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Abstract. We characterize common reducing subspaces of several

weighted shifts with operator weights. As applications, we study the common
reducing subspaces of the multiplication operators by powers of coordinate
functions on Hilbert spaces of holomorphic functions in several variables. The
identification of reducing subspaces also leads to structure theorems for the

commutants of von Neumann algebras generated by these multiplication op-
erators. This general approach applies to weighted Hardy spaces, weighted
Bergman spaces, Drury–Arveson spaces and Dirichlet spaces of the unit ball
or polydisk uniformly.

1. Introduction.

Let H be a complex Hilbert space and let B(H) be the algebra of all bounded

linear operators on H. Let Ω ⊂ B(H) be a set of operators. A closed subspace X is an

invariant subspace of Ω, if for every T ∈ Ω, T maps X into X. The space X is a reducing

subspace of Ω, if X is invariant under both T and T ∗ for every T ∈ Ω. The space X

is a minimal invariant (or reducing) subspace of Ω if the only invariant (or reducing)

subspaces contained in X are X and {0}. The set Ω is irreducible if the only reducing

subspaces of Ω are {0} and the whole space H.

The Beurling invariant subspace theorem [3] for the unweighted unilateral shifts

of multiplicity one, and its extension to higher multiplicity [9] (called the Beurling–

Lax–Halmos invariant subspace theorem), are two of the fundamental results in modern

operator theory. Despite the substantial advances [2] and [7], the structure of invariant

subspaces of the Bergman shift is still an active research area. In fact this problem is

as difficult as the invariant subspace problem (of whether every bounded linear operator

on a separable Hilbert space of dimension greater than one has a nontrivial invariant

subspace); see for example [8]. There also have been extensions of the Beurling invariant

subspace theorem on the Hardy space of the polydisk [10], [11] and [22].

On the other hand, there is a nice description of reducing subspaces of powers of

weighted shifts with scalar weights [21]. This paper and its predecessor [23], where

reducing subspaces of some analytic Toeplitz operators on the Bergman space of the unit

disk were studied, have also been inspirational in the last fifteen years for establishing
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structure of reducing subspaces of Toeplitz operators with Blaschke product symbols on

the Bergman space of the unit disk; see a recent monograph [6] and extensive references

therein. The structure of the reducing subspace lattice for unweighted unilateral shifts

was described in [9] and [16]. The reducing subspaces of some analytic Toeplitz operators

on the Hardy space of the unit disk were studied as early as in [16] and [1].

Recently, the reducing subspaces of some analytic Toeplitz operators on the Bergman

space of the bidisk and polydisk were characterized in [15], [18], [14], and [19]. In [5],

the author recovered the results from [21] and some results from [15] by studying the

reducing subspaces of weighted shifts with operator weights.

In this paper, we characterize the common reducing subspaces of several commuting

weighted shifts with operator weights as wandering invariant subspaces of the shifts with

additional structures. As applications, we study the common reducing subspaces of mul-

tiplication operators by powers of coordinate functions on Hilbert spaces of holomorphic

functions in several variables.

The identification of reducing subspaces also leads to structure theorems for the

commutants of von Neumann algebras generated by these multiplication operators. This

general approach applies to weighted Hardy spaces, weighted Bergman spaces, Drury–

Arveson spaces, and Dirichlet spaces of the unit ball or polydisk uniformly. Below we

give three sample results that are contained in Theorem 8.1, Theorem 5.4, and Theorem

9.5 respectively.

Let C denote the set of complex numbers. Let Bd be the unit ball of Cd,

Bd =
{
z = (z1, . . . , zd) ∈ Cd : |z1|2 + · · ·+ |zd|2 < 1

}
,

and let Sd be the unit sphere,

Sd =
{
z = (z1, . . . , zd) ∈ Cd : |z1|2 + · · ·+ |zd|2 = 1

}
.

The Hardy space H2(Bd) is the Hilbert space of holomorphic functions in Bd such that

∥f(z)∥2 = sup
0<r<1

∫
Sd

|f(rζ)|2 dσ(ζ), f ∈ H2(Bd),

where dσ(ζ) is the normalized area measure on Sd. For a multi-index N = (N1, . . . , Nd),

zN = zN1
1 · · · zNd

d . Let TzN be the multiplication operator by zN , that is

TzN f(z) = zNf(z), f ∈ H2(Bd).

In this paper, for an index set I, vi ∈ H, Span {vi : i ∈ I} always means the closed linear

span of {vi : i ∈ I} in H.

Theorem A. Let N = (M,M). Let JN = {(β1, β2) : 0 ≤ β1 < M or 0 ≤
β2 < M}. Then any minimal reducing subspace X of TzN on H2(B2) is of the form

Span
{
f(z1, z2)(z1z2)

kM : k ≥ 0
}
, where either there exists γ = (γ1, γ2) ∈ JN such that

f(z) = azγ1

1 zγ2

2 + bzγ2

1 zγ1

2 , a, b ∈ C,
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or there exists 0 ≤ l < M such that

f(z1, z2) = azl1z
l
2 + bzl+1

1 zl2 + czl1z
l+1
2 , a, b, c ∈ C.

Furthermore, any reducing subspace of TzN on H2(B2) is an orthogonal sum of minimal

reducing subspaces.

The Bergman space L2
a(Bd) is the Hilbert space of holomorphic functions in Bd such

that

∥f(z)∥2 =

∫
Bd

|f(ζ)|2 dv(ζ), f ∈ L2
a(Bd),

where dv(ζ) is the normalized volume measure on Bd. Let D be the open unit disk, and

let Dd be the polydisk. The Bergman space L2
a(Dd) is the Hilbert space of holomorphic

functions in Dd such that

∥f(z)∥2 =

∫
Dd

|f(ζ)|2 dA(ζ1) · · · dA(ζd), f ∈ L2
a(Dd),

where dA(ζ1) · · · dA(ζd) is the normalized product measure on Dd, with dA(ζ1) being the

normalized area measure of the unit disk D. The following result can also be derived

from the discussion of type I weight sequences in [14]. The special case L2
a(D2) with

N1 = N2 is contained in Theorem 2.4 [15].

Theorem B. Let N = (N1, . . . , Nd) be a multi-index such that N ≥ (1, . . . , 1). By

an abuse of notation, set N − 1 = (N1 − 1, . . . , Nd − 1). Let

N̂ = {β : 0 ≤ β ≤ N − 1} , and L =
d∏

i=1

Ni,

where L is the cardinality of the index set N̂ . Then

(i) For each β = (β1, . . . , βd) ∈ N̂ , Span{zβ1+k1N1

1 · · · zβd+kdNd

d : k = (k1, . . . , kd) ≥ 0}
is a common minimal reducing subspace of the tuple (T

z
N1
1

, . . . , T
z
Nd
d

) on L2
a(Bd) or

L2
a(Dd).

(ii) Those L minimal common reducing subspaces are the only minimal common reduc-

ing subspaces of the tuple (T
z
N1
1

, . . . , T
z
Nd
d

) on L2
a(Bd) or L2

a(Dd).

(iii) There are exactly 2L − 1 common reducing subspaces of the tuple (T
z
N1
1

, . . . , T
z
Nd
d

)

on L2
a(Bd) or L2

a(Dd).

The Dirichlet space D(Dd) on the polydisk Dd is not as widely studied. Here we

define D(D2) and refer to [13] for the general case. The Dirichlet space D(D2) is the

Hilbert space of holomorphic functions on the bidisk D2 such that

∥f(z1, z2)∥2D =

∫
T2

|f(ζ1, ζ2)|2 dm(ζ1)dm(ζ2) +

∫
D×T

∣∣∣∣∂f(ζ1, ζ2)∂ζ1

∣∣∣∣2 dA(ζ1)dm(ζ2)
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+

∫
T×D

∣∣∣∣∂f(ζ1, ζ2)∂ζ2

∣∣∣∣2 dm(ζ1)dA(ζ2) +

∫
D2

∣∣∣∣∂2f(ζ1, ζ2)

∂ζ2∂ζ1

∣∣∣∣2 dA(ζ1)dA(ζ2),

where dm(ζ1) is the normalized Lebesgue measure of the unit circle T. The first integral

is ∥f(z1, z2)∥2H2(D2), which is the norm of f(z1, z2) in the Hardy space H2(D2) of the

bidisk. Our definition of the norm in D(D2) is equivalent to the norm defined in [13],

where the Möbius invariance of the fourth integral was studied. Our choice of the norm

leads to a reproducing kernel of product form for D(Dd) as in (15) below.

Let N = (N1, N2) and let W ∗(zN1
1 zN2

2 ) be the von Neumann algebra generated by

the analytic Toeplitz operator T
z
N1
1 z

N2
2

on D(D2), and let v(zN1
1 zN2

2 ) be the commutant of

W ∗(zN1
1 zN2

2 ). We have the following structure theorem of v(zN1
1 zN2

2 ). Let Mn(C) denote
the algebra of n× n matrices.

Theorem C. The following two statements hold.

(i) If N1 ̸= N2, then v(zN1
1 zN2

2 ) on D(D2) is ∗-isomorphic to[ ∞⊕
i=1

C
]⊕[ ∞⊕

i=1

M2(C)
]
.

(ii) If N1 = N2, then v(zN1
1 zN2

2 ) on D(D2) is ∗-isomorphic to[
N1⊕
i=1

C
]⊕[ ∞⊕

i=1

M2(C)
]
.

2. Reducing subspaces of weighted shifts with operator weights.

We first introduce a tuple of d-variable unilateral weighted shifts with operator

weights. Here we extend the results for the case d = 1 by the author [5] to the case

d > 1. The classical reference for weighted shifts with scalar weights is [12]. Let Z+ be

set of nonnegative integers and

Zd
+ = {α = (α1, . . . , αd) : αi ∈ Z+, 1 ≤ i ≤ d} .

We write α ≥ 0 if α ∈ Zd
+. More generally, for β = (β1, . . . , βd), α ≥ β means αi ≥ βi

for all 1 ≤ i ≤ d. We write α > β if α ≥ β and α ̸= β.

Let εi = (0, . . . , 1, . . . , 0) be the multi-index having 1 at i-th component and 0

elsewhere, and let 0 be the multi-index (0, 0, . . . , 0). Let l2(Zd
+) be the complex Hilbert

space with the standard basis
{
eα : α ∈ Zd

+

}
. Let E be a complex Hilbert space. Let

l2d(E) denote the tensor product Hilbert space l2(Zd
+)⊗E. That is, l2d(E) is the E-valued

l2(Zd
+) space such that

l2d(E) =

y =
∑
α≥0

yαeα : yα ∈ E and ∥y∥2 =
∑
α≥0

∥yα∥2 < ∞

 .

We identify E as a subspace of l2d(E) by mapping y to ye0 for y ∈ E. By an abuse of
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notation, we just write y instead of ye0 for y ∈ E.

Let Φ =
{
Φα,i : α ∈ Zd

+, i = 1, . . . , d
}

be a bounded set of invertible operators in

B(E) such that

Φα+εi,jΦα,i = Φα+εj ,iΦα,j , α ∈ Zd
+, i ̸= j, 1 ≤ i, j ≤ d. (1)

Note that we do not assume Φα,iΦβ,i = Φβ,iΦα,i for α, β ∈ Zd
+.

Definition 2.1. A tuple of d-variable unilateral weighted shifts is a family of d

bounded operators on l2d(E) with SΦ = (S1, . . . , Sd) defined by

Si [yeα] = [Φα,iy] eα+εi , α ∈ Zd
+, i = 1, . . . , d, y ∈ E. (2)

Condition (1) on Φα,i implies that SΦ is a tuple of commuting operators, since for

i ̸= j, y ∈ E,

SjSi [yeα] = Sj [Φα,iy] eα+εi = [Φα+εi,jΦα,iy] eα+εi+εj , and

SiSj [yeα] = Si [Φα,jy] eα+εj =
[
Φα+εj ,iΦα,jy

]
eα+εj+εi .

As in the scalar case, the norm of Si can be determined by∥∥∥∥∥∥Si

∑
α≥0

yαeα

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
α≥0

[Φα,iyα] eα+εi

∥∥∥∥∥∥
2

=
∑
α≥0

∥Φα,iyα∥2 ≤ sup
α≥0

∥Φα,i∥2
∑
α≥0

∥yα∥2 . (3)

Then Si is a bounded operator if and only if supα≥0 ∥Φα,i∥ < ∞ and ∥Si∥ =

supα≥0 ∥Φα,i∥. Hence, if Φ is a bounded set in B(E), then SΦ is a tuple of bounded

operators on l2d(E). Note also

S∗
i [yeα] =

[
Φ∗

α−εi,iy
]
eα−εi if αi ≥ 1, i = 1, . . . , d, and

S∗
i [yeα] = 0 if αi = 0, i = 1, . . . , d, y ∈ E.

Therefore
∩d

i=1 ker(S
∗
i ) = E.

