏m

a=1[a]q ([0]q! := 1) and the q-binomial
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coefficient
(
N
m

)
q
:= [N ]q!/[m]q![N −m]q!. Van Hamme [19] proved a q-analog of Euler’s

identity (1)

N∑
m=1

(−1)m−1qm(m+1)/2

[m]q

(
N

m

)
q

=

N∑
n=1

qn

[n]q
.

After Dilcher [4] (the case r = 1) and Prodinger [11] (the case s = 1), Bradley [3] proved

a q-analog of Hoffman’s identity (2)

∑
1≤m1≤···≤mr≤N

q(k1−1)m1+···+(kr−1)mr

[m1]
k1
q · · · [mr]

kr
q

· (−1)mr−1qmr(mr+1)/2

(
N

mr

)
q

=
∑

1≤n1≤···≤ns≤N

qn1+···+ns

[n1]
l1
q · · · [ns]

ls
q

. (3)

The equality (2) or (3) is a kind of duality for multiple harmonic (q-)sums. Since

the duality relations for (q-)multiple zeta values are generalized to Ohno’s relations ([9],

[2]), it is natural to ask whether (and how) we can generalize (2) and (3) to Ohno-type

identities. This question was considered by Oyama [10] and more recently by Hirose,

Imatomi, Murahara and Saito [7]. More precisely, they treated identities of the A-finite

multiple zeta values, that is, congruences modulo prime numbers.

In this article, we prove Ohno-type identities which generalize (3) (Theorem 2.1)

and (2) (Corollary 2.2). We stress that our formulas are true identities, not congruences.

This allows us to give, besides a new proof of Hirose–Imatomi–Murahara–Saito’s relation

for A-finite multiple zeta values, sum formulas for A2- or A3-finite multiple zeta values,

which are congruences modulo square or cube of primes.

2. Main results.

2.1. Ohno-type identity.

For a tuple of non-negative integers e = (e1, . . . , er), we define its weight wt(e) and

depth dep(e) to be e1 + · · · + er and r, respectively. Let Je,r be the set of all tuples

of non-negative integers e such that wt(e) = e, dep(e) = r, and set J∗,r :=
∪∞

e=0 Je,r.

For e1, e2 ∈ J∗,r, e1 + e2 denotes the entrywise sum. Similarly, let Ik,r be the set of all

indices k such that wt(k) = k, dep(k) = r, and set I∗,r :=
∪∞

k=0 Ik,r. By convention,

I∗,0 = {∅} is the set consisting only of the empty index.

For k = (k1, . . . , kr) ∈ I∗,r and e = (e1, . . . , er) ∈ J∗,r, put

b(k; e) :=
r∏

i=1

(
ki + ei + δi1 + δir − 2

ei

)
,

where δij is Kronecker’s delta. Here, we use the convention that(
e− 1

e

)
=

{
1 (e = 0),

0 (e > 0).
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For a positive integer N , k = (k1, . . . , kr) ∈ I∗,r and e = (e1, . . . , er) ∈ J∗,r, we define

the multiple harmonic q-sums H⋆
N (k; q) and z⋆N (k;e; q) by

H⋆
N (k; q) :=

∑
1≤m1≤···≤mr≤N

q(k1−1)m1+···+(kr−1)mr

[m1]
k1
q · · · [mr]

kr
q

· (−1)mr−1qmr(mr+1)/2

(
N

mr

)
q

,

z⋆N (k; e; q) :=
∑

1≤m1≤···≤mr≤N

q(e1+1)m1+···+(er+1)mr

[m1]
k1+e1
q · · · [mr]

kr+er
q

.

We set z⋆N (k; q) := z⋆N (k; {0}r; q) and z⋆N (∅; q) := 1. The first main result is the following:

Theorem 2.1. Let N be a positive integer, e a non-negative integer and k ∈ I∗,r
an index. Set s := dep(k∨). Then we have

∑
e∈Je,r

b(k; e)H⋆
N (k + e; q) =

e∑
j=0

z⋆N ({1}e−j ; q)
∑

e′∈Jj,s

z⋆N (k∨;e′; q). (4)

The case e = 0 gives Bradley’s identity H⋆
N (k; q) = z⋆N (k∨; q). We will prove (4) by

using a certain connected sum in Section 3, based on the same idea used in another paper

of the authors [17]. This proof is new even if one specializes it to Hoffman’s identity.

