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Abstract. In this article we prove new results on fundamental groups
for some classes of fibered smooth projective algebraic surfaces with a finite
group of automorphisms. The methods actually compute the fundamental

groups of the surfaces under study upto finite index. The corollaries include an
affirmative answer to Shafarevich conjecture on holomorphic convexity, Nori’s
well-known question on fundamental groups and free abelianness of second
homotopy groups for these surfaces. We also prove a theorem that bounds the

multiplicity of the multiple fibers of a fibration for any algebraic surface with
a finite group of automorphisms G in terms of the multiplicities of the induced
fibration on X/G. If X/G is a P1-fibration, we show that the multiplicity
actually divides |G|. This theorem on multiplicity, which is of independent

interest, plays an important role in our theorems.

1. Introduction.

In this paper by a surface, unless otherwise stated, we mean a projective algebraic

surface.

A smooth surface X is said to be an anticanonical surface if X is rational and there

is an effective divisor linearly equivalent to | −KX |.
Let X be a smooth projective surface/C and G a finite group of automorphisms of

X. Let Y be the quotient surface X/G. One of the central concerns of this paper is

the relationship between π1(X) and π1(X/G), when X/G is either a P1-fibration over

an arbitrary curve, an anticanonical rational surface or a minimal surface of Kodaira

dimension zero. The surfaces of general type that are finite covers of such surfaces, espe-

cially of P1-fibrations, occur frequently in a range of questions relating to the geometry of

surfaces of general type; topology, classification problems, in the study of linear series of

surfaces and threefolds such as Calabi–Yau, to name a few. As applications of the work

on fundamental groups, we prove Shafarevich conjecture on holomorphic convexity of

the universal cover for these surfaces. Other corollaries of interest include an affirmative

answer to a conjecture of Nori on fundamental groups and free abelianness of second

homotopy groups for these surfaces.

Kodaira classified the singular fibers of an elliptic fibration. In this case the multiple

fibers occur with arbitrarily large multiplicities. For fibrations of arbitrary genus the
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number of types of singular fibers are enormous and such a classification is not tenable.

Qualitative statements about the nature of multiple fibers are a reasonable question to

ask. In this article we prove a theorem that bounds the multiplicities of multiple fibers for

any fibered surface with a finite group of automorphisms. When X/G is a P1-fibration,

we obtain a much stronger statement. These results are of independent interest. However

these results play a crucial role here and are used towards proof of the main theorem on

fundamental groups.

The fundamental group of a smooth projective surface X which is not of general

type is well understood. Hence we sometimes assume that X is of general type. In this

case Aut(X) is well-known to be finite. This explains our assumption about action of a

finite group G of automorphism on X.

We first concentrate on the main results of this paper concerning fundamental

groups. Before we state the theorem, some definitions are in order:

We say that a fibration f : Y → B on a smooth projective surface onto a smooth

curve B becomes a C∞-fiber bundle after a base change if there is a finite morphism

C → B from a smooth curve C onto B such that the normalized fiber product Y ×B C

is a C∞-fiber bundle over C.

Note. From now on we make a blanket assumption that all the surfaces in this

article have the property that they do not become C∞-fiber bundle after a base change.

We call this the fibration hypothesis (FiH). This is needed since the Main Theorem below

is not true for C∞-fiber bundles.

Theorem 1 (Main Theorem). Let X be a smooth projective surface with an action

of a finite group G such that |G| is a product of district primes. Assume that all the

isotropy subgroups of points are normal in G and that X satisfies (FiH). Let X/G admit

a minimal P1-fibration X/G→ C. Then the image of the map π1(F ) → π1(X) is finite,

where F is a general fiber of the map X → D induced from X/G → C. In particular,

the homomorphism π1(X) → π1(X/G) has kernel and cokernel both finite.

Corollary for Zp. In particular, if G = Zp, the theorem holds.

This result greatly generalizes the result in [3]. In [3] we considered the case when

X admits a hyperelliptic fibration f : X → D such that all the fibers of f are irreducible

and f has a “genuine” singular fiber. There is a natural action of the group G = Z/(2)
on X such that X/G has a P1-fibration X/G → C. We proved that in this case the

image π1(F ) → π1(X) is finite, where F is a general fiber of f .

An interesting corollary of the Main Theorem is the Shafarevich conjecture on holo-

morphic convexity. Before we introduce the result, we recall a definition.

A complex manifold U is holomorphically convex if for any sequence of points {xn}
in U without a limit point there is a holomorphic function f on U such that the sequence

|f(xn)| is unbounded.

Shafarevich Conjecture (SC). Let X be a smooth projective variety/C. Then

the universal covering space X̃ of X is holomorphically convex.

As a corollary of the Main Theorem we have:
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Corollary (SC). Let X be as in the Main Theorem. Then the Shafarevich con-

jecture holds for X.

Another interesting corollary of the main result of this paper is an affirmative answer

to a question of Madhav Nori (see [7]) for these surfaces we are dealing with in this paper.

Corollary. Let X → C satisfy the same hypothesis as in the Main Theorem.

Let B be an irreducible curve on X such that B2 > 0. Let B be the normalization of

B in its function field. Then the normal subgroup generated by the image of the natural

homomorphism π1(B) → π1(X) has finite index in π1(X).

In particular, if X contains an irreducible rational curve B with B2 > 0 then π1(X)

is finite.

In Section 3 we prove a factorization theorem. Let X be a smooth surface of general

type with a finite group of automorphisms G satisfying the hypothesis in the Main

Theorem above. Let X/G have a P1-fibration over a curve C. The factorization theorem

states that we can factor the quotient map g : X → X/G into two maps, gH : X → X/GH

and gV : X/GH → X/G such that the map gV has only vertical branching and gH has

only horizontal branching. It will be shown that X/GH is again a P1-fibration over a

different curve C ′. In other words, without loss of generality, after a suitable factorization

we can always assume in the context of the paper, that the finite map g is branched only

along horizontal components. So from now we have the following:

Basic Setup. All our branching curves will be assumed to be horizontal. Please

note, as stated above, this is not an extra hypothesis, but it follows from the hypothesis

in the main theorem above, proof of the factorization results are in Section 3.

There are substantial technical difficulties in the proof for the general case that were

absent in [3]. The first and foremost are the singularities that occur in the quotient X/G

for a more general finite group G. They are, naturally, far worse than the singularities

under Z/(2) quotient. We first study the singularities of the quotient and classify them

in the context of this paper (Section 3). In the case of Z/(2), the multiplicity of the

fibers was 2 in the case of fibers of odd genus and there were no multiple fibers at all

in the case of even genus. This issue of singularities of X/G and multiple fibers of X is

inescapable and has to be dealt with. Also, for Z/(2), we do not have to reckon with the

mischief played by isotropy subgroups to contend with. In the more general case dealt

with here, they are unavoidable.

In Section 3, we prove the analogue of the Main Theorem for a smooth surface of

general type X with an action of any cyclic group G, such that X/G is a smooth minimal

P1-fibration (see Theorem 1′).

