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Abstract. We prove that cubic fourfolds in a certain 10-dimensional
family have finite-dimensional motive. The proof is based on the van Geemen–

Izadi construction of an algebraic Kuga–Satake correspondence for these cubic
fourfolds, combined with Voisin’s method of “spread”. Some consequences are
given.

1. Introduction.

The notion of finite-dimensional motive, developed independently by Kimura and

O’Sullivan [29], [2], [38], [26], [22] has given considerable new impetus to the study of

algebraic cycles. To give but one example: thanks to this notion, we now know the Bloch

conjecture is true for surfaces of geometric genus zero that are rationally dominated by

a product of curves [29]. It thus seems worthwhile to find concrete examples of varieties

that have finite-dimensional motive, this being (at present) one of the sole means of

arriving at a satisfactory understanding of Chow groups.

The object of the present note is to add to the list of examples of varieties with

finite-dimensional motive, by considering cubic fourfolds over C. There is one famous

cubic fourfold with finite-dimensional motive: the Fermat cubic

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 = 0.

The Fermat cubic has finite-dimensional motive because it is rationally dominated by a

product of (Fermat) curves, and the indeterminacy locus is again of Fermat type [49].

The main result of this note proves finite-dimensionality for a 10-dimensional family

of cubic fourfolds containing the Fermat cubic:

Theorem (=Theorem 3.1). Let X ⊂ P5(C) be a smooth cubic fourfold, defined

by an equation

f(x0, . . . , x4) + x3
5 = 0,

where f(x0, . . . , x4) defines a smooth cubic threefold. Then X has finite-dimensional

motive.

Unlike the Fermat cubic, the cubics as in Theorem 3.1 are not obviously dominated
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by a product of curves, so we need some more indirect reasoning. In a nutshell, the

idea of the proof of Theorem 3.1 is as follows: thanks to the work of van Geemen–Izadi

[19], there exists a Kuga–Satake correspondence for these special cubic fourfolds. This

implies that the homological motive of X is a direct summand of the motive of an abelian

variety. Then, considering the family of all cubic fourfolds as in Theorem 3.1 and using

the machinery developed by Voisin [57], [60] and Fu [15], we can upgrade this relation to

rational equivalence and prove the Chow motive of X is a direct summand of the motive

of an abelian variety.

We present some consequences of finite-dimensionality. One consequence is the ver-

ification of (a weak form of) the Bloch conjecture for these special cubic fourfolds:

Corollary (=Corollary 4.1). Let X be a cubic fourfold as in Theorem 3.1.

Let Γ ∈ A4(X ×X) be a correspondence such that

Γ∗ : H3,1(X) → H3,1(X)

is the identity. Then

Γ∗ : A3
hom(X) → A3

hom(X)

is an isomorphism.

Another consequence (Proposition 4.14) concerns Voevodsky’s smash-nilpotence

conjecture for products X1 ×X2, where X1, X2 are cubic fourfolds as in Theorem 3.1.

Conventions. In this note, the word variety will refer to a reduced irreducible

scheme of finite type over C. A subvariety is a (possibly reducible) reduced subscheme

which is equidimensional.

All Chow groups are with rational coefficients: we will denote by AjX the Chow

group of j-dimensional cycles on X with Q-coefficients; for X smooth of dimension n

the notations AjX and An−jX will be used interchangeably.

The notations Aj
hom(X) and Aj

AJ(X) will be used to indicate the subgroups of ho-

mologically, resp. Abel–Jacobi trivial cycles. For a morphism f : X → Y , we will write

Γf ∈ A∗(X × Y ) for the graph of f . The category of Chow motives (i.e., pure motives

with respect to rational equivalence as in [46], [38]) will be denoted Mrat.

To avoid heavy notation, if τ : Y → X is a closed immersion and a ∈ Ai(Y ), we will

frequently write a ∈ Ai(X) to indicate the proper push-forward τ∗(a). Likewise, for any

inclusion Y ⊂ X and b ∈ Aj(X) we will often write

b|Y ∈ Aj(Y )

to indicate the cycle class τ∗(b).

We will write Hj(X) and Hj(X) to indicate singular cohomology Hj(X,Q), resp.

singular homology Hj(X,Q).



1455

Cubic fourfolds with finite-dimensional motive 1455

2. Preliminaries.

2.1. Finite-dimensional motives.

We refer to [31], [2], [22], [26], [38] for the definition of finite-dimensional motive.

An essential property of varieties with finite-dimensional motive is embodied by the

nilpotence theorem:

Theorem 2.1 (Kimura [31]). Let X be a smooth projective variety of dimension

n with finite-dimensional motive. Let Γ ∈ An(X × X)Q be a correspondence which is

numerically trivial. Then there is N ∈ N such that

Γ◦N = 0 ∈ An(X ×X).