Let

H⋆
N (k) := lim

q→1
H⋆

N (k; q) =
∑

1≤m1≤···≤mr≤N

(−1)mr−1

mk1
1 · · ·mkr

r

(
N

mr

)
,

ζ⋆N (k) := lim
q→1

z⋆N (k; q) =
∑

1≤m1≤···≤mr≤N

1

mk1
1 · · ·mkr

r

. (5)

By taking the limit q → 1 in (4), we obtain the following:

Corollary 2.2. Let N be a positive integer, e a non-negative integer and k ∈ I∗,r
an index. Set s := dep(k∨). Then we have

∑
e∈Je,r

b(k; e)H⋆
N (k + e) =

e∑
j=0

ζ⋆N ({1}e−j)
∑

e′∈Jj,s

ζ⋆N (k∨ + e′). (6)

The case e = 0 gives Hoffman’s identity H⋆
N (k) = ζ⋆N (k∨).

For an application of (6), we recall A-finite multiple zeta values. First we define a

Q-algebra A by

A :=

( ∏
p : prime

Z/pZ

)/ ( ⊕
p : prime

Z/pZ

)
.

For a positive integer N and an index k = (k1, . . . , kr) ∈ I∗,r, we define the multiple

harmonic sum ζN (k) by
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ζN (k) :=
∑

1≤m1<···<mr≤N

1

mk1
1 · · ·mkr

r

(compare with ζ⋆N (k) given in (5)). We set ζN (∅) = ζ⋆N (∅) = 1 by convention. Then the

A-finite multiple zeta values ζA(k) and ζ⋆A(k) are defined by

ζA(k) :=
(
ζp−1(k) mod p

)
p
, ζ⋆A(k) :=

(
ζ⋆p−1(k) mod p

)
p
∈ A.

Since (−1)m−1
(
p−1
m

)
≡ −1 (mod p) holds for any prime p greater than m, we have(

H⋆
p−1(k) mod p

)
p
= −ζ⋆A(k).

Moreover, it is known that ζ⋆A({1}e) = 0 for e > 0, while ζ⋆A(∅) = 1. Hence we obtain

the following relation among A-finite multiple zeta values as a corollary of (6).

Corollary 2.3 (Hirose–Imatomi–Murahara–Saito [7]). Let e be a non-negative

integer and k ∈ I∗,r an index. Set s := dep(k∨). Then we have∑
e∈Je,r

b(k; e)ζ⋆A(k + e) = −
∑

e′∈Je,s

ζ⋆A(k
∨ + e′).

2.2. Sum formulas for finite multiple zeta values.

Before stating our second main result, let us recall the sum formulas for A-finite

multiple zeta values. First, it is easily seen that∑
k∈Ik,r

ζA(k) =
∑

k∈Ik,r

ζ⋆A(k) = 0, (7)

but this is not an analog of the sum formula for the multiple zeta values [6], since

the admissibility condition kr ≥ 2 is ignored in (7). A more precise analog (and its

generalization) is due to Saito–Wakabayashi [14]. For integers k, r and i satisfying 1 ≤
i ≤ r < k, we put Ik,r,i := {(k1, . . . , kr) ∈ Ik,r | ki ≥ 2} and Bp−k := (Bp−k mod p)p ∈ A,

where Bn denotes the n-th Seki–Bernoulli number. Note that Bp−k = 0 if k is even.

Theorem 2.4 (Saito–Wakabayashi [14]). Let k, r and i be integers satisfying 1 ≤
i ≤ r < k. Then, in the ring A, we have equalities∑

k∈Ik,r,i

ζA(k) = (−1)i
{(

k − 1

i− 1

)
+ (−1)r

(
k − 1

r − i

)}
Bp−k

k
,

∑
k∈Ik,r,i

ζ⋆A(k) = (−1)i
{(

k − 1

r − i

)
+ (−1)r

(
k − 1

i− 1

)}
Bp−k

k
.

