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Abstract. We give lower bounds for the Gordian distance and the un-
knotting number of handlebody-knots by using Alexander biquandle colorings.
We construct handlebody-knots with Gordian distance n and unknotting num-
ber n for any positive integer n.

1. Introduction.

The Gordian distance of two classical knots is the minimal number of crossing

changes needed to be deformed each other. In particular, we call the Gordian distance of

a classical knot and the trivial one the unknotting number of the classical knot. Clark,

Elhamdadi, Saito and Yeatman [2] gave a lower bound for the Nakanishi index [16], which

induced a lower bound for the unknotting number of classical knots. This is a generaliza-

tion of the Przytycki’s result [17]. In this paper, we give lower bounds for the Gordian

distance and the unknotting number of handlebody-knots, which is a generalization of a

classical knot with respect to a genus.

Ishii [4] introduced an enhanced constituent link of a spatial trivalent graph, and

Ishii and Iwakiri [6] introduced an A-flow of a spatial graph, where A is an abelian group,

to define colorings and invariants of handlebody-knots. Iwakiri [12] gave a lower bound

for the unknotting number of handlebody-knots by using Alexander quandle colorings of

its Z2 or Z3-flowed diagram. Ishii, Iwakiri, Jang and Oshiro [7] introduced a G-family

of quandles, which is an extension of the above structures. Recently, Ishii and Nelson

[11] introduced a G-family of biquandles, which is a biquandle version of a G-family of

quandles.

In this paper, we extend the result in [12] in three directions. First, we extend from

Z2, Z3-flows to any Zm-flow. Second, we extend from quandles to biquandles. Finally,

we extend from unknotting numbers to Gordian distances. Thus we can determine the

Gordian distance and the unknotting number of handlebody-knots more efficiently. We

construct handlebody-knots with Gordian distance n and unknotting number n for any

n ∈ Z>0 and note that one of them can not be obtained by using Alexander quandle

colorings introduced in [12].

This paper is organized into seven sections. In Section 2, we recall the definition of

a handlebody-knot and introduce the Gordian distance and the unknotting number of

handlebody-knots. In Section 3, we recall the definition of a (bi)quandle and a G-family
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of (bi)quandles. In Section 4, we introduce a coloring of a diagram of a handlebody-

knot by using a G-family of biquandles. In Section 5, we show that there are linear

relationships for Alexander biquandle colorings of a diagram of a handlebody-knot. In

Section 6, we give lower bounds for the Gordian distance and the unknotting number

of handlebody-knots by using Zm-family of Alexander biquandles colorings. In section

7, we construct handlebody-knots with Gordian distance n and unknotting number n

for any n ∈ Z>0. Moreover, we note that one of them can not be obtained by using

Alexander quandle colorings with Z2,Z3-flows introduced in [12].

2. The Gordian distance of handlebody-knots.

A handlebody-link, which is introduced in [4], is the disjoint union of handlebod-

ies embedded in the 3-sphere S3. A handlebody-knot is a handlebody-link with one

component. In this paper, we assume that every component of a handlebody-link is of

genus at least 1. An S1-orientation of a handlebody-link is an orientation of all genus

1 components of the handlebody-link, where an orientation of a solid torus is an orien-

tation of its core S1. Two S1-oriented handlebody-links are equivalent if there exists an

orientation-preserving self-homeomorphism of S3 sending one to the other preserving the

S1-orientation.

A spatial trivalent graph is a graph whose vertices are valency 3 embedded in S3.

In this paper, a trivalent graph may have a circle component, which has no vertices. A

Y-orientation of a spatial trivalent graph is a direction of all edges of the graph satisfying

that every vertex of the graph is both the initial vertex of a directed edge and the terminal

vertex of a directed edge (Figure 1). A vertex of a Y-oriented spatial trivalent graph can

be allocated a sign; the vertex is said to be positive or negative, or to have sign +1 or

−1. The standard convention is shown in Figure 1. For a Y-oriented spatial trivalent

graph K and an S1-oriented handlebody-link H, we say that K represents H if H is a

regular neighborhood of K and the S1-orientation of H agrees with the Y-orientation.

Then any S1-oriented handlebody-link can be represented by some Y-oriented spatial

trivalent graph. We define a diagram of an S1-oriented handlebody-link by a diagram

of a Y-oriented spatial trivalent graph representing the handlebody-link. An S1-oriented

handlebody-link is trivial if it has a diagram with no crossings. Then the following

theorem holds.

Figure 1. Y-orientations and signs.

Theorem 2.1 ([5]). For a diagram Di of an S
1-oriented handlebody-link Hi (i =

1, 2), H1 and H2 are equivalent if and only if D1 and D2 are related by a finite sequence
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Figure 2. The Reidemeister moves for handlebody-links.

of R1–R6 moves depicted in Figure 2 preserving Y-orientations.

In this paper, for a diagram D of an S1-oriented handlebody-link, we denote by

A(D) and SA(D) the set of all arcs of D and the one of all semi-arcs of D respectively,

where a semi-arc is a piece of a curve each of whose endpoints is a crossing or a vertex. An

orientation of a (semi-)arc of D is also represented by the normal orientation obtained by

rotating the usual orientation counterclockwise by π/2 on the diagram. For anym ∈ Z≥0,

we put Zm := Z/mZ.
A crossing change of an S1-oriented handlebody-link H is that of a spatial triva-

lent graph representing H. This deformation can be realized by switching two handles

depicted in Figure 3. It is easy to see that any two S1-oriented handlebody-knots of

the same genus can be related by a finite sequence of crossing changes. For any two

S1-oriented handlebody-knots H1 and H2 of the same genus, we define their Gordian

distance d(H1,H2) by the minimal number of crossing changes needed to be deformed

each other. In particular, for any S1-oriented handlebody-knot H and the S1-oriented

trivial handlebody-knot O of the same genus, we define u(H) := d(H,O), which is called

the unknotting number of H.

