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Abstract. A quantity concerning the solutions of a quadratic Diophan-
tine equation in n variables coincides with a mass of a special orthogonal group
of a quadratic form in dimension n — 1, via the mass formula due to Shimura.
We show an explicit formula for the quantity, assuming the maximality of a
lattice in the (n — 1)-dimensional quadratic space. The quantity is determined
by the computation of a group index and of the mass of the genus of maximal
lattices in that quadratic space. As applications of the result, we give the
number of primitive solutions for the sum of n squares with 6 or 8 and also
the quantity in question for the sum of 10 squares.

1. Introduction.

We consider an n-dimensional vector space V over a totally real number field F' and
a nondegenerate symmetric F-bilinear form ¢ : V' xV — F| where 2 < n € Z. We denote
by ¢[x] the quadratic form (z,z) on V. We assume that ¢ is totally definite. Let L be
a mazimal lattice in V with respect to ¢, that is, L is a g-lattice in V' which is maximal
among g-lattices on which the values [z] are contained in g. Here g is the maximal
order of F. For simplicity, when ¢ is fixed on V', we will often refer to a maximal lattice
in V', omitting reference to the ¢ needed to define it. Put

Llg,b] ={z € V | p[z] = q, p(z,L) =b}

for given ¢ € F* and fractional ideal b of F. Assuming L[q, b] # 0, we take an element
hof L[g,b]. Put W = {z € V| p(z,h) = 0} and let ¢ be the restriction of ¢ to W. Let
SOY¥(W) be the special orthogonal group of ¢ and we regard it as the subgroup {a €
SO? (V)| ha = h} of the special orthogonal group SO?(V) of ¢. Here we understand
that every F-linear automorphism of V' acts on V' on the right. Put

C(L) ={y € 50*(V)a|Ly =L}, (1)

where SO¥(V)a is the adelization of SO?(V') as usual.
It was shown by Shimura in [7, (3.7)] that

D O[T(Ly™) 17 Ly )lg, b] = m(SOY (W), SO¥(W)a N O(L)). (2)

yey

Here Y is a complete set of representatives for SO?(V)\SO?(V)a/C(L),T(Ly~!) = {y €
SOY(V) | (Ly=Y)y = Ly~'}, and m(SO¥ (W), SO¥(W)aNC(L)) is the mass of SO¥ (W)
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relative to the group SOY(W)a N C(L); see [7, (3.1)] for the definition. Formula (2)
connects the solutions of the equation ¢[x] = ¢ in n variables, satisfying the condition
o(z,L) = b, with the mass of the group SO¥(W) in dimension n — 1. Thus through
this mass formula, we are naturally interested in the computation of the right-hand side
of (2).

In fact, the purpose of this paper is to give an explicit formula for the mass
m(SO¥ (W), SO¥(W)a NC(L)); see (2.10) and (3.13). To do this, we restrict our inves-
tigation to the following case:

The g-lattice LN W in W is maximal with respect to 1. (3)

As for the maximality of LNW in W, we have one criterion in [10, Theorem 6.3]. That
is given as (4.2) in this paper. From this the ideal b for which L N W is maximal in W
is explicitly determined by given (V) and q.

Here we explain further details about our results. For a moment, we take a
maximal lattice M in W and put E = SOY(W)a N C(L) for simplicity. By [7,
(3.3)] we have [E : EN C(M)m(SO¥(W),E) = m(SO¥(W),E N C(M)) = [C(M) :
ENC(M)m(SO¥(W),C(M)), where C(M) = {y € SO¥(W)a | My = M}. Therefore
m(SO¥ (W), E) can be given as follows:

[C(M) : ENC(M)]
[E:ENC(M)

m(SO% (W), E) = m(SO¥(W),C(M)). (4)

As for the mass m(SOY¥ (W), C(M)) of the genus of all maximal lattices in W, when
the case where the dimension of W over F is even, or the dimension of W is odd and
det(v)g is a square ideal of F, it can be obtained by applying the exact formula due
to Shimura [3, Theorem 5.8] to m(SO¥ (W), C(M)), since M is maximal in W. When
the case where the dimension of W is odd and det(¢)g is not a square ideal of F, a
similar formula for m(SO¥ (W), C(M)) is given by [1, Propositions 7.4 and 7.5] due to
Gan, Hanke, and Yu. However, we take up again a formula for m(SO¥(W),C(M)) in
the latter case, employing the same ideas in the proof of [3, Theorem 5.8]. By doing so,
we can obtain the formula via the determination of a certain group index in Lemma 2.5
below, which is closely connected with the local representation density of (2.9) below at
a given prime. In this paper we shall restate the formula in both cases for convenience
of the reader (Corollary 2.7).

We now suppose that L N W is maximal in W. Then we may assume M = LNW,
and hence E is a subgroup of C(M). Therefore we have

[C(M) : ENC(M)]
[E:EnC(M)

= [O(M) : E]. (5)

The right-hand side is given by the product of local indices [C(M,) : E,] for all
nonarchimedean primes v of F. Here C(M,) = {y € SO% (W,)|M,y = M,},
E, = SO¥»(W,) N C(L,), and C(L,) = {y € SO¥*(V,)| L,y = L,}; see Section 2.1
regarding the symbols W,, 1, M,, etc. The main result of this paper is to give
[C(M,) : E,] under the assumption that L, NW,, is maximal in W,,, where M,, = L,NW,,.
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This will be stated in Theorem 3.8. We hope to discuss our investigation on the removal
of (3) in the future.

As applications of our results, we give #L[q, b] for a squarefree positive integer ¢
and the ideal b such that L N W is maximal in W, by taking V = QL (n = 6 or 8),
ole] = Yoi 27 for x = (z;)7-, € V, and a maximal lattice L in V (Proposition 4.3
(i) and (ii)). For example, when n = 6 and ¢ = 2 (mod 8), we obtain #L[q,Z] =
3 leq(pz—i—(_?l)). Here p runs over all prime factors of ¢ and (_71) is the quadratic residue

symbol. We also apply the results to the case where V = Qlj and g[z] = 12, 22, In

this case the class number of SO¥? (V') with respect to C(L) is 2 (cf. [2, Section 3.2] due
to Hiraoka). Let {Li, L2} be a complete set of representatives for the SO¥(V)-classes
in the genus of all maximal lattices in V; see [6, Section 9.3] for the definition of the
SO¥(V)-class. An explicit choice of each L; (i = 1,2) is given in (4.3). Then we give
Z?Zl[F(Li) : 1]714L;[q, b] for a squarefree positive integer ¢ (Proposition 4.3 (iii)). For
example, when ¢ = 1,2 (mod 4), we have

9 25 ifg=1 (mod 4),

#Lilq,Z 1 1 .
[F(LE)le]] = 219.35.52.7H(p4+(p>) << 17 if g=2 (mod 8),
pla 3-5 ifg=6 (mod 8).

=1
Moreover, a few numerical computation in both sides of above equality is given after
Proposition 4.3. In Section 4.1 we will explain the relationship between the set L[g, b]
and a set of primitive solutions of a quadratic Diophantine equation.
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function after the seminar at Osaka University on July 10, 2015.

NoOTATIONS.  We follow the notion and the notation in Shimura’s book [6] and our
previous paper [10].

If X is a set, then #X denotes the cardinality of X. If X is a disjoint union of its
subsets Y7, -+ ,Y,,, we write X = szzl Yyor X =Y, U---UY,,. For a subgroup H of a
group G we let [G : H] = #(H \ G). For a real number a we denote by [a] the greatest
integer not greater than a.

If R is an associative ring with identity element, then R* is the group of units of R.
Put R*? = {a®|a € R*}. If K is a finite algebraic extension of a field F, then Dy /p
denotes the relative discriminant of K over F.

Let F' be a number field or its completion, and V' an n-dimensional vector space over
F. By a g-lattice in V', we understand a finitely generated g-module in V' that spans V'
over F'. Here g is the maximal order of F'. We write dimp(V) for the dimension of V'
over F'. We denote by 1y the identity map of V. If R = F or g, then we write R]" for
the R-module of all m x n-matrices with entries in R. We denote by 0 the zero element
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of R. Put M,(R) = R}, when we regard R} as a ring. We let 1,, denote the identity
element of M, (R). Put GL,(R) = M,(R)*. For a matrix = we denote by 'z, det(z),
and tr(z) the transpose, determinant, and trace of . Put N(a) = Na = [g : a] for an
integral ideal a of g.

2. The mass m(SO¥ (W), C(M)).

2.1. For a given quadratic space (V, ) over F equipped with a totally-definite
symmetric F-bilinear form ¢, we assume that

the dimension of V' is odd and det(y)g is not a square ideal of F. (2.1)

We will determine the mass of the genus of all maximal lattices in the quadratic
space (V,¢). Once a formula for the mass is obtained, the formula is applicable to
m(SOY(W),C(M)) in (4) if (W, ) satisfies (2.1). Here M = LNW is a maximal lattice
in W. When the case where the dimension of W over F' is even, or the dimension of W
is odd and det(¢)g is a square ideal of F, the formula in [3, Theorem 5.8] is applicable
to m(SOY(W),C(M)) in question.

Let L be a maximal lattice in V' and define C(L) by (1). Let ¢, be the F,-linear
extension of ¢ to V, = V ®p F, and put L, = L ®q g, for v € h. Here F), is the
v-completion of F', g, is the maximal order of F;,, and h is the set of all nonarchimedean
primes of F. Put L = {z € V |2p(x, L) C g}. Let ¢ be the product of all prime ideals
for which L, # Ly.