Actually, the nilpotence property (for all powers of X) could serve as an alternative

definition of finite-dimensional motive, as shown by a result of Jannsen [26, Corollary

3.9]. Conjecturally, any variety has finite-dimensional motive [31]. We are still far from

knowing this, but at least there are quite a few non–trivial examples:

Remark 2.2. The following varieties have finite-dimensional motive: abelian va-

rieties, varieties dominated by products of curves [31], K3 surfaces with Picard number

19 or 20 [41], surfaces not of general type with vanishing geometric genus [20, Theorem

2.11], Godeaux surfaces [20], Catanese and Barlow surfaces [58], certain surfaces of gen-

eral type with pg = 0 [44], Hilbert schemes of surfaces known to have finite-dimensional

motive [9], generalized Kummer varieties [61, Remark 2.9(ii)], 3-folds with nef tangent

bundle [23] (an alternative proof is given in [52, Example 3.16]), 4-folds with nef tangent

bundle [24], log-homogeneous varieties in the sense of [8] (this follows from [24, Theorem

4.4]), certain 3-folds of general type [54, Section 8], varieties of dimension ≤ 3 rationally

dominated by products of curves [52, Example 3.15], varieties X with Ai
AJ(X) = 0 for

all i [51, Theorem 4], products of varieties with finite-dimensional motive [31].

Remark 2.3. It is worth pointing out that all examples of finite-dimensional mo-

tives known so far happen to be in the tensor subcategory generated by Chow motives

of curves (i.e., they are “motives of abelian type” in the sense of [52]). That is, the

finite-dimensionality conjecture is still unknown for any motive not generated by curves

(on the other hand, there exist many such motives, cf. [11, 7.6]).

2.2. Kuga–Satake.

This subsection presents the first main ingredient of this note: the van Geemen–

Izadi construction of an algebraic Kuga–Satake correspondence for the cubic fourfolds

under consideration.

Theorem 2.4 (van Geemen–Izadi [19]). Let X ⊂ P5 be a smooth cubic fourfold,

defined by an equation

x3
5 + f(x0, . . . , x4) = 0,

where f(x0, . . . , x4) defines a smooth cubic threefold. Let Z ⊂ P6 be the cubic fivefold

defined by
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x3
6 + x3

5 + f(x0, . . . , x4) = 0.

There exist an elliptic curve E and a correspondence Γ ∈ A5(X × Z × E) such that

Γ∗ : H4(X)prim → H6(Z × E)

is injective.

Proof. This is [19, Corollary 5.3]. This result is based on the facts that (1)

the Hodge structure of any smooth cubic fourfold is of K3 type (i.e., H4,0(X) = 0 and

dimH3,1(X) = 1), and (2) for cubics as in Theorem 2.4, the cyclotomic field Q(ζ) acts

on H4(X)prim (where ζ = e2πi/3), and so the theory of half twists [18] applies.

We note that [19, Corollary 5.3] actually shows more precisely that

Γ∗ : H4(X)prim → Im
(
H5(Z)⊗H1(E) → H6(Z × E)

)
is injective. Also, as we shall see below (in the proof of Theorem 2.8), the elliptic curve

E is actually a plane cubic of Fermat type x3
0 + x2

1 + x3
2 = 0. □

Corollary 2.5. Let X be as in Theorem 2.4. There exist an abelian variety A

(of dimension 22) and a correspondence Ψ ∈ A3(X ×A) such that

Ψ∗ : H4(X)prim → H2(A)

is injective.

Proof. Any smooth cubic fivefold Z has H5(Z) = N2H5(Z), where N∗ denotes

the geometric coniveau filtration (this follows from the fact that any cubic fivefold Z has

A0(Z) = A1(Z) = Q, which is proven in [36] or, alternatively, [39] or [21]).

Now, [1, Theorem 1] furnishes an abelian variety J (of dimension h2,3(Z) = 21) and

a correspondence Λ′ on J × Z that induces an isomorphism

(Λ′)∗ : H1(J)
∼=−→ H5(Z).

(As noted by the referee, one may avoid recourse to [1] here by using the fact that thanks

to Collino [10], the Abel–Jacobi map induces an isomorphism from the Albanese of the

Fano surface of planes in Z to the intermediate Jacobian of Z.)

The correspondence Λ′ induces an isomorphism

Λ′ : h1(J)
∼=−→ h5(Z) in Mhom,

hence there also exists a correspondence Λ on Z × J inducing the inverse isomorphism

Λ: h5(Z)
∼=−→ h1(J) in Mhom.

The composition

H4(X)prim
Γ∗−→ H5(Z)⊗H1(E)

(Λ×∆E)∗−−−−−−→ H1(J)⊗H1(E) ⊂ H2(J × E)
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has the required properties. □

Notation 2.6. Let

X → B

denote the universal family of all smooth cubic fourfolds of type

x3
5 + fb(x0, . . . , x4) = 0,

where fb(x0, . . . , x4) defines a smooth cubic threefold. (That is, the parameter space B

is a Zariski open in a linear subspace B̄ of the complete linear system PH0(P5,OP5(3)).)

Likewise, let

Z → B

denote the family of smooth cubic fivefolds of type

x3
6 + x3

5 + fb(x0, . . . , x4) = 0.

For b ∈ B, we will write Xb ⊂ P5 and Zb ⊂ P6 to denote the fibre of X → B (resp.

Z → B) over b.

Notation 2.7. Let

X → B, Y → B

be two smooth families (i.e., smooth projective morphisms between smooth quasi-

projective varieties). A relative correspondence from X to Y is by definition a cycle

class in

A∗(X ×B Y).