Figure 3. A crossing change of an S1-oriented handlebody-link.

3. A biquandle and a G-family of biquandles.

We recall the definitions of a quandle and a biquandle.

Definition 3.1 ([13], [14]). A quandle is a non-empty set X with a binary oper-

ation ∗ : X ×X → X satisfying the following axioms.

• For any x ∈ X, x ∗ x = x.
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• For any x ∈ X, the map Sx : X → X defined by Sx(y) = y ∗ x is a bijection.

• For any x, y, z ∈ X, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

Definition 3.2 ([3]). A biquandle is a non-empty set X with binary operations

∗, ∗ : X ×X → X satisfying the following axioms.

• For any x ∈ X, x ∗ x = x ∗ x.

• For any x ∈ X, the map Sx : X → X defined by Sx(y) = y ∗ x is a bijection.

For any x ∈ X, the map Sx : X → X defined by Sx(y) = y ∗ x is a bijection.

The map S : X ×X → X ×X defined by S(x, y) = (y ∗ x, x ∗ y) is a bijection.

• For any x, y, z ∈ X,

(x ∗ y) ∗ (z ∗ y) = (x ∗ z) ∗ (y ∗ z),
(x ∗ y) ∗ (z ∗ y) = (x ∗ z) ∗ (y ∗ z),
(x ∗ y) ∗ (z ∗ y) = (x ∗ z) ∗ (y ∗ z).

We define ∗nx := Snx and ∗nx := S
n

x for any n ∈ Z. We note that (X, ∗) is a quandle

if and only if (X, ∗, ∗) is a biquandle with x ∗ y = x. For any m ∈ Z≥0, a Zm[s±1, t±1]-

module X is a biquandle with a ∗ b = ta + (s − t)b and a ∗ b = sa, which we call an

Alexander biquandle. When s = 1, an Alexander biquandle coincides with an Alexander

quandle.

Definition 3.3 ([8]). Let X be a biquandle. We define two families of binary

operations ∗[n], ∗[n] : X ×X → X(n ∈ Z) by the equalities

a ∗[0] b = a, a ∗[1] b = a ∗ b, a ∗[i+j] b = (a ∗[i] b) ∗[j] (b ∗[i] b),

a ∗[0] b = a, a ∗[1] b = a ∗ b, a ∗[i+j] b = (a ∗[i] b) ∗[j] (b ∗[i] b)

for any i, j ∈ Z.

Since a = a ∗[0] b = (a ∗[−1] b) ∗[1] (b ∗[−1] b) = (a ∗[−1] b) ∗ (b ∗[−1] b), we have

a∗[−1] b = a∗−1 (b∗[−1] b) and (b∗[−1] b)∗ (b∗[−1] b) = b. Then for an Alexander biquandle

X, we have a ∗[n] b = tna+ (sn − tn)b and a ∗[n] b = sna for any a, b ∈ X.

We define the type of a biquandle X by

typeX = min{n > 0 | a ∗[n] b = a = a ∗[n] b (∀a, b ∈ X)}.

Any finite biquandle is of finite type [11].

We also recall the definitions of a G-family of quandles and a G-family of biquandles.

Definition 3.4 ([7]). Let G be a group with the identity element e. A G-family of

quandles is a non-empty setX with a family of binary operations ∗g : X×X → X (g ∈ G)

satisfying the following axioms.
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• For any x ∈ X and g ∈ G, x ∗g x = x.

• For any x, y ∈ X and g, h ∈ G, x ∗gh y = (x ∗g y) ∗h y and x ∗e y = x.

• For any x, y, z ∈ X and g, h ∈ G, (x ∗g y) ∗h z = (x ∗h z) ∗h−1gh (y ∗h z).

Definition 3.5 ([8], [11]). Let G be a group with the identity element e. A

G-family of biquandles is a non-empty set X with two families of binary operations

∗g, ∗g : X ×X → X (g ∈ G) satisfying the following axioms.

• For any x ∈ X and g ∈ G,

x ∗g x = x ∗g x.

• For any x, y ∈ X and g, h ∈ G,

x ∗gh y = (x ∗g y) ∗h (y ∗g y), x ∗e y = x,

x ∗gh y = (x ∗g y) ∗h (y ∗g y), x ∗e y = x.

• For any x, y, z ∈ X and g, h ∈ G,

(x ∗g y) ∗h (z ∗g y) = (x ∗h z) ∗h
−1gh (y ∗h z),

(x ∗g y) ∗h (z ∗g y) = (x ∗h z) ∗h
−1gh (y ∗h z),

(x ∗g y) ∗h (z ∗g y) = (x ∗h z) ∗h
−1gh (y ∗h z).

For a biquandle (X, ∗, ∗) with typeX < ∞, (X, {∗[n]}[n]∈ZtypeX
, {∗[n]}[n]∈ZtypeX

) is

a ZtypeX -family of biquandles [11]. In particular, when X is an Alexander biquandle,

(X, {∗[n]}[n]∈ZtypeX
, {∗[n]}[n]∈ZtypeX

) is called a ZtypeX-family of Alexander biquandles.