First, in the same manner as in [3, Section 7.10], we obtain

m(SO?(V),C(L)) = m(SO?(V), D(a)) [

vla

(2.2)

for an integral ideal a of g such that a C ¢ and 2 ¢ qa, for every v | a. Here D(a) =
{yeC(L)|Ly(yw —1) C a,L, for every v | a}, D(L,) = {y € O¥*(V,) | Lyy = L.}, and

D¢ = {y € D(Ly) | Ly(y —1) C ayLy}.
The mass m(SO¥(V), D(a)) in (2.2) is given as follows:

m(SO%(V), D(a)) = my,(a)[L : L)~ D/2,
O e T P 4
m, (a) = 21790 D/2N (@02 plin AT {DF/ [(2i 1>!<2w>-2l19<ma<2z’>}.

=1
(2.3)

Here g = [F' : QJ, Dp is the discriminant of F, (ra(s) = (r(s) [, (1 — N(po) ™),
(r is the Dedekind zeta function of F', and p, is the prime ideal of g corresponding to

v. Formula (2.3) can be obtained in exactly the same manner as in the proof of [3,
Theorem 5.8], more precisely, as in the argument in [3, Section 7].

2.2. We are going to compute the index [D(L,) : D¥] in (2.2) for v | a. We fix
such a v and drop the subscript v for simplicity, until the end of the proof of Lemma 2.5.
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Let 7 be a prime element of g and p the prime ideal of g. From assumption (2.1) we may
assume that

dimp(V) = n ¢ 2Z and det(p) € mg* F*2. (2.4)

Otherwise the desired index is given by [3, Proposition 3.9].

Put D; = Df = {y € D(L)|L(y — 1) C p‘L} for 0 < i € Z. Then we have
D¥ = D, with v € Z such that a = p¥. It can be seen that [D(L) : D¥] = [D(L) :
Dy I/} [D:i : Diy1). The same argument as in the proof of [3, Lemma 8.5] gives
[D; : Diy1] = ¢*™=Y/2 where ¢ = [g : p]. Thus we obtain

[D(L) : D¥] = [D(L) : Dy]qv~Yn(n=1/2, (2.5)

2.3. To determine the index [D(L) : D1] in (2.5), let us recall a Witt decomposition
of V with respect to ¢ as follows (cf. [6, Lemma 6.5]):

V=2+> (Fe;+Ff;), L=N+) (gei+gfi). (2.6)

i=1 i=1

Here e; and f; are elements of V such that ¢(e;, e;) = ©(fi, fj) = 0 and p(e;, f;) = 2714;;,
Z ={zx € Vl]p(ei,x) = o(fi,x) = 0forevery i}, N = {z € Z|yp[z] € g}, and the
restriction 6 of ¢ to Z is anisotropic. Then we say that Z is a core subspace of V' with
respect to . By [6, Lemma 6.4], note that N is a unique maximal lattice in Z, and
therefore 0%(Z) = D(N). Put t = dimp(Z), then n = 2r +t. We call ¢ the core
dimension of (V, ). We have t < 4 by [6, Theorem 7.6 (ii)]. We note that ¢t =1 or 3 in
our assumption (2.4). Hereafter we fix such a decomposition until the end of the proof
of Lemma 2.5.

Let us further recall some basic facts on the core subspace Z of dimension ¢ < 4 over
F, following [6, Section 7], which will be needed in our determination and in the next
section. For an element ¢ of g we put N[q] = {z € N |0[z] = q}. Throughout this paper,
we denote by A(V) the Clifford algebra of ¢ for a quadratic space (V, ) and by AT (V)
its even Clifford algebra.

Ift =1, then Z = Fg with some g € Z. We identify Z with F' via the map of Z
onto F defined by ag ++ a. Then, putting ¢ = 0][g], we have [a] = ca® for a € F. Let
cg = p°. We see that N = p~ (/2. Clearly N[g] = 0 if and only if c¢q ¢ F*2.

Assume ¢t = 2. Let Z = Fg+ Fk with some elements g and k such that 6(g,k) = 0.
We consider the even Clifford algebra AT (Z) of  and put K = A*(Z). Then via the map
ag — a, (Z,0) is isomorphic to (K, ck), where & is the norm form on K and ¢ = 6[g]. Put
cg = p°. Note that K is a quadratic extension of F', which gives the discriminant field
F([—det(0)]'/?) of (Z,60). We identify (Z,0) with (K, ck) through the isomorphism. If K
is ramified over F, then we can take c so that ¢ € g* F*2. Then N = q~¢, where q is the
prime ideal of the maximal order ¢ of K. If K is unramified over F, then N = p~[¢/2¢,
Clearly N[g] = 0 if and only if ¢ ¢ ck[K*]. Also by [8, Theorem 20.8 (ii)], ¢ € x[K™*] if
and only if the Clifford algebra A(Z) of 6 is isomorphic to My (F).

If t = 3, then AT (Z) is a division quaternion algebra B over F. Put B° = {z €
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B|x+x* = 0} with the main involution ¢ of B and let 8° be the restriction of the norm
form 8 on B to B°. There is an element ¢ of A(Z)* such that Z = B°(. Thus (Z,0) is
isomorphic to (B°,d3°) via the map defined by z + 2¢~!, where d is an element of F'*
such that dF*? = det(0)F*2. Put dg = p°. We identify (Z,6) with (B°,dS°) through
the isomorphism. Then we have B = J + Jw with an unramified quadratic extension
J of F and an element w of B° such that w? € 7g* and aw = wa* for a € J. Take an
element u of J such that v = g[u] and u — u* € v*, where t is the maximal order of J.
Then Z = Fp+ Jw and N = p~=/2(gn + w) or N = p~=I/2(gn + w™!) according
as d € g*F*% or d € 7g* F*2, where = u — u*. Note by [6, Proposition 5.15 (ii)]
that N[q] = 0 if and only if —dqg € F*2. Even if @ is isotropic, we can employ the
setting similar to the anisotropic case. Namely, taking B = Ms(F), f[z] = det(x), and
B° = {z € My(F)|tr(x) = 0}, we regard (Z,0) as (B°,df°) with d € F*.

Assume ¢t = 4. Then by [6, Theorem 7.5 (ii)], we may identify (Z,0) with (B, )
with a division quaternion algebra B over F' and the norm form 8 on B. Then N is the
maximal order of B. We note that det() € F*2.

LEMMA 2.4. Assume (2.4). Then

2 ift=1,

. Do
[D(N) = D] = {4q2(q+ 1) ift=3.

Here DY is defined in a similar way to DY with N in place of L.

PROOF. Assumet = 1. Then Z = F and 0[a] = ca? with ¢ € mg*, since ¢ satisfies
(2.4). We have D(N) = 0%(Z) = {£1}. Because N = g, clearly N = (2p)~!. Hence we
obtain DY = {1}. Thus [D(N) : DY] = 2.

Assume t = 3. Then Z = Fn+ Jw, 0[z] = dB°[z], and N = gn+tw~! with d € mg*
by (2.4). We see that N = (2p) " n+tw . For a € B, let 7, be an F-linear automorphism
of Z defined by 7, = a~'za for x € Z. Put C = {1, |a € 9>}, where O is the maximal
order of B. Then, in a similar way to the proof of [3, Lemma 3.7], we can show that
D(N)=CU(-1z)CUT,CU(-1z)7,C, D{ C C, and D¢ = {7, |a € g* (1+P?)}, where
B is the prime ideal of . Thus we obtain [D(N) : D{] = 4[C : D{] = 4¢*(q + 1). This
completes the proof. O

Throughout this paper, for a subspace X of a given quadratic space (V, ) we put
X+ ={yeVie(y,X)={0}}.
LEMMA 2.5.  Assume (2.4); put £ = (n—1)/2 and k = n(n —1)/2. Then

el gk (20— OILS A=) ift=1,
P {2(1 +a (L —a7) ift=3
forv asin (2.5).

When (2.4) is not satisfied, the index [D(L) : D¢] is given by [3, Proposition 3.9].

v
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PROOF. By (2.5) it is enough to determine [D(L) : Dy]. If r = 0, then this index is
given by Lemma 2.4. Assume r > 0. Put W = (Fe; + Ff1)* and let o be the restriction
of o to W. Put M = LNW. Then we shall show that

[D(L) : Df] = ¢"7*Ao[D(M) : DY] (2.7)

with the value Ag given as follows:

A Jad =D+ =1,
T lald D@ - 1) ift=3.
If o is anisotropic on W, then (2.7) together with Lemma 2.4 gives the index [D(L) : DY].
If o is isotropic on W, (2.7) is applicable to [D(M) : D] instead of [D(L) : DY].
Repeating this process, we obtain [D(L) : DY].

The proof of (2.7) can be seen in a similar way to [3, Section 3] in view of the
difference between the present form ¢ and the quadratic form in [3, Section 3], which
does not satisfy (2.4). Let us give an outline of the proof.