One of the crucial steps in the proof involves a base change to get rid of multiple

fibers. It is an important step in the proof to bound the multiplicities of the fibers, if

indeed there is such a bound. We now state a general theorem in this article that bounds

the multiplicity of the singular fibration of a surface of general type with a finite group

of automorphisms. If X/G is a P1-fibration, then there is a much stronger result, as

indicated in (ii) below.
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Theorem 2 (Multiplicities of fibers and |G|). Let f : X → C be a fibration

on a smooth projective surface with irreducible general fiber. Let G be a finite group of

automorphisms of X which permutes the fibers of f . Let Y := X/G with induced fibration

Y → C/G. Then we have the following assertions:

(i) For a fiber G0 if f , let F0 be the corresponding fiber of Y → C/G. Then the

multiplicity of G0 is at most equal to the product of |G| and the multiplicity of F0.

(ii) If g : Y → C/G is a P1-fibration such that all the fibers of this map are irreducible

then the multiplicity of F0 divides |G|, where F0 is an arbitrary fiber of g : Y → C/G

(see Theorem 3 in Section 5).

We now state a result when X/G is a smooth surface of lower Kodaira dimension

that is not a P1-fibration.

Theorem 4. Let a group G of prime order act on a smooth projective surface X of

general type. Let X/G be either a smooth rational surface with an effective anticanonical

divisor or a minimal surface of Kodaira dimension zero. Then π1(X) is isomorphic

to π1(X/G). In particular, if X/G is either an anticanonical rational surface or a K3

surface, then X is simply-connected.

The proof of this uses different arguments than those for Theorem 1.

We now make some remarks that makes it clear why the hypothesis mentioned in

the theorems are necessary.

Remarks.

(1) In the proof of (ii) we crucially use some results of Sakai [6] on minimal ruled

fibrations. Theorem 2 helps in mitigating the effects of singularities to some extent.

Our theorems proved are optimal in several ways.

(2) In the theorem we have assumed that X/G is a P1-fibration. Example 2 in Sec-

tion 7 shows that if X/G is not a P1-fibration, then the image of the homomorphism

π1(F ) → π1(X) can be infinite. In the example, the fibers of X/G are even irre-

ducible and smooth, but are of higher genus.

The construction of families of genus-3 fibrations in [4] shows that Theorem 1 is

the best possible in various ways. Some examples are also given in [9, Section 3] of

a surface of general type fibered by genus-2 curves.

(3) In particular, the examples in [4] show that if the group is not a product of distinct

primes the result is not true. The examples in [4] are quadruple Galois covers of

surfaces of minimal degree, which are minimal P1-fibrations.

(4) One of the technical results in this paper involves a nice statement about factoriza-

tion of the finite map in the Main Theorem into two maps, first of which has only

vertical fibers as the branch divisor, and the second has only horizontal components

in the branch divisor. This is possible because |G| is product of distinct primes. If

the order of G is not a product of distinct primes, we have a counterexample to

the Main Theorem again coming from genus three fibrations [4].
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(5) There is the classical example of S3 action on a surface, where not all isotropy

subgroups are normal. This results in a situation where the branch divisors have

higher order singularities and are no longer normal crossing divisors. The state-

ments on fundamental groups are generally untenable without an assumption like

this; an illustration is provided by the failure of Zariski’s conjecture for higher order

singularities that are not nodes.
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correctly formulating our results. We are very thankful to the referees for reading the
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correct some proofs. We are thankful to Liana Sega for arranging for us a room to work

in the campus of University of Missouri, Kansas City. We are thankful to Vinay Wagh
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2. Preliminaries.

All our varieties will be defined over the field of complex numbers C. We will freely

use elementary topological results in our proofs.

A smooth projective rational curve A on a smooth projective surface Z is called a

(−n)-curve if n > 0 and A2 = −n.
Let π : X → C be a surjective morphism from a smooth projective surface onto a

smooth curve such that a general fiber of π is irreducible. Recall that if G0 :=
∑
aiGi

is a scheme-theoretic fiber of π with Gi irreducible components of G0 then the greatest

common divisor of the ais is called the multiplicity of G0. This definition makes sense

even if X is only normal. We denote it by mult(G0).

If H is a finite group of automorphisms of a smooth projective variety X then in

general X/H is singular. Similarly, if Y is a smooth projective variety and X → Y is a

finite Galois covering then in general X is singular.

For a non-cyclic quotient singular point (Y, p), the three linear branches in the dual

graph of the minimal resolution have absolute values of the determinants d1, d2, d3 which

satisfy
∑

(1/di) > 1. Hence {d1, d2, d3} is one of the Platonic triples {2, 2, n}, {2, 3, 3},
{2, 3, 4}, {2, 3, 5}. If two of the three determinants d1, d2, d3 are equal then we have

{2, 2, n}, {2, 3, 3} as the only possibilities. This applies to the dual graph of a singular

fiber F̃0 in Proposition 1. (Note that the notorious triple {2, 3, 5} does not appear in this

case.)

This description of the singular fiber is used repeatedly in Section 5.

We state some well-known results about ramification and branch curves for finite

morphisms between normal algebraic surfaces.

Let f : W → Z be a finite surjective morphism between normal algebraic surfaces

W,Z. A point x ∈ W is ramified for f if f is locally analytically not a biholomorphic

map near x. We say that the point f(x) is a branch point for f if x is a ramified point

for f . The set of ramified (resp. branch) points is a union of (closed) irreducible curves

Ri, called ramified curves, and finitely many isolated points. Similar statement is true

for the set of branch points.
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Figure 1.

The proof of the next result is easy so we omit it.

Lemma 1. With the above notation, for a general point x in a ramified curve Ri

we can choose local holomorphic coordinates (w1, w2) near x and (z1, z2) near f(x) such

that z1 = wm
1 , z2 = w2 and Ri = {w1 = 0} with m > 1. If f is a Galois morphism with

Galois group G then Gx
∼= Z/(m).

The integer m is the ramification index of Ri over Bi := f(Ri). In particular, for a

ramified curve Ri the isotropy group Gx is same for all but finitely many points x ∈ Ri.

We denote this group by GRi . If f1 :W → Z, f2 : Z → T are finite surjective morphisms

and Ri a ramified curve for f1 then Ri is also ramified for f2 ◦f1. The ramification index

of Ri over f2 ◦ f1(Ri) is the product of the ramification indices of Ri over f1(Ri) and

f1(Ri) over f2(f1(Ri)). This follows easily from the above local description of fi.

It is well-known that if a finite group G acts on a normal varietyW and the isotropy

group Gx of a point x ∈W has order > 1 then with respect to suitable local holomorphic

coordinates w1, . . . , wn on W at x (where n is the embedding dimension of the local ring

of W at x) the action of Gx is linear, i.e. Gx ⊂ GL(n,C). In particular, if x is a smooth

point of a surface W then n = 2. Assume further that Gx is abelian (this happens, for

example, if x is a general point of a ramified curve Ri). Then we can assume that the

action of Gx is diagonal with respect to w1, w2.

