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Abstract. We compare various notions of weak subsolutions to degen-

erate complex Monge–Ampère equations, showing that they all coincide. This
allows us to give an alternative proof of mixed Monge–Ampère inequalities
due to Ko lodziej and Dinew.

1. Introduction.

Let Ω be a domain of Cn. We consider in this article the notion of subsolution for de-

generate complex Monge–Ampère equations in Ω. These are bounded plurisubharmonic

functions which satisfy

(ddcφ)n ≥ fdV,

where dV denotes the Lebesgue measure and 0 ≤ f ∈ L1(Ω).

This inequality can be interpreted in various senses (pluripotential sense [BT76],

viscosity sense [EGZ11], distribution sense [HL13]) and the goal of this note is to show

that all point of views do coincide.

Main theorem. Assume φ is plurisubharmonic and bounded. The following are

equivalent :

(i) (ddcφ)n ≥ fdV in the pluripotential sense ;

(ii) (ddc(φ ⋆ χε))
n ≥ (f1/n ⋆ χε)

ndV in the classical sense, for all ε > 0;

(iii) ∆Hφ ≥ f1/n in the sense of distributions, for all H ∈ H.

In a particular case when φ and f are continuous, our main theorem was proved by

B locki (see [Bl96, Theorem 3.10]).

The operator ddc = ai∂∂̄ is here normalized so that dV = (ddc|z|2)n is the Euclidean

volume form on Cn. Thus for a smooth function φ,

(ddcφ)n = det

(
∂2φ

∂zj∂z̄k

)
dV.

We let H denote the space of Hermitian positive definite matrix H that are normal-

ized by detH = 1, and let ∆H denote the Laplace operator
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∆Hφ :=
1

n

n∑
j,k=1

hjk
∂2φ

∂zj∂z̄k
.

The functions χε are standard mollifiers, i.e. radial smooth non-negative functions

with compact support in the ε-ball centered at the origin, and such that
∫
χεdV = 1. It

is then classical that the convolutions φ⋆χε are smooth, plurisubharmonic, and decrease

to φ as ε decreases to 0.

When f is moreover continuous, one can also interpret the inequality (ddcφ)n ≥ fdV

in the viscosity sense, as shown in [EGZ11, Proposition 1.5].

Our main theorem easily implies the following result of Ko lodziej [Kol03, Lemma

1.2] (see also [Din09], [DL15]):

Corollary. Assume φ1, . . . , φn are bounded plurisubharmonic functions in Ω,

such that (ddcφi)
n ≥ fidV , where 0 ≤ fi ∈ L1(Ω). Then

ddcφ1 ∧ · · · ∧ ddcφn ≥ f
1/n
1 · · · f1/nn dV.

The note is organized as follows. We start by extending Ko lodziej’s subsolution

theorem (see Theorem 2.1), providing a solution to special Monge–Ampère equations

that we are going to use in the sequel. We prove our main result in Section 3.1. The

starting point is an identification of viscosity subsolutions and pluripotential subsolu-

tions obtained in [EGZ11]. We connect these identifications to mixed Monge–Ampère

inequalities in Section 3.2 and propose some generalizations in Section 3.3.

2. The subsolution theorem.

Let Ω ⋐ Cn be a bounded hyperconvex domain (in the sequel we only need to deal

with the case when Ω is a ball). Let µ be a Borel measure on Ω. If there exists a function

v ∈ PSH(Ω) ∩ L∞(Ω) such that

µ ≤ (ddcv)n in Ω, with lim
Ω∋z→ζ

v(z) = 0, ∀ζ ∈ ∂Ω,

then it was proved by S. Ko lodziej [Kol95] that there exists a unique solution ψ ∈
PSH(Ω) ∩ L∞(Ω) to the equation

(ddcψ)n = µ,

such that limΩ∋z→ζ ψ(z) = 0. We need the following generalization:

Theorem 2.1. Assume µ is a non pluripolar Borel measure on Ω which has finite

total mass. Then there exists a unique function φ ∈ F1(Ω) satisfying

(ddcφ)n = eφµ in Ω. (2.1)

Moreover if µ satisfies µ ≤ (ddcu)n in Ω, for some bounded negative psh function u,

then the solution φ ∈ PSH(Ω) is bounded with u ≤ φ. In particular, if lim supz→ζ u(z) =

0 for every ζ ∈ ∂Ω then the same property holds for φ.
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Before entering into the proof let us recall the definition of Cegrell’s finite energy

classes. We refer the reader to [Ce98], [Ce04] for more details.