As explained in [38, Section 8.1], using Fulton’s refined Gysin homomorphisms [16] one

can define the composition of relative correspondences. For a relative correspondence

Γ ∈ Ai(X ×B Y), and a point b ∈ B the “restriction to a fibre” is defined as

Γ|Xb×Yb
:= ι∗(Γ) ∈ Ai(Xb × Yb),

where ι∗ denotes the refined Gysin homomorphism associated to the lci morphism ι : b →
B.

A crucial point in this note is that the Kuga–Satake construction of [19] can be done

family–wise:

Theorem 2.8. Notation as in 2.6. There exists a relative correspondence

ΓKS ∈ A5
(
X ×B (Z × E)

)
,
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such that for any b ∈ B, the restriction

ΓKS,b := ΓKS |Xb×Zb×E ∈ A5
(
Xb × (Zb × E)

)
has the property that

(ΓKS,b)∗ : H4(Xb)prim → H6(Zb × E)

is injective.

Proof. To prove this, we partially unravel the proof of [19, Theorem 5.2] and

[19, Corollary 5.3]. For a given b ∈ B, let us denote

V := H4(Xb)prim(1)

(where the Tate twist indicates V is a weight 2 Hodge structure with V 0,2 = 1). The

cubic Xb is invariant under the Z/3Z action on P5 induced by

[x0 : . . . : x5] 7→ [x0 : . . . : x4 : ζx5],

where ζ = e2πi/3. As such, we have that V is a vector space over K := Q(ζ). Let

E ⊂ P2 denote the degree 3 Fermat curve. Then E is an elliptic curve with complex

multiplication by K (here K acts via mutiplication on the last coordinate), and

K−1/2
∼= H1(E).

(NB: in the notation of [19], the curve E is both Y1 and AK .) The positive half twist

V1/2 (a Hodge structure of weight 1) exists [18, Example 2.12 and Proposition 2.8], [19,

Theorem 2.6]. Moreover, there is an equality of Hodge structures of weight 3

V1/2(−1) = W :=
(
V ⊗H1(E)

)<β>

,

where ()<β> denotes the invariant part under a certain automorphism β of Xb ×E [19,

Theorem 3.4 and Lemma 3.7]. The automorphism β is defined as

β := ((α4)
∗, (α1)

∗) : Xb × E → Xb × E,

where α4 (resp. α1) is the restriction to Xb (resp. to E) of the automorphism of P5

given by

[x0 : . . . : x5] 7→ [x0 : . . . : x4 : ζx5]

(resp. of the automorphism of P2 defined as [x0 : x1 : x2] 7→ [x0 : x1 : ζx2]).

There is a homomorphism

µf : V ⊗H1(E) → W ⊂ H4(Xb)⊗H1(E),

defined as the projection onto the β-invariant subspace. The homomorphism µf is in-
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duced by a correspondence; what’s more, this correspondence comes from a relative

correspondence (this is because the automorphism β = (α4, α1) in [19, Theorem 3.4]

comes from an automorphism of P5 × E, and so for each Xb the homomorphism µf is

given by the restriction of a correspondence on P5 × E × P5 × E ×B).

Next, one considers the homomorphism

µf ⊗ id : V ⊗H1(E)⊗H1(E) → W ⊗H1(E) ⊂ H4(Xb)⊗H1(E)⊗H1(E);

this has the property that

Im(µf ⊗ id) = V1/2(−1)⊗K−1/2 = W ⊗H1(E).

The domain of µf ⊗ id has a certain Hodge substructure S defined as

S :=
{
w ∈ V ⊗K−1/2 ⊗K−1/2 | ((α4)

∗ ⊗ ζ ⊗ 1)w = w, (1⊗ ζ ⊗ ζ)w = w
}
.

One checks that

S ∼= V (−1).

Since S ⊂ V1/2(−1)⊗K−1/2, the restriction of µf ⊗ id to S is injective, and thus

(µf ⊗ id)(S) ∼= V (−1).

One checks that actually

S ⊂ V ⊗K(−1) ⊂ V ⊗K−1/2 ⊗K−1/2,

where K(−1) is a trivial weight 2 rank 2 Hodge structure. It follows that the (twisted)

isomorphism

Γ: V → S ∼= V (−1)

is induced by a correspondence on Xb ×Xb × E × E. This correspondence is again the

restriction of a relative correspondence (it comes from ∆X ×D, where D ∈ A1(E ×E)).

Next, the work of Shioda [49, Theorem 2] produces a homomorphism

Sh : H4(Xb)⊗H1(E) → H5(Zb).

As Sh comes from a rational map Xb ×E 99K Zb, it is induced by a correspondence (the

closure of the graph). As this rational map comes from a rational map P5 × P2 99K P6,

this correspondence is the restriction of a relative correspondence.

Finally, one considers the composition

V
Γ−→ V ⊗H1(E)⊗H1(E)

µf⊗id−−−−→ W ⊗H1(E)
Sh⊗id−−−−→ H5(Zb)⊗H1(E).

This composition is injective, and it is induced by a correspondence which is the restric-

tion to Xb × Zb × E of a relative correspondence. □
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2.3. Splitting.