An element σ ∈ GL(2,C) of finite order is called a pseudo-reflection if rank (σ−I) ≤
1. In this case, at most one eigenvalues of σ is not equal to 1. With respect to a suitable

basis of C2, σ is the diagonal matrix with eigenvalues 1, ω for a suitable root of unity

ω. Suppose that f : W → Z is a finite surjective Galois morphism of algebraic surfaces

with Galois group G. Assume that x is a smooth points of W . Then by the Shephard–

Todd–Chevalley Theorem f(x) is a smooth point of Z if and only if Gx is generated by

pseudo-reflections. Any pseudo-reflection σ as above fixes the curve {w2 = 0} pointwise.

Here σ(w1, w2) = (w1, ωw2) with respect to suitable local holomorphic coordinates w1, w2

on W at x. This applies for a general point x lying on a ramified curve Ri in W .

Assume that f :W → Z is a finite surjective morphism as above and x is a smooth

point of W with Gx abelian. Then as above, the action of Gx is diagonal with respect

to local coordinates w1, w2 near x. From this we see easily that the only curves passing

through x which are ramified are given by {wi = 0} for some i. This implies that the
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branch curves passing through x are smooth at x and intersect transversally at x. An

important consequence of these observations is the following result which will be useful

later.

Lemma 2. Let f : W → Z be a finite surjective morphism as above. Assume that

W is smooth, Z is normal and G is abelian. Then the union of ramified curves in W is

a simple normal crossing divisor R.

Suppose that G is finite and acts on a smooth surface W . Since the action of G at a

fixed point of G is linear with respect to suitable local coordinates the set of fixed points

of G in a neighborhood of x is a smooth (locally closed) subvariety of W . This implies

that the set of fixed points in W , denoted by WG, is a smooth closed subvariety of W .

If the action of G is faithful then WG is a proper subvariety of W .

Remark. In contrast to the above the set of points in W which have a non-trivial

isotropy group may not be smooth. In Section 7 we will mention an example of this

phenomenon.

The next result will be needed crucially later in the proofs.

Lemma 3. Let a finite group G act faithfully on a smooth surface W such that the

quotient Z := W/G is smooth. Assume that for any point x ∈ W the isotropy subgroup

Gx is normal in G. Then Gx is abelian for every x ∈W .

Proof. As mentioned above Gx is generated by pseudo-reflections σi for i =

1, 2, . . . , n. Let Li be the hyperplane passing through x which is fixed pointwise by σi.

Now (σi) is the isotropy subgroup of a general point of Li. Hence (σi) is a normal

subgroup of G for each i.

We claim that for i ̸= j the intersection (σi) ∩ (σj) is trivial. Suppose that this is

not true. The set of points fixed by (σi) ∩ (σj) is a smooth closed subvariety of W . But

Li ∪Lj is fixed pointwise by this intersection. It follows that (σi)∩ (σj) keeps each point

in a neighborhood of x fixed. This implies that (σi) ∩ (σj) acts trivially on W . This

contradicts the assumption that G acts faithfully on W .

Since each (σi) is normal in G and their mutual intersections are trivial it follows

that σi commute with each other. This proves that Gx is abelian. □

We have an interesting consequence of the previous discussion.

Lemma 4. Let W be a smooth projective surface with a morphism π :W → D onto

a smooth projective curve D such that a general fiber of π is irreducible. Suppose that a

cyclic group G of prime power order pl acts faithfully on W such that the fibers of π are

permuted by G. Let Z := W/G be the normal projective surface and let h : Z → C be

the induced surjective morphism onto a smooth projective curve C with connected fibers.

Assume further that every fiber of h is irreducible. Then any two ramified curves in W

are mutually disjoint.
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In particular, if Γ ⊂ W is a ramified curve for the morphism W → Z such that

π(Γ) = D then there is no ramified curve ∆ ⊂ W for W → Z which is contained in a

fiber of π.

Proof. Suppose that this is not true. Let R1, R2 be distinct irreducible ramified

curves and let x ∈ R1 ∩ R2. Since G is cyclic of order pl there is a unique subgroup Gp

of order p in G and it is contained in every non-trivial subgroup of G. It follows that Gp

keeps points in R1 ∪R2 fixed. This contradicts the fact that the set of fixed points of Gp

is a smooth subvariety of W .

Let ∆ be contained in a fiber F0 of π. Since the fibers of h are irreducible the

irreducible components of F0 are conjugate under G. Thus every irreducible component

of F0 is ramified for the map W → Z. Now Γ meets at least one irreducible component

of F0, say ∆. This contradicts the first part above. This proves the second part of the

lemma. □

Similar proof gives the following result which will be used later.

Lemma 5. With the same notation as in Lemma 4, let G be a finite group whose

order is a product of distinct primes. Assume that every isotropy subgroup Gx is normal

in G. If Γ,∆ are as in Lemma 4 which are both ramified for W → Z then |GΓ|, |G∆| are
relatively coprime.

The proof uses Lemma 3 at any common point of Γ, ∆ and the arguments in the

proof of Lemma 4.

Remark. Lemmas 4, 5 will be used later when Z is a P1-bundle.

Closely related to the above results is the following result which is of independent

interest. More general results of this nature were proved in [1].

Lemma 6. Let G be a finite abelian group acting on an irreducible normal algebraic

variety W and Z := W/G. Assume that G is generated by the isotropy subgroups Gx of

points in W . Then the natural homomorphism π1(W ) → π1(Z) is surjective.

Proof. Let Γ be the image of π1(W ) → π1(Z). There is a connected covering

Z ′ → Z such that π1(Z
′) = Γ (as subgroup of π1(Z)). We have a lift W → Z ′ of the

morphism π : W → Z such that Z ′ is a quotient W/H for some subgroup H of G.

Assume that degree Z ′ → Z is > 1. Then H is a proper subgroup of G and G/H acts on

Z ′ such that Z ′/(G/H) = Z. Hence there is a point x ∈W such that Gx is not contained

in H. Then the image of x in Z ′ has a non-trivial isotropy subgroup contained in G/H.

This is a contradiction since Z ′ → Z is a non-trivial covering space. □

Now let X be a smooth projective surface, G a finite group of automorphisms of X,

and let Y := X/G be the normal projective quotient surface.

For a germ of a singular point (Y, p), the local fundamental group π1(Y −p) is finite.
Let x ∈ X be a point lying over p. Then π1(Y − p) is a quotient of Gx, and |Gx| | |G|.
In fact, if Hx is the normal subgroup of Gx generated by pseudo-reflections contained

in Gx then the image of x in X ′ := X/Hx is again a smooth point, say x′. The group
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Gx/Hx acts on X ′ and the image of x′ in X ′/(Gx/Hx) has analytically isomorphic local

ring as that of p on Y .

By the well-known result of D. Mumford about topology of a normal surface singu-

larity, the absolute value of the determinant of the intersection form of the exceptional

divisor at p (called determinant, for simplicity) is |π1(Y −p)/[π1(Y −p), π1(Y −p)]|. This
group is a quotient of Gx/[Gx, Gx], whose order is a factor of |G|.