In particular, if k is even, we see that∑
k∈Ik,r,i

ζA(k) =
∑

k∈Ik,r,i

ζ⋆A(k) = 0. (8)
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Our aim is to lift the identities (7) and (8) in A, which represent systems of congruences

modulo (almost all) primes p, to congruences modulo p2 or p3, by using the identity (6).

Let n be a positive integer. In accordance with [13], [16], [21], we define a Q-algebra

An by

An :=

( ∏
p : prime

Z/pnZ

)/ ( ⊕
p : prime

Z/pnZ

)

and the An-finite multiple zeta values ζAn(k) and ζ⋆An
(k) by

ζAn(k) := (ζp−1(k) mod pn)p, ζ⋆An
(k) := (ζ⋆p−1(k) mod pn)p ∈ An.

We use the symbol Bp−k again to denote the element (Bp−k mod pn)p of An, and put

p := (p mod pn)p ∈ An. Then our second main result is the following:

Theorem 2.5 (= Proposition 4.6 + Theorem 5.2 + Theorem 4.7). Let k, r be pos-

itive integers satisfying r ≤ k. Then, in the ring A2, we have∑
k∈Ik,r

ζA2(k) = (−1)r−1

(
k

r

)
Bp−k−1

k + 1
p,

∑
k∈Ik,r

ζ⋆A2
(k) =

(
k

r

)
Bp−k−1

k + 1
p.

If k is odd, in the ring A3, we have∑
k∈Ik,r

ζA3(k) = (−1)r
k + 1

2

(
k

r

)
Bp−k−2

k + 2
p2,

∑
k∈Ik,r

ζ⋆A3
(k) = −k + 1

2

(
k

r

)
Bp−k−2

k + 2
p2.

Furthermore, let i be an integer satisfying 1 ≤ i ≤ r and we assume that k is even and

greater than r. Then the equalities∑
k∈Ik,r,i

ζA2(k) = (−1)r−1 ak,r,i
2

· Bp−k−1

k + 1
p,

∑
k∈Ik,r,i

ζ⋆A2
(k) =

bk,r,i
2

· Bp−k−1

k + 1
p

hold in A2. Here the coefficients ak,r,i and bk,r,i are given by

ak,r,i :=

(
k − 1

r

)
+ (−1)r−i

{
(k − r)

(
k

i− 1

)
+

(
k − 1

i− 1

)
+ (−1)r−1

(
k − 1

r − i

)}
,

bk,r,i :=

(
k − 1

r

)
+ (−1)i−1

{
(k − r)

(
k

r − i

)
+

(
k − 1

r − i

)
+ (−1)r−1

(
k − 1

i− 1

)}
.

We will prove this theorem in Section 4 and Section 5.

3. The proof of Theorem 2.1.

Definition 3.1 (connected sum). Let N be a positive integer, q a real number

satisfying 0 < q < 1 and x an indeterminate. Let r > 0 and s ≥ 0 be integers. For

k = (k1, . . . , kr) ∈ J∗,r satisfying k1, . . . , kr−1 ≥ 1 and l = (l1, . . . , ls) ∈ I∗,s, we define a

formal power series Z⋆
N (k; l; q;x) in x by
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Z⋆
N (k; l; q;x) :=

∑
1≤m1≤···≤mr≤n1≤···≤ns≤ns+1=N

F1(k;m; q;x)C(mr, n1, q, x)F2(l;n; q;x),

where

F1(k;m; q;x) :=
[m1]q

[m1]q − qm1x

r∏
i=1

q(ki−1)mi

[mi]q([mi]q − qmix)ki−1
· [mr]q
[mr]q − qmrx

,

C(mr, n1, q, x) := (−1)mr−1qmr(mr+1)/2

∏n1

h=1([h]q − qhx)

[mr]q![n1 −mr]q!
,

F2(l;n; q;x) :=
s∏

j=1

qnj

([nj ]q − qnjx)[nj ]
lj−1
q

for m = (m1, . . . ,mr) and n = (n1, . . . , ns).