For the proof of the main result, it will be useful to have splittings of the injections

of subsection 2.2.

Lemma 2.9. Let

ΓKS ∈ A5
(
X ×B (Z × E)

)
be a relative Kuga–Satake correspondence as in Theorem 2.8. For any b ∈ B there exists

a correspondence Λb ∈ A5(Zb × E ×Xb) such that

H4(Xb)prim
(ΓKS,b)∗−−−−−−→ H6(Zb × E)

(Λb)∗−−−→ H4(Xb)prim

is the identity.

Proof. The varieties Xb, Zb and E verify the Lefschetz standard conjecture, and

hence homological and numerical equivalence coincide for all powers and products of Xb,

Zb, E [30], [31]. It follows that the homological motives

h4(Xb), h6(Zb × E) ∈ Mhom

are contained in a semisimple subcategory M◦
hom ⊂ Mhom (one may define M◦

hom as

the full additive subcategory generated by motives of varieties for which the Lefschetz

standard conjecture is known; it follows from [25] that M◦
hom is semisimple).

Theorem 2.4, combined with semisimplicity, now implies that

ΓKS,b : h4(Xb) → h6(Zb × E) in M◦
hom

is a split injection, i.e. there exists a correspondence Λb as in Lemma 2.9. □

The splitting of Lemma 2.9 can be extended to the family, in the following sense:

Proposition 2.10. Let

ΓKS ∈ A5
(
X ×B (Z × E)

)
be a relative Kuga–Satake correspondence as in Theorem 2.8. There exists a relative

correspondence

Λ ∈ A4
(
(Z × E)×B X

)
,

such that for any b ∈ B we have that

H4(Xb)prim
(ΓKS,b)∗−−−−−−→ H6(Zb × E)

(Λ|b)∗−−−−→ H4(Xb)prim

is the identity, where Λ|b := Λ|Zb×E×Xb
∈ A4(Zb × E ×Xb).
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Proof. This uses the idea of “spreading out” algebraic cycles, as advocated in

[57], [60], [59]. Lemma 2.9, plus the observation that Im
(
H∗(P5) → H∗(Xb)

)
is gener-

ated by linear subspace sections, gives a decomposition of the diagonal of Xb:

∆Xb
= Λb ◦ ΓKS,b +

∑
j

cj(Hb)
j × (Hb)

4−j in H8(Xb ×Xb),

where cj ∈ Q and Hb ∈ A1(Xb) is the restriction of an ample class H ∈ A1(P5). That is,

the relative correspondences

∆X ,prim := ∆X −
(∑

j

cjH
j ×H4−j ×B

)
|X×BX ∈ A4(X ×B X )

and

ΓKS ∈ A5
(
X ×B (Z × E)

)
have the following property: for any b ∈ B, there exists a correspondence Λb ∈ A4(Zb ×
E ×Xb) such that

∆X ,prim|b = Λb ◦ (ΓKS)|b ∈ H8(Xb ×Xb).

We now apply Voisin’s argument, in the form of Proposition 2.11 below, to finish

the proof. □

Proposition 2.11 (Voisin [57], [60]). Let X , Y and Z be families over B, and

assume the morphisms to B are smooth projective and the total spaces are smooth quasi-

projective. Let

Γ ∈ Ai(X ×B Z),

Ψ ∈ Aj(X ×B Y)

be relative correspondences, with the property that for any b ∈ B there exists Λb ∈
A∗(Yb × Zb) such that

Γ|b = Λb ◦ (Ψ)|b in H2i(Xb × Zb).

Then there exists a relative correspondence

Λ ∈ A∗(Y ×B Z)

with the property that for any b ∈ B

Γ|b = (Λ)|b ◦ (Ψ)|b in H2i(Xb × Zb).

Proof. The statement is different, but this is really the same Hilbert schemes

argument as [57, Proposition 2.7], [59, Proposition 4.25]. The point is that the data of

all the (b,Λb) that are solutions to the splitting problem
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Γ|b = Λb ◦ (Ψ)|b in H2i(Xb × Zb)

can be encoded by a countable number of algebraic varieties pj : Mj → B, with universal

objects Λj ⊂ Y ×Mj Z, with the property that for m ∈ Mj and b = pj(m) ∈ B, we have

(Λj)|m = Λb in H∗(Yb × Zb).

By assumption, the union of the Mj dominate B. Since there is a countable number,

one of the Mj (say M0) must dominate B. Taking hyperplane sections, we may assume

M0 → B is generically finite (say of degree d). Projecting Λ0 to Y ×B Z and dividing by

d, we have obtained Λ as requested. □

For ease of reference, we spell out the following restatement of Proposition 2.10:

Corollary 2.12. Let

∆X ,prim ∈ A4(X ×B X )

be the “corrected relative diagonal” appearing in the proof of Proposition 2.10. Let

ΓKS ∈ A5
(
X ×B (Z × E)

)
be a relative Kuga–Satake correspondence as in Theorem 2.8. There exists a relative

correspondence

Λ ∈ A4
(
(Z × E)×B X

)
,

such that for any b ∈ B we have that(
∆X ,prim − Λ ◦ ΓKS

)
|Xb×Xb

= 0 in H8(Xb ×Xb).