These observations will be implicitly used later.

Let φ : Y → C be a morphism on a normal projective surface Y onto a smooth

projective curve C. Following Sakai [6] it is called a minimal ruled fibration, if a general

fiber of φ is isomorphic to P1 and every fiber of φ is irreducible.

Assume that φ is a minimal ruled fibration and F0 a scheme-theoretic fiber of φ.

We say that F0 is a singular fiber of φ if F0 contains a singular point of Y . The following

result proved in [6] is crucially used in our work.

Proposition 1 (Sakai’s result). Let F0 be a singular fiber of φ. We have the

following assertions.

(i) Y has at worst rational singular points.

(ii) F0 contains at most two singular points of Y .

(iii) The multiplicity m of F0 is > 1.

(iv) If τ : Ỹ → Y is a minimal resolution of singularities of Y then the inverse image

τ∗(F0) has the following dual graph.

Figure 2.

Here aij ≥ 2, a′ij ≥ 2 for all i, j ≥ 0. The curve F ′
0 is the proper transform of F0.

We allow t = 0.

Let [a1, . . . , an] = a1− 1
a2−...− 1

an

denote a continued fraction where all ai ≥ 2. Let

[a1, . . . , an] = d/e, where d, e are mutually prime positive integers.

(v) If [a11, . . . , a1n1 ] = d1/e1, then [a′11, . . . , a
′
1n′

1
] = d1/(d1 − e1) and for i ≥ 2, if

[ai1, . . . , aini ] = di/ei then [a′i1, . . . , a
′
in′

i−1, a
′
ini

− 1] = di/(di − ei).
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(vi) The multiplicity of F0 is equal to
∏k

i=1 di.

(vii) Y contains at most one irreducible curve C0 with C2
0 < 0. If such a curve C0 exists

then for any other horizontal irreducible curve D0 on Y we have D2
0 > 0.

Remark. We will apply (vii) above as follows. Let Y = X/G and B0 be the

branch divisor in Y -Sing Y . If B0 is not irreducible then B2
i > 0 for some component of

B0. In this case we can apply the Nori’s theorem (see Section 5).

3. The case when X/G is a P1-bundle.

In this section we begin with a more general finite group, and not just those whose

order is a product of distinct primes, as it is in the main theorem of this article. Let X be

a smooth projective surface, G a finite group acting faithfully on X and Y := X/G the

quotient surface. Assume that φ : Y → C is a surjective morphism onto a smooth curve

such that all the fibers of φ are irreducible. There is an induced morphism X → C. By

taking Stein factorization we get a morphism ψ : X → D onto a smooth curve D with

an irreducible general fiber. Now G permutes the fibers of ψ. Let π : X → Y be the

quotient morphism. If some fiber G0 of ψ is reducible then its irreducible components

are conjugate under G. In particular, they have the same ramification index over their

common image which is a fiber of φ. Any irreducible curve Γ in X such that ψ(∆) = D

meets at least one of the irreducible components of G0.

We call such a curve Γ a horizontal curve for ψ.

We assume that the following conditions are satisfied:

(1) Any isotropy subgroup Gx is normal in G.

(2) No isotropy subgroup has any isolated fixed point in X.

Note. It should be emphasized that the assumption (2) above is appearing only

because we are handling arbitrary finite groups. The main theorem of this article, deals

with those finite groups G, whose order is a product of distinct primes. For these groups,

which is the object of our study, the assumption (2) is naturally satisfied. This follows

from our subsequent results. But it is useful to discuss the more general setting for

clarity.

Let H1,H2, . . . be the horizontal irreducible ramified curves in X. Let GHi be the

isotropy subgroup of a general point in Hi. By assumption (1) GHi is normal in G. By

Lemma 3, GHi is abelian. Let GH be the (normal) subgroup of G generated by all the

GHi for i = 1, 2, . . .. Clearly GH is normal in G. Similarly, let F1, F2, . . . be the fibers of

ψ which are ramified over Y and let GFj
be the (normal) isotropy subgroup of a general

point in Fj . We say that an irreducible curve ∆ ⊂ X is vertical for ψ if ∆ is contained

in a fiber of ψ.

Let GV be the (normal) subgroup of G generated by GFj for j = 1, 2, . . ..

Claim. The natural morphism X/(GH .GV ) → Y is unramified outside finitely

many points. In particular, if Y is smooth then this morphism is unramified.
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For, suppose that x1 ∈ X/(GH .GV ) is a ramified point. Let x ∈ X be a point lying

over x1. Then x is ramified for the morphism X → Y . Since the isotropy subgroup Gx

fixes a curve passing through x pointwise by the assumption (2), Gx ⊂ GH .GV . As in

Lemma 1 we know that |GHi | is the ramification index of Hi over its image in Y . By the

same argument |GHi | is the ramification index of Hi over its image in X/(GH .GV ). Now

it is clear that no curve in X/(GH .GV ) is ramified over its image in Y . If Y is smooth

then purity of branch locus implies the second assertion in the claim.

In view of the above observations we can decompose the morphism X → Y as

X → X1 → Y , where X1 → Y is unramified outside finitely many points. If Y is smooth

then X1 → Y is unramified.

In what follows we will often replace Y by X1 so G = GH .GV . Now there is no

non-trivial decomposition of X → Y as X → X ′ → Y where X ′ → Y is unramified

outside finitely many points (i.e. X ′ → Y is divisorially unramified).

Combining the arguments above we have the following result.

Lemma 7. Let X,Y = X/G be as above. Assume that every isotropy subgroup Gx

is normal in G, and G = GH .GV . Then the morphism X → X/GH has only horizontal

ramified curves and X/GH → Y has only vertical ramified curves.

Of particular interest to us is the case when Y is a P1-bundle over C. Since X/GH →
Y has only vertical ramification we see easily that X/GH is also a P1-bundle over a

suitable curve C ′. Then X → X/GH has only horizontal ramified curves. In view of

this, we will often assume that X → Y has only horizontal ramification.

(3) From now onwards till the end of this section we will assume that the quotient

surface Y = X/G is a P1-bundle φ : Y → C over a smooth curve C, but X does not

admit any C∞-fiber bundle structure. Further, |G| is a product of distinct primes. As

said in the Introduction we will also assume the Basic Setup stated on the third page of

this paper.

Remark. The motivation for this assumption is that the topology of differentiable

fibers bundles over smooth projective surfaces is better understood.

In Section 7 we will give an example to show that even when G is abelian, the results

below are not true without the hypothesis in the Main Theorem (see Introduction).

Let ψ : X → D be the induced morphism onto a smooth curve D with an irreducible

general fiber. Now G permutes the fibers of ψ. Let π : X → Y be the quotient morphism.

The crucial ideas in this section have already been used in [4] and [3]. From results

in [5, Chapter 5, Section 2.8.1], there is a suitably normalised locally free sheaf E of rank

2 on C such that Y = P(E). Let g be the genus of C. Let E be the divisor corresponding

to ∧2E , e = − deg E and C0 a cross-section of φ with C2
0 = −e. Let l be a general fiber

of φ. Every divisor on Y is numerically equivalent to an integer linear combination of

C0 and l.