Remark 3.2. The sum Z⋆
N (k; l; q;x) consists of two parts∑

1≤m1≤···≤mr≤N

F1(k;m; q;x) and
∑

1≤n1≤···≤ns≤N

F2(l;n; q;x),

connected by the factor C(mr, n1, q, x) (and the relationmr ≤ n1). We call it a connected

sum with the connector C(mr, n1, q, x). In [17], another type of connected sums is used

to give a new proof of Ohno’s relation for the multiple zeta values and Bradley’s q-analog

of it.

Theorem 3.3. For (k1, . . . , kr) ∈ J∗,r with k1, . . . , kr−1 ≥ 1 and (l1, . . . , ls) ∈ I∗,s,

we have

Z⋆
N (k1, . . . , kr + 1; l1, . . . , ls; q;x) = Z⋆

N (k1, . . . , kr; 1, l1, . . . , ls; q;x). (9)

Moreover, if s > 0, we also have

Z⋆
N (k1, . . . , kr + 1, 0; l1, . . . , ls; q;x) = Z⋆

N (k1, . . . , kr; 1 + l1, . . . , ls; q;x). (10)

Proof. The equality (9) follows from the telescoping sum

qm

[m]q − qmx
· C(m,n, q, x)

=

n∑
a=m+1

(
qm

[m]q − qmx
· C(m, a, q, x)− qm

[m]q − qmx
· C(m, a− 1, q, x)

)
+

qm

[m]q − qmx
· C(m,m, q, x)

=
n∑

a=m

C(m, a, q, x) · qa

[a]q − qax

applied tom = mr, n = n2 and a = n1 in the definition of Z⋆
N (k1, . . . , kr; 1, l1, . . . , ls; q;x).

Similarly, the equality (10) follows from the telescoping sum
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qm

[m]q

n∑
a=m

q−aC(a, n, q, x)

=
qm

[m]q

n∑
a=m

(
[a]q
qa

· C(a, n, q, x) · 1

[n]q
− [a+ 1]q

qa+1
· C(a+ 1, n, q, x) · 1

[n]q

)
= C(m,n, q, x) · 1

[n]q

applied to m = mr, n = n1, a = mr+1 in the definition of Z⋆
N (k1, . . . , kr +

1, 0; l1, . . . , ls; q;x). □

Remark 3.4. Let r, s be as in Definition 3.1 and we omit q and x from notation.

If we put Z̃⋆
N (k1, . . . , kr; l1, . . . , ls) := Z⋆

N (k1, . . . , kr − 1; l1, . . . , ls) for (k1, . . . , kr) ∈ I∗,r
and (l1, . . . , ls) ∈ I∗,s, then we can rewrite the transport relations (9) and (10) into the

following symmetrical form:

Z̃⋆
N (k1, . . . , kr + 1; l1, . . . , ls) = Z̃⋆

N (k1, . . . , kr; 1, l1, . . . , ls),

Z̃⋆
N (k1, . . . , kr, 1; l1, . . . , ls) = Z̃⋆

N (k1, . . . , kr; 1 + l1, . . . , ls) (s > 0).

Corollary 3.5. Let N be a positive integer and k = (k1, . . . , kr) an index. We

define PN (k; q;x), QN (k; q;x) and RN (q;x) by

PN (k; q;x) :=
∑

1≤m1≤···≤mr≤N

[m1]q
[m1]q − qm1x

r∏
i=1

q(ki−1)mi

[mi]q([mi]q − qmix)ki−1
· [mr]q
[mr]q − qmrx

· (−1)mr−1qmr(mr+1)/2

(
N

mr

)
q

,

QN (k; q;x) :=
∑

1≤m1≤···≤mr≤N

r∏
i=1

qmi

([mi]q − qmix)[mi]
ki−1
q

,

RN (q;x) :=
N∏

h=1

(
1− qhx

[h]q

)−1

.