Put ¢’ ={a € D(L)|eya — ey € pL, fraa — f1 € pL}. Then DY C ¢’ C D(L), and
hence [D(L) : DY] = [D(L) : C"][C" : DY]. It can be seen that [C" : DY] = [D(M) : D]
in the same manner as in the proof of [3, Proposition 3.9]. Furthermore we see that
[D(L) : C'] = q"2#Y,, where Yy = {x +pL € L/pL |z ¢ pL, ¢[z] = 0}. Then we have

#Yo =#Y —q, (2.8)

where Y = {x 4+ pL € L/pL|y[z] € p}. To see (2.8), suppose ¢ = 3. Then Z =
Fn+ Jw, 0[z] = dB°[z], and N = gn + w™! with d € mg* by (2.4). By employing this
setting, the argument similar to [3, Lemma 3.8] shows #Y — #Yy = #{an + bw™ ! +
pN € N/pN|a € g,b € pr}. Hence we have (2.8). Still assuming ¢ = 3, put I(¢) =
2ver/pr 2ceq/p X(§plz]/m). Here x is a T-valued character of the additive group F
such that g = {a € F|x(ag) = 1}, where T = {z € C | |z|] = 1}. We see that
I(p) = #Y - q. The equality I(p) = ¢" — ¢" ™" + ¢"I(0) is valid even for the present ¢,
where 1(0) is defined in a similar way to I(¢) with N and 6 in place of L and ¢. We then
find that I(f) = ¢*. To sum up, we have [D(L) : C'] = ¢"~2Ap with Ay in the statement
in the case t = 3. Similarly we obtain the assertion in the case t = 1. This proves (2.7),
which completes the proof. O

The index [D(L) : D¢] in Lemma 2.5 is connected with a local representation density.
In fact, by (2.5) and [3, Theorem 8.6] we have [D(L) : D¥¢] = ¢"*=""[L : L]7te(2¢0),
where 2g = p” and

e(2p0) = lim ¢~ #{y € gn/m"gn [ 'y(2p0)y — 200 € 7Man} . (29)

Here g is the matrix that represents ¢ with respect to a g-basis of L.
We are now ready to state the formula for m(SO%(V),C(L)) containing the case
where ¢ does not satisfy (2.1).
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PROPOSITION 2.6. Let V' be an n-dimensional vector space over a totally real num-
ber field F' and ¢ a totally-definite symmetric F-bilinear form on V', where n is an ar-
bitrary integer greater than 1. Let L be a maximal lattice in V' with respect to p. Put
C(L)y={y€ SO?(V)a|Ly=L} and

[(n=1)/2]

ma(g) = 208" T {32 (20 - 112m) 27 ¢e(20)}
i=1

. 2-9(n—1)/2 if n is odd,

N(D)l/QD};/2 [(m — D)!(27)~™)? L(m,0) ifn is even.

Here Dp is the discriminant of F, g = [F : Q], m = n/2, and 0 is the differ-
ent of F([(=1)™det(p)]'/?) relative to F; (r is the Dedekind zeta function of F and

L(s,0) is the L-function of the Hecke character o of F corresponding to the extension
F([(=1)™det(¢)]*/?)/F. Then

1 if n is odd,

m(SO?(V),C(L)) = mp(g)[L : L] D2 ] A - {N(a)—l/2 if n is even

vle

with the value X\, given as follows:

1 ift, = 1,v |2, and det(p) € gX Fx2,
271(1 4 g, "7V/?) ift, = 1 and det(p) € mgX F)?,
27 14 q) L1+ ¢ ™)1+ q;™) if ty = 2,0, = ty, and N, # N,

2-1 if t, = 2 and 0, # ty,

27 (1+q) (=g, ") if t, =3 and det(p) € g F)?,
2711 - qv_(n_l)ﬂ) ift, = 3 and det(p) € mgX F)?,
2114 g) " (1 — g (U= ™) ifty = 4.

Here L = {zx € V|2¢(x,L) C g}, ¢ is the product of all prime ideals for which L, # Ly,
and ¢ is the mazimal order of F([(—1)™ det()]'/?); t, is the core dimension of (Vy, @),
],VVU ={z € Z,|2¢y(x,Ny) C gv}, Ny and Z, are as in (2.6), and q, is the norm of the
prime ideal of g, .

We note that v { e if t, = 0, if t, = 1, v { 2, and det(p) € gl F}?, or if t, = 2,
0y =1, and N, = N,. Also note that F([(—1)"/2 det()]*/?) is a quadratic extension of
Fift, =2.

PrOOF. When ¢ does not satisfy (2.1), the formula is nothing but the exact for-
mula given in [3, Theorem 5.8]. When ¢ satisfies (2.1), there exists v € h satisfying
(2.4). For such a v, [D(L,) : D] in (2.2) is given by Lemma 2.5. If v does not satisty
(2.4), then [3, Proposition 3.9] gives [D(L,,) : D¢]. Combining this with (2.2) and (2.3),
we obtain the desired formula. O
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By applying Proposition 2.6 to m(SO¥(W),C(M)) in (4) in the introduction, we
obtain the following formula for this mass:

COROLLARY 2.7. LetV be an n-dimensional vector space over a totally real number
field F and @ a totally-definite symmetric F-bilinear form on V', where 2 <n € Z. Let
L be a mazimal lattice in V with respect to ¢. Assume Llq,b] # 0 with ¢ € F* and
a fractional ideal b of F. For an element h of Llg,b], put W = (Fh)* and let ¢ be
the restriction of ¢ to W. We regard SO¥(W) as the subgroup {a € SO?(V)|ha = h}
of SO?(V). Assume that the g-lattice LW is mazimal in W. Put M = LNW and
C(M) = {y € SOY(W)a | M~ = M}. Also we put

[(n—2)/2]
mai(a) = 200 T {0 [0 - i) cri2i
=1
2-9(n=2)/2 if n is even,
N@g)Y2D}? [(0 = 1)12m) )7 L(t,0k) if n is odd.

Here K = F(y/(—=1)"=15q)/F, § = (—=1)"(»=1/2 det (), 0k is the different of K relative
to F, £ = (n—1)/2, and L(s,0k) is the L-function of the Hecke character o of F
corresponding to the extension K/F; Dp, g, and (g are as in Proposition 2.6. Then

~ ne2)/2 1 if n is even,
(SOYV),C00) = mocal)BT: 24127 [ T .- {N@K>1/2 s odd
(2.10)
with the value A\, given as follows:

1 if s, = 1,v |2, and §q € g} FX?,

271 (14 ¢, "2 if sy =1 and 0q € w9y )2,

27 1+ q) ' A+ ¢t A+ ¢7%)  if sy =2,0K)y = ty, and N;;U # Ny, ,

21 if 85 =2 and (0K )y # T,

27 1+ q) A —g ™) if s, = 3 and dq € g F)?,

2711 — g, ") if o =3 and dq € T,07 F)?,

27 1+ q) t 1 =gl H(1 - gyt ifs, =4

Here M = {x € W|2¢(x,M) C g}, ¢ is the product of all prime ideals for which
M, # M,, and v is the mazimal order of K; s, is the core dimension of (W,,,),
N\V;,, ={z € Zw, | 2¢,(z, Nw,) C gv}, Nw, (resp. Zw,) is defined in a similar way to
N, (resp. Z,) with M,, (resp. W,,) in place of L, (resp. V) in (2.6), and q, is the norm
of the prime ideal of g..

3. The index [C(M) : SO¥(W)a N C(L)].

3.1. We will determine [C(M) : SO¥(W)a NC(L)] in (5) in the introduction, with
a fixed element h of L[g, b] and a maximal lattice M = LNW in W. We start with the
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equality

[C(M) : SO*(W)anC(L)] = []IC(M,) : SO¥* (W,) N C(Ly))-

veEh

Here we regard SO¥*(W,) as the subgroup {a € SO?*(V,)|ha = h} of SO?*(V,) and
put C(M,) = {7 € SOw"(Wv) | Myy = Mv} and C(Ly,) = {7 € S0 (V,) ‘ L,y = Lv}'
It is sufficient to determine the index [C'(M,,) : SO¥+ (W, )NC(L,)] for given h € L,[q, b,]
and v € h. Hereafter until the end of this section we fix v € h and drop the subscript v
for simplicity.

We take a Witt decomposition of V' with respect to ¢ as in (2.6) and fix such a
decomposition throughout this section. We use the same letter ¢ for the restriction of ¢
to Z.

Before proceeding our arguments, we need to change h for a representative for the
set {x € L|plx] = c*q} under the modulo C(L) with some ¢ € F*, as stated in [10,
Theorem 3.5]. Let us here explain the idea of changing h. First, we can find ¢ € F*
satisfying c?q € g and cb C 27 'g. Then we easily see that the g-lattice L + gch contains
L and satisfies ¢[L + gch] C g. From the maximality of L, this lattice coincides with L,
and hence we have ch € {z € L|¢[z] = c®q}. [10, Theorem 3.5] gives a complete set
of representatives for {x € L|p[z] = ¢?q}/C(L). Hence there exists some representative
u such that (ch)y = u with some v € C(L). The element u can be taken from the
subset N + (ge, + gf-) of V in the notation of (2.6). It should be noted that the index
[C(M) : SOY(W)NC(L)] defined with h is the same as the index defined with chy. Also
note that L N (Fu)* is a maximal lattice in (Fu)*. Thus we may determine the index
[C(LN(Fu)t) : SO?((Fu)t)NC(L)] instead of [C(M) : SO¥(W)NC(L)]. In this sense,
hereafter we identify h with w. Then we have

if Nlq] # 0,

h e
{N+ (ger +af,) if Nig =0, (3.1)

where N[g] = {z € N |¢[z] = ¢}. We also note that h € L[q, b] with ¢ € g and b C 27 1g,
and that

LNW is maximal in W (3.2)
under our identification. According to (3.2) and [10, Theorem 5.3], the ideal b satisfies
2b = p(@), (3.3)

where the value 7(¢) only depends on (V, ¢) and ¢ and is given in [10, Theorem 3.5]. Let
99 =p”.

For a subspace X of V' we regard O?(X) as the subgroup {a € O?(V)|za =
x for any x € X+} of O?(V). In particular, O¥(W) = {a € O¥(V) | ha = h}. We under-
stand O¥(Y) in a way similar for a subspace Y of W. Put D(L) = {y € O?(V) | Ly = L}
and D(M) = {y € OY(W)| M~ = M}.
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PROPOSITION 3.2.  Let the notation be the same as in Section 3.1. Then the fol-
lowing assertions hold:

(i) [0¥(W)N D(L) : SO*(W)n C(L)] = 2.
(ii) [C(M): SO*(W)NC(L)] = [D(M) : O¥(W) 0 D(L)].