By Lemma 3 every Gx is abelian. This implies by Lemma 2 that the ramification

divisor R in X is a simple normal crossing divisor (SNC, for short). Purity of branch

locus implies that there are no isolated branch points in Y . Write R =
∪
Ri, where Ri

are irreducible components of R. Let Bi = π(Ri). Let Bi ≡ aiC0 + bil.
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Claim. There is at least one horizontal ramified curve for X → Y .

If this is not true then the induced morphism on X is a P1-fibration which is actually

a bundle. By assumption this cannot happen.

Case 1: We first consider the case when there are no vertical ramified curves.

In this case each Bi is horizontal and hence ai > 0.

Case 1.1: Assume that e ≥ 0. If Bi is different from C0 then by Proposition 2.20

on [5], ai > 0, bi ≥ aie. Then B2
i ≥ 0 and equality holds only if e = 0, bi = 0. Then

Bi ≡ aiC0.

Case 1.2: Assume that e < 0. If Bi ̸= C0 then using Proposition 2.21 in [5] we

check that B2
i > 0. Thus, in this case each B2

i > 0. By the assertion of Lemma 2 we

see that
∪
Ri is SNC and hence so is

∪
Bi. By Nori’s theorem in Section 5, the natural

homomorphism π1(X) → π1(Y ) has finite abelian kernel. Clearly, π1(Y ) ∼= π1(C). If F

is a general fiber of ψ then the composite morphism F → D → C shows the image of

the homomorphism π1(F ) → π1(X) is contained in the kernel of π1(X) → π1(Y ). This

shows that the image of π1(F ) in π1(X) is a finite abelian group.

Now we consider Case 1.1 in more detail. First let e > 0.

By the above claim there is at least one horizontal ramified curve. The only irre-

ducible curve on Y with self-intersection < 0 is C0 and every other horizontal irreducible

curve has strictly positive self-intersection. For any finite morphism ∆ → P1 of de-

gree > 1 at least two points in P1 are branched so it cannot happen that C0 is the

only branched curve. Let B1, B2, . . . be the irreducible branch curves with B2
i > 0 for

i = 1, 2, . . . , n. Let B0 = C0 if C0 is ramified. The union
∪n

0 Bi is SNC. By Nori’s

theorem the kernel of the homomorphism π1(X−π−1C0) → π1(Y −C0) ∼= π1(C) is finite

abelian. Then as in Case 1.2 we deduce that π1(F ) → π1(X) has finite abelian image.

Now let e = 0. Let B1, B2, . . . , Bm be the irreducible branch curves with B2
i = 0

and Bj be the branch curves with B2
j > 0 for j = m+ 1, . . . , n.

For i = 1, . . . ,m we have Bi ≡ aiC0 with ai > 0. If g = 0 and ai > 1 then the linear

system |aiC0| does not have any irreducible member. Hence in this case ai = 1 and Bi

is a cross-section disjoint from C0. In this case Y is isomorphic to P1 × P1.

Assume that g > 0. Using the expression KY ≡ −2C0 + (2g − 2)l, and the genus

formula we infer that if g > 0 then 2gBi − 2 = ai(2g− 2). By Riemann–Hurwitz formula

the morphism Bi → C is unramified for i = 1, 2, . . . ,m. If bj ̸= 0 then B2
j > 0.

For j > m we have Bj ≡ ajC0 + bj l and bj > 0. Then Bj meets every irreducible

curve on Y . Let Gi be the isotropy subgroup of a general point of Ri for i = 1, . . . , n.

By the proof of Lemma 3 for i ̸= j the intersection Gi ∩ Gj = (e). Let G0 be the

normal subgroup of G generated by G1, G2, . . . , Gm and let G′
0 be the normal subgroup

generated by Gj for j = m + 1, . . . , n. Then G0 ∩ G′
0 = (e) since |G| is a product of

distinct primes.

Let X1 := X/G′
0. Then the branch curves for X1 → Y are B1, . . . , Bm. It follows

that X1 is a differentiable fiber bundle. In particular X1 is a smooth surface. The inverse

image of
∪n

j=m+1Bj in X1 is an SNC divisor which is the branch curve for X → X1.

The inverse image of each Bj for j > m splits into disjoint smooth curves in X1, and

hence the self-intersection of each of these irreducible components is positive. Again by
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Nori’s theorem in Section 5, the homomorphism π1(X) → π1(X1) is an isomorphism. To

see the surjectivity of this homomorphism we use Lemma 6. The injectivity follows from

the proof of Nori’s theorem in Section 5.

Case 2: We consider the general case when both horizontal and vertical ramification

exists.

By Lemma 5, GH ∩ GV = (e). The morphism X → X/GH has only horizontal

ramification and X/GH → X/(GH .GV ) has only vertical ramification. Finally, the mor-

phism X/(GH .GV ) → X/G is unramified. It follows easily that X/GH is a P1-bundle

and X → X/GH is reduced to Case 1.

This proves Theorem 1 (Main Theorem) stated in the Introduction for the case X/G

is a P1-bundle.

We now state an analogous result of the Main Theorem for smooth surface of general

type with an action of any finite cyclic group such that X/G is a P1-bundle.

Theorem 1′. Let X be a smooth projective surface of general type, G a finite

cyclic group acting on X such that Y := X/G is a P1-bundle. Then we have the following

assertions:

(1) gcd(|GH |, |GV |) = 1.

(2) With K := GH · GV the morphism X/GK → X/G is finite unramified, so that

X/GK is also a P1-bundle.

(3) X/GH is a P1-bundle over a smooth curve C̃. Letting F to be a general fiber of the

induced morphism X → D the image of the homomorphism π1(F ) → π1(X) is a

finite abelian group.

We will omit the proof of the above result.

4. Fiber multiplicity and |G|.

In this section we will prove the following general result.

Theorem 2. Let ψ : X → D be a fibration on a smooth projective variety X onto a

smooth projective curve D with irreducible general fiber. Suppose that H is a finite group

of automorphisms of X which permutes the fibers of ψ to fibers of ψ. Let Y := X/H with

induced fibration φ : Y → C with irreducible general fiber. Let σ : Ỹ → Y be a resolution

of singularities of Y and induced fibration φ̃ : Ỹ → C. Let F̃0 be a fiber of φ̃ and G0 a

fiber of ψ mapping onto F0 := σ(F̃0). Then the multiplicity of G0 is at most equal to |H|
times the multiplicity of F̃0.

Proof. We will use the following easy observation.

Let τ : X1 → X be the blowing up with center a point in G0 and let G1 be the

scheme-theoretic inverse image of G0 in X1. Then mult(G1) = mult(G0).

We will first prove that mult(G0) ≤ |H| ·mult(F0).