4. Colorings.

In this section, we introduce a coloring of a diagram of an S1-oriented handlebody-

link by a G-family of biquandles. Let G be a group and let D be a diagram of an

S1-oriented handlebody-link H. A G-flow of D is a map ϕ : A(D) → G satisfying

at each crossing and each vertex. In this paper, to avoid confusion, we often represent an

element of G with an underline. We denote by (D,ϕ), which is called a G-flowed diagram

of H, a diagram D given a G-flow ϕ and put Flow(D;G) := {ϕ | ϕ : G-flow of D}. We

can identify a G-flow ϕ with a homomorphism from the fundamental group π1(S
3 −H)

to G.
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Let G be a group and let D be a diagram of an S1-oriented handlebody-link H. Let

D′ be a diagram obtained by applying one of Reidemeister moves to the diagram D once.

For any G-flow ϕ of D, there is an unique G-flow ϕ′ of D′ which coincides with ϕ except

near the point where the move applied. Therefore the number of G-flow of D, denoted

by #Flow(D;G), is an invariant of H. We call the G-flow ϕ′ the associated G-flow of ϕ

and the G-flowed diagram (D′, ϕ′) the associated G-flowed diagram of (D,ϕ).

For any m ∈ Z≥0 and Zm-flow ϕ of a diagram D of an S1-oriented handlebody-link

H, we define gcdϕ := gcd{ϕ(a),m | a ∈ A(D)} ∈ Z≥0, where we regard ϕ(a) as an

arbitrary element of Z which represents ϕ(a) ∈ Zm. Then we have the following lemma

in the same way as in [9].

Lemma 4.1. For any m ∈ Z≥0, let (D,ϕ) be a Zm-flowed diagram of an S1-oriented

handlebody-link H and let (D′, ϕ′) be the associated Zm-flowed diagram of (D,ϕ). Then

it follows that gcdϕ = gcdϕ′.

Let G be a group, X be a G-family of biquandles and let (D,ϕ) be a G-flowed

diagram of an S1-oriented handlebody-link H. An X-coloring of (D,ϕ) is a map C :

SA(D,ϕ) → X satisfying

at each crossing and each vertex, where SA(D,ϕ) is the set of all semi-arcs of (D,ϕ).

We denote by ColX(D,ϕ) the set of all X-colorings of (D,ϕ). We note that ColX(D,ϕ)

is a vector space over X when X is a Zm-family of Alexander biquandles and a field.

Proposition 4.2 ([11]). Let X be a G-family of biquandles and let (D,ϕ) be a

G-flowed diagram of an S1-oriented handlebody-link H. Let (D′, ϕ′) be the associated G-

flowed diagram of (D,ϕ). For any X-coloring C of (D,ϕ), there is an unique X-coloring

C ′ of (D′, ϕ′) which coincides with C except near the point where the move applied.

We call the X-coloring C ′ the associated X-coloring of C. By this proposition, we

have #ColX(D,ϕ) = #ColX(D′, ϕ′).

Proposition 4.3. Let G be a group and let X be a G-family of biquandles. Then

the following hold.

1. Let (D,ϕ) be a G-flowed diagram of an S1-oriented handlebody-link. Then it follows

that #ColX(D,ϕ) ≥ #X.

2. Let (O,ψ) be a G-flowed diagram of an S1-oriented m-component trivial

handlebody-link. Then it follows that #ColX(O,ψ) = (#X)m.
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Figure 4. A G-flowed diagram (D′, ϕ′) and its X-coloring.

Figure 5. An X-coloring of (D′, ϕ′) in the part of b.

Proof. 1. By Theorem 2.1 and [15], we can deform (D,ϕ) into the G-

flowed diagram (D′, ϕ′) depicted in Figure 4 by a finite sequence of Reide-

meister moves preserving Y-orientations, where b is a classical l-braid, and

ai,1, . . . , ai,mi
, bi,1, . . . , bi,ni

∈ G for any i = 1, . . . , s. We note that
∏mi

j=1 ai,j =∏ni

j=1 bi,j for any i = 1, . . . , s, and x ∗g x = x ∗g x for any x ∈ X and g ∈ G.

By Proposition 4.2, it is sufficient to prove that #ColX(D′, ϕ′) ≥ #X. Here for

any x ∈ X and g ∈ G, we write x ∗g x for x ∗g x and x ∗g x simply. Then for

any x ∈ X, the assignment of elements of X to each semi-arc of (D′, ϕ′) as shown

in Figures 4 and 5 is an X-coloring, where each gi represents an element of G in

Figure 5. Therefore we have #ColX(D′, ϕ′) ≥ #X.

2. It is sufficient to prove that #ColX(O,ψ) = #X when m = 1. Let (Og, ψg) be a G-

flowed diagram of an S1-oriented trivial handlebody-knot of genus g. By Theorem

2.1, we can deform (Og, ψg) into the G-flowed diagram (O′
g, ψ

′
g) depicted in Figure 6

by a finite sequence of Reidemeister moves preserving Y-orientations, where ai ∈ G

for any i = 1, . . . , g, and e is the identity of G. By Proposition 4.2, it is sufficient
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Figure 6. A G-flowed diagram (O′
g, ψ

′
g) and its X-coloring.

to prove that #ColX(O′
g, ψ

′
g) = #X. For any x ∈ X, the assignment of x to each

semi-arc of (O′
g, ψ

′
g) as shown in Figure 6 is an X-coloring. On the other hand,

since any X-coloring of (O′
g, ψ

′
g) is given by Figure 6 for some x ∈ X, we have

#ColX(O′
g, ψ

′
g) = #X. □

5. Linear relationships for Alexander biquandle colorings.

For any Zm-flowed diagram (D,ϕ) of an S1-oriented handlebody-link, we define the

Alexander numbering of (D,ϕ) by assigning elements of Zm to each region of (D,ϕ)

as shown in Figure 7, where the unbounded region is labeled 0. It is an extension of

the Alexander numbering of a classical knot diagram [1]. It is easy to see that for any

Zm-flowed diagram (D,ϕ) of an S1-oriented handlebody-link, there uniquely exists the

Alexander numbering of (D,ϕ). For example, a Zm-flowed diagram of the handlebody-

knot 52 [10] with the Alexander numbering is depicted in Figure 8. For any semi-arc

α of (D,ϕ), we denote by ρ(α) the Alexander number of the region which the normal

orientation of α points to.