In this section we study the reducing subspace of SΦ, which is a common reducing

subspace of Si for all 1 ≤ i ≤ d. We will often write S instead of SΦ. Let

Ai =
∏

0≤k≤αi−1

Φα1ε1+···+αi−1εi−1+kεi,i, Wα = AdAd−1 · · ·A1,

where some factors in the product could be missing and W0 = I. (4)

Then Φα,i = Wα+ϵiW
−1
α and Sα [ye0] = [Wαy] eα for y ∈ E, where Sα = Sα1

1 · · ·Sαd

d .

Lemma 2.2. For a closed subspace E0 of E, let V (E0) be defined by

V (E0) = Span {Sα
Φx : α ≥ 0, x ∈ E0} . (5)
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Then V (E0) is a reducing subspace of SΦ if and only if E0 is an invariant subspace of

the sequence of operators Ω =
{
W−1

α−ϵiΦ
∗
α−ϵi,i

Φα−εi,iWα−ϵi : α ≥ εi, 1 ≤ i ≤ d
}
. Equiva-

lently, E0 is an invariant subspace of Ω1 = {W ∗
αWα : α ≥ 0}.

Proof. By the definition, V (E0) is invariant for S. The space V (E0) is also

invariant for S∗ = (S∗
1 , . . . , S

∗
d), if and only if S∗

i S
αx ∈ V (E0) for any x ∈ E0, α ≥ 0,

and 1 ≤ i ≤ d. For α = 0, S∗
i x = 0. If α ≥ εi, then

S∗
i S

αxe0 = S∗
i [Wαxeα] =

[
Φ∗

α−ϵi,iWαx
]
eα−ϵi .

By (5), S∗
i S

αx ∈ V (E0) if and only if there exists y ∈ E0 such that

S∗
i S

αxe0 =
[
Φ∗

α−ϵi,iWαx
]
eα−ϵi = Sα−ϵiy = [Wα−ϵiy] eα−ϵi . (6)

Since Wα = Φα−ϵi,iWα−ϵi ,

W−1
α−ϵiΦ

∗
α−ϵi,iΦα−ϵi,iWα−ϵix = W−1

α−ϵiΦ
∗
α−ϵi,iWαx = y ∈ E0.

Therefore E0 is invariant for Ω.

Note that for x ∈ E0, since

S∗α
Φ Sα

Φxe0 = W ∗
αWαxe0,

S∗α
Φ Sα

Φxe0 ∈ V (E0) implies that E0 is invariant for W ∗
αWα. Thus E0 is invariant for Ω1.

Assume E0 is invariant for Ω1, we now prove E0 is invariant for Ω. By assumption

W ∗
αWα is invertible and positive, so E0 being invariant for W ∗

αWα implies that

W ∗
αWαE0 = E0 and [W ∗

αWα]
−1

E0 = E0.

Using Φα−εi,i = WαW
−1
α−εi , we have

W−1
α−ϵiΦ

∗
α−ϵi,iΦα−εi,iWα−ϵi = W−1

α−ϵiW
∗−1
α−εiW

∗
αWαW

−1
α−εiWα−ϵi

=
[
W ∗

α−εiWα−ϵi

]−1
W ∗

αWα.

Therefore E0 is invariant for Ω. The proof is complete. □

Remark 2.3. The space E0 is also invariant for other operators involving Φα,i

and Wα by considering the invariance of X for S∗αSβ for any α, β ≥ 0. The op-

erator W−1
α−ϵiΦ

∗
α−ϵi,i

Φα−εi,iWα−ϵi = Φ∗
α−ϵi,i

Φα−εi,i under the commuting condition[
Φ∗

α−ϵi,i
Φα−εi,i

]
Wα−ϵi = Wα−ϵi

[
Φ∗

α−ϵi,i
Φα−εi,i

]
. So Ω = {Φ∗

α−ϵi,i
Φα−εi,i : α ≥ εi, 1 ≤

i ≤ d}.

Theorem 2.4. A closed subspace X is a (common) reducing subspace of SΦ if and

only if

X = Span {Sα
Φx : α ≥ 0, x ∈ E0} , (7)

where
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E0 =
d∩

i=1

X ⊖ SiX =
d∩

i=1

ker(S∗
i |X) ⊆ E

and E0 ⊆ E is an invariant subspace of the sequence of operators Ω1 = {W ∗
αWα : α ≥ 0}.

Furthermore, X is a minimal reducing subspace of SΦ if and only if E0 is a minimal

invariant subspace of Ω1.

Proof. By Lemma 2.2, we only need to prove that if X is a reducing subspace

of S, then X is given by (7) for some E0 ⊆ E. Set E0 =
∩d

i=1 X ⊖ SiX. We first prove

that E0 ⊂ E. Let f ∈ X ⊖ SiX, then

⟨S∗
i f, g⟩ = ⟨f, Sig⟩ = 0 for all g ∈ X, 1 ≤ i ≤ d.

Since X is also invariant for S∗
i , S

∗
i f ∈ X. Hence S∗

i f = 0 and f ∈
∩d

i=1 ker(S
∗
i ) = E.

This proves that E0 ⊆ E. We claim

X = V (E0) := Span

{
Sα
Φx : α ≥ 0, x ∈ E0 =

d∩
i=1

X ⊖ SiX

}
.

Since E0 ⊆ X, X ⊇ V (E0). Let y ∈ X ⊖ V (E0). We need to show that y = 0. Write

y =
∑
α≥0

yαeα, yα ∈ E.

Since X is invariant for S∗β for any β ≥ 0, S∗βy ∈ X. For all x ∈ E0 =
∩d

i=1 X ⊖ SiX

and β ≥ 0, note that y ∈ X ⊖ V (E0) implies

0 =
⟨
y, Sβx

⟩
=
⟨
S∗βy, x

⟩
.

That is, S∗βy ∈ X ⊖ [
∩d

i=1 X ⊖ SiX]. Set

MX = X ⊖

[
d∩

i=1

X ⊖ SiX

]
and M =

y =
∑

α≥0,α̸=0

fαeα : fα ∈ E

 .

Then

MX = Span {SiX : 1 ≤ i ≤ d} ⊆ M

and M⊥
X ⊇ M⊥ = l2d(E)⊖M = E. Note that

S∗βy =
∑
α≥0

S∗βyαeα =
∑
α≥β

S∗βyαeα

= S∗βyβeβ +
∑

α≥β,α ̸=β

S∗βyαeα

and
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S∗βyβeβ ∈ E,
∑

α≥β,α ̸=β

S∗βyαeα ∈ M.

Thus S∗βy ∈ MX implies that

0 = S∗βyβeβ =
[
W ∗

βyβ
]
e0.

By assumption Wβ is invertible, so yβ = 0 for β ≥ 0. In conclusion y = 0. The proof is

complete. □

By the above theorem, the lattice of reducing subspaces of SΦ is completely de-

termined by the lattice of invariant subspaces of Ω1. This topics has been discussed

extensively in literature, and many results are known, in particular when Ω1 is a set of

finite matrices, see the book [17].

It is well-known that the weighted shifts with nonzero scalar weights are irreducible.

Corollary 2.5. The tuple of weighted shifts SΦ = (S1, . . . , Sd) on l2d(E) with

operator weights is irreducible if and only if Ω1 = {W ∗
αWα : α ≥ 0} is irreducible.

A simple but remarkable fact is that (Sk1
1 , . . . , Skd

d ) with ki ≥ 1 for i = 1, . . . , d, is

again a tuple of commuting weighted shifts with operator weights. The above theorem

also applies to (Sk1
1 , . . . , Skd

d ). This idea will become clear when we apply the above

theorem to multiplication operators by powers of coordinator functions.

3. Multiplication operators on weighted Hardy spaces of several vari-

ables.

Let z ∈ Cd be the multivariable,

z = (z1, . . . , zd), z = (z1, . . . , zd).

An analytic polynomial p(z) is of the form

p(z) =
m∑

|α|=0

cαz
α, cα ∈ C,

where α = (α1, . . . , αd) ≥ 0, |α| = α1 + · · · + αd, and zα = zα1
1 · · · zαd

d . It is known

from [12] that several weighted shifts with nonzero scalar weights is unitarily equivalently

to multiplications by zi on weighted Hardy spaces with positive scalar weights. In this

section, we introduce weighted Hardy spaces of multivariable z with operator weights.

We show that multiplications by zi on those weighted Hardy spaces are the weighted

shift SΦ studied in the last section. First note that for A ∈ B(H) and h ∈ H,

⟨Ah,Ah⟩ = ⟨A∗Ah, h⟩ =
⟨√

A∗Ah,
√
A∗Ah

⟩
,

and
√
A∗A ≥ 0. Thus in the definition of weighted Hardy spaces we will use positive

operators. Let ∆ = {Wα : α ≥ 0} be a bounded set of invertible positive operators in



1193(315)

Common reducing subspaces of several weighted shifts with operator weights 1193

B(E). The weighted Hardy space H2
∆(E) is defined by

H2
∆(E) =

f(z) =
∑
α≥0

fαz
α : fα ∈ E, ∥f(z)∥2 =

∑
α≥0

∥Wαfα∥2 < ∞

 . (8)

Then the multiplication operator Mzi by zi on H2
∆(E) for 1 ≤ i ≤ d, denoted by Mz =

(Mz1 , . . . ,Mzd), can be identified with the weighted shift SΦ on l2d(E) with

Φ =
{
Φα,i = Wα+εiW

−1
α : α ≥ 0, 1 ≤ i ≤ d

}
.

(Note that Wα+εiW
−1
α is not necessary positive since no commuting condition is imposed

on Wα.) More precisely, let U be the linear operator from l2d(E) onto H2
∆(E) defined by

U [yeα] =
[
W−1

α y
]
zα, α ≥ 0, y ∈ E.

Then ∥∥∥∥∥∥U
∑

α≥0

yαeα

∥∥∥∥∥∥
2

H2
∆(E)

=

∥∥∥∥∥∥
∑
α≥0

[
W−1

α yα
]
zα

∥∥∥∥∥∥
2

H2
∆(E)

=
∑
α≥0

∥∥WαW
−1
α yα

∥∥2
E

=
∑
α≥0

∥yα∥2E =

∥∥∥∥∥∥
∑
α≥0

yαeα

∥∥∥∥∥∥
2

l2d(E)

.

Thus U is an onto isometry. Furthermore,

MziUyeα = Mzi

(
W−1

α yzα
)
= W−1

α yzα+εi ,

USiyeα = U(Φα,iyeα+εi) = W−1
α+εiΦα,iyz

α+εi

= W−1
α+εiWα+εiW

−1
α yzα+εi = W−1

α yzα+εi .

Therefore

MzU = (Mz1U, . . . ,MzdU) = USΦ = (US1, . . . , USd) .

By (3), Mz is a tuple of commuting bounded operators if and only if

∥Mzi∥ = sup
α≥0

∥Φα,i∥ = sup
α≥0

∥∥Wα+εiW
−1
α

∥∥ < ∞, 1 ≤ i ≤ d, (9)

which we shall assume. Note that (1) is automatically satisfied, since by Φα,i =

Wα+εiW
−1
α , for i ̸= j,

Φα+εi,jΦα,i = Wα+εi+εjW
−1
α+εiWα+εiW

−1
α = Wα+εi+εjW

−1
α ,

Φα+εj ,iΦα,j = Wα+εj+εiW
−1
α+εjWα+εjW

−1
α = Wα+εj+εiW

−1
α .



1194(316)

1194 C. Gu

The reducing subspaces (or minimal reducing subspaces) of Mz and SΦ are in one to one

correspondence. Now Theorem 2.4 can be reformulated as the following theorem which

generalizes a similar result [5] in one variable case.

Theorem 3.1. Any common reducing subspace X of Mz on H2
∆(E) is of the form

H2
∆(E0), where

E0 =
d∩

i=1

X ⊖MziX =
d∩

i=1

ker(M∗
zi |X) ⊆ E,

and E0 ⊆ E is an invariant subspace of Ω = {Wα : α ≥ 0}. Furthermore H2
∆(E0) is a

minimal reducing subspace of Mz if and only if E0 is a minimal invariant subspace of Ω.

Proof. By Theorem 2.4,

Ω1 = {W ∗
αWα : α ≥ 0} .

But here we assume Wα is positive, so W ∗
αWα = W 2

α. The space E0 is invariant for W 2
α

if and only if it is invariant for Wα. □

If E is a finite dimensional complex Hilbert space and E0 ⊆ E is a nontrivial

invariant subspace of Ω = {Wα : α ≥ 0}, then E0 contains a minimal invariant subspace

of Ω. Since Wα is positive, E0 is in fact a reducing subspace of Ω and it is an orthogonal

sum of several minimal reducing subspaces of Ω.

Corollary 3.2. Assume N = dim(E) < ∞. Then any nontrivial reducing sub-

space of Mz on H2
∆(E) contains a minimal reducing subspace. Furthermore it is a direct

sum of at most N minimal reducing subspaces of Mz.

As mentioned in [21], there are operators which possess many reducing subspaces but

have no minimal reducing subspaces at all. For example, the operator of multiplication

by z on the Lebesgue space L2(D, dA), where dA is the area measure on the unit disk D,
is one. In view of the above corollary, if dim(E) < ∞, then the only question remaining

is how to describe the minimal reducing subspaces of Ω.