2.4. Algebraic cycles in a family.

The second key ingredient in this note is the machinery of “spread” as developed

by Voisin [57], [60], [59], in order to deal efficiently with algebraic cycles in a family of

varieties. This subsection contains a result by Fu, which is a version of “spread” adapted

to dealing with non-complete linear systems.

Proposition 2.13 (Fu [15]). Let X → B be as in Notation 2.6. Then

lim−→
B′⊂B

A4
hom(X ′ ×B′ X ′) = 0,

where the direct limit is taken over the open subsets B′ ⊂ B. In other words, for an

open B′ ⊂ B and a homologically trivial cycle a ∈ A4
hom(X ′ ×B′ X ′), there is a smaller

open B′′ ⊂ B′, such that the restriction of a to the base change X ′′ ×B′′ X ′′ is rationally

trivial.

Proof. This is [15, Proposition 4.1], applied to the family X → B. In the

notation of [15], the closure B̄ of the base B can be written as B̄ = P
(
⊕α∈Λ0Cxα

)
,
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where

Λ0 :=
{
α = (α0, . . . , α5) ∈ N5 | α0 + · · ·+ α5 = 3, α5 = 0 mod 3

}
.

This ensures that the proof of [15, Proposition 4.1] applies to the family X → B.

(NB: to be sure, the statement of [15, Proposition 4.1] is geared towards families of

cubic fourfolds having a finite order polarized automorphism that is symplectic, whereas

the family X → B of Notation 2.6 corresponds to cubics invariant under a polarized

order 3 automorphism that is non-symplectic. However, the proof of [15, Proposition

4.1] only uses the description B̄ = P
(
⊕α∈ΛjCxα

)
, and not the symplectic/non-symplectic

behaviour of the automorphism.) □

Remark 2.14. Alternatively, a slightly different proof of Proposition 2.13 could be

given as follows. There is a natural map P5 → P := P(15, 3), where P(15, 3) is a weighted

projective space [14]. The family X̄ → B̄ corresponds to (hypersurfaces in P5 that are

inverse images of) the complete linear system PH0(P,OP(3)). Since the sheaf OP(3) is

locally free and very ample [12], the stratification argument of [33] applies to prove that

Ahom
∗ (X̄ ×B̄ X ) = 0.

Next, to pass to opens B′ ⊂ B̄, we can use [15, Proposition 4.3] (which is based on the

fact that “the Chow motive of a cubic fourfold does not exceed the size of Chow motives

of surfaces”, to cite [15, Section 4.2]).

(NB: this alternative proof avoids recourse to [15, Proposition 4.2], and only uses

the easier [15, Proposition 4.3].)

3. Main.

Theorem 3.1. Let X ⊂ P5 be a smooth cubic fourfold, defined by an equation

x3
5 + f(x0, . . . , x4) = 0,

where f(x0, . . . , x4) defines a smooth cubic threefold. Then X has finite-dimensional

motive (of abelian type).

Proof. As before, let

X → B

denote the family of smooth cubic fourfolds as in Notation 2.6. We have seen (Theorem

2.8) that there is a relative Kuga–Satake correspondence

ΓKS ∈ A5
(
X ×B (Z × E)

)
(where Z is a family of cubic fivefolds and E is a fixed elliptic curve). We have also seen

(Corollary 2.12) there exists a “relative splitting”. That is, the relative correspondence

D := ∆X ,prim − Λ ◦ ΓKS ∈ A4(X ×B X )



1464

1464 R. Laterveer

has the property that restriction to any fibre is homologically trivial:

D|Xb×Xb
= 0 in H8(Xb ×Xb) for all b ∈ B.

We now proceed to make D globally homologically trivial. The Leray spectral

sequence argument of [57, Lemmas 3.11 and 3.12] shows that there exists a cycle

γ ∈ A4(P5 × P5) such that after shrinking B (i.e. after replacing the parameter space B

by a smaller non-empty Zariski open subset B′), one has(
D − γ

)
|X ′×B′X ′ = 0 in H8(X ′ ×B′ X ′).

In light of Proposition 2.13, this implies there exists a smaller non-empty Zariski open

B′′ ⊂ B′ and a rational equivalence(
D − γ

)
|X ′′×B′′X ′′ = 0 in A4(X ′′ ×B′′ X ′′).

In particular, when restricting to a fibre we find that(
D − γ

)
|Xb×Xb

= 0 in A4(Xb ×Xb) ∀b ∈ B′′.

Now, [59, Lemma 3.2] implies that the same actually holds for every fibre over B, i.e.(
D − γ

)
|Xb×Xb

= 0 in A4(Xb ×Xb) ∀b ∈ B.

Plugging in the definition of D, this implies that for any b ∈ B, we have a rational

equivalence

∆Xb
= Λb ◦ ΓKS,b +R in A4(Xb ×Xb), (1)

where R is a sum of “completely decomposed correspondences”

R =
∑
i

Ri =
∑
i

ciH
i ×H4−i ∈ A4(Xb ×Xb)

(with ci ∈ Q and H ∈ Im
(
A1(P5) → A1(Xb)

)
an ample class).