Figure 7. The Alexander numbering of (D,ϕ).

Figure 8. A Zm-flowed diagram of 52 with the Alexander numbering.
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In the following, every component of a diagram of any S1-oriented handlebody-link

may have a crossing at least 1. Let (D,ϕ) be a Zm-flowed diagram of an S1-oriented

handlebody-link with the Alexander numbering and let X be a Zm-family of Alexander

biquandles. We put C(D,ϕ) = {c1, . . . , cn} and V (D,ϕ) = {τ1, . . . , τ2k}, where C(D,ϕ)
and V (D,ϕ) are the set of all crossings of (D,ϕ) and the one of all vertices of (D,ϕ)

respectively, where the sign of τi is 1 for any i = 1, . . . , k and −1 for any i = k+1, . . . , 2k.

Then we denote by xi each semi-arc of (D,ϕ) as shown in Figure 9, which implies

SA(D,ϕ) = {x1, . . . , x2n+3k}.

Figure 9. Semi-arcs xi of (D,ϕ).

We denote by ui, vi, v
′
i, wi, αi, βi and γi the semi-arcs incident to a crossing ci or

a vertex τi as shown in Figure 10. We put ϕi := ϕ(ui) = ϕ(wi), ψi := ϕ(vi) = ϕ(v′i),

ηi := ϕ(αi) and θi := ϕ(βi). We denote by ϵci ∈ {±1} and ϵτi ∈ {±1} the signs of a

crossing ci and a vertex τi respectively (see Figure 10).

Figure 10. Notations.

For any semi-arcs y, y′ ∈ SA(D,ϕ), we put

δ(y, y′) :=

{
1 (y = y′),

0 (y ̸= y′).

Then we define a matrix A(D,ϕ;X) = (ai,j) ∈M(2n+ 4k, 2n+ 3k;X) by

ai,j =


δ(ui, xj)t

ψi + δ(vi, xj)(s
ψi − tψi)− δ(wi, xj) (1 ≤ i ≤ n),

−δ(vi−n, xj)sϕi−n + δ(v′i−n, xj) (n+ 1 ≤ i ≤ 2n),

δ(αi−2n, xj)− δ(γi−2n, xj) (2n+ 1 ≤ i ≤ 2n+ 2k),

δ(βi−2n−2k, xj)− δ(γi−2n−2k, xj)s
ηi−2n−2k (2n+ 2k + 1 ≤ i ≤ 2n+ 4k).
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We note that A(D,ϕ;X) is determined up to permuting of rows and columns of the

matrix, and it follows that

ColX(D,ϕ) =




z1
z2
...

z2n+3k

 ∈ X2n+3k

∣∣∣∣∣∣∣∣∣A(D,ϕ;X)


z1
z2
...

z2n+3k

 = 0

 .

For example, let (E,ψ) be the Zm-flowed diagram of the handlebody-knot depicted

in Figure 11. Then we have

A(E,ψ;X) =



−1 0 sa − ta ta 0 0 0

0 −1 0 sb − tb 0 tb 0

0 1 −sb 0 0 0 0

0 0 0 −sa 0 0 1

0 0 1 0 −1 0 0

0 0 0 0 −1 1 0

1 0 0 0 −sa 0 0

0 0 0 0 −sa 0 1


.

Figure 11. A Zm-flowed diagram (E,ψ).

Then we have the following proposition.

Proposition 5.1. Let (D,ϕ) be a Zm-flowed diagram of an S1-oriented

handlebody-link with the Alexander numbering and let X be a Zm-family of Alexander

biquandles. Let ai be the i-th row of A(D,ϕ;X). Then it follows that

n∑
i=1

ϵcit
−ρ(wi)(sϕi − tϕi)ai +

n∑
i=1

ϵcit
−ρ(v′i)(sψi − tψi)an+i

+
2k∑
i=1

ϵτit
−ρ(αi)(sηi − tηi)a2n+i +

2k∑
i=1

ϵτit
−ρ(βi)(sθi − tθi)a2n+2k+i = 0.

Proof. For any semi-arc y incident to a crossing or a vertex σ, we put
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ϵ(y;σ) :=

{
1 if the orientation of y points to σ,

−1 otherwise.

We set (ai,j) := A(D,ϕ;X). It is sufficient to prove that for any j = 1, 2, . . . , 2n+3k,

n∑
i=1

ϵcit
−ρ(wi)(sϕi − tϕi)ai,j +

n∑
i=1

ϵcit
−ρ(v′i)(sψi − tψi)an+i,j

+

2k∑
i=1

ϵτit
−ρ(αi)(sηi − tηi)a2n+i,j +

2k∑
i=1

ϵτit
−ρ(βi)(sθi − tθi)a2n+2k+i,j = 0.

For the first term, we have

ϵcit
−ρ(wi)(sϕi − tϕi)δ(ui, xj)t

ψi = δ(ui, xj)ϵ(ui; ci)t
−ρ(ui)(sϕ(ui) − tϕ(ui)),

ϵcit
−ρ(wi)(sϕi − tϕi)δ(vi, xj)(s

ψi − tψi)

= ϵcit
−ρ(wi)sϕiδ(vi, xj)(s

ψi − tψi)− ϵcit
−ρ(wi)tϕiδ(vi, xj)(s

ψi − tψi)

= ϵcit
−ρ(wi)δ(vi, xj)(s

ψi − tψi)sϕi + δ(vi, xj)ϵ(vi; ci)t
−ρ(vi)(sϕ(vi) − tϕ(vi)), (1)

ϵcit
−ρ(wi)(sϕi − tϕi)(−δ(wi, xj)) = δ(wi, xj)ϵ(wi; ci)t

−ρ(wi)(sϕ(wi) − tϕ(wi)).