PROOF. By [6, Lemma 6.8] we obtain [D(M) : C(M)] = 2. Assertion (ii) follows
from this and (i). Let us show (i). Since det(O¥(W)ND(L)) C {1}, we have [O¥(W)N
D(L) : SO¥(W) N C(L)] < 2. Thus it is enough to show that there exists an element
o of OY(W) N D(L) such that det(c) = —1. By (3.1) recall that h € N if N[q] # 0
and that h € N + (ge, + gf) if N[q] = 0. First suppose that r > 1 if N[g] # 0, and
that r > 2 if N[g] = (). Then we have h € (Fe; + Ff1)*~. We can show (i) in a similar
way to the case t = 1 in the proof of [6, Proposition 11.12 (v)]. Next suppose r = 0.
Then V=2, n=1t2>3,and L = N. Since L # L by [8, (29.7)], if ¢ does not satisfy
(2.4), then [6, Proposition 11.12 (v)] is applicable to the present case. Here L is as in
Section 2.1. An argument similar to the proof of [6, Proposition 11.12 (v)] shows (i) if ¢
satisfies (2.4), that is, if t = 3 and det(yp) € wg* F*2. This proves (i) in the case r = 0.
Now suppose that r = 1 and Ng] = 0. Then V = Z + (Fe; + F f;) and dimp(Z) > 1.
If h € Fe; + Ff1, then (i) can be obtained in a similar way to the case L =L and
t # 1 in the proof of [6, Proposition 11.12 (v)]. Assume h ¢ Fe; + F f1; assume also
dimp (V) > 3. Let z be an element of N such that i € z + (ge; + gf1). Then z # 0 and
V =[ZN(Fz)]+ (Fz+ Fe; + Ff1). We can find the desired ¢ in a similar way to the
case h € Fey + Ffy.

Finally assume dimg (V') = 3. Note that ¢ is isotropic on V. In this case we employ
the setting of the case ¢ = 3 in Section 2.3. Then (V,¢) = (B°,dS°), where B° = {z €
My (F) | tr(z) = 0}, 8°[z] = det(x), and d € F*. We may assume d € g* Ung*. Then we
have a Witt decomposition B® = Fg+ (Fe+ Ff) and L = gg+ge+gf with g = [§ % ],
e=9 —%71 |, and f = [99]. Now recall N[g] = 0. Then there are two elements c € 27'g
and a € g such that cg 4+ ae + f belongs to L[w’ZT(Q)q,Qflg] by the same manner as
in [7, Section 1.6], where 7(g) is in (3.3). Note that n7(@ (L{x=27(@¢q, 27 1g]) = L|q, b].
Thus, by virtue of [7, Theorem 1.3], hy = 779 (cg + ae + f) with some v € C(L). For
the same reason as explained in Section 3.1, we may identify h with cg + ae + f. Put
w = —g — 2cde, then {h,w,wh} is an orthogonal F-basis of V with respect to ¢. Let
o be the element of GL(V) defined by ho = h, wo = —w, and (wh)o = wh. Clearly
o€ O¥(W), ¢ SO¥(W). Moreover, in view of p[h] = d-det(h), observe that go, eo, and
fo belong to L. Thus Lo C L. Because det(oc) = —1, we obtain Lo = L. This proves
(i) in the remaining case, which completes the proof. O

We note that even when L N W is not maximal in W, the above proposition is true.
This can be proven by changing 7(q) for j € Z such that 2b = p’ in the proof.

LEMMA 3.3. Let the notation be the same as in Section 3.1. Put

Lz i Vg £0,
Z+(F€7'+Ff7') ZfN[Q]:®7
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where Nq| is as in (3.1). Then the following assertions hold:

(i) W =2Zw + >1Y, (Fe; + Ff;), which is a Witt decomposition of W with respect to
v. Here Zywy =UNW, rw =71 if N[q] # 0, and rww =r—1 if N[g| = 0. Moreover,

t—1 if N ,
dimp(Zuy) = Zf [q] #
t+1 if Ng=0. (3.4)
(i) M = Nw+>_:Y (gei +9fi) with Ny = (LNU)N Zw . Moreover Ny is a mazimal
lattice in Zyy, which is given by Ny = {x € Zw | ¢Y[x] € g}.

PROOF. First assume N[q] # 0. Then h € N by (3.1). Assertion (i) and the
first assertion of (ii) are trivial in view of (2.6). Since N = {x € Z|y[x] € g}, we
have Ny = {z € Zw |¢[z] € g}, which is maximal in Zy,. This proves our lemma
in the case N[gq] # . Next assume N[q] = (. Since h € N + (ge, + gf,), we have
W = Zw + ;% (Fe; + Ff;). This is a Witt decomposition because the restriction of
1 to Zy is anisotropic. To see that v is anisotropic on Zy, put k = qe, + f.. Since
wlk] = ¢, by [6, Lemma 1.5 (ii)], there is o € SO®(U) such that ha = k. With this
«, we may identify Zy, with U N (Fk)*. Then Zy = Z + Fg with g = qe, — f.. If
t = 0, then the assertion is clear. Assume t > 1 and @[z + ag] = 0 with z € Z and
a € F. If a # 0, then pla='z] = ¢, which contradicts the assumption N[q] = (. Thus
a = 0, and hence z = 0 because ¢ is anisotropic on Z. This proves the desired fact.
It is obvious that dimp(Zw) = ¢t + 1. Thus we obtain (i). From (2.6) and (i) we have
M = Nw + ;¥ (ge; + gf;). By [6, Lemma 6.3 (1)], Ny is maximal in Zy and hence
Nuw = {z € Zw |la] € g}, 0

LEMMA 3.4. Let U be as in Lemma 3.3. Take an element v of LN U such that
w(h,v)g =b. Then

LNU = gv+ Ny (3.5)

with Ny in Lemma 3.3. Moreover, put h = cv + w with ¢ € g and w € Nyw. Then
cg =qb~! and

OYW)ND(L)={yeDM) | [w+qgb"'Mly=w+gb" "M}, (3.6)
OY(Zw)ND(L)={y€D(Nw) | [w+gb"'Nwly=w+gb"'Ny}. (3.7)

PrOOF. We first remark that the element v in the statement exists whenever
@¢(h,L) = b. In fact, we have p(h,LNU) =b as h € LNU. Hence there is a generator
@(h,v) of b over g with some v € L N U, which is the required element. We also remark
that ¢ and w are uniquely determined by h and v.

Let us prove (3.5). For any x € LN U we have ¢(h,z) = ¢(h,v)a with a € g. Thus
x — av € Ny, which shows (3.5). Let h = cv + w as in the statement. Since ¢ # 0, we
have v = ¢~ 1(h — w), and hence b = g(cg)~!. To see (3.6) and (3.7), employing (3.5),
observe that L = gv + M. For any v € D(M) we see that v € OY(W) N D(L) if and
only if Ly = L. That is the case if and only if vy — v € M, since @(h,vy —v) = 0. As
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v = c Y(h — w), we have thus O¥(W)N D(L) = {y € D(M) |wy —w € ¢b~'M}. This
proves (3.6). Noticing that O¥(Zy) is identified with the subgroup of O% (W), we obtain
O¥(Zw)N D(L) = {y € D(Nw) | wy —w € gb='M}. The condition wy —w € gb=* M
can be replaced by wy —w € gb~! Ny, which proves (3.7). This completes the proof. [J

We recall that b satisfies condition (3.3) under the assumption that LNW is maximal
in W. Then the ideal gb~! in Lemma 3.4 satisfies

gbt c plv/2, (3.8)

In fact, we see that 2b C pl*/2l. This can be found in [10, (3.9), (3.12), (3.15), (3.18)
and (3.20)] with 7(q) of (3.3). Hence we have 2¢(n~*/?lh, L) C g. This combined with
o[~ /2p] € g implies that 7~ [*/2lh € L by the maximality of L. Thus we obtain
qp~ /2 C b, which proves (3.8).

Lemma 3.4 is a key result to determine the index [C(M) : SO¥(W) N C(L)]. We
note that (3.6) is valid even when L N is not maximal in .

COROLLARY 3.5. If ¢b= = p*/2 then [C(M) : SOY(W)NC(L)] = 1.

PROOF. Let w be as in Lemma 3.4. Since w = h —cv, ¢g = gb~ !, and h € 7l*/21L
as seen above, we obtain w € p!*/2 M. Then our assertion follows immediately from this,
Proposition 3.2 (ii) and (3.6). This completes the proof. O

Even when L N W is not maximal in W, Corollary 3.5 is true with min(j, [v/2])
in place of [v/2], where j is the integer such that 2b = p’. In that case we see that
qb—l C pmin(j,[l//Q]).

In view of (3.8) and Corollary 3.5, we only have to consider the case ¢gb~1 C pl/2A+1,
For this, we need one more lemma:

LEMMA 3.6. (i) Let K be an unramified quadratic extension of F and v its maz-
imal order. Then 1 +p = Ng/p(1 + pr).

(ii) Let B be a division quaternion algebra over F with the main involution ¢ of B, and
B the prime ideal of the mazimal order of B. Put Eg = {u € B|uu* = 1}. Then
[EB :Epn (1 —|—q3)} =1+ Np.

PrOOF. Clearly we have 1 +p DO Ng/p(1 + pr). Conversely, for any a € 1+ p
there exists b € t* such that a = Ng,p(b). If b € 1 + pr, then we obtain (i). Assume
that b ¢ 1+ pr, that is, b —1 € v*. Put u = —(b» — 1)(b — 1)}, where p is the
generator of Gal(K/F). Then ub—1 = (1 —a)(b—1)"" € pr and Nk p(u) = 1. Thus
a = Nk p(ub) € Ng/p(14pr), and hence we obtain 1+p C Ng,p(1+ pr), which proves
(i). To prove (ii), let B = J 4+ Jw with an unramified quadratic extension J of F' and
w € B, as stated in the case t = 3 in Section 2.3. Put £ = {a € J|aa* = 1}. We observe
that

ENEpn(1+P)=En(1+ypr), Ep=I[Epn(1+P)] E,

and Ep N (1+P) is a normal subgroup of Ep, where t is the maximal order of J. From
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these, [EN(14pt)]\ E is isomorphic to [EpN(1+PB)]\Es, and hence [Ep : EpN(1+P)]
[E:EN(l+pt)] =14 Np by [3, Lemma 3.4].

oo

PROPOSITION 3.7.  Assume gb=' C p"/A+L. For v € D(Nw) exstend v to an
element 5 of D(M) by setting 5 to be the identity map on Zg,. Here Zyw and Nw are
as in Lemma 3.3. Then the map v — 7 gives a bijection of D(Nyw)/[O%(Zw) N D(L)]
onto D(M)/[O¥ (W) N D(L)].