4. Hilbert spaces of holomorphic functions of several variables.

Let ω = {ωα : α ≥ 0} be a set of positive numbers. Let C denote the set of complex

numbers viewed as an one dimensional Hilbert space. Let H2
ω be the weighted Hardy

space as in [12]

H2
ω =

f(z) =
∑
α≥0

fαz
α : fα ∈ C, ∥f(z)∥2 =

∑
α≥0

ωα |fα|2 < ∞

 . (10)

Considering E = C and ∆ =
{√

ωα : α ≥ 0
}
in Section 3, we have H2

ω = H2
∆(C). By (9),

we assume
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∥Mzi∥ = sup
α≥0

√
ωα+εi

ωα
< ∞, 1 ≤ i ≤ d.

Let N = (N1, . . . , Nd) ∈ Zd
+ be such that N ≥ (1, . . . , 1). By an abuse of notation, set

N − 1 = (N1− 1, . . . , Nd− 1). Let L =
∏d

i=1 Ni, E be the L-dimensional subspace of H2
ω

defined by

E =

 ∑
0≤β≤N−1

fβz
β : fβ ∈ C

 ,

and
{
zβ/

√
ωβ : 0 ≤ β ≤ N − 1

}
be the standard basis of E. For two multi-indices

k = (k1, . . . , kd) and N = (N1, . . . , Nd), let kN denote the multi-index kN =

(k1N1, . . . , kdNd). Let ∆ = {Wk : k ≥ 0} be the set of diagonal operators where Wk

is the diagonal matrix (with respect to the standard basis of E) defined by

Wk

(
zβ
√
ωβ

)
=

√
ωβ+kN
√
ωβ

(
zβ
√
ωβ

)
, 0 ≤ β ≤ N − 1, k ≥ 0. (11)

Then the tuple Mz =
(
M

z
N1
1

, . . . ,M
z
Nd
d

)
on H2

ω can be identified with Mz =

(Mz1 , . . . ,Mzd) on H2
∆(E). To see this, we write

∑
α≥0

fαz
α =

∑
k≥0

 ∑
0≤β≤N−1

fβ+kNzβ

 zkN .

Let U be the linear operator from H2
ω onto H2

∆(E) defined by

U
∑
α≥0

fαz
α =

∑
k≥0

gkz
k where gk =

∑
0≤β≤N−1

fβ+kNzβ ∈ E.

Since U maps zkN in H2
ω into zk in H2

∆(E), it is easy to see that UMzN = MzU . We

now verify that U is an onto isometry.∥∥∥∥∥∥U
∑
α≥0

fαz
α

∥∥∥∥∥∥
2

H2
∆(E)

=

∥∥∥∥∥∥
∑
k≥0

gkz
k

∥∥∥∥∥∥
2

H2
∆(E)

=
∑
k≥0

∥Wkgk∥2E =
∑
k≥0

∥∥∥∥∥∥Wk

∑
0≤β≤N−1

fβ+kNzβ

∥∥∥∥∥∥
2

E

=
∑
k≥0

∑
0≤β≤N−1

∥∥Wkfβ+kNzβ
∥∥2
E
=
∑
k≥0

∑
0≤β≤N−1

∥∥∥∥√ωβ+kN
√
ωβ

fβ+kNzβ
∥∥∥∥2
E

=
∑
k≥0

∑
0≤β≤N−1

ωβ

∣∣∣∣√ωβ+kN
√
ωβ

fβ+kN

∣∣∣∣2 =
∑
k≥0

∑
0≤β≤N−1

ωβ+kN |fβ+kN |2

=

∥∥∥∥∥∥
∑
α≥0

fαz
α

∥∥∥∥∥∥
2

H2
ω

.
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Since ∆ consists of diagonal matrices, the following result, which is Lemma 6 in [5], is

useful.

Lemma 4.1. (i) Let Ω be a set of invertible diagonal matrices on CL with respect

to an orthonormal basis {e1, . . . , eL}. Then any minimal invariant subspace of Ω

is one dimensional.

(ii) Any invariant subspace of Ω is an orthogonal sum of several one dimensional in-

variant subspaces of Ω.

(iii) Let v =
∑k

i=1vnieni , where all vni are nonzero. Then Span {v} is invariant for

Ω if and only if each diagonal matrix in Ω restricted to Span {en1 , . . . , enk
} is a

constant multiple of the identity matrix.

Combining Theorem 3.1 and Lemma 4.1, we immediately have the following theorem,

which contains Theorem A and Theorem D in [21], and Theorem 6 in [14] as special

cases. This theorem can also be derived from the work of [14]. Set

N̂ = {β : 0 ≤ β ≤ N − 1} .

Theorem 4.2. (i) A reducing subspace of (M
z
N1
1

, . . . ,M
z
Nd
d

) on H2
ω is a direct

sum of at most L (singly generated) minimal reducing subspaces, where L is the

cardinality of the index set N̂ . That is, L =
∏d

i=1 Ni.

(ii) A minimal reducing subspace of (M
z
N1
1

, . . . ,M
z
Nd
d

) on H2
ω is of the form

Span
{
p(z)zkN : k ≥ 0

}
,

where

p(z) =
∑
γ∈J

fγz
γ , fγ ∈ C, fγ ̸= 0 for all γ ∈ J, (12)

and J ⊆ N̂ and ωγ+kN/ωγ = ωδ+kN/ωδ for all γ, δ ∈ J and k ≥ 0.

(iii) For each γ ∈ N̂ , Span
{
zγzkN : k ≥ 0

}
is a (singly generated) minimal reducing

subspace of (M
z
N1
1

, . . . ,M
z
Nd
d

).

Proof. Conclusion (i) is clear from (i) and (ii) of Lemma 4.1. To see (ii), we note

that Wk as in (11) is a constant multiple of the identity on the Span{zγ : γ ∈ J} if and

only if ωγ+kN/ωγ = ωδ+kN/ωδ for all γ, δ ∈ J . The proof is complete. □

We say the reducing subspaces as in (iii) are the obvious ones.

Definition 4.3. Let κ(J) denote the cardinality of the index set J . We say p(z)

as in (12) is of length κ(J) and Span
{
p(z)zkN : k ≥ 0

}
is a minimal reducing subspace

of length κ(J).
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Thus κ(J) = 1 for the reducing subspaces as in (iii) of Theorem 4.2. As we will see,

in most classical function spaces, κ(J) = 1, so that there are exactly L minimal reducing

subspaces of (M
z
N1
1

, . . . ,M
z
Nd
d

) on H2
ω and there are exactly 2L − 1 reducing subspaces

of (M
z
N1
1

, . . . ,M
z
Nd
d

).

Lemma 4.1 can be extended to the set of diagonal operators on the infinite dimen-

sional l2 space. For convenience, we recall Lemma 8 and Corollary 9 from [5]. Let N be

the set of positive integers. In the infinite dimensional case, all subspaces are assumed

to be closed.

Lemma 4.4. Let Ω be a set of injective diagonal operators on l2 with respect to an

orthonormal basis {en : n ∈ N}.

(i) Let v =
∑∞

i=1vnieni , where all vni are nonzero. Then Span {v} is invariant for Ω

if and only if the restriction of each diagonal operator in Ω to Span {en1 , en2 , . . .}
is a constant multiple of the identity operator.

(ii) Any minimal invariant subspace of Ω is one dimensional.

(iii) Any invariant subspace of Ω is an orthogonal sum of finite or infinite many one

dimensional invariant subspaces of Ω.

The following corollary tells us when the invariant subspaces of Ω are the obvious

ones.

Corollary 4.5. (1) Let Ω be a set of invertible diagonal matrices on CL with

respect to an orthonormal basis {e1, . . . , eL}. The following two statements are

equivalent.

(i) For any i ̸= j, there is A ∈ Ω such that Aei = λiei, Aej = λjej with λi ̸= λj.

(ii) There are exactly L minimal invariant subspaces of Ω, namely, Span {ei} for

i = 1, . . . , L.

(2) Let Ω be a set of injective diagonal operators on l2 with respect to an orthonormal

basis {en, n ∈ N}. The following two statements are equivalent.

(i) For any i, j ∈ N and i ̸= j, there is A ∈ Ω such that Aei = λiei, Aej = λjej
with λi ̸= λj.

(ii) The minimal invariant subspaces of Ω are Span {ei} for i ∈ N.

Statement (i) holds as long as Ω contains a diagonal operator with distinct diagonals.

5. Examples.

Let Bd be the unit ball of Cd,

Bd =
{
z = (z1, . . . , zd) ∈ Cd : |z1|2 + · · ·+ |zd|2 < 1

}
.

Let w = (w1, . . . , wd) ∈ Bd and ⟨z, w⟩ be the inner product defined by
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⟨z, w⟩ =
d∑

i=1

ziwi.

Let Kρ(Bd) (for ρ > 0) be the Hilbert space of analytic functions on the ball Bd with

reproducing kernel

K(z, w) =
1

(1− ⟨z, w⟩)ρ
.

This scale of spaces contains the Bergman space L2
a(Bd) (ρ = d + 1), the Hardy space

H2(Bd) (ρ = d), and the Drury–Arveson space H2
d(Bd) (ρ = 1). By the expansion

formula,

K(z, w) =
1

(1− ⟨z, w⟩)ρ
=

∞∑
i=0

Γ(ρ+ i)

i!Γ(ρ)
⟨z, w⟩i

=

∞∑
i=0

Γ(ρ+ i)

i!Γ(ρ)

∑
|α|=i

i!

α!
zαwα =

∑
α≥0

Γ(ρ+ |α|)
α!Γ(ρ)

zαwα.

Therefore

Kρ(Bd) = H2
ω with ω =

{
ωα =

α!Γ(ρ)

Γ(ρ+ |α|)
: α ≥ 0

}
. (13)

Let D(Bd) denote the holomorphic Dirichlet space on Bd with reproducing kernel

K(z, w) = − 1

⟨z, w⟩
ln(1− ⟨z, w⟩).

Note that

K(z, w) = − 1

⟨z, w⟩
ln(1− ⟨z, w⟩) =

∞∑
n=0

1

n+ 1
⟨z, w⟩n

=
∞∑

n=0

1

n+ 1

∑
|α|=n

n!zαwα

α!
=
∑
α≥0

|α|!zαwα

α! (|α|+ 1)
.

Therefore

D(Bd) = H2
ω with ω =

{
ωα =

α! (|α|+ 1)

|α|!
: α ≥ 0

}
.

Let D be the unit disk and Dd be the polydisk. We use Kρ(Dd) (for ρ > 0) to denote

the Hilbert space of analytic functions on the polydisk Dd with reproducing kernel

K(z, w) =
1∏d

i=1 (1− ziwi)
ρ
.

This scale of spaces contains the Bergman space L2
a(Dd) (ρ = 2) and Hardy space H2(Dd)
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(ρ = 1). When ρ > 1, Kρ(Dd) is often called the weighted Bergman space on polydisk.

By the expansion formula,

K(z, w) =
1∏d

i=1 (1− ziwi)
ρ
=

d∏
i=1

( ∞∑
αi=0

Γ(ρ+ αi)

αi!Γ(ρ)
(ziwi)

αi

)

=
∑
α≥0

d∏
i=1

Γ(ρ+ αi)

αi!Γ(ρ)
zαwα.

Therefore

Kρ(Dd) = H2
ω with ω =

{
ωα =

d∏
i=1

αi!Γ(ρ)

Γ(ρ+ αi)
: α ≥ 0

}
. (14)

Let D(Dd) denote the holomorphic Dirichlet space on Dd with reproducing kernel

K(z, w) = (−1)d
d∏

i=1

1

ziwi
ln(1− ziwi). (15)

Note that

K(z, w) = (−1)d
d∏

i=1

1

ziwi
ln(1− ziwi) =

d∏
i=1

( ∞∑
αi=0

1

αi + 1
(ziwi)

αi

)

=
∑
α≥0

1∏d
i=1 (αi + 1)

zαwα.

Therefore

D(Dd) = H2
ω with ω =

{
ωα =

d∏
i=1

(αi + 1) : α ≥ 0

}
.

Let N = (N1, . . . , Nd) ∈ Zd
+ be such that N ≥ (1, . . . , 1).

Lemma 5.1. We use notations as above. Let γ, δ ≥ 0 be two multi-indices. Then

for ωα as in (13) with d ≥ 2,

ωγ+kN

ωγ
=

ωδ+kN

ωδ
for all k ≥ 0

if and only if γ = δ.

Proof. Note that ωγ+kN/ωγ = ωδ+kN/ωδ is the same as

ωγ+kN

ωδ+kN
=

ωγ

ωδ
or

(γ + kN)!Γ(ρ+ |δ + kN |)
(δ + kN)!Γ(ρ+ |γ + kN |)

=
ωγ

ωδ
.

Note that the limit of
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(γ + kN)!Γ(ρ+ |δ + kN |)
(δ + kN)!Γ(ρ+ |γ + kN |)

≈ kγ1−δ1
1 k

|δ|−|γ|
1 ,

as k1 → ∞, is 0 or ∞ unless

γ1 + |δ| = δ1 + |γ| .