For the second term, we have

ϵcit
−ρ(v′i)(sψi − tψi)(−δ(vi, xj)sϕi) = −ϵcit−ρ(v

′
i)δ(vi, xj)(s

ψi − tψi)sϕi , (2)

ϵcit
−ρ(v′i)(sψi − tψi)δ(v′i, xj) = δ(v′i, xj)ϵ(v

′
i; ci)t

−ρ(v′i)(sϕ(v
′
i) − tϕ(v

′
i)).

For the third term, we have

ϵτit
−ρ(αi)(sηi − tηi)δ(αi, xj) = δ(αi, xj)ϵ(αi; τi)t

−ρ(αi)(sϕ(αi) − tϕ(αi)),

ϵτit
−ρ(αi)(sηi − tηi)(−δ(γi, xj)) = δ(γi, xj)ϵ(γi; τi)t

−ρ(γi)tθi(sηi − tηi). (3)

For the last term, we have

ϵτit
−ρ(βi)(sθi − tθi)δ(βi, xj) = δ(βi, xj)ϵ(βi; τi)t

−ρ(βi)(sϕ(βi) − tϕ(βi)),

ϵτit
−ρ(βi)(sθi − tθi)(−δ(γi, xj)sηi) = δ(γi, xj)ϵ(γi; τi)t

−ρ(γi)(sθi − tθi)sηi . (4)

We note that

(1) + (2) = δ(vi, xj)ϵ(vi; ci)t
−ρ(vi)(sϕ(vi) − tϕ(vi)),

(3) + (4) = δ(γi, xj)ϵ(γi; τi)t
−ρ(γi)(sϕ(γi) − tϕ(γi)).

Therefore for any j = 1, 2, . . . , 2n+ 3k, it follows that

n∑
i=1

ϵcit
−ρ(wi)(sϕi − tϕi)ai,j +

n∑
i=1

ϵcit
−ρ(v′i)(sψi − tψi)an+i,j
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+
2k∑
i=1

ϵτit
−ρ(αi)(sηi − tηi)a2n+i,j +

2k∑
i=1

ϵτit
−ρ(βi)(sθi − tθi)a2n+2k+i,j

=
n∑
i=1

(δ(ui, xj)ϵ(ui; ci)t
−ρ(ui)(sϕ(ui) − tϕ(ui))

+ δ(vi, xj)ϵ(vi; ci)t
−ρ(vi)(sϕ(vi) − tϕ(vi))

+ δ(v′i, xj)ϵ(v
′
i; ci)t

−ρ(v′i)(sϕ(v
′
i) − tϕ(v

′
i))

+ δ(wi, xj)ϵ(wi; ci)t
−ρ(wi)(sϕ(wi) − tϕ(wi)))

+
2k∑
i=1

(δ(αi, xj)ϵ(αi; τi)t
−ρ(αi)(sϕ(αi) − tϕ(αi))

+ δ(βi, xj)ϵ(βi; τi)t
−ρ(βi)(sϕ(βi) − tϕ(βi))

+ δ(γi, xj)ϵ(γi; τi)t
−ρ(γi)(sϕ(γi) − tϕ(γi)))

= t−ρ(xj)(sϕ(xj) − tϕ(xj))− t−ρ(xj)(sϕ(xj) − tϕ(xj))

= 0. □

Let X be an Alexander biquandle and let m = typeX. Then X is also a Zm-family

of Alexander biquandles. Let D be an oriented classical link diagram. We can regard D

as a Zm-flowed diagram (D,ϕ(1)) of an S
1-oriented handlebody-link whose components

are of genus 1, where ϕ(1) is the constant map to 1. Hence we can regard an X-coloring

of D as an X-coloring of (D,ϕ(1)). We define a matrix A(D;X) ∈ M(2n, 2n;X) by

A(D;X) = A(D,ϕ(1);X), where n is the number of crossings of D. Then the set of all

X-colorings of D, denoted by ColX(D), is given by

ColX(D) =



z1
z2
...

z2n

 ∈ X2n

∣∣∣∣∣∣∣∣∣A(D;X)


z1
z2
...

z2n

 = 0

 .

Therefore we obtain the following corollary.

Corollary 5.2. Let D be a diagram of an oriented classical link with the Alexan-

der numbering and let X be an Alexander biquandle. Let ai be the i-th row of A(D;X).

Then it follows that

n∑
i=1

ϵcit
−ρ(wi)(s− t)ai +

n∑
i=1

ϵcit
−ρ(v′i)(s− t)an+i = 0.

6. Main theorem.

In this section, we give lower bounds for the Gordian distance and the unknotting

number of S1-oriented handlebody-knots.

Theorem 6.1. Let Hi be an S1-oriented handlebody-knot of genus g and let Di be
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a diagram of Hi (i = 1, 2). Let X = Zp[t±1]/(f(t)) which is a Zm-family of Alexander

biquandles, where p is a prime number, s ∈ Zp[t±1] and f(t) ∈ Zp[t±1] is an irreducible

polynomial. Then it follows that

max
ϕ1∈Flow(D1;Zm)

min
ϕ2∈Flow(D2;Zm)
gcdϕ1=gcdϕ2

|dimColX(D1, ϕ1)− dimColX(D2, ϕ2)| ≤ d(H1,H2).