A domain Ω is called hyperconvex if there exists a continuous plurisubharmonic

exhaustion function ρ : Ω → [−∞, 0) such that the sublevel sets {ρ < −c} are relatively

compact in Ω, for all constants c > 0.

Let u be a negative plurisubharmonic function in Ω. We recall the following defini-

tions:

• u ∈ E0(Ω) if u is bounded in Ω, u vanishes on the boundary, i.e. limz→∂Ω u(z) = 0,

and
∫
Ω

(ddcu)n < +∞.

• u ∈ E(Ω) if for each z0 ∈ Ω there exists an open neighborhood z0 ∈ Vz0 ⋐ Ω

and a decreasing sequence (uj) ⊂ E0(Ω) such that uj converges to u in Vz0 and

supj
∫
Ω

(ddcuj)
n < +∞.

• u ∈ Ep(Ω), p > 0 if there exists a sequence (uj) in E0(Ω) decreasing to u and

satisfying

sup
j∈N

∫
Ω

(−uj)p(ddcuj)n < +∞.

If we ask additionally that
∫
Ω

(ddcuj)
n is uniformly bounded then by definition

u ∈ Fp(Ω).

It was proved in [Ce98], [Ce04] that the Monge–Ampère operator (ddc)n is well-

defined for functions in E(Ω). Moreover, it was shown in [BGZ09, Theorem A] that

if u ∈ E(Ω) then (ddc max(u,−j))n converges in the strong sense of Borel measures in

Ω ∩ {u > −∞} to (ddcu)n.

Theorem 2.1 was proved in [CK06] using a fixed point argument. We provide in

this note an alternative proof using the variational method, adapting the techniques

developed in Kähler geometry in [BBGZ13] (similar ideas have been used in [ACC12],

[Lu15]).

Proof of Theorem 2.1. Consider

Fµ(ϕ) := E1(ϕ) −
∫
Ω

eϕdµ, ϕ ∈ E1(Ω),

where

E1(ϕ) :=
1

n+ 1

∫
Ω

ϕ(ddcϕ)n.

The Euler-Lagrange equation of Fµ can be computed as follows. Fix ϕ ∈ E1(Ω) and

assume (ϕ(t)) is a smooth path in E1(Ω) starting at ϕ(0) = ϕ with ϕ̇(0) = v ∈ C(X). It

follows from Stokes theorem that

d

dt
E1(ϕ(t))|t=0 =

∫
Ω

v(ddcϕ)n,
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hence

d

dt
Fµ(ϕ(t))|t=0 =

∫
Ω

v(ddcϕ)n −
∫
Ω

veϕdµ.

Thus ϕ is a critical point of the functional Fµ if it is a solution to the complex

Monge–Ampère equation (2.1). It is thus natural to try and extremize Fµ in order to

solve (2.1). We proceed in three steps:

Step 1: Upper semi-continuity of Fµ. Observe first that the functional J(ϕ) :=

−E1(ϕ) = |E1(ϕ)| is a positive proper functional on the space E1(Ω) i.e. its sublevel

subsets

E1
B(Ω) := {ϕ ∈ E1(Ω); 0 ≤ J(ϕ) ≤ B}, B > 0

are compact for the L1-topology. Moreover the functional E1 is upper semi-continuous

on each compact subset E1
B(Ω) for the L1-topology.

The continuity of the functional Lµ : ϕ 7−→
∫
Ω
eϕdµ on each compact subset E1

B(Ω)

follows from the following fact due to Cegrell [Ce98], [ACC12, Lemma 4.1]: if ϕj → ϕ

in E1
B(Ω) then ϕj → ϕ µ-a.e., hence by Lebesgue’s convergence theorem, limj Lµ(ϕj) =

Lµ(ϕ) (we use here the fact that µ is non-pluripolar).

This proves that Fµ is upper semi-continuous on each E1
B(Ω).

Step 2: Coercivity of Fµ. Observe that 0 ≤ eφ ≤ 1 for φ ∈ E1(Ω), hence

Fµ(ϕ) ≤ E1(ϕ).