PROOF. First of all, we note that dimp(Zy ) > 1. Indeed, if dimp(Zy ) = 0, then
by (3.4) we have t = 1 and N[q] # 0. The latter condition is equivalent to cq € F*? with
an element ¢ of F* as in Section 2.3 under the condition ¢ = 1. Thus by (3.3) and [10,
(3.12)] we see that qgb—1 = pl*/2l which is impossible under our assumption. Hence we
obtain the desired fact.

It is obvious that the map of our proposition is well-defined and injective. Thus we
only have to prove that this map is surjective, that is, for any v € D(M) there exists
a € D(Nw) such that a—'y € OY(W) N D(L). To do this, employing the notation of
Lemma 3.4, we put h = cv + w with ¢ and w there. For a given v € D(M), put

wy™t =wy +yg

with w, € Ny and g € 37", (ge; +9f;) = M N (Zw)*. Let @ € D(Nw ). Then by (3.6),
a~ly € OY(W)N D(L) if and only if wa™ly —w € gb~1 M. This is the case if and only
if w, € (w+gb"*Ny)a~! and g € ¢gb=[M N (Zw)*]. We assert that g always belongs
to ¢b~1[M N (Zw)*]. To see this, put g = ;% (aze; + b; f;) with a;, b; € g. Employing
Lemma 3.4, we have a; = 2¢(w, fiy) € ¢-2p(v, M) C gb~!. Similarly we have b; € gb~1,
and hence we obtain the required fact. Consequently, our map is surjective if and only
if for any v € D(M),

wy, € (w4 gb™ Ny ) D(Nw).
Let us consider the subspace Fw + Fwy of Zy,. Put
Zy=Fw+ Fwy, N,=NwnZ,.

Then 9 is anisotropic on Z, and N, = {z € Z, |¢¥[z] € g}, which is a unique maximal
lattice in Z,. Moreover we consider the set

X = {z € N, |¥[] - ofu] € (qv~1)).

Since wy~!

—w, =g € ¢gb~' M, we have w, € X. Therefore if we show that
XC(w+ qb_le)D(Nv)v (3.9)

then the surjectivity holds because D(N,) C D(Ny ). We shall prove (3.9).
We first note that

Ylwlg = qg. (3.10)
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In fact, recall that h — w = cv and cg = ¢gb~! by Lemma 3.4. From these (3.10)
follows under the assumption ¢b~! C pl*/2+1, In particular, we find w # 0, and hence
dimp(Z,) =1 or 2.

Assume dimp(Z,) = 1. As explained in the case t = 1 in Section 2.3, we may assume
Z, = F, ¢[a] = ca® with some ¢ € F*, and N, = p~ /21 Here cg = p°. Clearly X =
{a € N,|a® —w? € ¢ (gb1)?}. On the other hand, since D(N,) = O¥(Z,) = {+1},
we have (w+gb~'N,)D(N,) = (w+¢gb~'N,)U(—w+qb~'N,). Now, take a € N, such
that a ¢ (w+gb~'N,)D(N,). Then (a —w)g D gb~'N,p~! and (a+w)g D gb~ ' N,p~'.
Hence a? — w? ¢ ¢! (gb~')2. This proves (3.9) in the case dimp(Z,) = 1.

Assume dimp(Z,) = 2. Let K, be the even Clifford algebra of the restriction of v
to Z,. Then we can identify (Z.,,1) with (K, ck,) as in the case ¢t = 2 in Section 2.3,
with the norm form k., on K, and ¢ € F*. Let cg = p°. By (3.10) we have

X = {a € N, |k,[a] € ry[w](1+qb™?)}.

Suppose that K, is ramified over F'. Then we may assume ¢ € g*F %2 and hence
N, = q7¢, where q is the prime ideal of the maximal order t of K,. Thus we have
w+gb™ N, = w(1+g“b~1). By [6, Lemma 5.6 (vi)] for any a € X there exists b € q“b~!
such that . [a] = k,[wb]. Hence a € wbO¥(Z,) by [6, Lemma 1.5 (ii)], which proves
(3.9) in the present case. Suppose that K., is unramified over F. Because N, = p /2y,
we have w + ¢b ™' N, = w(1 + gb~'p~/2t). We can show that

gb~t =pv /2 (3.11)

which will be seen below. From this and gb=! c pl*/2+! it follows that q € wg* F*?
and hence w + ¢gb™' N, = w(1 + pr). Also we have X = {a € N, | k,[a] € k,[w](1+p)}.
Taking any a € X, we have k,[a] € k,[w(1 + pr)] by Lemma 3.6 (i). Thus an argument
similar to the case where K is ramified over F' proves (3.9).

Therefore our proof is finished if we show (3.11). To do this, because b = 2~ 1p7(4)
by (3.3), we only have to prove 7(¢) = s + [v/2] in the present case, where 2g = p”~.
To check the value 7(¢) by means of [10, Theorem 3.5], we need the data of the core
dimension t of (V,¢) and N]g| such that

the core subspace Zy, of (W, 1)) contains the 2-dimensional

subspace Z., whose discriminant field K, is unramified over F. (3.12)

We distinguish the several possible dimensions for the core Zyy.

First assume dimp(Zw) = 2. Then Z, = Zyw, and hence K, is the discriminant
field of Zy . By (3.4) the following two cases may happen: (a) ¢t = 1; (b) t = 3. Let
us show that case (b) is impossible as det(¢y)) € g*F*2. Indeed, suppose t = 3; then
h € Z and Z = Fh+ Z,. Moreover, (Z,) is isomorphic to (B°,d3°) via the map ¢
of B° onto Z with the same notations as in the case ¢ = 3 in Section 2.3; particularly,
B is a division quaternion algebra over F. Here d = (—1)"gdet(¢)). Put k = h(~! and
J = F + Fk in B. By the same way as in [6, Section 11.2], we have B = J 4+ Jw and
B° = Fk+ Jw with a suitable w € B* such that w? ¢ k;[J*], where £ is the norm form
on J. Then (Z,,4) is isomorphic to (Jw,dB3°), which is also isomorphic to (J, —dw?r ).
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Therefore J is isomorphic to K, from which we find that J is an unramified quadratic
extension of F. Thus we may take w so that w? = 7 & k;[J*] = g* F*2. On the other
hand, Z, has the element w (# 0), so that (Z,,) is isomorphic to (K, gk,) because
of (3.10). From these isomorphisms of (Z,,1) we have —drg* F*? = qg* F*?, that is,
det(vp) € wg* F*2. Therefore case (b) does not happen. Hence we may assume case
(a). Put Z = F and pla] = ca®? on Z with some ¢ € F*. To check 7(g), observe that
F(\/cq) is the discriminant field of Ky, which is unramified over F'. This together with
[10, (3.12)] leads 7(¢) = & + [v/2], which proves (3.11). At the same time, we see that
qb=1 c pl?/2+1 if and only if t = 1 and ¢ € 7g”* F*2 under the assumption that the
discriminant field of 2-dimensional Zy, is unramified over F', which will be used in the
proof of Theorem 3.8 below.

Next assume dimp(Zw) = 3. Then ¢t = 2 or ¢t = 4. Let Zyw = Fz + Z, with
some z such that ¢(z, Z,) = {0}. Then we can show that det(¢) € 7g* F*? in a similar
way to the case dimp(Zw ) = 2 and t = 3. From this the case t = 4 is impossible as
det(p) € g* F*2. Consequently if 3-dimensional Zy, satisfies (3.12), then ¢ = 2. In this
case we have N[q] = ), which is the case if and only if c~!q ¢ k[K*] with K, , and c as
in the case t = 2 in Section 2.3. By [10, (3.15)] this implies 7(q) = % + [v/2]. Hence we
obtain (3.11).

Finally assume dimp(Zy) = 4. Then ¢ = 3 and N[g] = . We have (Z,p) =
(B°,dB°) with the same notations in the case t = 3 in Section 2.3. The condition of
Nlg] = 0 means F(y/—dq) = F. Then [10, (3.18)] shows 7(q) = & + [v/2], which proves
(3.11). Note that (3.11) holds when dimp(Zw) = 4, without condition (3.12), which
will be needed in the proof of Theorem 3.8 below. This completes the proof of our
proposition. O

Let Q() be the characteristic algebra of (V, ¢), that is, Q(¢) is a quaternion algebra
over F such that A(V) is isomorphic to My(Q(y)) if n € 2Z, or that AT (V) is isomorphic
to Ms(Q(p)) if n ¢ 2Z, with some 0 < s € Z (cf. [8, Section 28]). Note that Q()
coincides with the characteristic algebra of (Z, ). If V' is a vector space of dimension 1
over I, then we define Q(¢) by M2 (F'). For a quaternion algebra B over F', put x(B) = 1
if B is isomorphic to M»(F), and put x(B) = —1 if B is a division algebra. For x € F,
put

1 if \/z € F,
&(x) =4 —1 if F(y/x) is an unramified quadratic extension of F,
0 if F'(y/x) is a ramified quadratic extension of F'.

Now we state the main result in this paper.