Proof. Let (D,ϕ) be a Zm-flowed diagram of an S1-oriented handlebody-knot

and let C(D,ϕ) = {c1, . . . , cn} and V (D,ϕ) = {τ1, . . . , τ2k}. Let (D,ϕ) be the Zm-flowed

diagram of an S1-oriented handlebody-knot which is obtained from (D,ϕ) by the crossing

change at c1 and let C(D,ϕ) = {c1, . . . , cn} and V (D,ϕ) = {τ1, . . . , τ2k}, where ϕ, ci
and τ i originate from ϕ, ci and τi naturally and respectively (see Figure 12). In the

following, we show that

|dimColX(D,ϕ)− dimColX(D,ϕ)| ≤ 1,

that is,

| rankA(D,ϕ;X)− rankA(D,ϕ;X)| ≤ 1.

Figure 12. The crossing change at c1.

We may assume that c1 is a positive crossing and c1 is a negative crossing. We

denote by xi each semi-arc of (D,ϕ) in the same way as in Figure 9 with respect to ci
or τ i, and so are v′i, wi, αi, βi, ϕi, ψi, ηi, θi, ϵci and ϵτi (see Figure 10). We denote by

xj1 and xj2 the semi-arcs which point to the crossing c1 of (D,ϕ) as shown in Figure 12,

and we put a := ϕ1 = ψ1 and b := ψ1 = ϕ1. We note that ColX(D,ϕ) and ColX(D,ϕ)

are vector spaces over X since X is a Zm-family of Alexander biquandles and a field.

Let ai, ai and âi be the i-th rows of A(D,ϕ;X), A(D,ϕ;X) and Â(D,ϕ;X) re-

spectively, where Â(D,ϕ;X) is the matrix obtained by permuting the first column and

the (n + 1)-th column of A(D,ϕ;X). We put (ai,j) := A(D,ϕ;X), (ai,j) := A(D,ϕ;X)

and (âi,j) := Â(D,ϕ;X). Then we have ai = âi when i ̸= 1, n + 1. We note that

rankA(D,ϕ;X) = rank Â(D,ϕ;X) and

a1 = (−1, 0, . . . , 0,

j1
∨
tb, 0, . . . , 0,

n+1
∨

sb − tb, 0, . . . , 0),
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an+1 = (0, . . . , 0,

j2
∨
1 , 0, . . . , 0,

n+1
∨

−sa, 0, . . . , 0),

a1 = (ta, 0, . . . , 0,

j1
∨

sa − ta, 0, . . . , 0,

j2
∨
−1, 0, . . . , 0),

an+1 = (0, . . . , 0,

j1
∨

−sb, 0, . . . , 0,
n+1
∨
1 , 0, . . . , 0),

â1 = (0, . . . , 0,

j1
∨

sa − ta, 0, . . . , 0,

j2
∨
−1, 0, . . . , 0,

n+1
∨
ta , 0, . . . , 0),

ân+1 = (1, 0, . . . , 0,

j1
∨

−sb, 0, . . . , 0).

By Proposition 5.1, we obtain

n∑
i=1

ϵcit
−ρ(wi)(sϕi − tϕi)ai +

n∑
i=1

ϵcit
−ρ(v′i)(sψi − tψi)an+i

+
2k∑
i=1

ϵτit
−ρ(αi)(sηi − tηi)a2n+i +

2k∑
i=1

ϵτit
−ρ(βi)(sθi − tθi)a2n+2k+i = 0

and

n∑
i=1

ϵcit
−ρ(wi)(sϕi − tϕi)ai +

n∑
i=1

ϵcit
−ρ(v′i)(sψi − tψi)an+i

+
2k∑
i=1

ϵτit
−ρ(αi)(sηi − tηi)a2n+i +

2k∑
i=1

ϵτit
−ρ(βi)(sθi − tθi)a2n+2k+i

=

n∑
i=1

ϵcit
−ρ(wi)(sϕi − tϕi)âi +

n∑
i=1

ϵcit
−ρ(v′i)(sψi − tψi)ân+i

+

2k∑
i=1

ϵτit
−ρ(αi)(sηi − tηi)â2n+i +

2k∑
i=1

ϵτit
−ρ(βi)(sθi − tθi)â2n+2k+i = 0.

If ϵc1t
−ρ(w1)(sϕ1 − tϕ1) = 0, we have sϕ1 − tϕ1 = sa − ta = 0, which implies that

an+1 = −â1. Hence it follows that

| rankA(D,ϕ;X)− rankA(D,ϕ;X)| = | rankA(D,ϕ;X)− rank Â(D,ϕ;X)| ≤ 1.

If ϵc1t
−ρ(w1)(sϕ1 − tϕ1) = 0, we have sϕ1 − tϕ1 = sb − tb = 0, which implies that a1 =

−ân+1. Hence it follows that

| rankA(D,ϕ;X)− rankA(D,ϕ;X)| = | rankA(D,ϕ;X)− rank Â(D,ϕ;X)| ≤ 1.

If ϵc1t
−ρ(w1)(sϕ1 − tϕ1) ̸= 0 and ϵc1t

−ρ(w1)(sϕ1 − tϕ1) ̸= 0, we can represent a1 and

a1 as linear combinations of a2, . . . ,a2n+4k and a2, . . . ,a2n+4k respectively. Hence it
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follows that

rankA(D,ϕ;X) = rank

 a2

...

a2n+4k

 , rankA(D,ϕ;X) = rank

 a2

...

a2n+4k

 ,

which implies that

| rankA(D,ϕ;X)− rankA(D,ϕ;X)| =

∣∣∣∣∣∣∣rank
 a2

...

a2n+4k

− rank

 a2

...

a2n+4k


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣rank
 a2

...

a2n+4k

− rank

 â2

...