We define a “primitive diagonal”

∆−
Xb

:= ∆Xb
+

∑
i

diH
i ×H4−i ∈ A4(Xb ×Xb),

where the constants di are such that the push-forward

(ib × ib)∗(∆
−
Xb

) = 0 in A6(P5 × P5)

(here ib denotes the inclusion Xb → P5). Since the correspondence R is the restriction

of something from P5 × P5, we have that

R ◦∆−
Xb

= 0 in A4(Xb ×Xb).
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It thus follows from equality (1) that

∆−
Xb

= Λb ◦ ΓKS,b ◦∆−
Xb

in A4(Xb ×Xb),

i.e. the homomorphism of motives

(Xb,∆
−
Xb

, 0) → h(Zb)⊗ h(E)(−1) in Mrat

has a left-inverse. This implies there also is a homomorphism

h(Xb) → h(Zb)⊗ h(E)(−1)⊕
⊕
i

L(mi) in Mrat,

exhibiting h(Xb) as a direct summand of the right-hand-side. Now we note that the cubic

fivefold Zb has

Aj
AJ(Zb) = 0 for all j

([36], or [39] or [21]). This implies (using [51, Theorem 4]) that the fivefold Zb has finite-

dimensional motive. Since E is a curve, h(Zb)⊗h(E) is also a finite-dimensional motive,

and so we have exhibited h(Xb) as direct summand of a finite-dimensional motive. □

For later use, we observe that we can also obtain a version of Corollary 2.5 on the

level of Chow motives:

Corollary 3.2. Let X be a smooth cubic fourfold as in Theorem 3.1. There exist

an abelian variety A of dimension g = 22, and a homomorphism

f : h(X) → h2g−2(A)(3− g)⊕
⊕
j

L(mj) in Mrat,

which identifies h(X) with a direct summand of the right-hand-side.

(In particular, there is a correspondence Ψ ∈ Ag+1(X ×A) inducing split injections

Ψ∗ : A3
hom(X) → Ag

(2)(A) ).

Proof. The proof of Theorem 3.1 gives a homomorphism

h(X) → h6(Z × E)(−1)⊕
⊕
i

L(mi) in Mrat

admitting a left-inverse, where Z is a cubic fivefold.

We have seen (in the proof of Corollary 2.5) that there also exists a homomorphism

h(Z × E) → h2(A)(2)⊕
⊕
j

L(mj) in Mrat

admitting a left-inverse.

Combining these two, we obtain a homomorphism
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h(X) → h2(A)(1)⊕
⊕
j

L(mj) in Mrat

admitting a left-inverse. Composing with a Lefschetz operator on A, one obtains a

homomorphism

f : h(X) → h2g−2(A)(3− g)⊕
⊕
j

L(mj) in Mrat

that admits a left-inverse, i.e. h(X) identifies with a direct summand of the right-hand-

side. □

Remark 3.3. The argument used to prove theorem 3.1 is hardly original, and I do

not claim credit for this argument. Indeed, a similar use of the Kuga–Satake construction

in a family appears in [58]. More precisely: Voisin proves in [58, Theorem 0.7] that if

the variational Hodge conjecture is true, then the Kuga–Satake construction is algebraic,

and consequently a certain large family of K3 surfaces (obtained as sections of a vector

bundle on a rationally connected variety) has finite-dimensional motive.

It is also worth mentioning that an explicit Kuga–Satake construction for the 4-

dimensional subfamily of cubics of the form

x3
5 + x3

4 + f(x0, . . . , x3) = 0

already appears in [56, Example 4.2]. This construction in [56] is mentioned by van

Geemen as inspiration for his general theory of half twist [18, Introduction].

Remark 3.4. The family of cubic fourfolds X of Theorem 3.1 is studied from a

lattice-theoretic viewpoint in [7, Example 6.4]. Among other things, they prove that

the natural Z/3Z action (defined by the automorphism we denoted α4 in the proof of

Theorem 2.8 above) has the property that

dimH4(X)Z/3Z = 1,

and so

H4(X)prim ∩H4(X)Z/3Z = 0.

4. Consequences.

4.1. Bloch conjecture.

Corollary 4.1. Let X be a cubic fourfold as in Theorem 3.1. Let Γ ∈ A4(X×X)

be a correspondence such that

Γ∗ : H3,1(X) → H3,1(X)

is the identity. Then

Γ∗ : A3
hom(X) → A3

hom(X)
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is an isomorphism.

Proof. As is well-known, this is a consequence of finite-dimensionality; we include

a proof for completeness’ sake. Using an argument involving the truth of the Hodge

conjecture for X and non-degeneracy of the cup-product pairing (similar to [58, Proof of

Corollary 3.11] and [42, Lemma 2.5], where this is done for K3 surfaces), the assumption

implies that

Γ∗ : H4
tr(X) → H4

tr(X)

is also the identity, whereH4
tr denotes the orthogonal complement (under the cup-product

pairing) of N2H4(X). It follows there is a cohomological decomposition

Γ = ∆X + γ ∈ H8(X ×X),

where γ is a cycle supported on (Y ×X) ∪ (X × Y ), for some Y ⊂ X of codimension 2.