Similarly

γi + |δ| = δi + |γ| , i = 1, . . . , d.

This implies that γ = δ since d ≥ 2. □

Remark 5.2. The above lemma also holds when d = 1 and ρ ̸= 1, see the lemma

below.

Lemma 5.3. We use notations as above. Let γ, δ ≥ 0 be two multi-indices. Assume

ρ ̸= 1. Then for ωα as in (14),

ωγ+kN

ωγ
=

ωδ+kN

ωδ
for all k ≥ 0

if and only if γ = δ.

Proof. Note that ωγ+kN/ωγ = ωδ+kN/ωδ is the same as

ωγ+kN

ωδ+kN
=

ωγ

ωδ
or

d∏
i=1

(γi + kiNi)!Γ(ρ)Γ(ρ+ δi + kiNi)

(δi + kiNi)!Γ(ρ)Γ(ρ+ γi + kiNi)
=

ωγ

ωδ
.

Equivalently, for each i = 1, . . . , d,

(γi + kiNi)!Γ(ρ+ δi + kiNi)

(δi + kiNi)!Γ(ρ+ γi + kiNi)
=

(γi)!Γ(ρ+ δi)

(δi)!Γ(ρ+ γi)
.

Taking limit of the above expression as ki → ∞, we see that both sides of the above

expression are equal to one. That is,

(γi + kiNi)!Γ(ρ+ δi + kiNi)

(δi + kiNi)!Γ(ρ+ γi + kiNi)
= 1 for all ki ≥ 0.

Without loss of generality, assume γi = δi + l for some l > 0. Then

(1 + δi + kiNi) · · · (l + δi + kiNi)

(ρ+ δi + kiNi) · · · (ρ+ l − 1 + δi + kiNi)
= 1 for all ki ≥ 0,

which is impossible unless ρ = 1. Hence γi = δi and γ = δ. □

Theorem 5.4. The tuple (M
z
N1
1

, . . . ,M
z
Nd
d

) on Kρ(Bd), Kρ(Dd) (ρ ̸= 1), D(Bd),

and D(Dd) has only the obvious L (singly generated) minimal reducing subspaces of length

one.



1201(323)

Common reducing subspaces of several weighted shifts with operator weights 1201

Proof. The results follow from proceeding lemmas. The Hardy space on the

polydisk is the only exception. The proofs for the Dirichlet spaces are the same. □

Theorem 2.4 in [15] corresponds to the special case of the above theorem on Kρ(Dd)

for d = 2, ρ > 1 and N1 = N2. A description of minimal reducing subspaces of

(M
z
N1
1

, . . . ,M
z
Nd
d

) on Kρ(Dd) for ρ = 1 readily follows from Theorem 4.2 by noting

that ωα = 1 for all α ≥ 0. See also a related result for the case ρ = 1 in Theorem 9.1.

6. Product of weighted shifts.

In this section we demonstrate a more subtle observation that the product of several

commuting weighted shifts (with operator weights) is again a weighted shift with operator

weights. In the remaining part of the paper except the last section, k ∈ Z+ is not a multi-

index. For N = (N1, . . . , Nd), kN = (kN1, . . . , kNd). Recall SΦ = (S1, . . . , Sd) is defined

on l2d(E) by

Si [yeα] = [Φα,iy] eα+εi , α ∈ Zd
+, i = 1, . . . , d, y ∈ E. (16)

Let J0 = {α : α ≥ 0 and min {αi : i = 1, . . . , d} = 0} and

Ê = Span {yeα : y ∈ E,α ∈ J0} = ker

(
d∏

i=1

S∗
i

)
.

Let {gk}∞k=0 be the standard basis of l2 and

l2(Ê) =

{
y =

∞∑
k=0

ykgk : yk ∈ Ê and ∥y∥2 =

∞∑
k=0

∥yk∥2 < ∞

}
.

Again we identify Ê with the subspace {yg0, y ∈ Ê}.

Proposition 6.1. The operator
∏d

i=1 Si is unitarily equivalent to a weighted shift

SΨ defined on l2(Ê) with Ψ = {Ψk : k ≥ 0}, where Ψk ∈ B(Ê) is defined by

Ψk (yeβ) =
[(
Φβ+k(1,...,1)+ε1+···+εd−1,d · · ·Φβ+k(1,...,1)+ε1,2Φβ+k(1,...,1),1

)
y
]
eβ ,

y ∈ E, β ∈ J0. (17)

Proof. Let U be the isometry from l2d(E) into l2(Ê) defined by

Uyeα =
[
yeα−k(1,...,1)

]
gk, where k = min {αi : i = 1, . . . , d} , α ≥ 0.

Then U is an onto isometry. Note that for y ∈ E,α ≥ 0,

U

(
d∏

i=1

Si

)
yeα = U

[(
Φα+ε1+···+εd−1,d · · ·Φα+ε1,2Φα,1

)
y
]
eα+(1,...,1)

=
[{(

Φα+ε1+···+εd−1,d · · ·Φα+ε1,2Φα,1

)
y
}
eα+(1,...,1)−(k+1)(1,...,1)

]
gk+1
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=
[{(

Φα+ε1+···+εd−1,d · · ·Φα+ε1,2Φα,1

)
y
}
eα−k(1,...,1)

]
gk+1,

since k = min {αi, i = 1, . . . , d} implies that k + 1 = min {αi + 1 : i = 1, . . . , d}. On the

other hand, by (17) with β = α− k(1, . . . , 1),

SΨU [yeα] = SΨ

([
yeα−k(1,...,1)

]
gk
)

=
[
Ψk

(
yeα−k(1,...,1)

)]
gk+1

=
[{(

Φα+ε1+···+εd−1,d · · ·Φα+ε1,2Φα,1

)
y
}
eα−k(1,...,1)

]
gk+1.

Therefore,

U

(
d∏

i=1

Si

)
= SΨU.

The proof is complete. □

By Theorem 2.4 with d = 1, we have the following result. Let T :=
∏d

i=1 Si. Set

Vk = Ψk−1 · · ·Ψ1Ψ0. (18)

Corollary 6.2. A closed subspace X is a reducing subspace of
∏d

i=1 Si if and

only if

X = Span
{
T kx : k ≥ 0, x ∈ Ê0 = X ⊖ TX = ker(T ∗|X)

}
, (19)

where Ê0 ⊆ Ê is an invariant subspace of the sequence of operators V = {V ∗
k Vk : k ≥ 0}

and Vk is defined by (17) and (18). Furthermore, X is a minimal reducing subspace of

T if and only if Ê0 is a minimal invariant subspace of V .

Because Mz = (Mz1 , . . . ,Mzd), we use Tz to denote the multiplication operator by

z on H2
∆(E) as in (8). That is,

Tz =
d∏

i=1

Mzi .

Let Ê ⊂ H2
∆(E) be the subspace given by

Ê =

{
f(z) =

∑
α∈J0

fαz
α : fα ∈ E, ∥f(z)∥2 =

∑
α∈J0

∥Wαfα∥2 < ∞

}
= ker (T ∗

z ) .

Let Ψk ∈ B(Ê) be given by

Ψk

(
yzβ
)
=
[(
Φβ+k(1,...,1)+ε1+···+εd−1,d · · ·Φβ+k(1,...,1)+ε1,2Φβ+k(1,...,1),1

)
y
]
zβ ,

=

[(
Wβ+k(1,...,1)+(1,...,1)W

−1
β+k(1,...,1)+ε1+···+εd−1

· · ·
· · ·Wβ+k(1,...,1)+ε1+ε2W

−1
β+k(1,...,1)+ε1

Wα+k(1,...,1)+ε1W
−1
α+k(1,...,1)

)
y

]
zβ
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=
[(

Wβ+(k+1)(1,...,1)W
−1
β+k(1,...,1)

)
y
]
zβ , y ∈ E, β ∈ J0. (20)

Note that Ψk is not necessarily positive because no commuting condition is imposed on

Wα. Let Vk be defined by

Vk

(
yzβ
)
= [Ψk−1 · · ·Ψ1Ψ0]

(
yzβ
)
=
[(

Wβ+k(1,...,1)W
−1
β

)
y
]
zβ , y ∈ E, β ∈ J0. (21)

Then the proceeding corollary takes the following form on H2
∆(E).

Corollary 6.3. A closed subspace X of H2
∆(E) is a reducing subspace of Tz if

and only if

X = Span
{
T k
z x : k ≥ 0, x ∈ Ê0 = X ⊖ TzX = ker(T ∗

z |X)
}
, (22)

where Ê0 ⊆ Ê is an invariant subspace of the sequence of operators V = {V ∗
k Vk : k ≥ 0}

and Vk is given by (21). Furthermore, X is a minimal reducing subspace of T if and

only if Ê0 is a minimal invariant subspace of V .

7. Reducing subspaces of multiplication operators on H2
ω.

Let N = (N1, . . . , Nd) ∈ Zd
+ and N ≥ (1, . . . , 1). Let TzN denote the multiplication

operator by zN on H2
ω as in (10). That is,

TzN =
d∏

i=1

M
z
Ni
i

.

Let

JN = {α : α ≥ 0 and min {αi −Ni : i = 1, . . . , d} < 0} ,

and Ê ⊂ H2
ω be the subspace given by

Ê =

{
f(z) =

∑
α∈JN

fαz
α : fα ∈ C, ∥f(z)∥2 =

∑
α∈JN

ωα |fα|2 < ∞

}
= ker (T ∗

zN ) .

Let

Ψk

(
zβ
√
ωβ

)
=

√
ωβ+kN
√
ωβ

(
zβ
√
ωβ

)
, β ∈ JN , k ≥ 0. (23)

Theorem 7.1. (i) If a closed subspace X of H2
ω is a reducing subspace of TzN ,

then

X = Span
{
T k
zNx : k ≥ 0, x ∈ Ê0

}
, (24)

where
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Ê0 = X ⊖ TzNX = ker (T ∗
zN |X) ,

and Ê0 ⊆ Ê is an invariant subspace of Ψ = {Ψk : k ≥ 0} defined by (23).

(ii) Any reducing subspace of TzN on H2
ω is a direct sum of (singly generated) minimal

reducing subspaces.

(iii) Any minimal reducing subspace of TzN on H2
ω is of the form Span{f(z)zkN : k ≥

0}, where

f(z) =
∑
γ∈J

fγz
γ , fγ ̸= 0 for all γ ∈ J, (25)

and J ⊆ JN and ωγ+kN/ωγ = ωδ+kN/ωδ for all γ, δ ∈ J, k ≥ 0.

Proof. Note that in this case Ψk in (23) is a diagonal operator (with positive

diagonals). Therefore Ê0 ⊆ Ê is an invariant subspace of the sequence of operators{
Ψ2

k : k ≥ 0
}

if and only if Ê0 is invariant for Ψ = {Ψk : k ≥ 0}. So (i) follows from

Corollary 6.3. Items (ii) and (iii) follow from Corollary 6.3 and Lemma 4.4. □

Since ωα = 1 for all α ≥ 0 on Kρ(Dd) for ρ = 1 (the Hardy space of polydisk), any

minimal reducing subspace of TzN on K1(Dd) is described as in (iii) above where J is an

arbitrary subset of JN .

The above theorem formally looks the same as Theorem 4.2. But the condition on

ωα is less restrictive because k is not a multi-index, and the index set JN is infinite, so

in general there are many J such that κ(J) > 1 as we demonstrate below. However, here

we only make a couple of observations and also work out the details for a few clean cases.

Let P (d) denote the permutation group of {1, 2, . . . , d}. For σ ∈ P (d) and a multi-

index γ = (γ1, γ2, . . . , γd),

γσ =
(
γσ(1), γσ(2), . . . , γσ(d)

)
.

Then we have the following proposition.

Proposition 7.2. Assume N = (M,M, . . . ,M). Given γ = (γ1, γ2, . . . , γd) ∈ JN ,

let

f(z) =
∑

σ∈P (d)

fσz
γσ , fσ ∈ C for all σ ∈ P (d). (26)

Then Span
{
f(z)zkN : k ≥ 0

}
is a minimal reducing subspace of TzN on Kρ(Bd),Kρ(Dd)

(ρ ̸= 1), D(Bd) and D(Dd).

Proof. We just prove for TzN on Kρ(Bd). Recall that

ω =

{
ωα =

α!Γ(ρ)

Γ(ρ+ |α|)
: α ≥ 0

}
.

Thus for given γ ∈ JN and for any σ ∈ P (d),
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ωγ+kN

ωγ
=

∏d
i=1 (γi + kM)!Γ(ρ+

∑d
i=1γi)∏d

i=1 γi!Γ(ρ+
∑d

i=1γi + dkM)
,

ωγσ+kN

ωγσ

=

∏d
i=1

(
γσ(i) + kM

)
!Γ(ρ+

∑d
i=1γσ(i))∏d

i=1 γσ(i)!Γ(ρ+
∑d

i=1γσ(i) + dkM)
.

Since
∑d

i=1γσ(i) =
∑d

i=1γi and
∏d

i=1 γσ(i)! =
∏d

i=1 γi!,

ωγ+kN

ωγ
=

ωγσ+kN

ωγσ

.