â2n+4k


∣∣∣∣∣∣∣

≤ 1.

Consequently, if we can deform H1 into H2 by crossing changes at l crossings, then

for any Zm-flowed diagram (D1, ϕ1) of H1, there exists a Zm-flowed diagram (D2, ϕ2) of

H2 satisfying gcdϕ1 = gcdϕ2 and

| dimColX(D1, ϕ1)− dimColX(D2, ϕ2)| ≤ l

by Lemma 4.1. Therefore it follows that

max
ϕ1∈Flow(D1;Zm)

min
ϕ2∈Flow(D2;Zm)
gcdϕ1=gcdϕ2

| dimColX(D1, ϕ1)− dimColX(D2, ϕ2)| ≤ d(H1,H2). □

By Proposition 4.3 and Theorem 6.1, the following corollary holds immediately.

Corollary 6.2. Let H be an S1-oriented handlebody-knot and let D be a diagram

of H. Let X = Zp[t±1]/(f(t)) which is a Zm-family of Alexander biquandles, where p is

a prime number, s ∈ Zp[t±1] and f(t) ∈ Zp[t±1] is an irreducible polynomial. Then it

follows that

max
ϕ∈Flow(D;Zm)

dimColX(D,ϕ)− 1 ≤ u(H).

7. Examples.

In this section, we give some examples. In Example 7.1, we give a handlebody-knot

with unknotting number 2, and in Remark 7.2, we note that it can not be obtained by

using Alexander quandle colorings with Z2,Z3-flows introduced in [12]. In Example 7.3,

we give three handlebody-knots with unknotting number n for any n ∈ Z>0. In Example

7.4, we give two handlebody-knots with their Gordian distance n for any n ∈ Z>0.

Example 7.1. Let H be the handlebody-knot represented by the Z10-flowed dia-

gram (D,ϕ) depicted in Figure 13. Then we show that u(H) = 2.
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Figure 13. A Z10-flowed diagram (D,ϕ) of H.

Let s = 1 ∈ Z3[t
±1] and let f(t) = t4 + 2t3 + t2 + 2t + 1 ∈ Z3[t

±1], which is an

irreducible polynomial. Then X := Z3[t
±1]/(f(t)) is a Z10-family of Alexander biquan-

dles. Then for any x, y, z ∈ X, the assignment of them to each semi-arc of (D,ϕ) as

shown in Figure 13 is an X-coloring of (D,ϕ), which implies dimColX(D,ϕ) ≥ 3. By

Corollary 6.2, we obtain 2 ≤ u(H). On the other hand, we can deform H into a trivial

handlebody-knot by the crossing changes at two crossings surrounded by dotted circles

depicted in Figure 13. Therefore it follows that u(H) = 2.

Remark 7.2. We show that the result in Example 7.1 can not be obtained by

using Alexander quandle colorings with Z2,Z3-flows introduced in [12].

Let H be the handlebody-knot represented by the Zm-flowed diagram (D,ϕ(a, b))

depicted in Figure 14 for any m = 2, 3 and a, b ∈ Zm. Let p be a prime number, s = 1 ∈
Zp[t±1], f(t) be an irreducible polynomial in Zp[t±1] and let X = Zp[t±1]/(f(t)) which is

a Zm-family of Alexander (bi)quandles. We note that ColX(D,ϕ(a, b)) is generated by

x, y, z ∈ X as shown in Figure 14 for any m = 2, 3 and a, b ∈ Zm. If (a, b) = (1, 0), x, y

and z need to satisfy the following relations:

(t2 − t+ 1)x− (t2 − t+ 1)y = 0,

− t(t2 − t+ 1)x+ t−1(t+ 1)(t− 1)(t2 − t+ 1)y + t−1(t2 − t+ 1)z = 0,

− t−1(t− 1)(t2 − t+ 1)x+ t−2(t2 − t− 1)(t2 − t+ 1)y + t−2(t2 − t+ 1)z = 0,

((t3 + t2 − 1)(t2 − t+ 1)− t)x− ((t3 + t2 − 1)(t2 − t+ 1)− t)z = 0,

that is,

M

xy
z

 =


0

0

0

0

 ,

where

M =

 t2 − t+ 1 −(t2 − t+ 1) 0

−t(t2 − t+ 1) t−1(t+ 1)(t− 1)(t2 − t+ 1) t−1(t2 − t+ 1)

−t−1(t− 1)(t2 − t+ 1) t−2(t2 − t− 1)(t2 − t+ 1) t−2(t2 − t+ 1)

(t3 + t2 − 1)(t2 − t+ 1)− t 0 −(t3 + t2 − 1)(t2 − t+ 1) + t

.
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Figure 14. A Zm-flowed diagram (D,ϕ(a, b)) of H.

These relations are obtained from crossings c1, c2, c3 and c4 as shown in Figure 14. When

t2 − t+ 1 ̸= 0 in X, it is clearly that rankM ≥ 1. When t2 − t+ 1 = 0 in X, we have

M =


0 0 0

0 0 0

0 0 0

−t 0 t

 ,

which implies that rankM = 1. Hence we have dimColX(D,ϕ(1, 0)) = 3− rankM ≤ 2.

Therefore we can not obtain 2 ≤ u(H).

We can prove the remaining cases in the same way.

Example 7.3. Let An, Bn and Cn be the handlebody-knots represented by the

Z8-flowed diagram (DAn
, ϕAn

), the Z24-flowed diagram (DBn
, ϕBn

) and the Z8-flowed

diagram (DCn , ϕCn) depicted in Figures 15, 16 and 17 respectively for any n ∈ Z>0.

Then we show that u(An) = u(Bn) = u(Cn) = n.