That is, the cycle

Γ−∆X − γ ∈ A4(X ×X)

is homologically trivial. Using finite-dimensionality of X, this cycle is nilpotent. The

cycle γ does not act on A3
hom(X) = A3

AJ(X) for dimension reasons. It follows that

(Γ◦N )∗ = id: A3
hom(X) → A3

hom(X)

for some N ∈ N. □

Remark 4.2. Corollary 4.1 establishes a weak form of the Bloch conjecture [4].

Recall that the Bloch conjecture (in the special case of a cubic fourfold X) predicts

that if a correspondence acts as the identity on H3,1(X), then it acts as the identity on

A3
hom(X).

There is related work of Fu [15], proving that for any cubic fourfold, Bloch’s con-

jecture is true for the graph of an automorphism acting as the identity on H3,1(X).

4.2. The Fano variety of lines.

Corollary 4.3. Let X be a smooth cubic fourfold as in Theorem 3.1, and let

F (X) be the Fano variety of lines on X. Then F (X) has finite-dimensional motive.

Proof. This follows from the main result of [34]. □

Remark 4.4. Corollary 4.3 can be extended to hyperkähler fourfolds that are bira-

tional to F (X). Indeed, the isomorphism of Rieß [45] implies that birational hyperkähler

varieties have isomorphic Chow motives.

4.3. Indecomposability.

Theorem 4.5 (Vial [53]). Let M be a smooth projective variety of dimension

n ≤ 5. Assume that M has finite-dimensional motive, and that the standard Lefschetz

conjecture B(M) holds. Then there exists a refined Chow–Künneth decomposition, i.e. a
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set of mutually orthogonal idempotents

Πi,j ∈ An(M ×M),

such that Πi,j acts on cohomology as a projector on Grj
Ñ
Hi(M), where Ñ∗ is the niveau

filtration of [53].

Proof. This is a combination of [53, Theorems 1 and 2], since M verifies condi-

tions (*) and (**) of loc. cit. □

Remark 4.6. The “niveau filtration” Ñ∗ of [53] is a variant of the geometric

coniveau filtration N∗ of [5]. It is expected that there is equality Ñ∗ = N∗; this is true

if the standard Lefschetz conjecture is true for all smooth projective varieties [53].

Definition 4.7. Let X be a cubic fourfold as in Theorem 3.1. We define the

“transcendental motive” t(X) ∈ Mrat as

t(X) = (X,Π4,1, 0) ∈ Mrat,

where the Πi,j are Vial’s refined Chow–Künneth decomposition [53, Theorems 1 and 2].

Remark 4.8. The fact that t(X) is well-defined (i.e., independent of choices up

to isomorphism) follows from [53] and [27, Theorem 7.7.3].

The motive t(X) is an analogue of the “transcendental part of the motive” t2(X)

that is defined for any (not necessarily finite-dimensional) surface in [27]. Just like in

the surface case, the motive t(X) can actually be defined for any (not necessarily finite-

dimensional) cubic fourfold, cf. [43, (4.1)].

Proposition 4.9. Let X be a cubic fourfold as in Theorem 3.1. The motive t(X)

is indecomposable, i.e. any submotive is either 0 or equal to t(X).

Proof. Let M ∈ Mrat be a submotive of t(X). Then

0 ⊂ H∗(M) ⊂ H∗(t(X)) = H4
tr(X),

where H4
tr(X) ⊂ H4(X) is as in the proof of Corollary 4.1. The cup-product argument

of the proof of Corollary 4.1, plus the fact that h3,1(X) = 1, implies that the Hodge

structure H4
tr(X) is indecomposable. That is, H∗(M) is either 0 or all of H4

tr(X). In the

first case, we conclude that M = 0 (there are no finite-dimensional phantom motives).

In the second case, we conclude (again using finite-dimensionality) that M = t(X), since

they coincide in Mhom. □

Corollary 4.10. Let X be a cubic fourfold as in Theorem 3.1. Suppose G ⊂
Aut(X) is a finite group of finite-order automorphisms such that

g∗ ̸= id: H3,1(X) → H3,1(X)

for some g ∈ G. Let Y → X/G be a resolution of singularities of the quotient. Then
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Aj
hom(Y ) = 0 for all j.

Proof. We have

Aj
hom(Y ) ∼= Aj(t(X)G),

where we define

t(X)G := (X,Π4,1 ◦
∑
g∈G

Γg, 0) ∈ Mrat.

This is a submotive of t(X); as such, it must be 0 or all of t(X). The second possibility

can be excluded, because it would imply

H3,1(X)G = H3,1(X),

contradicting the hypothesis. □

4.4. Smash-equivalence.

Definition 4.11. Let X be a smooth projective variety. A cycle a ∈ Ai(X) is

called smash-nilpotent if there exists m ∈ N such that

am := a× · · · × a︸ ︷︷ ︸
(m times)

= 0 in Ami(X × · · · ×X).

We will write Ai
⊗(X) ⊂ Ar(X) for the subgroup of smash-nilpotent cycles.

Conjecture 4.12 (Voevodsky [55]). Let X be a smooth projective variety. Then

Ai
num(X) ⊂ Ai

⊗(X) for all i.

Remark 4.13. It is known [2, Théorème 3.33] that Conjecture 4.12 implies (and is

strictly stronger than) Kimura’s conjecture “all varieties have finite-dimensional motive”.

