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Abstract. Rankin obtained the asymptotic formula for the sum of coefficients
of Rankin-Selberg L-series associated with a cusp form and a trivial character. Ivic-
Matsumoto-Tanigawa studied the error term in it by using a mean value formula which
is yielded from the Voronoi formula of the Riesz mean. In this paper, we consider
more general Rankin-Selberg L-series. It is associated with two cusp forms and a non-
trivial character mod d. Ivic-Matsumoto-Tanigawa’s method cannot be applied directly
to our case. We consider the sum of coefficients of twisted Rankin-Selberg L-series by
a modification of their method.

1. Introduction.

Rankin obtained an asymptotic formula for the sum of the square of the
absolute value of Fourier coefficients of a cusp form of integral weight x > 1.
Ivic-Matsumoto-Tanigawa [6] suggested a way of improving the error term in
Rankin’s result. In this paper, we extend their method to the case of the sum of
the product of Fourier coefficients of a cusp form and a twisted cusp form.

Let f and g be normalized Hecke eigen cusp forms of integral weight k and
[ respectively for SL,(Z) (we assume k >/ > 12), and we use the symbols @, and
b, for the n-th Fourier coefficients of f and g at oo respectively. The Fourier
coefficients of f and g are known to be real. We fix a Dirichlet character y mod
d. The Rankin-Selberg L-function associated to f, g and y is defined as the
following Euler product:

Lygy(s %)

=TT = ()24 (1 = g B (s /21!
4

x (1= a,B,x(p)p " CTZ N1 — g, B y(p)p~ A1 (L1)

where o, and f8, are complex numbers satisfying
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oy + 0y = dp, || :P(k_l)/za

B,+B,=b, and |B,[=p"V/>

(Here the bar symbol means the complex conjugate.) The existence of those
numbers is implied by Deligne’s result [2]. The above Euler product is abso-
lutely convergent in R(s) > 1, and we know

. a,by(n
Lyaylog) = L2s2) 3 -brlt)

where L(s,?) is the Dirichlet L-function associated with y2>. We put

X c
Lf@g(SaX) = l’l_}z

n=1

in R(s) > 1, then it is clear that

ey = n' ED2 () E an/,nzbn/mzmk+l_2.

m2|n

Deligne’s result implies ¢, « n® for any & > 0.

Rankin and Ivic-Matsumoto-Tanigawa [6] investigated the sum of
¢, In the case f =g and y 1s trivial. We call this case the non-twisted case.
In this paper we are interested in the cases “f # ¢~ or “f =g and y is not
trivial”’.  We call these cases the twisted case. In other words, in the non-twisted
case Lrg,(s,x) has a pole at s = 1 and in the twisted case L;g,4(s, y) has no poles.

In the twisted case, the author [4] obtained

ch « x3Ba*ste, (1.2)

n<x

when y is a primitive character. This means that

Zanbn}((n) < x(k+l)/2*2/5d4/5+6.

n<x

This result is analogous to Rankin’s result [10]. In the non-twisted case, Ivic-
Matsumoto-Tanigawa [6] proposed a method of improving Rankin’s result. If
we apply directly Ivic-Matsumoto-Tanigawa’s method [6] to the twisted case, we
can see that the x-aspect of the estimate of ), _ ¢, is under the same situation as
the non-twisted case, but the d-aspect of it is worse than (1.2). The aim of this
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paper is to propose a modification of Ivi¢-Matsumoto-Tanigawa’s method [6]
which improves the d-aspect. The new method introduced in the present paper
yields the following two theorems.

When y is a primitive character, we define the Riesz mean of ¢, as follows:

D(x)=T(p+ 1)) eulx—n)’, (1.3)

n<x

where x > 1 and p is a real number.

TueoreMm 1. If Di(x) « x*d?, where o and B are real numbers satisfying
dP < 2x'=%2 then we have Dy(x) « x**>dP/?.