Let f : X → Y be the quotient map.
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Let m := mult(F0). Write F0 = mA0, where A0 has multiplicity 1. Then A0 =∑
aiAi, where Ai are the irreducible components of A0 and gcd{a1, . . . , an} = 1. Now

f∗(F0) = m
∑
ai(

∑
biBij), where Bij are the irreducible divisors in X lying over Ai with

ramification index bi (since f is Galois). Clearly bi| |H| for each i. Let p := ψ(G0), q =

φ(F0). If e is the ramification index for the map D → C at p then we see that the

multiplicity of G0 is (m/e) times the greatest common divisor of b1, b2, . . ..

Now it follows that the multiplicity of G0 is at most equal to m · |H|.
Let X be the normalization of Ỹ in the function field of X. Then there is an induced

fibration ψ : X → D. Let G0 be the scheme-theoretic inverse image of G0 in X. The

previous argument shows that mult(G0) ≤ |H| ·mult(F̃0). If X̃ → X is a resolution of

singularities of X and G̃0 the corresponding fiber in X̃ then mult(G̃0) = mult(G0). But

G̃0 is a union of proper transforms of irreducible components of G0 and exceptional curves

obtained by resolution of singularities. Hence mult(G0) = mult(G̃0) ≤ mult(G0) ≤
|H| ·mult(F̃0). This proves the theorem. □

We have the following application of this result. This was proved in [3, Theorem 2],

by a more complicated argument.

Corollary. Let X be a smooth projective surface with a morphism ψ : X → D

onto a smooth projective curve D such that a general fiber of ψ is a smooth hyperelliptic

curve of genus g ≥ 2. Then the multiplicity of any fiber of π is at most 2.

Proof. In [3, Lemma 5], it is proved that the group H := Z/(2) acts on X such

that every fiber of ψ is stable under this action and the action on a smooth fiber is

the hyperelliptic involution. Let Y := X/H. Then Y is a normal projective surface

with an induced P1-fibration φ : Y → C. Let Ỹ → Y be a resolution of singularities

of Y with the induced P1-fibration φ̃ : Ỹ → C. It is well-known, and easy to prove,

that the multiplicity of any fiber of φ̃ is 1. Now the result follows immediately from

Theorem 2. □

5. Minimal P1-fibrations as quotient.

Our next result deals with the case when φ : Y = X/G → C is a minimal ruled

fibration. We will assume that the fibration ψ : X → D is not a P1-fibration. Let F0 be

a singular fiber of φ.

Theorem 3. If g : Y → C is a minimal P1-fibration then the multiplicity of any

fiber F0 divides |G|.

Proof. We will use Proposition 1. Clearly, Y has at most quotient singular

points. By Proposition 1, F0 contains at most two singular points. We will divide the

proof according as F0 has one or two singular points.

Case 1: F0 contains a unique singular point p of Y .

In the notation of Proposition 1, let F̃0 be the inverse image of F0 in Ỹ . Then the

dual graph of F̃0 looks like either Figure 3 or Figure 4.
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Figure 3.

F ′
0 is the proper transform of F0 and it is the unique (−1)-curve in F̃0. We have

t ≥ 1. The multiplicity of F0 is equal to the determinant of the vertical branch starting

with −a11 and ending with −a1n1 , say d. It is easy to check that the determinant of the

intersection form of the resolution of singularities of p, say δ, is d2. The determinant is

a factor of |G|.
Thus, (multiplicity F0)

2 divides |G|.
The following case can also occur.

Figure 4.

The number of (−2) curves on the right most branch in the above diagram is t− 1.

In this case, 4t divides |G| and the multiplicity of F0 is 2t. Hence, multiplicity of F0

divides |G|.

Case 2: Suppose F0 contains two singular points of Y .

Using Proposition 1, we see that the dual graph of F̃0 is one of the following cases

(A) or (B).

Figure 5.
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It follows that at least one of the singular points is a cyclic quotient singular point.

Subcase (A): Let d1 be the determinant of the first vertical branch starting with

−a11, and let d2 be the determinant of the second vertical branch starting with −a21. By
Proposition 1, if [a21, . . . , a2n2 ] = d2/e2, then [a′21, . . . , a

′
2n′

2−1, a
′
2n′

2
− 1] = d2/(d2 − e2).

The multiplicity of F0 is d1 · d2. Now d1 = 2 or 3 since Y has only quotient singular

points. If d1 = 2 then the dual graph of F̃0 is

Figure 6.

If d1 = 3 then by Proposition 1 we see that the dual graph of F̃0 is

Figure 7.

In case d1 = 2, we check easily that the determinant of the non-cyclic singularity is

4 · d2. Now multiplicity m of F0 is 2 · d2. Since 4d2 | |G|, we see that m | |G|.
Suppose d1 = 3. Then we check that the determinant of the non-cyclic singularity

is 9 · d2, which divides |G|. Multiplicity m of F0 is 3 · d2. Thus m | |G|. We have also the

case

Figure 8.

The number of (−2) curves on the right most branch is l. Then m = d(l + 1),

δ = d2(l + 1) (where δ is the absolute value of the determinant of the intersection form

of the resolution of singularities). We note for future use the following observation.

For the Subcase (A), |G| is divisible by l2 for some prime number l.
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Corollary. Assume that |G| is a product of distinct primes. Then Subcase (A)

cannot occur on any singular fiber of Y → C.

Subcase (B): In this case, if [a11, . . . , a1n1 ] = d1/e1 then [a′11, . . . , a
′
1n′

1
] = d1/(d1 −

e1). The multiplicity m of F0 is d1. It follows that m | |G|. This completes the proof of

Theorem 3. □

If |G| is a product of distinct primes then our proof shows that every singular fiber

F0 of Y → C has two cyclic quotient singular points of Y . The dual graph of F̃0 is a

linear chain such that F ′
0 is the only (−1)-curve in F̃0 and the multiplicity of F0 is equal

to the determinant of either of the two singularities. This observation will be important

for the proof of Theorem 1.

Proof of Theorem 1 (Main Theorem). Let X be a smooth projective surface

with an action of a finite group G such that |G| is a product of distinct primes and all

the isotropy subgroups Gx are normal in G. Assume that Y := X/G admits a minimal

P1-fibration φ : Y → C. Let π : X → Y := X/G be the quotient morphism. Assume

that the induced fibration ψ : X → D is not an essentially C∞-fiber bundle.

For the proof of this result we need a result due to Madhav Nori (see [7]). We state

a special case which is enough for our use.

Nori’s Theorem. Let ∆ and S be reduced curves on a smooth projective surface

Z with ∆ ∪ S an SNC curve, with ∆2
i > 0 for every irreducible component of ∆. Let W

be a normal projective surface with a finite morphism π : W → Z which is unramified

outside ∆∪S. Then the kernel of the map π1(W −π−1S) → π1(Z−S) is a finite abelian

group.

Let B0 be the divisional part of the branch locus for π. We will first consider the

case when C is non-rational. Let m1G1,m2G2, . . . ,mrGr be the singular fibers of φ. If

Y is smooth then the result is proved in [3]. Now assume that r ≥ 1.

By the solution of Fenchel’s Conjecture due to Nielsen-Bundgaard and Fox (see [2]),

there exists a finite Galois ramified morphism τ : C̃ → C such that τ is ramified precisely

over the points φ(Gi) with ramification index mi.