We infer that Fµ is J−proper on E1(Ω), i.e.

lim
J(ϕ)→+∞

Fµ(ϕ) = −∞.

This implies that the maximum of Fµ on E1(Ω) is localized at a finite level of energy, i.e.

there exists a constant B > 0 such that

sup{Fµ(ϕ);ϕ ∈ E1(Ω)} = sup{Fµ(ϕ);ϕ ∈ E1
B(Ω)},

Since Fµ is upper semi-continuous on the compact set E1
B(Ω), there exists ϕ ∈ E1

B(Ω)

which maximizes Fµ on E1
B(Ω) i.e.

Fµ(ϕ) = inf{Fµ(ψ);ψ ∈ E1
B(Ω)}.

Step 3: ϕ is a critical point of Fµ. Fix a continuous test function χ with compact

support in Ω and set ϕ(t) := PΩ(ϕ+ tχ) for t ∈ R, where PΩ(u) denotes the plurisubhar-

monic envelope of u in Ω.

Observe that ϕ(t) ∈ E1(Ω). Indeed let ρ be a continuous psh exhaustion for Ω such

that ρ < −|χ| on the support of χ. Then ϕ+ |t|ρ ≤ ϕ(t) for t ∈ R. Since ϕ+ |t|ρ ∈ E1(Ω),

it follows that ϕ(t) ∈ E1(Ω). Set
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h(t) := E1(ϕ(t)) −
∫
Ω

eϕ+tχdµ.

Then since ϕ(t) ≤ ϕ + tχ, it follows that h(t) ≤ Fµ(ϕ(t)) ≤ Fµ(ϕ) which means that h

achieves its maximum at the point 0.

On the other hand we know by [BBGZ13], [ACC12], [Lu15] that

d

dt
h(t) |t=0=

∫
Ω

χ(ddcϕ)n −
∫
Ω

χeϕdµ.

Since h achieves its maximum at the point 0, we have h′(0) = 0, hence∫
Ω

χ(ddcϕ)n =

∫
Ω

χeϕdµ.

As the test function χ was arbitrary, this means that the function ϕ is a solution of

the equation (2.1). As µ has finite total mass we actually have that φ ∈ F1(Ω).

We now prove the uniqueness. If ψ ∈ F1(Ω) is another solution to (2.1) then it

follows from the comparison principle [Ce98, Lemma 4.4] that∫
{φ<ψ}

eψdµ =

∫
{φ<ψ}

(ddcψ)n ≤
∫
{φ<ψ}

(ddcφ)n

=

∫
{φ<ψ}

eφdµ ≤
∫
{φ<ψ}

eψdµ.

We infer
∫
{φ<ψ}(eψ − eφ)dµ = 0 hence ψ ≤ φ, µ-almost everywhere and (ddcφ)n-almost

everywhere in Ω. For each ε > 0, since (ddcφ)n vanishes in {φ ≤ ψ − ε} ⊂ {φ < ψ}, it

follows from [BGZ09, Theorem 2.2] that

(ddc max(φ,ψ − ε))n ≥ 1{φ>ψ−ε}(ddcφ)n = (ddcφ)n.

It then follows from the comparison principle [Ce98, Theorem 4.5] that max(φ,ψ−
ε) ≤ φ, for all ε > 0, hence ψ ≤ φ. Reversing the role of φ and ψ in the above argument

gives φ = ψ, proving the uniqueness.

Assume finally that µ ≤ (ddcu)n, where u is a bounded negative psh function in

Ω. Then since φ ≤ 0 we have (ddcφ)n = eφµ ≤ µ ≤ (ddcu)n. Since u is bounded (in

particular it belongs to the domain of definition of the complex Monge–Ampère operator)

and φ ∈ F1(Ω) with (ddcφ)n putting no mass on pluripolar sets, it follows from [BGZ09,

Corollary 2.4] that u ≤ φ. In particular φ vanishes on the boundary ∂Ω if u does so. □

3. The main result.

3.1. Proof of the main result.

Given φ a plurisubharmonic function in a domain Ω, we let

φε(z) = φ ⋆ χε(z) :=

∫
Cn

φ(z − εw)χ(w)dV (w) =

∫
Cn

φ(w)χε(z − w)dV (w)
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denote the standard regularizations of φ defined in Ωε for ε > 0 small enough, where

Ωε = {z ∈ Ω, dist(z, ∂Ω) > ε}.