THEOREM 3.8. Let V be an n-dimensional vector space over a local field F' and
@ a nondegenerate F-bilinear symmetric form, where 2 < n € Z. Let L be a mazximal
lattice in V' with respect to p. Assume Lq,b] # 0 with ¢ € F* and a fractional ideal b
of F. For an element h of Llg,b], put W = (Fh)‘ and let ¢ be the restriction of ¢ to
W. We regard SO¥(W) as the subgroup {a € SO?(V)|ha = h} of SO¢(V). Assume
that the g-lattice L N W is mazimal in W. (Then the ideal b satisfies the condition of
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(3.3).) Pt M =LNW. Then

[C(M): SO¥(W)N C(L))
2 ift =0 and q € 7g* F*?;
t=1,6 € g*F*2, and £(6q) = 0;
t=2,6(0) = =1,x(Q(¢)) =1, and g € mg* F*,
=<1+ Np ift=1,q€ng*F*2 and&(dq) = —1;
t=2,6(0) = 0,x(Q(¥)) = —1, and 6q € g* F*?;
t=3,q € g F*2 and £(6q) = 1,
1 otherwise. (3.13)

Here t is the core dimension of (V,p), § = (=1)"=D/2det(p), Q(p) (resp. Q(3)) is
the characteristic algebra of (V, ) (resp. (W,)), and Np is the norm of p.

PrROOF. We take a Witt decomposition of V' with respect to ¢ as in (2.6). As
explained in Section 3.1, we retake h as in (3.1) and fix it. Recall that ¢b~' C p[*/2 by
(3.8). If gb=1 = pl*/2l then by Corollary 3.5, [C(M) : SO¥(W) N C(L)] = 1. Hereafter
we suppose that gb—1 C p*/2+1,

By Propositions 3.2 and 3.7, we obtain

[C(M) : SO*(W) N CO(L)] = [D(Nw) : O¥(Zw) N D(L)],

where Zy and Ny are as in Lemma 3.3. Note that O¥(Zy) = D(Nw ) and dimp(Zyy) >
1. Let us consider the set (w + ¢b~* Ny )O¥(Zw ) with w (# 0) of Lemma 3.4. Then by
(3.7) we have

(w + qgb " Ny)O¥ (Zw) = L] (wa + gb~  Nyy). (3.14)
a€[0¥ (Zw)ND(L)\D(Nw)

Once we obtain the number of representatives of (w+qb~! Ny )O¥ (Zy ) under the modulo
b~ 1Ny, by (3.14) it gives our desired index.

Assume dimg(Zw) = 1. Since O¥(Zy) = {£1}, we have (v + ¢b~* Ny )O¥(Zw) =
(w4 gb™'Nw ) U (—w + ¢b~! Ny ), and hence

: —1
(D(Nw) : 0¥ (Zw) A D(L)] = {2 if 2w §§'qb Nw,
1 otherwise.

To observe the condition 2w ¢ ¢gb~! Ny more precisely, we may assume Zy = F and
Yla) = cyra® with ey € FX. Put cyrg = p°. Also note that we have t = 0, or t = 2 and
¢ lq € K|[K*] with K, ¢, and & as in the case t = 2 in Section 2.3. Then by (3.10) we
see that wg = p*~%)/2. We have Ny = p~ (/2. Combining these with b = 2~ 1p™(@ we
see that 2w ¢ b~ Ny if and only if 7(¢) < v — [v/2] — 1. That is the case if and only
if t =0 and ¢ € 7g* F*? because the value 7(q) can be found in [10, (3.9) and (3.15)].
This gives assertion (3.13) in the case dimp(Zw) = 1.
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Assume dimp(Zw) = 2. Then t = 1 or t = 3. We identify (Zw,v¢) with
(Kw,cwkw) with ciy € F*, where Ky = AT (Zw) and sy is its norm form. By
[6, Section 7.2] we have O¥(Zy) = {1,p}E, where p is the generator of Gal(Ky /F)
and E = {a € Kj,|aa? = 1}. Then we see that (w + ¢b~'Nw)O¥(Zw) =
ube[Em(qu_lw_le)]\E(wb + qb~!Ny). We put cywg = p°. Recall that Ny = q~°¢
if Ky is ramified over F, and Ny = p~ /2t if Ky is unramified over F. Here q is
the prime ideal of the maximal order v of Ky,. Then by (3.10), ¢gb 1w !Ny = qvb~!
if Ky is ramified over F, and ¢gb~'w ™ Ny = ¢b~'p~*/Z¢ if Ky is unramified over F.
Therefore we obtain

[D(Nw) : O¥(Zw) N D(L)]

_JIE:En(14+g¢"071)] if Ky is ramified over F,
[E:En(1+qgb'p~/2)] if Ky is unramified over F.

Suppose that Ky is ramified over F. Note that Ky = F(\/cq) if t = 1, and Ky =
F(y/—dq) ift = 3 with c and d as in Section 2.3. If t = 1 and § € g* F'*2, checking 7(q) by
[10, (3.12)], we have ¢“b~! = d, where 0 is the different of Ky relative to F. Therefore
employing [6, Lemma 5.6 (iv) and (iii)], we obtain [E : EN (1 +g“b~!)] = 2. Similarly
for the case where t = 1 and § € mg*F*? or t = 3, we have ¢“b~! 2 ? by [10, (3.12)
and (3.18)], and then [E : EN(1+¢“b~1)] = 1 by [6, Lemma 5.6 (iv) and (v)]. Suppose
that Ky is unramified over F. Our assumption gb—' C pl*/2+1 implies that t = 1 and
q € mg*F*? as observed in the proof of Proposition 3.7. Note that 7(q) = « + [v/2].
Then applying [3, Lemma 3.4], we obtain [E : E N (14 ¢b~'p~*/2¢)] = 1 + Np. This
proves (3.13) in the case dimp(Zw ) = 2.

Assume dimp(Zy) = 3. Then t = 2 and N|g] = 0, or ¢ = 4. If t = 4, then D(L)
contains D(N) = O%(Z) with the notation of (2.6). Since O?(Z) contains O¥(Zy ) =
D(Nw), we have [D(Nw ) : O¥(Zw )N D(L)] = 1.

Suppose t = 2 and N|g] = (). Recall that the condition N|[q] = ) means ¢~ 'q ¢ x[K*]
with the notation of the case t = 2 in Section 2.3. Then h is contained in L N U,
more precisely in this case, it is in N + ge, + 77D f, by [10, Theorem 3.5 (iii)]. Since
o(h,e;)g = b, we may take v in Lemma 3.4 as e,. Then ¢p[w] = —q as h —w =
with ¢ as in Lemma 3.4. Employing the setting of the case t = 3 in Section 2.3, we may
identify (Zw, ) with (B°,d¢B8°). Also we have B = J 4 Jw and B°® = Fn+ Jw with an
unramified quadratic extension J of F', w, and 7 as in Section 2.3. Put dqg = p*. Then
we have Ny = p~=/2(gn +tw) or Ny = p~E=D/2(gn 4 p~'ww) according as dq € g* F*2
or 6q € mgXF*2. Also we see that Ny = B° NP~¢, where P is the prime ideal of the
maximal order O of B. Then we obtain O¥(Zy) = C U (~1z, )C U7,C U (-1z,)7,C
with C' = {7, | a € 9>} and 7, defined as in the proof of Lemma 2.4.

Putting Y = w + ¢gb~! Ny for simplicity, we have YO¥(Zy) = YCUY (~1z,,)C U
Y7,C0UY(—1gz,)7,C. We shall observe the set YC. Since Y1, = Y for every 7, €
cn (Ow(ZW) N D(L)) by (3.7), YC = UTQE[CO(O?“(ZW)OD(L))]\C(wTa + qbile). Let
w = 715/ (un477% w) with 4 € g and A € ¢, where s = 0 or 1 according as 6q € g* F*?
or 0q € mg* F*2. Take 7, € C with a = k + fw, where k € t* and ¢ € v. Then we see
that
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wre = w+a ' wE 2 Qulnw + 78k — k)Aw + (0N — LA )w?]).
Hence 7, € O¥(Zw) N D(L) if and only if
2pbnw + 7 [(k* — k)Aw + (£°X — LA )w?] € gb B, (3.15)

Assume that F(v/§) is unramified over F. Also assume that dg € 7g* F*2. Then
q € Tmg*F*2. Since N[g] = (), which means ¢ 'q ¢ x[K*], [10, (3.15)] shows ¢b~! =
2¢p~=1/2. We may take J = F + Fw because w?> = §~'. Then we have A\ = 0.
Thus by §5°[w] = —1, we obtain ug = p*~1/2. These lead (3.15) for any 7, € C, that
is, YC = Y. From this it follows that Y (—1z,,)C = Y7,C = (—w + ¢b"'Ny) # Y,
since w(—1z,, ) = wr, = —w. Also we obtain Y (—1z,,)7,C =Y. These together with
(3.14) prove [D(Nw ) : OY(Zw) N D(L)] = 2 under the assumption that £(6) = —1,
Nlg] = 0, and ¢ € 7wg* F*2. In particular, the condition N[g] = {) can be replaced by
A(Z) ~ Ms(F). That is the case if and only if x(Q(y)) = 1, because Q() coincides with
the characteristic algebra of (Z,¢). Similarly we obtain [D(Nw) : O¥(Zw) N D(L)] = 1
when dq € g* F*2. This proves (3.13) in the case where t = 2, £(6§) = —1, and N{[q] = 0.

Next assume that F(v/9) is ramified over F and § € mg* F*2. By [10, (3.15)] we find
qb~' = gp~ /2. Thus we have ¢ € 7g* F*2 as ¢b—* C p[*/2+1, Observing 63°[w] = —1,
we have At = p(*=1/2¢ and pg C p**+1/2. Hence (3.15) holds if and only if k* — k € pr,
which is the case if and only if & € g*(1 + pr) by [3, Lemma 3.4]. Therefore we have
CN(O¥Zw)ND(L)) = {ra]a € g*(1 +9PB)}. Then [C : C N (O¥(Zw) N D(L))] =
[O%:1+P[g*:1+p]~t =1+ Np. This finishes the case of YC. To see Y (—1z,,)C,
observe that (—1z,, )7, € O¥(Zw) N D(L) for any fixed element b of t* N B°. Then we
have Y(-1z,,)C = Y (=12, )nC = YC. Also we have Y7,C =Y (-1z, )7,C = YC.
Consequently [D(Nw) : O¥(Zw) N D(L)] = 1+ Np if t = 2, £(6) = 0, N[q] = 0,
§ € mg*F*2, and ¢ € wg*F*2. Since Q(¢) is the division algebra B, we see that
Nlg] = 0 if and only if x(Q(¢))) = —1. This proves (3.13) in the present case.