The result now follows from the proceeding theorem. □

The space Span
{
f(z)zkN : k ≥ 0

}
above is the closed linear span in different spaces

accordingly. In (26), we allow the coefficients fσ to be zero. Furthermore, γσ1 could be

same as γσ2 for two different permutations σ1 and σ2. The length of f(z) in (26) is d!

if γi are distinct for i = 1, . . . , d and all fσ are not zero. It turns out we can prove the

converse of the above proposition if ρ is not a positive integer. The proof of the following

lemma is more streamlined by comparing the roots of polynomials as Lemma 7 in [19],

where reducing subspaces on weighted Bergman spaces on D3 are discussed.

Lemma 7.3. Assume N = (M,M, . . . ,M). Let ω be on Kρ(Bd), where ρ is not a

positive integer, or ω be on Kρ(Dd) (ρ ̸= 1). For γ, δ ∈ JN , ωγ+kN/ωγ = ωδ+kN/ωδ for

all k ≥ 0 if and only if there exists a permutation σ ∈ P (d) such that δ = γσ.

Proof. We first prove this lemma on Kρ(Bd). If ωγ+kN/ωγ = ωδ+kN/ωδ for all

k ≥ 0, then

ωγ+kN

ωγ+(k+1)N
=

ωδ+kN

ωδ+(k+1)N
for all k ≥ 0. (27)

Equivalently∏dM
j=1 (ρ+ |γ|+ dkM + j − 1)∏d

i=1

∏M
j=1 (γi + kM + j)

=

∏dM
j=1 (ρ+ |δ|+ dkM + j − 1)∏d

i=1

∏M
j=1 (δi + kM + j)

.

We define G(λ) by replacing k with λ,

G(λ) = p(λ)− q(λ), where

p(λ) =
dM∏
j=1

(ρ+ |γ|+ dλM + j − 1)
d∏

i=1

M∏
j=1

(δi + λM + j) , and

q(λ) =

dM∏
j=1

(ρ+ |δ|+ dλM + j − 1)

d∏
i=1

M∏
j=1

(γi + λM + j) .

Then G(λ) ≡ 0 and the roots of the two polynomials p(λ) and q(λ) are the same. In

particular,
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either
ρ+ |γ|+ dM − 1

dM
=

γi + j

M
for some i and j, (28)

ρ+ |δ|+ dM − 1

dM
=

δi + j

M
for some i and j, (29)

or
ρ+ |γ|+ dM − 1

dM
=

ρ+ |δ|+ dM − 1

dM
. (30)

Both sides of (30) are the largest roots (in absolute value) of p(λ) and q(λ) containing ρ.

If ρ is not a positive integer, (28) or (29) can not happen. So (30) implies that

d∑
i=1

δi =

d∑
i=1

γi.

Now (27) implies that

G1(λ) =
d∏

i=1

M∏
j=1

(δi + λM + j)−
d∏

i=1

M∏
j=1

(γi + λM + j) ≡ 0. (31)

Therefore{
δi + j

M
: 1 ≤ i ≤ d, 1 ≤ j ≤ M

}
=

{
γi + j

M
: 1 ≤ i ≤ d, 1 ≤ j ≤ M

}
.

This implies that δ = γσ for some permutation σ ∈ P (d).

We now prove on Kρ(Dd) where ρ ̸= 1. We will be brief. If ωγ+kN/ωγ = ωδ+kN/ωδ

for all k ≥ 0, then∏d
i=1

∏M
j=1 (ρ+ γi + kM + j − 1)∏d

i=1

∏M
j=1 (γi + kM + j)

=

∏d
i=1

∏M
j=1 (ρ+ δi + kM + j − 1)∏d

i=1

∏M
j=1 (δi + kM + j)

. (32)

Then the roots of the two polynomials are the same, equivalently F1 = F2 where

F1 = {ρ+ γi + j − 1, δi + j : 1 ≤ i ≤ d, 1 ≤ j ≤ M} ,
F2 = {ρ+ δi + j − 1, γi + j : 1 ≤ i ≤ d, 1 ≤ j ≤ M} .

Without loss of generality, assume γd = max{γi : 1 ≤ i ≤ d}. Let δl = max{δi : 1 ≤ i ≤
d}. Note that

maxF1 = max {ρ+ γd +M − 1, δl +M} ,
maxF2 = max {ρ+ δl +M − 1, γd +M} .

We claim δl = γd. Assume δl > γd. Then, in the case ρ > 1,

maxF2 = ρ+ δl +M − 1 > maxF1,

which is a contradiction. In the case 0 < ρ < 1,
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maxF1 = δl +M > maxF2,

which is a contradiction. Similarly δl < γd will also lead to contradictions. Thus δl = γd.

By using a permutation, we can assume δd = γd. Now (32) becomes a new equation with

d replaced by d− 1. Continuing this process, we see that δ = γσ for some σ ∈ P (d). □

The case of ρ being a positive integer is most interesting since Kρ(Bd) contains the

Hardy space, the Bergman space, and the Drury–Arveson space. Unfortunately, in this

case, if ωγ+kN/ωγ = ωδ+kN/ωδ for all k ≥ 0, we can only establish that |γ| = |δ| or
|γ| = |δ| ± 1. If |γ| = |δ|, then δ = γσ for some σ ∈ P (d). We will resolve the case

|γ| = |δ| ± 1 when d = 2. But first we prove a similar lemma on Dirichlet spaces.

Lemma 7.4. Assume N = (M,M, . . . ,M). Let ω be on D(Bd) or D(Dd). For

γ, δ ∈ JN , then ωγ+kN/ωγ = ωδ+kN/ωδ for all k ≥ 0 if and only if there exists a

permutation σ ∈ P (d) such that δ = γσ.

Proof. When d = 1, we need to prove γ = δ. We skip this short proof, assume

now d ≥ 2. Since the proof on D(Bd) is similar to the attempted (but failed) proof of the

previous lemma on Kρ(Bd) for ρ = 1, we include the details to demonstrate the subtlety.

Recall

ωα =
α! (|α|+ 1)

|α|!
, α ≥ 0.

If ωγ+kN/ωγ = ωδ+kN/ωδ for all k ≥ 0, then

ωγ+kN

ωγ+(k+1)N
=

ωδ+kN

ωδ+(k+1)N
for all k ≥ 0.

Equivalently,

(|γ|+ dkM + 1)
∏dM

j=1 (|γ|+ dkM + j)

(|γ|+ dkM + dM + 1)
∏d

i=1

∏M
j=1 (γi + kM + j)

=
(|δ|+ dkM + 1)

∏dM
j=1 (|δ|+ dkM + j)

(|δ|+ dkM + dM + 1)
∏d

i=1

∏M
j=1 (δi + kM + j)

. (33)

We define G(λ) by replacing k with λ, G(λ) = p(λ)− q(λ), where

p(λ) = (|γ|+ dλM + 1) (|δ|+ dλM + dM + 1)

dM∏
j=1

(|γ|+ dλM + j)

d∏
i=1

M∏
j=1

(δi + λM + j) ,

q(λ) = (|δ|+ dλM + 1) (|γ|+ dλM + dM + 1)
dM∏
j=1

(|δ|+ dλM + j)
d∏

i=1

M∏
j=1

(γi + λM + j) .

Then G(λ) ≡ 0 and the roots of the two polynomials p(λ) and q(λ) are the same. By

multiplying all the roots of p(λ) and q(λ) by −dM , we have
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E1 ∪ F1 ∪G1 = E2 ∪ F2 ∪G2,

where

E1 = {|γ|+ j : 1 ≤ j ≤ dM} , F1 = {|γ|+ 1, |δ|+ dM + 1} ,
G1 = {d (δi + j) : 1 ≤ i ≤ d, 1 ≤ j ≤ M} ,
E2 = {|δ|+ j : 1 ≤ j ≤ dM} , F2 = {|δ|+ 1, |γ|+ dM + 1} ,
G2 = {d (γi + j) : 1 ≤ i ≤ d, 1 ≤ j ≤ M} .

We claim |γ| = |δ|. Assume to the contrary, |γ| < |δ|. Note that |δ|+ dM from E2 does

not belong to E1 ∪ F1, so |δ|+ dM ∈ G1. That is

|δ|+ dM = d (δi + j) for some i, j. (34)

Note that |δ| + 1 belongs to both E2 and F2. Since E1 consists of consecutive integers

which can only has at most one |δ|+1 and |δ|+1 /∈ F1, so there is another |δ|+1 in G1.

That is

|δ|+ 1 = d (δi′ + j′) for some i′, j′. (35)

Equations (34) and (35) can not hold at the same time for d ≥ 2. Similarly, |γ| > |δ| will
also lead to a contradiction. Therefore |γ| = |δ|. Now (33) simplifies to

d∏
i=1

M∏
j=1

(γi + kM + j) =
d∏

i=1

M∏
j=1

(δi + kM + j) for all k ≥ 0.

As in (31), this implies that δ = γσ for some permutation σ ∈ P (d). The proof on D(Dd)

is similar and much simpler. □

On Kρ(Bd) when ρ is an integer, the sets F1 and F2 are absent, so we are unable to

conclude |γ| = |δ|. A little reflection can establish that |γ| = |δ| or |γ| = |δ| ± 1 as we

will do in the case d = 2 in next section. The following theorem follows from Theorem

7.1, Proposition 7.2, Lemma 7.3, and Lemma 7.4.

Theorem 7.5. Assume N = (M,M, . . . ,M). Then any minimal reducing subspace

X of TzN on Kρ(Bd) (ρ is not a positive integer), Kρ(Dd) (ρ ̸= 1), D(Bd), and D(Dd),

is of the form Span
{
f(z)zkN : k ≥ 0

}
, where there exists γ ∈ JN such that

f(z) =
∑

σ∈P (d)

fσz
γσ , fσ ∈ C.

Thus the length of a minimal reducing subspace of TzN can be any integer between 1

and d!.

Note that f(z) is a homogenous polynomial of degree |γ|. Theorem 1.1 in [15]

corresponds to the special case of the above theorem on Kρ(Dd) for d = 2 and ρ > 1.
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8. On spaces of holomorphic functions of two variables.

To compare with the previous theorem immediately, we first state the following

theorem, then prove the lemma needed for the proof of this theorem.

Theorem 8.1. Let N = (M,M). Assume ρ is a positive integer. Then any

minimal reducing subspace X of TzN on Kρ(B2) is of the form Span
{
f(z)zkN : k ≥ 0

}
,

where either there exists γ = (γ1, γ2) ∈ JN such that

f(z) = azγ1

1 zγ2

2 + bzγ2

1 zγ1

2 , a, b ∈ C, (36)

or there exists 0 ≤ l < M such that

f(z) = azl+1
1 zl+1

2 + bzl+1
1 zl2 + czl1z

l+1
2 , a, b, c ∈ C (37)

on the Drury–Arveson space (ρ = 1), or

f(z) = azl1z
l
2 + bzl+1

1 zl2 + czl1z
l+1
2 , a, b, c ∈ C (38)

on the Hardy space (ρ = 2), or

f(z) = a1z
ρ−1+l
1 zl2 + a2z

l
1z

ρ−1+l
2 + b1z

ρ−2+l
1 zl2 + b2z

l
1z

ρ−2+l
2 , a1, a2, b1, b2 ∈ C (39)

on the Bergman space (ρ = 3) and Kρ(B2) with ρ > 3. Thus the length of a minimal

reducing subspace of TzN can be 1, 2, and 3 on the Drury–Arveson space and the Hardy

space, and the length of a minimal reducing subspace of TzN can be 1, 2, 3, and 4 on the

Bergman space (ρ = 3) and on Kρ(B2) with ρ > 3.

The above theorem follows from the following lemma.

Lemma 8.2. Let N = (M,M). Assume ρ is a positive integer. Let ω be on Kρ(B2).

Let γ = (γ1, γ2), δ = (δ1, δ2) ∈ JN be such that |δ| < |γ|. Then ωγ+kN/ωγ = ωδ+kN/ωδ

for all k ≥ 0 if and only if (modulo permutations)

(γ1, γ2) = (δ1, ρ− 1 + δ1) , (δ1, δ2) = (δ1, ρ− 2 + δ1) . (40)

Proof. As in the proofs of Lemmas 7.3 and 7.4, ωγ+kN/ωγ = ωδ+kN/ωδ for all

k ≥ 0 if and only if

E1 ∪ F1 ∪G1 = E2 ∪ F2 ∪G2, (41)

where

E1 = {ρ− 1 + |γ|+ j : 1 ≤ j ≤ 2M} , F1 = {2 (δ1 + j) : 1 ≤ j ≤ M} ,
G1 = {2 (δ2 + j) : 1 ≤ j ≤ M} ,
E2 = {ρ− 1 + |δ|+ j : 1 ≤ j ≤ 2M} , F2 = {2 (γ1 + j) : 1 ≤ j ≤ M} ,
G2 = {2 (γ2 + j) : 1 ≤ j ≤ M} .
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Since E1 consists of consecutive integers, and F1 and G1 consist of consecutive even

integers, |γ| = |δ|+1. By using permutations, we may assume γ1 ≤ γ2 and δ1 ≤ δ2. Now

(41) becomes

E′
1 ∪ F1 ∪G1 = E′

2 ∪ F2 ∪G2, (42)

where

E′
1 = {ρ− 1 + |γ|+ 2M} , E′

2 = {ρ+ |δ|} .