Then we have

PN (k; q;x) = QN (k∨; q;x)RN (q;x). (11)

Proof. By applying equalities in Theorem 3.3 wt(k) times, we see that

Z⋆
N (k; ∅; q;x) = · · · = Z⋆

N (0;k∨; q;x)

holds by the definition of the Hoffman dual. For example,

Z⋆
N (1, 1, 2; ∅) (9)

= Z⋆
N (1, 1, 1; 1)

(9)
= Z⋆

N (1, 1, 0; 1, 1)
(10)
= Z⋆

N (1, 0; 2, 1)
(10)
= Z⋆

N (0; 3, 1)

(here we abbreviated Z⋆
N (k; l; q;x) as Z⋆

N (k; l)). By definition, we have
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Z⋆
N (k; ∅; q;x) =

∑
1≤m1≤···≤mr≤N

F1(k;m; q;x)C(mr, N, q, x)

= PN (k; q;x)RN (q;x)−1

and

Z⋆
N (0;k∨; q;x) =

∑
1≤m≤n1≤···≤ns≤N

q−m[m]q
[m]q − qmx

C(m,n1, q, x)F2(k
∨;n; q;x)

= QN (k∨; q;x).

In the last equality, we have used the partial fraction decomposition

n1∑
m=1

[m]q
[m]q − qmx

· (−1)m−1qm(m−1)/2

[m]q![n1 −m]q!
=

1∏n1

h=1([h]q − qhx)
.

The proof is complete. □

Proof of Theorem 2.1. By using the expansion formula

1

([m]q − qmx)k
=

∞∑
e=0

(
k + e− 1

e

)
qemxe

[m]k+e
q

for a positive integer m and a non-negative integer k, we see that

PN (k; q;x) =
∞∑
e=0

∑
e∈Je,r

b(k; e)H⋆
N (k + e; q)xe

and

QN (k∨; q;x) =
∞∑
e=0

∑
e∈Je,s

z⋆N (k∨; e; q)xe.

Since RN (q;x) =
∑∞

e=0 z
⋆
N ({1}e; q)xe, we obtain the identity (4) by comparing the coef-

ficients of xe in (11). □

4. Sum formulas for A2-finite multiple zeta values.

4.1. Auxiliary facts.

We prepare some known facts for finite multiple zeta values.

Proposition 4.1 ([8, Theorems 6.1, 6.2], [20, Theorems 3.1, 3.5]). Let k1, k2 and

k3 be positive integers, and assume that l := k1 + k2 + k3 is odd. Then

ζ⋆A(k1, k2) = (−1)k2

(
k1 + k2

k1

)
Bp−k1−k2

k1 + k2
, (12)

ζ⋆A(k1, k2, k3) =
1

2

{
(−1)k3

(
l

k3

)
− (−1)k1

(
l

k1

)}
Bp−l

l
. (13)
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Proposition 4.2 ([22], [20, Theorem 3.2]). Let k, r, k1 and k2 be positive integers,

and assume that l := k1 + k2 is even. Then

ζ⋆A2
({k}r) = k

Bp−rk−1

rk + 1
p, (14)

ζ⋆A2
(k1, k2) =

1

2

{
(−1)k1k2

(
l + 1

k1

)
− (−1)k2k1

(
l + 1

k2

)
+ l

}
Bp−l−1

l + 1
p. (15)

Proposition 4.3 ([15, Corollary 3.16 (42)]). Let n be a positive integer and

k = (k1, . . . , kr) an index. Then

r∑
j=0

(−1)jζAn(kj , . . . , k1) ζ
⋆
An

(kj+1, . . . , kr) = 0. (16)

4.2. Computations of sums for A2-finite multiple zeta values.

Definition 4.4. Let k, r and i be positive integers satisfying i ≤ r ≤ k. We define

four sums Sk,r, S
⋆
k,r, Sk,r,i and S⋆

k,r,i in A2 by

Sk,r :=
∑

k∈Ik,r

ζA2(k), S⋆
k,r :=

∑
k∈Ik,r

ζ⋆A2
(k),

Sk,r,i :=
∑

k∈Ik,r,i

ζA2(k), S⋆
k,r,i :=

∑
k∈Ik,r,i

ζ⋆A2
(k).

For an index k = (k1, . . . , kr), we set k+ := (k1, . . . , kr−1, kr + 1). We can calculate

S⋆
k,r and S⋆

k,r,i by using the following identity.