Here χε are non-negative radial functions with compact support in the ball B(ε) of

radius ε and such that
∫
Cn χεdV = 1, where dV denotes the Euclidean volume form. The

first expression shows that φε is a (positive) sum of plurisubharmonic functions (hence

itself plurisubharmonic) in Ωε, while the second expression shows that φε is smooth in

Ω.

3.1.1. The implication (ii) ⇒ (i).

The mean value property shows that the φε’s decrease to φ as ε decreases to zero.

It follows therefore from Bedford–Taylor’s continuity results [BT76], [BT82] that (ii)

⇒ (i) holds.

3.1.2. The equivalence (ii) ⇔ (iii).

The starting point of (iii) is the classical interpretation of the determinant as an

infimum of traces:

Lemma 3.1.

(detQ)1/n = inf{n−1tr(HQ) ; H ∈ H}.

We first show that (iii) ⇒ (ii). Indeed assume that

∆Hφ ≥ f1/n

for all positive definite Hermitian matrix H normalized by detH = 1. Since ∆H is a

linear operator, we infer

∆H(φ ⋆ χε) ≥ f1/n ⋆ χε.

This inequality holds for all normalized H, hence Lemma 3.1 yields

(ddc(φ ⋆ χε))
n ≥ (f1/n ⋆ χε)

ndV,

where this inequality holds in the classical (pointwise, differential) sense.

We conversely check that (ii) ⇒ (iii). Since φ ⋆ χε is smooth, Lemma 3.1 shows

indeed that

∆H(φ ⋆ χε) ≥ f1/n ⋆ χε

for all normalized H ∈ H. Letting ε → 0 and taking limits in the sense of distributions

yields (iii).

3.1.3. The implication (i) ⇒ (ii).

We finally focus on the most delicate implication.

Step 1: Assume first that (ddcφ)n ≥ fdV , with f continuous. This inequality can be

here interpreted equivalently in the pluripotential or in the viscosity sense, as shown in

[EGZ11, Proposition 1.5], whose proof moreover shows the equivalence with the property
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that

∆Hφ ≥ f1/n for all H ∈ H.

Thus (i) ⇔ (iii) in our main theorem, when f is continuous. Since any lower semi-

continuous function is the increasing limit of continuous functions, the implication (i) ⇒
(iii) immediately extends to the case when f is lower semi-continuous.

It remains to get rid of this extra continuity assumption. We are going to approx-

imate f by continuous densities fk, use the previous result and stability estimates to

conclude. The approximation process, inspired by [Ber13], is somehow delicate, so we

proceed in several steps.

Step 2: Note first that we can assume that f is bounded : we can replace f by

min(f,A) ∈ L∞(Ω) and let eventually A increase to +∞. Since the problem is local, we

can work on fixed balls B′ ⋐ B and use a max construction to modify φ in a neighborhood

of the boundary ∂B, making it equal to the defining function of B.

We fix 0 < δ < 1 and j ∈ N∗. Since f ∈ L2(B) ⊃ L∞(B), it follows from [CP92],

[Kol95] that there exists Uf ∈ PSH(B) ∩ C0(B̄) such that

(ddcUf )n = fdV, Uf = 0 in ∂B.

Set Cj := sup e−jφ/n and observe that

e−jφ {fdV + δ(ddcφ)n} ≤ (ddcv)n

where v := Cj(Uf + φ) is bounded, plurisubharmonic, with v = 0 on ∂B.

By Theorem 2.1 there exists a unique bounded plurisubharmonic solution φj,δ to

the Dirichlet problem

(ddcφj,δ)
n = ej(φj,δ−φ) {fdV + δ(ddcφ)n} (3.1)

in B with boundary values 0.

We now observe that φj,δ uniformly converges to φ, as j → +∞, independently of

the value of δ > 0:

Lemma 3.2. For all j ≥ 1, δ ∈ (0, 1), z ∈ B,

φ(z) − log(1 + δ)

j
≤ φj,δ(z) ≤ φ(z) +

(− log δ)

j
.

Proof. It follows from the comparison principle that φj,δ is the envelope of sub-

solutions. It thus suffices to find good sub/supersolutions to insure that φj,δ converges

to φ, as j → +∞.