1. Let s = t + 1 ∈ Z3[t
±1] and let f(t) = t2 + t + 2 ∈ Z3[t

±1], which is an irre-

ducible polynomial. Then X := Z3[t
±1]/(f(t)) is a Z8-family of Alexander biquan-

dles. Then for any x0, x1, . . . , xn ∈ X, the assignment of them to each semi-arc of

(DAn , ϕAn) as shown in Figure 15 is an X-coloring of (DAn , ϕAn), which implies

dimColX(DAn , ϕAn) ≥ n+1. By Corollary 6.2, we obtain n ≤ u(An). On the other

hand, we can deform An into a trivial handlebody-knot by the crossing changes at

n crossings surrounded by dotted circles depicted in Figure 15. Therefore it follows

that u(An) = n.

2. Let s = t2 + 1 ∈ Z5[t
±1] and let f(t) = t2 + 2t + 4 ∈ Z5[t

±1], which is an irre-

ducible polynomial. Then X := Z5[t
±1]/(f(t)) is a Z24-family of Alexander biquan-

dles. Then for any x0, x1, . . . , xn ∈ X, the assignment of them to each semi-arc of

(DBn , ϕBn) as shown in Figure 16 is an X-coloring of (DBn , ϕBn), which implies

dimColX(DBn , ϕBn) ≥ n+1. By Corollary 6.2, we obtain n ≤ u(Bn). On the other

hand, we can deform Bn into a trivial handlebody-knot by the crossing changes at

n crossings surrounded by dotted circles depicted in Figure 16. Therefore it follows

that u(Bn) = n.



1264

1264 T. Murao

Figure 15. A Z8-flowed diagram (DAn , ϕAn) of An.

Figure 16. A Z24-flowed diagram (DBn , ϕBn) of Bn.

3. Let s = 2t − 1 ∈ Z3[t
±1] and let f(t) = t2 + t + 2 ∈ Z3[t

±1], which is an irre-

ducible polynomial. Then X := Z3[t
±1]/(f(t)) is a Z8-family of Alexander biquan-

dles. Then for any x0, x1, . . . , xn ∈ X, the assignment of them to each semi-arc of

(DCn
, ϕCn

) as shown in Figure 17 is an X-coloring of (DCn
, ϕCn

), which implies

dimColX(DCn , ϕCn) ≥ n+1. By Corollary 6.2, we obtain n ≤ u(Cn). On the other

hand, we can deform Cn into a trivial handlebody-knot by the crossing changes at

n crossings surrounded by dotted circles depicted in Figure 17. Therefore it follows

that u(Cn) = n.

Figure 17. A Z8-flowed diagram (DCn , ϕCn) of Cn.

Example 7.4. Let Hn and H ′
n be the handlebody-knots represented by the Z3-
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flowed diagrams (Dn, ϕn) and (D′
n, ϕ

′
n(a, b)) respectively depicted in Figure 18 for any

n ∈ Z>0 and a, b ∈ Z3. Then we show that d(Hn, H
′
n) = n.

Let s = 1 ∈ Z2[t
±1] and let f(t) = t2 + t + 1 ∈ Z2[t

±1], which is an irreducible

polynomial. Then X := Z2[t
±1]/(f(t)) is a Z3-family of Alexander (bi)quandles. Then

for any x0, x1, . . . , xn, y1, . . . , yn ∈ X, the assignment of them to each semi-arc of (Dn, ϕn)

as shown in Figure 18 is an X-coloring of (Dn, ϕn), which implies dimColX(Dn, ϕn) ≥
2n+ 1.

On the other hand, we note that ColX(D′
n, ϕ

′
n(a, b)) is generated by

x0, x1, x
′
1, . . . , xn, x

′
n, y1, y

′
1, . . . , yn, y

′
n ∈ X as shown in Figure 18 for any a, b ∈ Z3.

If (a, b) = (0, 0), it is easy to see that dimColX(D′
n, ϕ

′
n(a, b)) = 1. If (a, b) =

(1, 1), (1, 2), (2, 1), (2, 2), we obtain that xi = x′i = yi = y′i for any i = 1, 2, . . . , n, which

implies dimColX(D′
n, ϕ

′
n(a, b)) ≤ n+ 1. If (a, b) = (0, 1), (0, 2), we have

x0 = x1 = x2,

xi+2 = x′i (i = 1, 2, . . . , n− 2),

x′i =

{
xi ∗b y′i (i : odd),
xi ∗−b y′i (i : even),

xn = x′n−1,

yi = y′i (i = 1, 2, . . . , n).

Figure 18. Z3-flowed diagrams (Dn, ϕn) and (D′
n, ϕ

′
n) of Hn and H ′

n.
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Hence ColX(D′
n, ϕ

′
n(a, b)) is generated by x0, y1, . . . , yn ∈ X, which implies

dimColX(D′
n, ϕ

′
n(a, b)) ≤ n + 1. If (a, b) = (1, 0), (2, 0), in the same way as when

(a, b) = (0, 1), (0, 2), ColX(D′
n, ϕ

′
n(a, b)) is generated by x0, x1, . . . , xn ∈ X, which implies

dimColX(D′
n, ϕ

′
n(a, b)) ≤ n+1. Hence for any a, b ∈ Z3, dimColX(D′

n, ϕ
′
n(a, b)) ≤ n+1,

which implies that

dimColX(Dn, ϕn)− dimColX(D′
n, ϕ

′
n(a, b)) ≥ n.

By Theorem 6.1, it follows that n ≤ d(Hn,H
′
n).

Finally, we can deform H ′
n into Hn by the crossing changes at n crossings surrounded

by dotted circles depicted in Figure 18. Therefore it follows that d(Hn,H
′
n) = n.
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