Let Ỹ be the normalisation of the fiber product Y ×C C̃.

Claim. Ỹ is smooth and the fibers of the morphism Ỹ → C̃ are irreducible, i.e. Ỹ

is a P1-bundle over C̃. Further, Ỹ → Y is unramified outside Sing Y .

We will only indicate the proof since this must be well-known to experts.

The proof is local with respect to C, so we will assume that φ : U → D1 is a

P1-fibration on a normal surface U with irreducible fibers and D1 is a small disc in C

around the origin. Let the central fiber F0 have multiplicity m. Assume that F0 contains

exactly two cyclic quotient singular points p, q. Let U ′ → U be the minimal resolution

of singularities of U . The inverse of F0 in U ′, say F̃0, is a linear chain of smooth rational

curves and the proper transform F0 in U ′ is the unique (−1)-curve in F̃0.

Consider the map D2 → D1 given map z → zm. Here D2 is another copy of D1, z

the local parameter on D2. Let Ũ be the normalization of the fiber product U ×D1 D2.

The inverse image of F0−{p, q} splits into a certain number of disjoint curves isomorphic
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to C∗. The closure of each of these irreducible curves in Ũ contains two more points.

The inverse image of F0 in Ũ is simply-connected. From these we deduce that the inverse

image of F0 − {p, q} in Ũ is irreducible, it occurs with multiplicity 1 in the P1-fibration

on Ũ , and it is a connected covering of F0 − {p, q} of degree m. This implies that the

inverse image of p and q are single smooth points.

This shows that Ũ is a P1-bundle over D2.

Let X̃ = X ×Y Ỹ be the normalisation of the fiber product. We can apply the proof

of Theorem 1 in [3] to the morphism X̃ → Ỹ without any changes.

The map X̃ → X is unramified. By the proof of Theorem 1 in [3], the map π1(X̃) →
π1(Ỹ ) is an isomorphism.

The map π1(Ỹ
0) → π1(Y

0) is an injection and π1(X̃) → π1(X) is an injection.

Hence the composite map π1(X̃) → π1(Y
0) is an injection. If K is the kernel of the

map π1(X
0) → π1(Y

0), then K ∩ π1(X̃) = (1). Hence K injects into the quotient

π1(X)/π1(X̃). (Note that X̃ → X is a Galois morphism so that π1(X̃) is a normal

subgroup of π1(X).) It follows that K is finite.

As in [3], we prove that the universal cover of X is holomorphically convex.

Let m̃1F̃1, . . . , m̃sF̃s, be the multiple fibers of X → D. We have the exact sequence

(X): π1(F ) → π1(X) → Γ → (1), where

Γ = ⟨a1, b1, . . . , ag, bg, e1, . . . , es | [a1, b1] · · · [ag, bg]e1 · · · es = 1 = em̃1
1 = · · · = em̃s

s ⟩.

The image of the composite map π1(F ) → π1(X) → π1(Y
0) factors through

π1(P1), P1 being a general fiber of Y → C (image of F in Y ). Hence the im-

age π1(F ) → π1(Y
0) is trivial. If the image π1(F ) → π1(X) is infinite then kernel

π1(X) → π1(Y
0) will be infinite, a contradiction. Hence image π1(F ) → π1(X) is finite.

This completes the proof of Theorem 1 in case C is non-rational. Now assume that

C is rational. Let q1, q2, q3 be three general points in C. Let C̃ → C be a Galois ramified

cover which is branched only over q1, q2, q3 with ramification index > 2 for each qi. Then

C̃ is non-rational. Let Ỹ = Y ×C C̃ be the fiber product and let X̃ = X ×Y Ỹ be the

fiber product. Then G acts on X̃ such that Ỹ is the quotient. The P1-fibration on Ỹ is

a minimal ruled fibration. Further, X̃ is smooth.

By the previous case, the image π1(F̃ ) → π1(X̃) is finite, where F̃ is a general fiber

of the induced fibration X̃ → C̃. This implies that π1(F ) → π1(X) is also finite since

F̃ → F is a isomorphism. This completes the proof of Theorem 1. □

6. The case when X/G is a smooth surface of Kodaira dimension zero

or an anticanonical rational surface.

In this section we assume that G has prime order and acts on a smooth projective

surface X of general type such that Y := X/G is either a minimal surface of Kodaira

dimension zero or an anticanonical rational surface (that is a smooth rational surface

with an effective anticanonical class).

Theorem 4. Let a group G of prime order act on a smooth projective surface X of

general type. Let X/G be either a smooth rational surface with an effective anticanonical
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divisor or a minimal surface of Kodaira dimension zero. Then π1(X) is isomorphic

to π1(X/G). In particular, if X/G is either an anticanonical rational surface or a K3

surface, then X is simply-connected.

Proof. We first prove the harder case of X/G an anticanonical rational surface.

Let B1, B2, . . . be the irreducible branch divisors in Y = X/G. By purity of branch locus

there are no isolated branch points. Since G has prime order Bi ∩ Bj = ∅ for i ̸= j and

each Bi is smooth.

Claim 1. B2
i > 0 for at least one i.

Assume that B2
j ≤ 0 for each branch curve. First we have the following.

Claim 2. −KY ·∆ ≥ 0 for every irreducible curve ∆ on Y .

Suppose the claim is not true. Write | − KY | = a1∆1 + a2∆2 + · · · + ar∆r +M ,

where
∑
ai∆i is contained in the fixed part with −K ·∆i < 0 for all i ≤ r, M does not

contain any ∆i for i ≤ r, and all ∆2
i < 0 for i ≤ r. Then KY = −

∑
ai∆i −M .

Let π : X → Y be the quotient morphism. Write π∗Bj = njRj where nj is the

ramification index over Bj . Hence

KX = π∗KY +
∑

(ni − 1)Rj

= π∗
(
KY +

∑ nj − 1

nj
Bj

)
= π∗

(
−
∑

ai∆i −M +
∑(

nj − 1

nj

)
Bj

)
.

All B2
j ≤ 0 and for i ≤ r, ∆2

i < 0. Then we can see that |NKX | cannot grow

quadratically with N . This contradiction shows that −KY · ∆ ≥ 0 for all irreducible

curves ∆ on Y . This proves Claim 2.

From Claim 2 and the effectivity of −KY we infer that K2
Y ≥ 0. We fix one Bi.

From B2
i ≤ 0, KY ·Bi ≤ 0, we have the following cases.

(a) B2
i = −2, KY ·Bi = 0. Then Bi is a (−2)-curve.

(b) B2
i = 0, KY ·Bi = −2. Then |Bi| gives a P1-fibration. In this case all other Bj are

in fibers of this fibration. Then X admits a P1-fibration, a contradiction.

(c) B2
i = −1 = KY ·Bi. Then Bi is a (−1)-curve, contradicting purity of branch locus.

(d) B2
i = 0, K ·Bi = 0.

Thus, only (a) and (d) are possible. We will first prove:

Claim 3. We can assume that X is minimal.