Corollary 4.5. Let e be a non-negative integer, k ∈ I∗,r an index and s :=

dep(k∨). Then we have

e∑
j=0

ζ⋆A2
({1}e−j)

∑
e′∈Jj,s

ζ⋆A2
(k∨ + e′)

=
∑

e∈Je,r

b(k;e)
{
−ζ⋆A2

(k + e)− ζ⋆A2
(k + e, 1)p+ ζ⋆A2

((k + e)+)p
}
. (17)

Proof. Since a congruence

(−1)m−1

(
p− 1

m

)
≡ −1−

∑
m≤n≤p−1

p

n
+

p

m
(mod p2)

holds for any odd prime p and any positive integer m with m < p (cf. [16, Lemma 4.1]),

this corollary is a direct consequence of (6). □

Proposition 4.6. For positive integers k and r such that r ≤ k, we have

(−1)r−1Sk,r = S⋆
k,r =

(
k

r

)
Bp−k−1

k + 1
p.



682(10)

682 S. Seki and S. Yamamoto

Proof. Let k = (r) and e = k − r in (17). Then k∨ = ({1}r) and we have

k−r∑
j=0

ζ⋆A2
({1}k−r−j)S⋆

j+r,r =

(
k

r

){
−ζA2(k)− ζ⋆A2

(k, 1)p+ ζA2(k + 1)p
}
. (18)

For 0 ≤ j < k − r, ζ⋆A2
({1}k−r−j)S⋆

j+r,r = 0 since both ζ⋆A2
({1}k−r−j) and S⋆

j+r,r

are divisible by p by (14) and (7). Therefore, the left hand side of (18) is equal to S⋆
k,r.

On the other hand, the right hand side of (18) is equal to(
k

r

){
−k

Bp−k−1

k + 1
p+

(
k + 1

k

)
Bp−k−1

k + 1
p

}
=

(
k

r

)
Bp−k−1

k + 1
p

by (14) and (12). Hence we obtain the second equality of the proposition.

By taking
∑

k∈Ik,r
of (16), we obtain

S⋆
k,r +

r−1∑
j=1

(−1)j
k−r+j∑
l=j

Sl,jS
⋆
k−l,r−j + (−1)rSk,r = 0.

We see that Sl,jS
⋆
k−l,r−j = 0 for 1 ≤ j ≤ r− 1 and j ≤ l ≤ k− r+ j, since both Sl,j and

S⋆
k−l,r−j are divisible by p by (7). This gives (−1)r−1Sk,r = S⋆

k,r. □

Next we compute S⋆
k,r,i and Sk,r,i.

Theorem 4.7. Let k, r and i be positive integers satisfying i ≤ r < k, and assume

that k is even. Then we have

Sk,r,i = (−1)r−1 ak,r,i
2

· Bp−k−1

k + 1
p, S⋆

k,r,i =
bk,r,i
2

· Bp−k−1

k + 1
p,

where

ak,r,i =

(
k − 1

r

)
+ (−1)r−i

{
(k − r)

(
k

i− 1

)
+

(
k − 1

i− 1

)
+ (−1)r−1

(
k − 1

r − i

)}
,

bk,r,i =

(
k − 1

r

)
+ (−1)i−1

{
(k − r)

(
k

r − i

)
+

(
k − 1

r − i

)
+ (−1)r−1

(
k − 1

i− 1

)}
.

Proof. Let k = (i, r−i+1) and e = k−r−1 in (17). Then k∨ = ({1}i−1, 2, {1}r−i)

and we have

k−r−1∑
j=0

ζ⋆A2
({1}k−r−1−j)S⋆

j+r+1,r,i

=
k−r−1∑
e=0

(
i+ e− 1

e

)(
k − i− e− 1

k − r − 1− e

){
−ζ⋆A2

(i+ e, k − i− e)

− ζ⋆A2
(i+ e, k − i− e, 1)p+ ζ⋆A2

(i+ e, k − i− e+ 1)p
}
. (19)
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For 0 ≤ j < k − r − 1, we see that ζ⋆A2
({1}k−r−1−j)S⋆

j+r+1,r,i is a rational multiple of

Bp−k+r+jBp−j−r−1p by (14) and Theorem 2.4. Since k is even, one of Bp−k+r+j or

Bp−j−r−1 is zero. Therefore, the left hand side of (19) is equal to S⋆
k,r,i.