Finally assume that F(v/) is ramified over F and § € g*F*2. Note that
2 € p. Suppose dq € g*F*2. Then q € g*F*2  Thus by [10, (3.15)] we obtain
gt =2D "2 27"+l Here Dy (5, 18 the square of an integral ideal of g by [10,

F(V)/F
Lemma 5.1 (3)]. From §8°[w] = —1 it can be seen that

75 (uPn? + W?B[N]) = 1. (3.16)

Hence we find pug = p*/2. We assert that At = gb—'p~'t. Indeed, we have 2¢(w, Ny) C
qb~ !, since w = h — cv. Combining this with 2¢(w, Nw) = dgn=°(2ug + pTr;/p(Av)),
we have A\t C gb~1p~lv. If Av # gb~1p~tr, then 617 — p?n? = W?B[N\] € (¢b™1)? by
(3.16). Thus we have 5 1F*2 C n2(1 + ¢~ 1(gb~1)?)F*?, which is impossible because

sl (1+ 4D;(1\/3)/Fp2)FX2 and n? € (1 + 4g)g*? by [10, Lemma 4.2 (1)]. Thus

At = gb~'p~ 't as desired. In a similar way to the case where F(\/g) is ramified over F
and § € mg* F*2 we see that [C : C'N (0¥ (Zw)N D(L))] = 1+ Np. To see Y1,C, let
At = p™r and put A\g = Ar~"™. Observe that Tuag! € O¥%(Zw)N D(L). Then Y1,C =
YTngolC =Y C. Also we have Y (-1, )C = Y(—1z, )7.C = YC. Consequently we
obtain [D(Nw) : O¥(Zw) N D(L)] = 1+ Np if £(6) = 0, § € g*F*2, x(Q(v)) = —1,
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and ¢ € g* F*2. When dq € 7g* F*2, we see that [D(Nw) : O¥(Zw) N D(L)] =1 in a
similar way. This proves (3.13) in the case dimp(Zy ) = 3.

Assume dimp(Zy) = 4, that is, ¢ = 3 and N[g] = (. Then gb~! = p¥~ /2 ag
shown in the proof of Proposition 3.7. This combined with gb=" C p[*/2+1 implies that
q € 7g*F*2, and hence ¢b~' = (gp)'/2. We put (Zw,v) = (B, ) with the notations
as in the case t = 4 in Section 2.3. Then Ny is the maximal order of B. We see that
w + gb~ Ny = w(1 +B) because [w]g = qg, where B is the prime ideal of Ny, . Since
Blw(1+P)O¥ (Zw)] = Blw(1+)], we have w(1+P)O¥(Zw ) = w(1+P)Ep with Eg =
{u € B|B[u] = 1}. From these we obtain w(1 +R)O¥(Zw) = Uwemsnarppes wl +
PB)u. Hence by Lemma 3.6 (i), [D(Nw) : O¥(Zw) N D(L)] = 1+ Np. The condition
Nlg] = 0 is equivalent to £(dg) = 1. This proves (3.13) in the case dimp(Zy ) = 4. This
completes the proof of the theorem. O

4. Applications.

4.1. Let (V,¢) be a quadratic space over Q such that ¢ is positive definite. Let L
be a maximal lattice in V. We can compute Y- oy [[(Ly~") : 1] 7' #(Ly~")[g, b] in (2) in
the introduction under condition (3), using the explicit formula obtained by our result.
As mentioned in the introduction, the result is related to the weighted average of the
number of primitive representations of an integer by a quadratic form in a specified genus
in terms of matrices. For the definition of the genus and class of a symmetric matrix, see
[8, Section 30.10].

Let ¢o be the matrix representing ¢ with respect to a Z-basis of L. This matrix
@ is reduced as a quadratic form in the sense that if p~1¢q - 'p~! is semi-integral with
p € M,(Z)N GL,(Q), then det(p) = 1 (cf. [8, Section 31.3]). Then the genus of
o consists of all symmetric matrices that are reduced. We identify (V) and L with
(QL,¢o0) and ZL. Let {L;};c; be a complete set of representatives for the O¥(V)-
classes in the genus of all maximal lattices in V. Let L; = ZLa; with o; € GL,(Q) for
j € J. Then the set of all O?(V')-classes in the genus of maximal lattices in V' is mapped
bijectively onto the set of all O-classes in the genus of matrices that are reduced under
the correspondence L; — o - ‘aj. To reformulate the sets Lj[g,b] for j € J in this
situation, put b = bZ. We observe that ¢(z, L;) = b if and only if b~lzypg - ta; 27 = Z
for x € V. Moreover take the smallest positive integer ¢(¢) such that £(¢)(2¢0) 7! is
even-integral. Then assigning b~ 'zpy - 'aj to x, we get a bijection of L;[g, b] onto the set

{yEZi

ye; 'y =4, yZ?=Z},

where p; = £(p) (2a;00 -taj)_l and ¢ = 2710(¢)gb~2. Thus #L;|q, b] coincides with
# {y €Z,
equation @;[y] = ¢. We denote the latter number by B(y;,q). Note that ¢ is an even-
positive integer and depends on b. We also note that there is a relation between the

number B(@,q) of primitive solutions and the number A(g, q) of solutions of g[z] = ¢ in
Z! as follows:

yo; -ty =4q, yZt = Z}, which is the number of primitive solutions of the
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B(3,9) =Y _ n(d)A(@,d*9),

d
d2|q

where y is the Mébius function and d runs over all positive integer such that d? | g.

The correspondence aj¢q - ‘a; — @; gives a bijection of the set of all O-classes in
the genus of ¢ onto the set of all O-classes in the genus of ¢ with @ = £(¢)(2p0)*. Put
I'(L;) = {y € 0?(V)| Ljvy = L;} and E(@;) = # {a € GL,(Z) ‘tanga - :p;}. Then
[I"(L;) : 1] = E(yp;) via the isomorphism ~ ajvajfl. Put M(Q) = >, E(g;) " as
was defined in [9, (41)] due to Siegel.

Now we have m(SO?(V),C(L)) = 2m(0O¥¢(V'), D(L)) by [3, Lemma 5.6 (1)], where
C(L) is of (1) in the introduction and D(L) = {y € O¥(V)a | Ly = L}. Also we see that
Zer[F(Ly_l) 17 (Ly =Yg, 0] = QZjEJ[F'(Lj) : 1]71#L;[g,b] in a similar way to
the proof of [3, Lemma 5.6 (1)]. Consequently we obtain

DyeyP(Ly™") 117 Ly~ Dg, b Xes E(%5) ' B(%5,9)
m(50#(V),C(L)) - M(p) '

(4.1)

Via equality (4.1), we can derive a result on primitive solutions from our result
concerning L[g, b]. For example, let V = Q} and ¢[z] = 2?21 2? for z = (z;)$_, € V.
Also put L = Zey + Zes + 2?22(2622;1 + Zfo;) with the standard basis {e;}¢_; of V
and fo; = 27 Y(eg;_3 + €2i_2 + €2;_1 + €2;). Then [2, Section 3.2] shows that L is a
maximal lattice in V. The genus of all maximal lattices in V' coincides with the O%(V)-
class of L, and also with the SO?(V')-class of L, which is explained in [6, Section 12.12].
By applying our result to the present case, we can compute #L[q, Z] for a squarefree
positive integer ¢; see (4.4) below. Now the above ¢ in this case is given by o = a -t
with a € GLe(Q) such that a = [te; tes tes tfy tes ' f]. Looking at (2¢0)~ !, we find
¢(p) = 4. This can also be seen by [8, Section 31.5 and (29.9)]. Thus applying (4.1) with
b = Z, we have #L[q, Z] = B(p, q), where ¢ = 4(2p) ! and ¢ = 2q. Therefore #L|[q, Z]
equals the number of primitive solutions of

622 4 623 + 4:5% + 1622 + 4x§ + 8:E§ + 2(4x129 + 22123 — 8T1T4 — 27125

+ 4x 26 + 20913 — 8Towy — 2woxs + 4dxoxs — 43wy + 4w g5 — 8Tax6 — dT5T6) = 2.

4.2. Let V =Q} and p[z] =Y, 27 with n = 6,8, or 10, where z = (z;)", € V.
Take a maximal lattice L in V. As applications of our result, for a given square-
free positive integer ¢ we give an explicit formula for #L[g,b] or ZyGY[F(Lyfl) :
17 #(Ly~1)[q, b] according as n = 6 or 8, or n = 10, with b satisfying condition (3); see
Proposition 4.3 below. To state the formula, we mention some basic facts.

Take h € L[g] = {z € L|p[z] = q¢}. Put W = (Qh)* and let ¢ be the restriction of
¢ to W. Then by [10, Theorem 6.3],

LNW is maximal in W if and only if h € L[q, b]. (4.2)

Here the ideal b is given by
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b=2""[[(pZ)>®

p

with 7,(¢) in [10, Theorem 3.5] depending only on (V,¢) and g. Here p runs over all
prime numbers. By [6, (12.17)] we have L[q] = L[q,27'Z] U L[g, Z], since q is squarefree.
Thus b equals 271Z or Z. More precisely, [10, (7.1)] shows that

Z ifn=6and ¢=2,3 (mod 4),

271Z ifn=6andg=1 (mod 4),
b=(27'Z ifn=38,

Z ifn=10and ¢=1,2 (mod 4),

271Z ifn=10and ¢ =3 (mod 4).