Case (1): ρ− 1+ |γ|+2M = maxG1 = 2 (δ2 +M). In this case, 2 (δ2 +M) appears

twice in the left side of (42); hence

2 (δ2 +M) = 2 (γ1 +M) = 2 (γ2 +M) .

That is, δ2 = γ1 = γ2. By |γ| = |δ|+ 1, δ1 = δ2 − 1. By ρ− 1 + |γ|+ 2M = 2 (δ2 +M),

ρ−1+2γ1 = 2γ1, and ρ = 1. This corresponds to (40) (modulo permutations) for ρ = 1.

Case (2): ρ− 1 + |γ|+ 2M > maxG1 = 2 (δ2 +M). In this case,

ρ− 1 + |γ|+ 2M = 2 (γ2 +M) .

That is, γ2 = ρ − 1 + γ1. It also follows that ρ − 1 + |γ| + 2M = 2 (δ2 +M) + 2 since

otherwise ρ−1+ |γ|+2M−2 = 2 (γ2 +M − 1) belongs to the right side of (42) (G2), but

does not belong to the left side of (42). Hence δ2 = γ2−1 = ρ−2+γ1. Now |γ| = |δ|+1

yields γ1 = δ1. Therefore (40) holds.

Case (3): ρ− 1 + |γ|+ 2M < maxG1 = 2 (δ2 +M). Here,

2 (δ2 +M) = maxG1 = maxG2 = 2 (γ2 +M) .

Now |γ| = |δ|+ 1 yields γ1 = δ1 + 1. Then (42) becomes

{ρ− 1 + |γ|+ 2M, 2 (δ1 + 1)} = {ρ+ |δ| , 2 (γ1 +M)} .

In particular 2 (δ1 + 1) = ρ+|δ|. That is, δ1 = ρ+δ2, which is excluded by our assumption

δ1 ≤ δ2.

The proof is complete. □

We next discuss reducing subspaces of TzN where N = (N1, N2, . . . , Nd) and some of

Ni are distinct. If ωγ+kN/ωγ = ωδ+kN/ωδ for all k ≥ 0, the relationship between γ and

δ could be complicated for d ≥ 3 as shown in [19] on Kρ(Dd). In particular, the reducing

subspaces of TzN for N = (N1, N2, N3) with distinct Ni on Kρ(Dd) for d = 3, ρ > 1 are

completely worked out there. Here we will discuss Dirichlet spaces D(Bd) or D(Dd) for

d = 2, and the answers are still relatively compact. Surprisingly the answers are quite

different. Let GCD(N1, N2) denote the greatest common factor of N1 and N2.

Lemma 8.3. Assume N = (N1, N2). Write

N1 = N ′
1M, N2 = N ′

2M, M = GCD(N1, N2).
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Let ω be on D(D2). Let γ = (γ1, γ2), δ = (δ1, δ2) ∈ JN and γ ̸= δ. Then ωγ+kN/ωγ =

ωδ+kN/ωδ for all k ≥ 0 if and only if there exist positive integers l and m such that

min {l,m} ≤ M, l ̸= m and

(γ1, γ2) = (lN ′
1 − 1,mN ′

2 − 1) , (δ1, δ2) = (mN ′
1 − 1, lN ′

2 − 1) . (43)

Proof. Let ω be on D(D2). Recall ωα = (α1 + 1) (α2 + 1). If ωγ+kN/ωγ =

ωδ+kN/ωδ for all k ≥ 0 and G(k) = ωγ+kNωδ −ωδ+kNωγ = 0, then with k replaced by λ,

G(λ) = p(λ)− q(λ), where

p(λ) = (γ1 + λN1 + 1) (γ2 + λN2 + 1) (δ1 + 1) (δ2 + 1) ,

q(λ) = (δ1 + λN1 + 1) (δ2 + γN2 + 1) (γ1 + 1) (γ2 + 1) ,

G(λ) ≡ 0, and the roots of the two polynomials p(λ) and q(λ) are the same. Multiplying

the roots by −N ′
1N

′
2M , we have

{(γ1 + 1)N ′
2, (γ2 + 1)N ′

1} = {(δ1 + 1)N ′
2, (δ2 + 1)N ′

1} .

Thus

(γ1 + 1)N ′
2 = (δ2 + 1)N ′

1, (γ2 + 1)N ′
1 = (δ1 + 1)N ′

2.

Since N ′
1 and N ′

2 are coprime, there exist integers l and m such that (43) holds. □

The case for D(B2) is more difficult, but the result is simple.

Lemma 8.4. Assume N = (N1, N2) with N1 ̸= N2. Let ω be on D(B2). Let γ, δ be

two multi-indices in JN . If ωγ+kN/ωγ = ωδ+kN/ωδ for all k ≥ 0, then γ = δ.

Proof. Let ω be on D(B2). Write

N1 = N ′
1M, N2 = N ′

2M, M = GCD(N1, N2).

If ωγ+kN/ωγ = ωδ+kN/ωδ for all k ≥ 0, then as in (33), G(λ) ≡ 0 and the roots of the

two polynomials p(λ) and q(λ) are the same, where

G(λ) = p(λ)− q(λ),

p(λ) = (|γ|+ λ |N |+ 1) (|δ|+ (λ+ 1) |N |+ 1)

|N |∏
j=1

(|γ|+ λ |N |+ j)
2∏

i=1

Ni∏
j=1

(δi + λNi + j) ,

q(λ) = (|δ|+ λ |N |+ 1) (|γ|+ (λ+ 1) |N |+ 1)

|N |∏
j=1

(|δ|+ λ |N |+ j)
2∏

i=1

Ni∏
j=1

(γi + λNi + j) .

By multiplying all the roots of p(λ) and q(λ) by − (N ′
1 +N ′

2)N
′
1N

′
2M , we have

E1 ∪ F1 ∪G1 = E2 ∪ F2 ∪G2,
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where

E1 = {(|γ|+ j)N ′
1N

′
2 : 1 ≤ j ≤ |N |} ,

F1 = {(|γ|+ 1)N ′
1N

′
2, (|δ|+ |N |+ 1)N ′

1N
′
2} ,

G1 = {(δ1 + j) (N ′
1 +N ′

2)N
′
2 : 1 ≤ j ≤ N1} ∪ {(δ2 + j) (N ′

1 +N ′
2)N

′
1 : 1 ≤ j ≤ N2} ,

E2 = {(|δ|+ j)N ′
1N

′
2 : 1 ≤ j ≤ |N |} ,

F2 = {(|δ|+ 1)N ′
1N

′
2, (|γ|+ |N |+ 1)N ′

1N
′
2} ,

G2 = {(γ1 + j) (N ′
1 +N ′

2)N
′
2 : 1 ≤ j ≤ N1} ∪ {(γ2 + j) (N ′

1 +N ′
2)N

′
1 : 1 ≤ j ≤ N2} .

We claim |γ| = |δ|. Assume to the contrary, |γ| < |δ|. Note that (|δ|+ |N |)N ′
1N

′
2 >

maxE1, so (|δ|+ |N |)N ′
1N

′
2 from E2 does not belong to E1∪F1. Hence (|δ|+|N |)N ′

1N
′
2 ∈

G1. That is,

either (|δ|+ |N |)N ′
1N

′
2 = (δ1 + j) (N ′

1 +N ′
2)N

′
2 for some j

or (|δ|+ |N |)N ′
1N

′
2 = (δ2 + j) (N ′

1 +N ′
2)N

′
1 for some j.

In either case, since N ′
1 and N ′

1 +N ′
2 are coprime and N ′

2 and N ′
1 +N ′

2 are coprime,

|δ|+ |N | = a (N ′
1 +N ′

2) for some integer a. (44)

Note that (|δ|+ |N |+ 1)N ′
1N

′
2 > maxE2, so (|δ|+ |N |+ 1)N ′

1N
′
2 from F1 does not

belong to E2 ∪ F2. Thus (|δ|+ |N |+ 1)N ′
1N

′
2 ∈ G2. That is,

either (|δ|+ |N |+ 1)N ′
1N

′
2 = (γ1 + j) (N ′

1 +N ′
2)N

′
2 for some j

or (|δ|+ |N |+ 1)N ′
1N

′
2 = (γ2 + j) (N ′

1 +N ′
2)N

′
1 for some j.

In either case

|δ|+ |N |+ 1 = b (N ′
1 +N ′

2) for some integer b. (45)

Equations (44) and (45) can not hold at the same time since N ′
1 + N ′

2 > 1. Similarly,

|γ| > |δ| will also lead to a contradiction. Therefore |γ| = |δ|. Now we have G1 = G2.

Thus

(δ1 +N1) (N
′
1 +N ′

2)N
′
2 = (γ2 +N2) (N

′
1 +N ′

2)N
′
1,

(δ2 +N2) (N
′
1 +N ′

2)N
′
1 = (γ1 +N1) (N

′
1 +N ′

2)N
′
2.

Since N ′
1 and N ′

2 are coprime, there exist integers l and m such that

(γ1, γ2) = (lN ′
1,mN ′

2) , (δ1, δ2) = (mN ′
1, lN

′
2) .

But γ1 + γ2 = δ1 + δ2 or lN ′
1 +mN ′

2 = mN ′
1 + lN ′

2 implies that l = m. □

The following theorem together with Theorem 7.5 gives a complete description of

reducing subspaces of TzN on D(Dd) or D(Bd) for d = 2. Note kN = (kN1, kN2) in the

theorem.



1213(335)

Common reducing subspaces of several weighted shifts with operator weights 1213

Theorem 8.5. Assume N = (N1, N2) with N1 ̸= N2. Write

N1 = N ′
1M, N2 = N ′

2M, M = GCD(N1, N2).

(i) Any minimal reducing subspace X of TzN on D(D2) is of the form Span{f(z)zkN :

k ≥ 0}, where either f(z) = zγ for some γ = (γ1, γ2) ∈ JN or

f(z) = azγ + bzδ, a, b ∈ C and ab ̸= 0

with

(γ1, γ2) = (lN ′
1 − 1,mN ′

2 − 1) , (δ1, δ2) = (mN ′
1 − 1, lN ′

2 − 1) ,

for some positive integers l and m such that min {l,m} ≤ M and l ̸= m.

(ii) Any minimal reducing subspace X of TzN on D(B2) is of the form Span{zγzkN :

k ≥ 0} for some γ = (γ1, γ2) ∈ JN .

Next we characterize reducing subspaces of TzN on Kρ(Dd) for d = 2. The case

ρ > 1 is treated in Theorem 2.4 (ρ = 2) and Theorem 3.2 (ρ > 1 and ρ ̸= 2) in [18]. We

include a self-contained exposition for completeness. We give a slightly improved and

unified proof for both ρ > 1 and ρ < 1 by extending some ideas from [18]. We first state

the result, which is presented slightly differently from [18], then we prove the lemma.

Part (i) of Theorem 8.6 is similar to Part (i) Theorem 8.5. Indeed we will state a unified

Theorem 9.5 for a result related to von Neumann algebras on D(Dd) and Kρ(Dd) for

d = 2.

Theorem 8.6. Assume N = (N1, N2) with N1 ̸= N2. Write

N1 = N ′
1M, N2 = N ′

2M, M = GCD(N1, N2).

(i) Any minimal reducing subspace X of TzN on Kρ(D2) for ρ = 2 is of the form

Span
{
f(z)zkN : k ≥ 0

}
, where either f(z) = zγ for some γ = (γ1, γ2) ∈ JN or

f(z) = azγ + bzδ, a, b ∈ C and ab ̸= 0

with

(γ1, γ2) = (lN ′
1 − 1,mN ′

2 − 1) , (δ1, δ2) = (mN ′
1 − 1, lN ′

2 − 1) ,

for some positive integers l and m such that min {l,m} ≤ M and l ̸= m.

(ii) Any minimal reducing subspace X of TzN on Kρ(D2) for ρ ̸= 1, 2 is of the form

Span
{
zγzkN : k ≥ 0

}
for some γ = (γ1, γ2) ∈ JN .

Lemma 8.7. Assume N = (N1, N2) with N1 ̸= N2. Write

N1 = N ′
1M, N2 = N ′

2M, M = GCD(N1, N2).
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Let ω be on Kρ(D2). Let γ, δ be two multi-indices in JN . If ωγ+kN/ωγ = ωδ+kN/ωδ for

all k ≥ 0, then γ = δ in the case ρ ̸= 1, 2. In the case ρ = 1, ωγ+kN/ωγ = ωδ+kN/ωδ

for all k ≥ 0. In the case ρ = 2, if ωγ+kN/ωγ = ωδ+kN/ωδ for all k ≥ 0, then either

γ = δ or

(γ1, γ2) = (lN ′
1 − 1,mN ′

2 − 1) , (δ1, δ2) = (mN ′
1 − 1, lN ′

2 − 1) , (46)

for some positive integers l and m such that min {l,m} ≤ M and l ̸= m.