Observe that u = φ − (log(1 + δ))/j ≤ φ is plurisubharmonic in B, with boundary

values u|∂B ≤ 0. Moreover

(ddcu)n = (ddcφ)n = ej(u−φ)(1 + δ)(ddcφ)n ≥ ej(u−φ) {fdV + δ(ddcφ)n} ,
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since (ddcφ)n ≥ fdV . Thus u is a subsolution to the Dirichlet problem, showing that

u ≤ φj,δ.

Set now v = φ + (− log δ)/j. This is a plurisubharmonic function in B such that

v ≥ 0 on ∂B and

(ddcv)n = (ddcφ)n = ej(v−φ)δ(ddcφ)n ≤ ej(v−φ) {fdV + δ(ddcφ)n} .

Thus v is a supersolution of the Dirichlet problem hence φj,δ ≤ v. □

Step 3: We now approximate f in L2 by continuous densities 0 ≤ fk, with

||fk − f ||L2 → 0 as k → +∞. Extracting a subsequence and relabelling, we can as-

sume that there exists g ∈ L2(B) such that fk ≤ g for all k ∈ N and fk converges almost

everywhere to f . Arguing as above we obtain

e−jφ {fkdV + δ(ddcφ)n} ≤ (ddcv)n,

where v := Cj(Ug+φ) is bounded, plurisubharmonic, with v = 0 in ∂B. By Theorem 2.1,

there exists a unique bounded plurisubharmonic solution φj,δ,k to the Dirichlet problem

(ddcφj,δ,k)n = ej(φj,δ,k−φ) {fkdV + δ(ddcφ)n}

in B, with zero boundary values.

The comparison principle shows that for all k ∈ N,

Cj(Ug + φ) ≤ φj,δ,k ≤ 0. (3.2)

Thus k 7−→ φj,δ,k is uniformly bounded in B. Extracting and relabelling, we can assume

that it converges to a plurisubharmonic function ψ = ψj,δ in L1(Ω) such that

Cj(Ug + φ) ≤ ψj,δ ≤ 0. (3.3)

We claim that ψj,δ = φj,δ in B. To simplify notations we write uk := φj,δ,k and

u := ψj,δ. From (3.2) and (3.3), it follows that uk = u = 0 in ∂B. On the other hand let

ũℓ := (supk≥ℓ uk)∗ for ℓ ∈ N. This is a decreasing sequence of bounded plurisubharmonic

functions converging to u in B. We infer for all ℓ,

(ddcũℓ)
n ≥ einfk≥ℓ j(uk−φ) inf

k≥ℓ
(fkdV + δ(ddcφ)n).

Letting ℓ→ +∞ yields

(ddcu)n ≥ ej(u−φ) {fdV + δ(ddcφ)n} ,

which implies that u = ψj,δ is a subsolution to the Dirichlet problem for the equation

(3.1). Hence ψj,δ ≤ φj,δ.

By [Kol95] there exists a bounded plurisubharmonic function ρk in B, solution to

the Dirichlet problem

(ddcρk)n = ej(φj,δ−φ)|f − fk|dV, with ρk|∂B = 0,
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with the uniform bound

∥ρk∥L∞(B) ≤ C∥f − fk∥1/nL2(B),

where C > 0 is independent of k. In particular ρk → 0 uniformly in B.

Since fk ≤ f + |f − fk| and ρk ≤ 0 it follows that w := φj,δ + ρk satisfies

(ddcw)n = (ddc(φj,δ + ρk))n ≥ ej(w−φ)(fkdV + δ(ddcφ)n).

The comparison principle insures w ≤ φj,δ,k hence φj,δ ≤ ψj,δ since ρk → 0.

Conclusion. We have thus shown that ψj,δ = φj,δ and φj,δ,k ≥ φj,δ+ρk. Lemma 3.2

yields

j(φj,δ,k − φ) ≥ − log(1 + δ) − jηk,

where ηk := ∥ρk∥L∞(B)
k→+∞→ 0.

Since fk is continuous we can apply Step 1 to insure that

(ddcφj,δ,k ⋆ χε)
n ≥ e−jηk

δ + 1
(f

1/n
k ⋆ χε)

ndV.

We know that lim supk→+∞ φj,δ,k ≤ φj,δ since φj,δ,k → φj,δ in L1(B) as k → +∞.