THEOREM 2. We put Df(t) = Di(t) — tLrgy(0,%). Let x>1 be a real
number and ¢ be an arbitrary positive number satisfying 1 > &> 0. Then we have

x 285 & el
D*(t 2d[ _ n x13/4 + 0 x3+8d4+8 )
J, Pk = (1)

These theorems say that if we can obtain more detailed information on the
error term in Theorem 2, then we have the possibility of improving the estimate
in (1.2) with respect to both the x and the d-aspects. See the discussion at the
end of the present paper.

Ivic-Matsumoto-Tanigawa’s work is concerned only with the x-aspect.
When we consider the d-aspect, their method is not suitable as it is. There
are two novel points in the present paper. First, Ivic-Matsumoto-Tanigawa
[6] proved a mean value formula for A;(x) = Di(x)— Qi(x) (Qi(x) is defined
below), but a direct generalization of this formula is not suitable for our purpose.
We should study the mean value of a modification of A;(x) (see Remark 1 and
Remark 2 below).

Next we explain the second novel point. Ivic-Matsumoto-Tanigawa’s
method is based on two Voronoi formulas. They are called the truncated
Voronoi formula and the Voronoi formula of Meurman-type (It means the type
first introduced by Meurman [8]). In this paper, our method is also based on
the same type of Voronoi formulas of D,(x) (see sections 3 and 5) as them. In
order to obtain them, we have to consider the d-aspect carefully. To obtain
the truncated Voronoi formula is not so difficult. However we are confronted
with a difficult task of obtaining a Voronoi formula of Meurman-type. A good
estimate of Dj(x) is necessary to obtain it. When d = 1, we can estimate D;(x)
by using the Voronoi formula (2.2) for p =2 and the difference operator. This
is easy. But in the case d # 1, we cannot obtain a good estimate of D;(x) with
respect to the d-aspect when d?> < x < d*/16zn* if we use the same argument as
that in the non-twisted case.
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To overcome this trouble, we use a mean value formula which can be shown
by using only the truncated Voronoi formula (see [Lemma 2). This mean value
formula is worse than the formula in Theorem 2, but it is enough to deduce an
estimate of D (x) which is necessary to obtain the Voronoi formula of Meurman-
type. In Section 4, this argument will be explained.

Then, by using this estimate of D;(x), we can obtain the Voronoi formula
of Meurman-type of D(x) in the twisted case. By combining this formula with
the truncated Voronoi formula, we obtain the above two theorems.

The author would like to express her deep gratitude to Professor Kohji
Matsumoto for his comments.

2. The fundamental facts.

In this section, we introduce some facts about the Rankin-Selberg L-function
and the Voronoi formula for the Riesz-mean of Rankin-Selberg series, which are
defined in (1.1) and [I.3]. Throughout this paper, ¢ is an arbitrarily small pos-
itive constant.

First, we mention the facts on the Rankin-Selberg L-function. The function
Lyggy(s,x) can be continued analytically to the whole s-plane and holomorphic
except for the simple pole at s =1 which appears when f =g and y is a prin-
cipal character (see Li [7] and Ogg [9]). Li proved the following functional
equation when y is a primitive character:

%’@g(s,){) = C){%’@g(l —S,)Z), (21)

where
2r\ " k—1 k+1
Yrwg(s, 1) = (7) F<S+T)F< St——- 1)Lf®g(5 x)

and C, is a constant depending on y with |C,|=1. We know that L;g,(s, )
has no zeros in R(s) > 1 from the definition and Lyg,(s, ) has zeros at s = —n
(neN, n > (k—1)/2) from the functional equation (2.1). These zeros are called
trivial zeros.

Secondly, we mention some results on the Riesz mean of Rankin-Selberg
series D,(x). Hafner [3] obtained the Voronoi formula for the Riesz mean of
general L-functions with functional equations. The following Voronoi formula is
obtained by applying his result to D,(x). We have

“~ C,0y(2nd~ 167*xn
Bt 2 1674nd-! ”Pf”( d* ) 22)
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where
_ L[ I'(s)Lyggy(s, x)x""
0)(x) _Z—m'JC Flstp i) (2.3)
and
_ 1 I(1=s)I(s+ (k=1)/2)I(s+ (k+1)/2 = 1)x""7=*
)= %Jc FQ+p—)I(1—s+(k—=10)/2)(=s+ (k+1)/2) ds. (24)

Here the paths of integration C and Cj;, conform to Hafner’s notation;
let R be a real number satisfying R > (k+1/)/2—1, and the path C is the
rectangle with vertices b + iR and 1 —5b + iR and has positive orientation and
the path Cyj 1s the oriented polygonal path with vertices —ico, —iR, b — iR,
b+ iR, iR and ioco, where b > (k+1/)/2—1. From the definition, we see that
(d/dx)D,(x) = D,_1(x) and there are analogous relations for Q,(x) and f,(x).