This is a general assertion and it does not use the assumption after Claim 1.

For, any two (−1)-curves on X are disjoint since X is of general type. Hence G keeps

the disjoint union of all (−1)-curves on X stable. By contracting all the (−1)-curves,
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we get a new smooth surface X1 with a G-action. The surface Y1 = X1/G also satisfies

−KY1 is effective, since we have a birational morphism Y → Y1. Continuing this way,

we can assume that X is minimal. This proves Claim 3.

As noted above only (a) and (d) are possible. Note also that K2
Y ≥ 0. If there is

a Bi such that (d) happens, then by Hodge Index Theorem, we have K2
Y = 0, since

Bi is not homologous to zero. By Ramification formula we have KX = π∗(KY +∑
((ni − 1)/ni)Bi), so if at least one of the Bi satisfies (d), other Bj ’s satisfy (a) (or

(d) or both), and this implies K2
X ≤ 0. But X was assumed to be a minimal surface of

general type, this is a contradiction. So no Bi can satisfy (d). This leaves us with (a) for

all Bi. We will show that this cannot happen either. Assume that there is a Bi such that

B2
i = −2, then consider π∗(Bi), this is a curve C in X, since π is a p-fold cyclic cover

where p is a prime, it is totally ramified, so C is of the form pRi. But since B2
i = −2

and X is smooth, this forces p = 2. But then R2
i = −1, this contradicts the fact that

X was minimal. This shows that neither (a) or (d) can occur. The above argument also

shows that no (−2)-curve can be a branch divisor.

This proves that B2
i > 0 for some i, say i = 1. This proves Claim 1.

For i > 1 from B1.Bi = 0 using Hodge Index Theorem we get that B2
i < 0 for i > 1.

But KY .Bi ≤ 0 implies that Bi is a (−2)-curve for i > 1. But it has been shown above

that no (−2)-curve can be in the branch divisor. This shows that B1 is the only branch

curve in Y . Now we can use the proof of Nori’s theorem. This shows that π1(X) → π1(Y )

is an isomorphism. Finally, this means that X is simply-connected since Y is a smooth

projective rational surface.

We now prove the result when X/G is a minimal surface of Kodaira dimension

zero. Since G is a group of prime order, the branch divisors of the finite Galois cover

corresponding to X −→ X/G are disjoint union of smooth irreducible curves Bi. Note

that X is a smooth surface of general type, so KX is nef and big. It is assumed that

X/G has Kodaira dimension zero, so KX/G is numerically trivial. Hence the canonical

bundle formula for finite cyclic covers, says that there has to be at least one Bi such that

B2
i > 0. Since Bi’s are disjoint, and at least one of them has positive self intersection,

Nori’s Theorem shows that π1(X) → π1(X/G) is an isomorphism.

In particular if X/G is a K3 surface, then X is simply connected. This completes

the proof of Theorem 4. □

7. Examples.

In this section we give few examples which illustrate how our results in this paper

are optimal.

(1) The following is a classical example:

Let x1, x2, x3 be coordinates on C3. Let the symmetric group G := S3 act on the

xi’s by permutations. The hyperplane H := {x1 + x2 + x3 = 0} is stable under G.

We can take x1, x2 as coordinates on C2. Let τi be the three transpositions in G,

and let σ be the 3-cycle sending (x1, x2, x3) to (x2, x3, x1). Each τi is a reflection.

The three lines Ri fixed pointwise by the τi (in some order) are x1 = x2, x1+2x2 =

0, 2x1 + x2 = 0. Also, σ fixes only the point (0, 0).
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The ramification divisor in H is the union of the lines Ri, which does not have

normal crossings. Only σ generates a normal subgroup of G. The ring of invariants

under σ is generated by y31 , y
3
2 , y1 · y2, where y1 = x1 − ωx2, y2 = x1 − ω2x2. Here

ω is a primitive root of unity.

The image of τ1 generates the quotient G/(σ). We check easily that the ring of

invariants for this action is generated by y31−y32 , y31 ·y32 . Thus,H/G ∼= C2. The image

of the line x1 = x2 is a curve with equation z2 = az21 for some non-zero constant

z. Similarly, the images of the other two lines have equations z2 = a′z21 , z2 = a′′z21
with distinct non-zero constants a, a′, a′′. The union of three curves in the branch

divisor in H/G. Clearly, all these curves are smooth and tangential to each other

at (0, 0).

(2) This example was conveyed to the second author by Catanese (see also [4]). If

X/G is not a P1-fibration, then the image of π1(F ) → π1(X) need not be finite.

Consider a double cover X of E × P1 with E an elliptic curve, branched along a

smooth bi-section, then X is a genus two fibration. The image of the above map is

Z× Z in this case. In this example, X/G has an elliptic fibration with irreducible

fibers, but not all fibers of X are irreducible.

(3) If X/G is a P1-fibration and |G| is not a product of primes, the above image can

be infinite. This example appears in [4]. This is a Galois cover of P1 × P1. X is

fiber product of two double covers branched along the smooth divisors D1 linearly

equivalent to (2m+ 2)f and D2 linearly equivalent to (6C0 + 2f), where C0 is the

minimal cross-section and f is a fiber of P1 × P1. The group G in this case is

Z/(2) × Z/(2). Note that X is fibered over P1 by curves of genus 3 and can be

made to have arbitrarily large irregularity, so the image π1(F ) → π1(X) cannot be

finite.

(4) The factorization theorem is a important step in the proof of the Main Theorem, the

fact that |G| is product of distinct primes is used crucially there. The fact that X

is smooth is also crucially used in the proofs of the Main Theorem and in Theorem

1′ in Section 3. The following example illustrates these crucial points; it shows

these are necessary hypothesis. There are families of examples in [4] where X/G

corresponds to the Hirzebruch surfaces and the group is G = Z4. We will specialize

to the case when X/G = P1 × P1 below, for this serves our purpose. Here the

respective branch curves are horizontal. Still the finiteness of the π1(F ) → π1(X)

is not true.

This example is a quadruple Galois cover of P1 × P1 with G = Z4. Here X is

obtained as a composition of two double covers φ2 : X −→ X1 and φ1 : X1 −→ Y ,

where Y = P1 × P1. Here φ1 is branched along a smooth divisor D2 linearly

equivalent to 4C0, φ2 is branched along the ramification of φ1 and φ∗
1D1, where

the divisor D1 is a smooth divisor linearly equivalent to (2m+4)f . Note that X is

fibered over P1 by curves of genus 3 and has irregularity 1. In this case X is never

smooth, and the mildest possible singularities of X are A1 singularities.

(5) Another example in [4] serves the following purpose:
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Here X/G is a P1-fibration. The surface X is a bidouble cover branched along a

smooth divisor D1 linearly equivalent to 2C0+(2m+4)f and a smooth divisor D2

linearly equivalent to 4C0. Both branch divisors are horizontal, yet the relevant

image is not finite. The group G is Z/(2)×Z/(2). The fact that the |G| is a product

of distinct primes in the Main theorem is a necessary one.
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