Proof. As Lemma 5.3,

ωγ+kN

ωδ+kN
→ 1 as k → ∞.

Assume ωγ+kN/ωγ = ωδ+kN/ωδ for all k ≥ 0, then

ωγ+kN

ωδ+kN
=

ωγ

ωδ
= 1 for all k ≥ 0.

Assume ρ ̸= 1, 2. We will prove γ = δ. Note that if γ1 = δ1, then it follows from ωγ = ωδ

that δ2 = γ2. Thus, by symmetry, we can assume γ1 < δ1. We claim that γ2 > δ2. If

γ2 < δ2, then ωγ+kN = ωδ+kN for all k ≥ 0 implies that

δ1−γ1∏
i=1

(γ1 + λN1 + i)

δ2−γ2∏
j=1

(γ2 + λN2 + j)

=

δ1−γ1∏
i=1

(ρ+ γ1 + λN1 + i− 1)

δ2−γ2∏
j=1

(ρ+ γ2 + λN2 + j − 1) .

Then the roots of the two polynomials are the same. In particular, the sum of the roots

of the polynomial on the left side minus the sum of the roots of the polynomial on the

right side is zero. That is,

− 1

N1
(1− ρ)(δ1 − γ1)−

1

N2
(1− ρ)(δ2 − γ2) = 0,

which is impossible. So we have γ1 < δ1 and γ2 > δ2. Now ωγ+kN = ωδ+kN for all k ≥ 0

implies that

δ1−γ1∏
i=1

(ρ+ γ1 + λN1 + i− 1)

γ2−δ2∏
j=1

(δ2 + λN2 + j)

=

δ1−γ1∏
i=1

(γ1 + λN1 + i)

γ2−δ2∏
j=1

(ρ+ δ2 + λN2 + j − 1) .

Then the roots of the two polynomials are the same. As before, by considering the sum

of the roots, we have
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− 1

N1
(ρ− 1)(δ1 − γ1) +

1

N2
(ρ− 1)(γ2 − δ2) = 0

or (δ1 − γ1)N
′
2 − (γ2 − δ2)N

′
1 = 0. (47)

By multiplying the roots by −N ′
1N

′
2M , we have

F1 ∪G1 = F2 ∪G2,

where

F1 = {(ρ+ γ1 + i− 1)N ′
2 : 1 ≤ i ≤ δ1 − γ1} , G1 = {(δ2 + j)N ′

1 : 1 ≤ j ≤ γ2 − δ2} ,
F2 = {(γ1 + i)N ′

2 : 1 ≤ i ≤ δ1 − γ1} , G2 = {(ρ+ δ2 + j − 1)N ′
1 : 1 ≤ j ≤ γ2 − δ2} .

In the case 0 < ρ < 1, note that

maxF1 ∪G1 = max {(ρ+ δ1 − 1)N ′
2, γ2N

′
1} ,

maxF2 ∪G2 = max {δ1N ′
2, (ρ+ γ2 − 1)N ′

1} .

Thus

γ2N
′
1 = δ1N

′
2. (48)

Similarly, minF1 ∪G1 = minF2 ∪G2 implies that

(ρ+ δ2)N
′
1 = (ρ+ γ1)N

′
2. (49)

Equations (47), (48), and (49) imply that ρN ′
1 = ρN ′

2, which is a contradiction.

In the case ρ > 1, maxF1 ∪G1 = maxF2 ∪G2 implies that

(ρ+ δ1 − 1)N ′
2 = (ρ+ γ2 − 1)N ′

1, (50)

and minF1 ∪G1 = minF2 ∪G2 implies that

(γ1 + 1)N ′
2 = (δ2 + 1)N ′

1. (51)

Equations (47), (50), and (51) imply that (ρ− 2)N ′
1 = (ρ− 2)N ′

2, which is a contradic-

tion if ρ ̸= 2.

In the case ρ = 2, (50) or (51) imply (46), since N ′
1 and N ′

2 are coprime. The proof

is complete. □

9. Reducing subspaces and von Neumann algebras.

In this section we will use reducing subspaces of operators to reveal the structures of

von Neumann algebras associated with these operators. Let A be a von Neumann algebra

in B(H) and A′ be the commutant of A. A von Neumann algebra is the norm closed

linear span of its projections (Proposition 13.3 [4]). Note that a projection PH0 ∈ A′ if

and only if H0 is a reducing subspace of A. Therefore
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A′ = Span {PH0 : H0 is any reducing subspace of A} .

Thus knowing reducing subspaces of A will help us to identify A′. For two von Neu-

mann algebras A and B, A ≈ B means A is ∗-isomorphic to B. Let Mn(C) denote the

algebra of n × n complex matrices, and let M∞(C) denote B(H) for an infinite dimen-

sional separable complex Hilbert space. For example, let W ∗(zN1
1 , . . . , zNd

d ) be the von

Neumann algebra generated by M
z
N1
1

, . . . ,M
z
Nd
d

,M∗
z
N1
1

, . . . ,M∗
z
Nd
d

in B(H2
ω) as in (10),

and let v(zN1
1 , . . . , zNd

d ) be the commutant of W ∗(zN1
1 , . . . , zNd

d ). Theorem 5.4 implies the

following result.

Theorem 9.1. Let ω be on Kρ(Bd), Kρ(Dd) (ρ ̸= 1), D(Bd), and D(Dd). Then

v(zN1
1 , . . . , zNd

d ) is abelian. In fact

v(zN1
1 , . . . , zNd

d ) ≈
L⊕

i=1

C, where L = N1 · · ·Nd. (52)

In the case Kρ(Dd) for ρ = 1, v(zN1
1 , . . . , zNd

d ) is not abelian unless N1 = · · · = Nd = 1.

In fact

v(zN1
1 , . . . , zNd

d ) ≈ ML(C). (53)

To prove the above theorem, we first have to study when two reducing subspaces are

equivalent in a von Neumann algebra. Again we find it is more convenient to discuss in

the general framework of weighted shifts with operator weights. Let SΦ = (S1, . . . , Sd)

be a tuple of weighted shifts on l2d(E). Let {gi}∞i=1 be an orthonormal basis of E.

Assume Φ = {Φα,i : α ∈ Zd
+, i = 1, . . . , d} is a bounded set of invertible positive diagonal

operators (with respect to the basis {gi}∞i=1 of E) in B(E). Then by Theorem 2.4,

V (gi) = Span {Sα
Φgi : α ≥ 0}

is a (common) reducing subspace of SΦ. Recall two projections P1 and P2 are equivalent

in a von Neumann algebra A in B(H) if there exists a partial isometry U in A such that

UU∗ = P1 and U∗U = P2. We say two subspaces H1 and H2 of H are equivalent in A if

PH1 and PH2 are equivalent in A. As before, let W ∗(SΦ) be the von Neumann algebra

generated by SΦ and S∗
Φ, and let v(SΦ) = {W ∗(SΦ)}′.

Lemma 9.2. For i ̸= j, the following are equivalent.

(i) V (gi) is equivalent to V (gj) in v(SΦ).

(ii) Each Φα,i in Φ restricted to Span {gi, gj} is a constant multiple of the identity.

(iii) Each Wα (as defined in (4)) restricted to Span {gi, gj} is a constant multiple of the

identity.

(iv) For any a, b ̸= 0, V (agi + bgj) = Span {Sα
Φ(agi + bgj) : α ≥ 0} is also a reducing

subspace of SΦ.
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Proof. We prove (i) implies (iii). Without loss of generality, assume i = 1 and

j = 2. A partial isometry U , which maps V (g1) onto V (g2), belongs to v(SΦ) if and only

if USα
Φ = Sα

ΦU and US∗α
Φ = S∗α

Φ U for every α ≥ 0. Thus S∗α
Φ Ug1e0 = US∗α

Φ g1e0 = 0 for

α ̸= 0 implies that Ug1e0 = λg2e0 for some complex number λ with |λ| = 1. Now

USα
Φg1e0 = U [(Wαg1)eα] , and

Sα
ΦUg1e0 = Sα

Φ (λg2e0) = λ(Wαg2)eα.

Since Wα is a positive diagonal operator, Wαg1 = λ1g1 and Wαg2 = λ2g2. Thus

∥U [(Wαg1)eα]∥ = ∥(Wαg1)eα∥ = λ1

= ∥λ(Wαg2)eα∥ = λ2.

This proves (iii). The implication (iii) to (i) is also clear by defining the partial isometry

U as U(Sα
Φg1) = Sα

Φg2 for α ≥ 0.

The equivalence of (ii) and (iii) follows from (4). The equivalence of (iii) and (iv)

follows from Lemma 4.4. □

The above lemma also holds when E is a finite dimensional complex Hilbert space.

Proof of Theorem 9.1. Note that

H2
ω =

⊕
γ∈JN

Hγ where Hγ = Span
{
zγzkN : k = (k1, . . . , kd) ≥ 0

}
.

By Theorem 4.2 and Lemma 9.2, each Hγ is a minimal reducing subspace of

(M
z
N1
1

, . . . ,M
z
Nd
d

). Furthermore, in the case ρ ̸= 1, by Theorem 5.4, Hγ is not equivalent

to Hδ for γ ̸= δ. By Theorem 50.19 [4], we have (52) where L is the cardinality of the

index set JN .

In the case Kρ(Dd) with ρ = 1,

H2
ω =

⊕
γ∈JN

Hγ .

Each Hγ is a minimal reducing subspace of (M
z
N1
1

, . . . ,M
z
Nd
d

). Furthermore, Hγ is

equivalent to Hδ for γ ̸= δ since Wα is the identity operator. Therefore v(zN1
1 , . . . , zNd

d )

is a homogenous von Neumann algebra. By Corollary 50.16 [4], we have (53). □

Similarly, Theorem 8.1 and Theorem 7.5 also lead to the structures of various von

Neumann algebras. Let W ∗(zM1 · · · zMd ) be the von Neumann algebra generated by

TzM
1 ···zM

d
and T ∗

zM
1 ···zM

d
in B(H2

ω) as in (10), and let v(zM1 · · · zMd ) be the commutant

of W ∗(zM1 · · · zMd ).

Theorem 9.3. Let ω be on Kρ(Bd) (ρ is not a positive integer), Kρ(Dd) (ρ ̸= 1),

D(Bd), and D(Dd). Then v(zM1 · · · zMd ) is ∗-isomorphic to
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[
M⊕
i=1

C
] d⊕

j=2

[ ∞⊕
i=1

Md(d−1)···(d−j+2)(C)
]
.

Proof. Write N = (M, . . . ,M) and

JN =
d∪

j=1

JN,j , where

JN,j = {γ = (γ1, . . . , γd) ∈ JN : there are j distinct numbers in γ1, . . . , γd} .

For j = 1,

JN,1 = {γ = (γ1, γ1, . . . , γ1) : 0 ≤ γ1 < M} ,

and the cardinality of JN,1 is M . For j ≥ 2, write

JN,j =
∪

γ∈J′
N,j

JN,j,γ ,

where J ′
N,j is a subset of JN,j and

JN,j,γ = {δ = γσ : σ ∈ P (d)} .

Recall P (d) is the permutation group. The cardinality of J ′
N,j is infinite and the cardi-

nality of JN,j,γ is d(d− 1) · · · (d− j + 2). Write

H2
ω =

d⊕
j=1

[ ⊕
γ∈JN,j

Hγ

]
=

[ ⊕
γ∈JN,1

Hγ

]
d⊕

j=2

[ ⊕
γ∈J ′

N,j

( ⊕
δ∈JN,j,γ

Hδ

)]
.

Here

Hδ = Span
{
zδzkN : k ≥ 0

}
.

By Theorem 7.5 and Lemma 9.2, Hδ is equivalent to Hβ for δ, β ∈ JN,j,γ and{
PHβ

: β ∈ JN,j,γ

}
is a (maximal) set of mutually equivalent minimal projections. Thus

the part
⊕

δ∈JN,j,γ
Hδ gives rise to Md(d−1)···(d−j+2)(C). Similarly,

⊕
γ∈JN,1

Hγ gives rise

to
⊕M

i=1 C. The proof is complete. □

Theorem 9.4. Let ω be on Kρ(B2) where ρ is a positive integer.

(i) Then v(zM1 zM2 ) on the Hardy space (ρ = 2) is ∗-isomorphic to[
M⊕
i=1

C
]⊕[ ∞⊕

i=1

M2(C)
]⊕[

M⊕
i=1

M3(C)
]
.

(ii) Then v(zM1 zM2 ) on the Drury–Arveson space (ρ = 1) is ∗-isomorphic to
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M⊕
i=1

C
]⊕[ ∞⊕

i=1

M2(C)
]⊕[

M−1⊕
i=1

M3(C)
]
.

(iii) Then v(zM1 zM2 ) on the Bergman space (ρ = 3) and on Kρ(B2) with ρ > 3 is

∗-isomorphic to [
M⊕
i=1

C
]⊕[ ∞⊕

i=1

M2(C)
]⊕[

M⊕
i=1

M4(C)
]
.