Since φj,δ,k ≥ φj,δ − ηk and limk→+∞ ηk = 0, it follows from Hartogs lemma that

φj,δ,k → φj,δ in capacity. Letting k → +∞ we obtain

(ddcφj,δ ⋆ χε)
n ≥ 1

δ + 1
(f1/n ⋆ χε)

ndV.

By Lemma 3.2 (φj,δ) uniformly converges to φ as j → +∞, hence

(ddcφ ⋆ χε)
n ≥ 1

δ + 1
(f1/n ⋆ χε)

ndV.

We let finally δ decrease to zero to obtain the desired lower bound (ii).

3.1.4. An extension of the main result.

By approximating a given function φ in the Cegrell class E(Ω) by the decreasing

sequence φj := max(φ,−j) of bounded plurisubharmonic functions, we let the reader

check that the main theorem holds when φ merely belongs to E(Ω).

3.2. Mixed inequalities.

We now prove the Corollary of the introduction on mixed Monge–Ampère measures

of subsolutions, providing an alternative proof of [Kol03, Lemma 1.2]:

Proposition 3.3. Assume φ1, . . . , φn are bounded plurisubharmonic functions in

Ω, such that (ddcφi)
n ≥ fidV , where 0 ≤ fi ∈ L1(Ω). Then

ddcφ1 ∧ · · · ∧ ddcφn ≥ f
1/n
1 · · · f1/nn dV.
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Proof. The inequality is classical when the functions φi are smooth, and follows

from the concavity of H 7→ log detH (see [HJ85, Corollary 7.6.9]).

To treat the general case we replace each φi by its convolutions φi ⋆ χε. We can

always assume that fi ∈ L∞(Ω). Our main result insures that

(ddc(φi ⋆ χε))
n ≥ (f

1/n
i ⋆ χε)

ndV,

hence

ddc(φ1 ⋆ χε) ∧ · · · ∧ ddc(φn ⋆ χε) ≥ (f
1/n
1 ⋆ χε) · · · (f1/nn ⋆ χε)dV.

The left hand side converges weakly to ddcφ1∧· · ·∧ddcφn by Bedford–Taylor’s con-

tinuity results [BT76], [BT82], while (f
1/n
i ⋆χε) converges to (fi)

1/n in Ln by Lebesgue

convergence Theorem. Hence

(f1 ⋆ χε)
1/n · · · (fn ⋆ χε)1/n converges to (f1)1/n · · · (fn)1/n

in L1. The conclusion follows. □

We note conversely that these mixed inequalities yield an important implication

in our main result. Assume indeed that (ddcφ)n ≥ fdV in the pluripotential sense.

Fix f1 = f and φ2 = . . . = φn = ρH , where ρH =
∑
hjkzj z̄k with H ∈ H, so that

(ddcφi)
n ≥ fidV with f2 = . . . = fn = 1. It follows from the mixed inequalities above

that

∆Hφ = ddcφ ∧ ddcφ2 ∧ · · · ∧ ddcφn ≥ f1/n.

One can alternatively proceed as follows: observe that

(ddcφ ⋆ χε)
n(z)

=

∫
ddcφ(z − w1) ∧ · · · ∧ ddcφ(z − wn)χε(w1) · · ·χε(wn)dV (w1, . . . wn)

≥
∫
f1/n(z − w1) · · · f1/n(z − wn)dV (z)χε(w1) · · ·χε(wn)dV (w1, . . . wn)

= (f1/n ⋆ χε)
n(z)dV (z).

3.3. More general right hand side.

There are several ways one can extend our main observation. We note here the

following:

Theorem 3.4. Assume φ is plurisubharmonic and bounded. Fix g ∈ L1 and

h : R → R convex. The following are equivalent :

(i) (ddcφ)n ≥ eh(φ)+gdV in the pluripotential sense ;

(ii) (ddc(φ ⋆ χε))
n ≥ eh(φ⋆χε)+g⋆χεdV in the classical sense, for all ε > 0;

(iii) ∆Hφ ≥ eh(φ)/n+g/n in the sense of distributions, for all H ∈ H.
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The proof is very close to what we have done above, using the convexity of exp and

h through Jensen’s inequality. We leave the details to the reader.

Acknowledgements. We thank the referee for useful comments.
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