For partial results concerning Conjecture 4.12, cf. [28], [48], [47], [52, Theorem 3.17],

[35].

The results of this note give some new examples where Voevodsky’s conjecture is

verified:

Proposition 4.14. Let Z be a product

Z = X1 ×X2,

where the Xj are smooth cubic fourfolds as in Theorem 3.1. Then

Ai
⊗(Z) = Ai

num(Z) for all i ̸= 4.

Proof. We have seen (in the proof of Corollary 3.2) there exists a map of motives
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h(Xj) → h2(A)(1)⊕
4⊕

m=0

h(SpC)(m) in Mrat

that admits a left-inverse. It follows there is also a map

h(Z) = h(X1 ×X2) → h4(A×A)(2)⊕
5⊕

m′=1

h2(A)(m′)⊕
⊕
m′′

h(SpC)(m′′) in Mrat

admitting a left-inverse. In particular, this implies there is a correspondence-induced

injection

Ai
num(Z) ↪→ Ai−2

(2i−8)(A×A)⊕
⊕
m′

(πA
2 )∗A

i−m′
(A). (2)

By general properties of Beauville’s splitting [3], we know that the term (πA
2 )∗A

i−m′
(A)

is 0 unless i−m′ is 1 or 2. For i−m′ = 1, we have

(πA
2 )∗A

1(A) = A1
(0)(A),

which is known to have trivial intersection with A1
num(A). For i−m′ = 2, we have

(πA
2 )∗A

2(A) = A2
(2)(A)

∼=−→ Ag
(2)(A),

where the isomorphism is given by Künnemann’s hard Lefschetz result [32], which implies

(πA
2 )∗A

2(A) ⊂ A2
⊗(A).

It remains to analyze the first summand of the right-hand-side of (2). For i > 6 we have

that 2i− 8 > i− 2 and this summand vanishes [3]. For i = 6, this summand is

A4
(4)(A×A)

∼=−→ A2g
(4)(A×A),

which proves this summand is smash-nilpotent. For i = 5, this summand is

A3
(2)(A×A)

∼=−→ A2g−1
(2) (A×A),

and so this summand is again smash-nilpotent, because homologically trivial 1-cycles on

abelian varieties are smash-nilpotent [47].

This proves the proposition: for any i ̸= 4, we have checked that the injection (2)

sends Ai
num(Z) to something smash-nilpotent. The left inverse of (2) being given by a

correspondence, this implies that any element in Ai
num(Z) is smash-nilpotent.

(NB: this proof breaks down for i = 4, because it is not known whether

A2
(0)(A×A) ∩A2

num(A×A) = 0,

which is one of Beauville’s conjectures.) □
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[20] V. Guletskĭı and C. Pedrini, The Chow motive of the Godeaux surface, In: Algebraic Geometry, a

volume in memory of Paolo Francia (eds. M. C. Beltrametti, F. Catanese, C. Ciliberto, A. Lanteri

and C. Pedrini), Walter de Gruyter, Berlin New York, 2002.

[21] A. Hirschowitz and J. Iyer, Hilbert schemes of fat r-planes and the triviality of Chow groups of

complete intersections, In: Vector bundles and complex geometry, Contemp. Math., 522, Amer.

Math. Soc., Providence, 2010.

[22] F. Ivorra, Finite dimensional motives and applications (following S.-I. Kimura, P. O’Sullivan and

others), Survey from a lecture given at the summer school “Autour des motifs, Asian-French

summer school on algebraic geometry and number theory, IHES”.

[23] J. Iyer, Murre’s conjectures and explicit Chow–Künneth projectors for varieties with a nef tangent

bundle, Transactions of the Amer. Math. Soc., 361 (2008), 1667–1681.

https://doi.org/10.1112/S0010437X17007151
https://doi.org/10.1007/BF01472135
https://doi.org/10.24033/asens.1266
https://doi.org/10.24033/asens.1266
https://doi.org/10.2307/2374341
https://doi.org/10.2307/2374341
https://doi.org/10.1215/21562261-3600139
https://doi.org/10.1006/jabr.2001.9105
https://doi.org/10.2140/pjm.1986.122.43
https://doi.org/10.2140/pjm.1986.122.43
https://doi.org/10.1007/BF01404126
https://doi.org/10.24033/bsmf.1802
https://doi.org/10.1515/crll.1991.422.201
https://doi.org/10.1007/BFb0101508
https://doi.org/10.1007/BFb0101508
https://doi.org/10.1007/s00209-015-1424-9
https://doi.org/10.1007/978-3-662-02421-8
https://doi.org/10.1007/978-3-662-02421-8
https://doi.org/10.1007/978-94-011-4098-0_3
https://doi.org/10.1007/978-94-011-4098-0_3
https://doi.org/10.2969/jmsj/05340813
https://doi.org/10.2969/jmsj/05340813
https://doi.org/10.1007/s002090100334
https://doi.org/10.1007/s002090100334
https://doi.org/10.1090/conm/522
https://doi.org/10.1090/conm/522
https://doi.org/10.1090/S0002-9947-08-04582-0


1472

1472 R. Laterveer
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