If n = 6 or 8 then we see that # (SO¥(V)\SO¥(V)a/C(L)) = 1 from [6,
Section 12.12]. Assume n = 10. From [2, Section 3.2] and [6, Lemma 9.23 (i)],
# (SO?(V)\SO?(V)a/C(L)) equals 2 and {Ly, Lo} gives a complete set of represen-
tatives for the SO?(V)-classes in the genus of all maximal lattices in V. Here

5
Ly =Ny + Ny, Lo="2e+Zex+ Z(Zem—1 +Zf2), (4.3)

i—2
3
Ny =Zey + Zey + Z(Zezzel +Zf2)+Zgr +Zfs, Ny =Zeg+ Zeyg
i=2

with the standard basis {e;}1%, of V., fo; = 27 (eai_3 + €2i—2 + €2;_1 + €2;), and g7 =
27Y(e; + e3 + e5 + e7). Note that Ny (resp. Nz) is a maximal lattice in Zle Qe; (resp.
Qeg + Qeyp) by [2, Lemma 3.1].

PROPOSITION 4.3.  Let V = Q} and p[z] = Y 27 for x = (x;)7-, € V, with
n = 6,8, or 10. Let L be a mazimal lattice in V. Then for a squarefree positive integer
q the following assertions hold:

(i) Assume n =6. Then we have

3 ifq=2 (mod8),

#Llg, 2] = g (pg * (_pl» ¢ ZZZ , EZZE 2 (1.4)

#L[g,27'Z] =60 | (p2 + (;)) ifq=1 (mod 4). (4.5)

plg

Here p runs over all prime factors of q and (_71) is the quadratic residue symbol.
We understand that [[,, =1 if ¢=1.

(ii) Assume n = 8. Then we have
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#L[q, 27 2] =240 (»* +1). (4.6)
plq

(iii) Assume n =10. When ¢ = 1,2 (mod 4), we have

#L1[q, Z] #Lo[q, Z] 1 <4 (1)>
2 + = c(q P4+ — , 4.7
916 .35 .52.7 ' 917 .34 527 219.35.52.7()1_[ D (4.7)

plg

where Ly and Lo are given in (4.3) and

25 ifg=1 (mod 4),
c(q) =< 17 if g=2 (mod 8),
35 ifg=6 (mod ).

When g = 3 (mod 4), we have
#11[q.272]) | #Lalg,2'Z) 17 L (-1
= — . 4.
216.35.52_7+217_34,52_7 215_34.5.7171 er » ( 8)
pla

PROOF. Assume n = 6. Let us compute #L[q, Z] when ¢ = 2,3 (mod 4). Then
[10, Theorem 7.5] asserts that L[g,Z] # 0. Thus we can take an element h of L|q, Z].
Put W = (Qh)* and let ¥ be the restriction of ¢ to W. Then L N W is maximal in W.
Put M = LNW. Because # (SO?(V)\SO¥(V)a/C(L)) = 1, mass formula (2) in the
introduction provides

#L[q, Z] = [D(L) : 1] - m(SO¥ (W), SO¥(W)a N C(L)), (4.9)

where I'(L) = SO¥(V) N C(L). We see that [['(L) : 1] = 2%-32%-5 from [0¥(V) N D(L) :
1] = 210.32.5, which is given by the proof of [5, Lemma 1.6]. Now, since M is maximal
in W, (4) in the introduction combined with (5) gives

m(SO¥ (W), SO¥(W)a NC(L)) = [C(M) : SO¥(W)a N C(L)m(SOY (W), C(M)).
(4.10)
Moreover applying Corollary 2.7 to m(SO¥(W),C(M)), we see that

m(SO¥ (W), C(M)) = (2832 5) 7 [M : MI* ] Ap, (4.11)

ple

where ¢ is the product of all prime numbers for which Z\rip # M, and ), is as in Corol-
lary 2.7. From now on, we only treat the case of ¢ =2 (mod 8), because the other cases
can be handled in a similar way.

To compute [C(M) : SO¥(W)aNC(L)], [M : M], and [ 1, Ap: we need to determine
the core dimension s, of (W), 1,), the core dimension ¢, of (V},, ¢,) for any prime number
p, the characteristic algebra Q(¢) of (V, ¢), and the characteristic algebra Q(v) of (W, ).
As for t,, by [8, (28.4)] we have t, = 0if p=1 (mod 4), and t, =2if p=2o0rp=3
(mod 4). By the proof of [8, Theorem 28.5], Q(¢) is a definite quaternion algebra over
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Q ramified exactly at 2. Now, assume (_71) =1, then t, = 0. Hence s, = 1, and then
p is unramified in Q(v¢)) by the definition. Next assume (_71) = —1. Let K, be the
discriminant field of (V},, ¢p), that is, K, = Q,(v/—1). We have ¢, = 2, and hence s, = 1
or 3 according as ¢ 'q € kp[K)] or ¢ 'q ¢ kp[K)]. Here c and &, are as in the case
t = 2 in Section 2.3. Since Q(¢), = M2(Q,) is the Clifford algebra of the restriction of
¢p to a core subspace of V,,, we have ¢ € ,[K ‘] as was mentioned in the case t = 2 in
Section 2.3. Then ¢~ 'q € &, [K,] if and only if p { ¢ because K, is unramified over Q,,.
Therefore if p | ¢, then s, = 3, and hence p is ramified in Q(v)) because Q(¢)), is the
even Clifford algebra of the restriction of ¢, to a core subspace of W,,. Also if p { ¢, then
sp = 1, and hence p is unramified in Q(¢). Finally we consider the case of p = 2. By [8,
Theorem 26.6 (i)] the number of prime numbers ramified in Q(¢) is odd, since Q(¢) is
ramified at the archimedean prime of Q from [8, (28.3b)]. From the above argument, p
is ramified in Q(¢) if and only if p | ¢ and p = 3 (mod 4) for an odd prime number p.
The number of these prime factors of ¢ is even because ¢ = 2 (mod 8). Therefore 2 must
be ramified in Q(¢). From this we have sy = 3.

Once we obtain the data of s,, t,, Q(p), and Q(¢), Theorem 3.8 gives [C(M) :
SO¥(W)a NC(L)] = 2¢, where £ is the number of all odd prime factors of q. Applying
8, (21.3¢) and Theorem 31.2 (iii)] to (W,v) and M, we find [M : M] = 2q, since the
discriminant field of 1 is Q(,/q). By [8, (21.3b)] we have ¢ = 2¢. Thus by Corollary 2.7
we see that [, A, = 2~ (t43) . 311, + (%)p%) Combining these with (4.9), (4.10),
and (4.11), we obtain (4.4). Assertion (4.5) can be obtained in a similar way. This
proves (i).

Assume n = 8. Then by [10, Theorem 7.5] we have L[q,27'Z] # 0 for any q. [3,
Section 5.16] shows that [O?(V) N D(L) : 1] = 2™ .35.52.7 and hence [['(L) : 1] =
213 .35 .52 . 7. Moreover by [8, (28.4)], for any prime number p we have ¢, = 0. Thus
sp = 1, and hence Q(¢) is unramified at p for any p. Using these, we obtain (ii) in a
similar way to the proof of (i).

Assume n = 10. Then from [4, Section 6.8] we obtain [0¥(V)ND(Ly) : 1] = 217.35.
52.7 and m(O¥(V), D(L)) = (2'8-35-5-7)~1. From these we have [['(L;) : 1] = 21¢.3%.52.7
and [['(Ly) : 1] = 217.3%.52.7. Now [10, Theorem 7.5] leads that Li[q, Z] # 0 if ¢ = 1,2
(mod 4), and L;[q,27'Z] # 0 for any q. Taking h € Li[q,b] with b = Z or 271Z
according as ¢ = 1,2 (mod 4) or ¢ = 3 (mod 4), we define (W,4) in the same manner
as in the case n = 6. Then by (2), (4), and (5) we obtain

#Ll[Q7 b] #LQ[Q7 b]
216 .35 .52.7 217 .34 .52 .7

= [C(M) : SO¥(W)a N C(L)m(SO¥ (W), C(M)).

Here M = L N W, which is maximal in W. Then we can show (iii) in a similar way to
the proof of (i). This completes the proof. g

We note that (4.5), (4.6), and (4.8) can also be seen by applying [4, Theorem 1.5]
to (V,¢), a maximal lattice L in V, and ¢ in each case, since L[q] = L[q,271Z]. The fact
Llq] = L[g,27'Z] can be obtained as follows: Taking h € L]q], we have b C ¢(h,L) C
2717 from [10, Theorem 3.5], with b of (4.2). Since b = 27'Z in the case of (4.5), (4.6),
or (4.8), we obtain h € L[q,271Z], which proves the desired fact.
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On the sums of n squares we remark that if n = 3, then #L[q, Z] is given by [6,
(12.10)]. Also if n = 5, 7, or 9, then [6, Theorem 13.14] provides #L[g,27'Z] and
#L[q,Z]. When n = 4, by [10, Theorem 7.5] we have #L|[q,271Z] = #L[q] if q is odd,
and #L[q,Z] = #L[q] if ¢ is even. The number #L[q] is given by [5, Section 1.7]. Here
L is a maximal lattice in Q! and q is a squarefree positive integer.

Let us give a few numerical examples for (4.7). Let m(q) be the right-hand side of
(4.7) for a squarefree positive integer g. Then, for example, #L1[1,Z] = 22, #L,[1,Z] =
0, and m(1) = (21435 .52 . 7)71; #L,[2,Z] = 22, #L,[2,Z] = 22 .5, and m(2) =
(215 .35 .52 . 7)1 . 17; #L1[58,Z] = 2% - 149 - 8069, #Lo[58,Z] = 2% - 3% - 5 - 2969, and
m(58) = (214-3%-52.7)71.17-353641; #L,[494,Z] = #L,[494,Z) = 27-3%-5-181-14281
and m(494) = (219-32.7)71.181-14281. These numbers were verified by Yoshio Hiraoka
using a computer.
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