Proof. The proof is similar to the proof of proceeding theorem by using Theorem

8.1 and Lemma 9.2. We give some brief explanations. For (i), (ii) and (iii), (36) with

γ1 = γ2 gives rise to [
⊕M

i=1 C] and (36) with γ1 ̸= γ2 gives rise to [
⊕∞

i=1 M2(C)]. For

(i), (38) gives rise to [
⊕M

i=1 M3(C)]. For (ii), (37) gives rise to [
⊕M−1

i=1 M3(C)] because
(l + 1, l + 1) /∈ JN for l = M − 1. So in fact (37) hold for 0 ≤ l ≤ M − 2. For (iii), (39)

gives rise to [
⊕M

i=1 M4(C)]. □

Theorems 8.5 and 8.6 yield the following result.

Theorem 9.5. Assume N = (N1, N2) with N1 ̸= N2. Write

N1 = N ′
1M, N2 = N ′

2M, M = GCD(N1, N2).

(i) Then v(zN1
1 zN2

2 ) on D(D2) or Kρ(D2) for ρ = 2 is ∗-isomorphic to[ ∞⊕
i=1

C
]⊕[ ∞⊕

i=1

M2(C)
]
.

(ii) Then v(zN1
1 zN2

2 ) on D(B2) or Kρ(D2) for ρ ̸= 1, 2 is ∗-isomorphic to

∞⊕
i=1

C.

Note that by Theorem 9.3, in the case N1 = N2 = M , v(zN1
1 zN2

2 ) on D(D2) or D(B2)

or Kρ(D2) (ρ ̸= 1) is ∗-isomorphic to[
M⊕
i=1

C
]⊕[ ∞⊕

i=1

M2(C)
]
.

This result is different to results in the case N1 ̸= N2.

10. Final remarks.

Recall that SΦ = (S1, . . . , Sd) is a tuple of weighted shifts on l2d(E) with operator

weights Φ =
{
Φα,i : α ∈ Zd

+, i = 1, . . . , d
}
. We have discussed the common reducing

subspaces of SΦ. We have also studied the reducing subspaces of the product
∏d

i=1 Si,

which can be viewed as a single weighted shift with operator weights. We would remark

that the general approach of using weighted shifts with operator weights also allows us to
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discuss the reducing subspaces of related operators such as S1 or the common reducing

subspaces of (S1, S2S3). The operator S1 on l2d(E) can be viewed as a single weighted

shift with operator weights on l2(Ê) for a Hilbert space Ê. The tuple (S1, S2S3) can be

viewed as two commuting weighted shifts with operator weights on l22(Ê) for a Hilbert

space Ê.

For example, we have the following theorem which is a combination of Theorem 4.2

and Theorem 7.1.

We need to introduce notations. These notations are not only useful for describing

this specific result, but is also suggestive of more general results. Assume d ≥ 3, since

we are studying the common reducing subspaces of (T
z
N1
1

, T
z
N2
2 z

N3
3

) on H2
ω, and let

k = (k1, k2, k2, 0, . . . , 0), N = (N1, N2, N3, 0, . . . , 0), k,N ∈ Zd
+,

kN = (k1N1, k2N2, k2N3, 0, . . . , 0).

Let N ≥ (1, 1, 1, 0, . . . , 0) be given. Set

JN = {α ≥ 0 : α1 < N1 and min{α2 −N2, α3 −N3} < 0} ,

and let Ê ⊂ H2
ω be the subspace given by

Ê =

{
f(z) =

∑
α∈JN

fαz
α : fα ∈ C, ∥f(z)∥2 =

∑
α∈JN

ωα |fα|2 < ∞

}
= ker

(
T ∗
z
N1
1

)
∩ ker

(
T ∗
z
N2
2 z

N3
3

)
.

Theorem 10.1. (i) If a closed subspace X of H2
ω is a common reducing subspace

of (T
z
N1
1

, T
z
N2
2 z

N3
3

), then

X = Span

{
T k1

z
N1
1

T k2

z
N2
2 z

N3
3

x : (k1, k2) ≥ 0, x ∈ Ê0

}
,

where

Ê0 =
(
X ⊖ T

z
N1
1

X
)
∩
(
X ⊖ T

z
N2
2 z

N3
3

X
)
⊆ Ê,

and Ê0 is an invariant subspace of a set of diagonal operators with positive diago-

nals.

(ii) Any common reducing subspace of (T
z
N1
1

, T
z
N2
2 z

N3
3

) on H2
ω is a direct sum of (singly

generated) minimal reducing subspaces.

(iii) Any minimal reducing subspace of (T
z
N1
1

, T
z
N2
2 z

N3
3

) on H2
ω is of the form

Span
{
f(z)zk1N1

1 zk2N2
2 zk2N3

3 : (k1, k2) ≥ 0
}
= Span

{
f(z)zkN : k ≥ 0

}
,

where
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f(z) =
∑
γ∈J

fγz
γ , fγ ∈ C and fγ ̸= 0 for all γ ∈ J,

and J ⊆ JN and ωγ+kN/ωγ = ωδ+kN/ωδ for all γ, δ ∈ J, k ≥ 0. To be clear, we

recall the notation :

γ + kN = (γ1 + k1N1, γ2 + k2N2, γ3 + k2N3, γ4, . . . , γd) .

Since ωα on the polydisk is of a product form, the above idea together with theorems

in last section readily yields several interesting results. We state a couple of concrete

results on the Dirichlet space D(Dd) with brief explanations. We will only state Part

(iii). Part (i) and (ii) are similar.

Corollary 10.2. (i) The minimal reducing subspaces of T
z
N1
1

on Kρ(Dd) (ρ ̸=
1) or D(Dd) for d ≥ 2 are the obvious ones. Namely, any minimal reducing sub-

spaces of T
z
N1
1

is of the form Span{f(z)zk1N1
1 : k1 ≥ 0}, where

f(z) = zγ1

1 g(z2, . . . , zd)

for some 0 ≤ γ1 < N1, and g is a holomorphic function only depending on

(z2, . . . , zd) and g ∈ Kρ(Dd−1) or g ∈ D(Dd−1).

(ii) Let v(zN1
1 ) be the commutant of the von Neumann algebra generated by T

z
N1
1

and

T ∗
z
N1
1

on Kρ(Dd) (ρ ̸= 1) or D(Dd) for d ≥ 2. Then

v(zN1
1 ) ≈

N1⊕
i=1

M∞(C).

Proof. Note that in this case, ωγ+kN/ωγ = ωδ+kN/ωδ is the same as

ωγ1+k1N1/ωγ1 = ωδ1+k1N1/ωδ1 . So the result in (i) can be viewed as a special case

of Theorem 5.4 with d = 1. Thus (ii) follows from (i) and Lemma 9.2. □

Corollary 10.3. Assume N = (N1, N2). Write

N1 = N ′
1M, N2 = N ′

2M, M = GCD(N1, N2).

(i) Any minimal reducing subspace of T
z
N1
1 z

N2
2

on D(Dd) for d ≥ 3 is of the form

Span
{
f(z)zkN1

1 zkN2
2 : k ≥ 0

}
,

where either

f(z) = zγ1

1 zγ2

2 g1(z3, . . . , zd)

for (γ1, γ2) such that min {γ1 −N1, γ2 −N2} < 0 or

f(z) = zγ1

1 zγ2

2 g1(z3, . . . , zd) + zδ11 zδ22 g2(z3, . . . , zd)
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with g1, g2 ∈ D(Dd−2),

(γ1, γ2) = (lN ′
1 − 1,mN ′

2 − 1) , (δ1, δ2) = (mN ′
1 − 1, lN ′

2 − 1) , (54)

for some positive integers l and m such that min {l,m} ≤ M and l ̸= m.

(ii) Let v(zN1
1 zN2

2 ) be the commutant of the von Neumann algebra generated by T
z
N1
1 z

N2
2

and T ∗
z
N1
1 z

N2
2

on D(Dd) for d ≥ 3. Then

v(zN1
1 zN2

2 ) ≈
∞⊕
i=1

M∞(C).

Proof. Note that (i) follows essentially from Theorem 8.5 for N1 ̸= N2 and

Theorem 7.5 for N1 = N2. In the case N1 = N2, just note that (γ1, γ2) = (δ2, δ1) in (54).

So (ii) follows from (i) and Lemma 9.2 and the fact that[ ∞⊕
i=1

M∞(C)
]⊕[ ∞⊕

i=1

M∞(C)
]
≈

∞⊕
i=1

M∞(C).

The proof is complete. □

In the previous two results, the length of a singly generated reducing subspace could

be infinite if g1 or g2 is not an analytic polynomial. The next result shows that on the

unit ball, the length is always finite.

Theorem 10.4. (i) Any minimal reducing subspace of T
z
N1
1

on Kρ(Bd) (ρ ̸= 1)

or D(Bd) for d ≥ 2 is of the form Span{f(z)zk1N1
1 : k1 ≥ 0}, where

f(z) = zγ1

1 g(z2, . . . , zd)

for some γ ≥ 0 such that 0 ≤ γ1 < N1 and g is a homogenous polynomial in

(z2, . . . , zd) of degree |γ| − γ1.

(ii) Any minimal reducing subspaces of T
z
N1
1

on Kρ(Bd) with ρ = 1 for d ≥ 2 (the

Drury–Arveson space) is of the form Span{f(z)zk1N1
1 : k1 ≥ 0}, where either

f(z) = zγ1

1 g(z2, . . . , zd)

for some γ ≥ 0 such that 0 ≤ γ1 < N1 and g is a homogenous polynomial in

(z2, . . . , zd) of degree |γ| − γ1 ̸= 0 or

f(z) =

N1−1∑
i=0

aiz
i
1, ai ∈ C. (55)

(iii) Let v(zN1
1 ) be the commutant of the von Neumann algebra generated by T

z
N1
1

and

T ∗
z
N1
1

on Kρ(Bd) (ρ ̸= 1) or D(Bd) for d ≥ 2. Then
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v(zN1
1 ) ≈

N1⊕
i=1

[ ∞⊕
n=0

Mrn,d
(C)
]
, where rn,d =

(
n+ d− 2

d− 2

)
. (56)

In the case Kρ(Bd) with ρ = 1 for d ≥ 2,

v(zN1
1 ) ≈ MN1(C)

⊕ N1⊕
i=1

[ ∞⊕
n=1

Mrn,d
(C)
]
, where rn,d =

(
n+ d− 2

d− 2

)
. (57)

Proof. We first prove (i). We will show that ωγ+kN/ωγ = ωδ+kN/ωδ for all

k = (k1, 0, . . . , 0) ≥ 0 if and only if γ1 = δ1 and |γ| = |δ|. Let ωα be on Kρ(Bd). Then

ωγ+kN =
(γ1 + k1N1)!γ2! · · · γd!Γ(ρ)

Γ(ρ+ |γ|+ k1N1)
.

Thus ωγ+kN/ωγ+(k+1)N = ωδ+kN/ωδ+(k+1)N is equivalent to∏N1

j=1 (ρ+ |γ|+ k1N1 + j − 1)∏N1

j=1 (γ1 + k1N1 + j)
=

∏N1

j=1 (ρ+ |δ|+ k1N1 + j − 1)∏N1

j=1 (δ1 + k1N1 + j)
for all k ≥ 0. (58)

If ρ > 1, then ρ + |δ| + N1 > δ1 + N1. This implies that γ1 = δ1 and |γ| = |δ|. If

0 < ρ < 1, the above equation also implies that γ1 = δ1 and |γ| = |δ|. Therefore

azγ + bzδ = zγ1

1 (azγ2

2 · · · zγd

d + bzδ22 · · · zδdd ).

Given γ, let Jγ = {δ ≥ 0 : δ1 = γ1 and |δ| = |γ|}. Then

f(z) =
∑
δ∈Jγ

fδz
δ = zγ1

1 g(z2, . . . , zd), fδ ∈ C

where g is a homogenous polynomial. The number of monomial terms that can appear

in g is the cardinality of the index set Jγ . Recall that a weak composition of an integer

n into i parts is a way of writing n as the sum of a sequence of i nonnegative integers

such that two sequences that differ in the order of their terms define different weak

compositions. The number of weak compositions is(
n+ i− 1

i− 1

)
.

Thus the cardinality κ(Jγ) of the index set Jγ is the number of weak compositions of

|γ| − γ1 into d− 1 parts,

κ(Jγ) =

(
|γ| − γ1 + d− 2

d− 2

)
= r|γ|−γ1,d.

The length of f(z) could be any integer between 1 and κ(Jγ).

In the case Kρ(Bd) with ρ = 1 for d ≥ 2, Equation (58) implies that either γ1 = δ1,

|γ| = |δ|, and |γ| − γ1 ̸= 0 or |γ| = γ1 and |δ| = δ1. This proves (ii).
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Relation (56) follows from (i) and Lemma 9.2 by noting that there are N1 values for

γ1, and |γ| − γ1 could be any nonnegative integer. Relation (57) follows from (ii) and

Lemma 9.2 by noting that f(z) as in (55) gives rise to MN1
(C) and n = |γ|−γ1 ̸= 0. □
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