On the other hand, we can calculate the right hand side of (19) as follows. By (15),

(12) and (13), we have

− ζ⋆A2
(i+ e, k − i− e)− ζ⋆A2

(i+ e, k − i− e, 1)p+ ζ⋆A2
(i+ e, k − i− e+ 1)p

=

[
−1

2

{
(−1)i+e(k − i− e)

(
k + 1

i+ e

)
− (−1)k−i−e(i+ e)

(
k + 1

k − i− e

)
+ k

}

− 1

2

{
−(k + 1)− (−1)i+e

(
k + 1

i+ e

)}
+ (−1)k−i−e+1

(
k + 1

i+ e

)]
Bp−k−1

k + 1
p

=
1

2

[
1− (−1)i+e(k − i− e+ 1)

(
k + 1

i+ e

)
+ (−1)i+e(i+ e)

(
k + 1

k − i− e

)]
Bp−k−1

k + 1
p

=
1

2

[
1 + (−1)i−1+e

(
k + 1

i+ e+ 1

)]
Bp−k−1

k + 1
p.

Therefore, the right hand side of (19) is equal to

1

2

k−r−1∑
e=0

(
i+ e− 1

e

)(
k − i− e− 1

k − r − 1− e

)[
1 + (−1)i−1+e

(
k + 1

i+ e+ 1

)]
Bp−k−1

k + 1
p. (20)

By comparing the coefficient of xk−r−1 in (1 − x)−i(1 − x)−(r−i+1) = (1 − x)−(r+1),

we see that

k−r−1∑
e=0

(
i+ e− 1

e

)(
k − i− e− 1

k − r − 1− e

)
=

(
k − 1

r

)
,

and by using the partial fraction decomposition

F (x) :=

k−r−1∑
e=0

(−1)e

e!(k − r − 1− e)!
· 1

x+ e
=

1

x(x+ 1) · · · (x+ k − r − 1)
,

we see that

k−r−1∑
e=0

(
i+ e− 1

e

)(
k − i− e− 1

k − r − 1− e

)
· (−1)i−1+e

(
k + 1

i+ e+ 1

)

= (−1)i−1 (k + 1)!

(i− 1)!(r − i)!

k−r−1∑
e=0

(−1)e

e!(k − r − 1− e)!(i+ e)(i+ e+ 1)(k − i− e)

= (−1)i−1 (k + 1)!

(i− 1)!(r − i)!

{
1

k
F (i)− 1

k + 1
F (i+ 1) +

(−1)r−1

k(k + 1)
F (r − i+ 1)

}
= (−1)i−1

{
(k − r)

(
k

r − i

)
+

(
k − 1

r − i

)
+ (−1)r−1

(
k − 1

i− 1

)}
.
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Thus we have proved the desired formula for S⋆
k,r,i.

Let us take the sum
∑

k∈Ik,r,r+1−i
of (16). Then we obtain

S⋆
k,r,r+1−i +

r−i∑
j=1

(−1)j
k−r+j−1∑

l=j

Sl,jS
⋆
k−l,r−j,r+1−i−j

+
r−1∑

j=r−i+1

(−1)j
k−r+j∑
l=j+1

Sl,j,j+i−rS
⋆
k−l,r−j + (−1)rSk,r,i = 0. (21)

We know that Sl,jS
⋆
k−l,r−j,r+1−i−j is a rational multiple of Bp−l−1Bp−k+lp for 1 ≤ j ≤

r − i and we also know that Sl,j,j+i−rS
⋆
k−l,r−j is a rational multiple of Bp−lBp−k+l−1p

for r − i+ 1 ≤ j ≤ r − 1 by Theorem 2.4 and Proposition 4.6. Since k is even, these are

zero for every l. Therefore, we have

Sk,r,i = (−1)r−1 bk,r,r+1−i

2
· Bp−k−1

k + 1
p = (−1)r−1 ak,r,i

2
· Bp−k−1

k + 1
p. □

5. Sum formulas for A3-finite multiple zeta values.

For positive integers k and r such that r ≤ k, we set

Tk,r :=
∑

k∈Ik,r

ζA3
(k), T ⋆

k,r :=
∑

k∈Ik,r

ζ⋆A3
(k).

We can calculate T ⋆
k,r by using the following identity.

Corollary 5.1. Let e be a non-negative integer, k ∈ I∗,r an index and s :=

dep(k∨). Then we have

e∑
j=0

ζ⋆A3
({1}e−j)

∑
e′∈Jj,s

ζ⋆A3
(k∨ + e′)

=
∑

e∈Je,r

b(k; e)
{
−ζ⋆A3

(k + e)− ζ⋆A3
(k + e, 1)p+ ζ⋆A3

((k + e)+)p

− ζ⋆A3
(k + e, 1, 1)p2 + ζ⋆A3

((k + e)+, 1)p2
}
. (22)

Proof. Since a congruence

(−1)m−1

(
p− 1

m

)

≡ −1−

 ∑
m≤n≤p−1

1

n
− 1

m

 p−

 ∑
m≤n1≤n2≤p−1

1

n1n2
− 1

m

∑
m≤n≤p−1

1

n

 p2 (mod p3)

holds for any odd prime p and any positive integer m with m < p (cf. [16, Lemma 4.1]),

this corollary is a direct consequence of (6). □
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From now on, we assume that k is odd. We recall a formula

ζA3(k) = −k(k + 1)

2
· Bp−k−2

k + 2
p2 (23)

proved by Sun [18, Theorem 5.1]. Here, p2 = (p2 mod p3)p ∈ A3.

Theorem 5.2. Let k and r be positive integers satisfying r ≤ k, and assume that

k is odd. Then we have

(−1)r−1Tk,r = T ⋆
k,r = −k + 1

2

(
k

r

)
Bp−k−2

k + 2
p2.

Proof. Let k = (r) and e = k − r in (22). Then k∨ = ({1}r) and we have

k−r∑
j=0

ζ⋆A3
({1}k−r−j)T ⋆

j+r,r

=

(
k

r

){
−ζA3(k)− ζ⋆A3

(k, 1)p+ ζ⋆A3
(k + 1)p− ζ⋆A3

(k, 1, 1)p2 + ζ⋆A3
(k + 1, 1)p2

}
.

(24)

Let us fix 0 ≤ j < k − r. By (14) and Proposition 4.6, ζ⋆A3
({1}k−r−j) and T ⋆

j+r,r are

divisible by p. Furthermore, if j+r is even (resp. odd), then ζ⋆A3
({1}k−r−j) (resp. T ⋆

j+r,r)

is divisible by p2. Therefore, ζ⋆A3
({1}k−r−j)T ⋆

j+r,r = 0 and we see that the left hand side

of (24) is equal to T ⋆
k,r. On the other hand, by using Proposition 4.1, Proposition 4.2

and (23), we see that the right hand side of (24) is equal to(
k

r

)[
k(k + 1)

2
− 1

2

{
−
(
k + 2

k

)
+ k2 + 3k + 1

}
+ (k + 1)

− 1

2

{
−(k + 2) +

(
k + 2

k

)}
− (k + 2)

]
Bp−k−2

k + 2
p2

= −k + 1

2

(
k

r

)
Bp−k−2

k + 2
p2.

Hence we obtain the second equality of the theorem. By taking
∑

k∈Ik,r
of (16), we

obtain

T ⋆
k,r +

r−1∑
j=1

(−1)j
k−r+j∑
l=j

Tl,jT
⋆
k−l,r−j + (−1)rTk,r = 0.

Let us fix 1 ≤ j ≤ r − 1 and j ≤ l ≤ k − r + j. By Proposition 4.6, Tl,j and T ⋆
k−l,r−j are

divisible by p. Furthermore, if l is odd (resp. even), then Tl,j (resp. T ⋆
k−l,r−j) is divisible

by p2. Therefore, we see that Tl,jT
⋆
k−l,r−j = 0 and this gives (−1)r−1Tk,r = T ⋆

k,r. □
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