The infinite sum on the right-hand side of (2.2) is absolutely convergent for
p>3/2 and it is convergent for p > 1/2 (see Hafner [3]). Moreover Hafner [3]
showed the asymptotic expansion of f,(x) which holds for x > 1. From that
expansion we know

fy(x) = O 4 o(x1 =0 (2.5)

for x > 1, where the last error term of (2.5) does not appear when b > 1+ p
and pe Z. Using Chandrasekharan-Narasimhan and Hafner [3], we obtain

1

—\/5_)c(3+6/’)/8 sin (4)61/4 + ﬂ71) + Oo(xUH8) L o(x!*7) (2.6)
T

4
for x > 1, where the last error term of (2.6) does not appear when b > 1 4 p and
pe”L.

Lastly, we refer some facts for ¢,. In Section 1, we already mentioned that
¢n < n* is implied by Deligne’s result [2]. We can see >_,_,/|ca| < M by using
the Cauchy-Schwarz inequality and Rankin’s result [10]. And we can also show
the estimate

Jo(x) =

Z len| <y, (2.7)

X—y<n<x

where x>0, x*<y<x and 0<e<1/2. In of the author [4],
this estimate was proved by using [Theorem 1 of Shiu [11], the Cauchy-Schwarz
inequality and applying the same method as that in the proof of Lemma 4 in
Ivi¢-Matsumoto-Tanigawa [6].
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3. The truncated Voronoi formulas for D,(x).
In this section, we prove the following proposition.
PrOPOSITION 1. Let 0<p<3/2 and 1 >¢>0. We put

€ 0<p<l

1
§‘|‘8 1 <p<3)/2.

Let N >d* and we assume N is large enough compared with k, | and p. Then
we have the following truncated Voronoi formula:
X"

D,(x) = mlﬂ@g(o;%)

CX p+1/2.(3+6p)/8 Cn . &n 1/4 R Zp
+ —(27z)p+1 d’ex ’;\] oy Sin| (xn) "™ + 7 7

+ O(X(l+6p)/8dp+3/2N(1—2p)/8 + x(1+3p)/4dp+1N(l—p)/4+e)
+ 0(x(3+3p)/4+8d,0+1N—(l+p)/4)

O(Xpdz + x(1+3p)/4dp+1N(1—p)/4+8* + xp—a*d2+46*) lf d4/16n4x > 1
{ O(x\1+60)/8gr+3/2) if d*/16n%x <1

+0(x""),
where the last error term does not appear when p = 0.

The first term on the right-hand side of this truncated Voronoi formula is zero
when k =1/, because L;gy(0,x) =0 in this case. This vanishing fact follows
from the functional equation (2.1).

PrOOF OF ProposITION 1. We put c=1+4+¢ and T >2+ (k+1/)/2. We
have

D,(x) = L(x,¢) + O(x"PTe 1177 4 xrte) (3.1)
where
l c+iT F(S)
1 = — — Ly ST ds.
p(x, C) 2niJciT F(S+p“r‘ 1) f®g(s’X)x s

This is shown by a way similar to the proof of Perron’s formula. The
Phragmén-Lindelof theorem implies Lygg(s, ) « (d(|f] + 1))2(1_U+8) in —e<o<
1 +&. By using this estimate and the residue theorem, we obtain
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xP

I =——L 0 J,
(5.6 = Fr gy Lren(00) + ()

+ 0(x1+p+sTflfp _|_xpfad2+4eTlfp+4a)7 (32)

where
1 —&+iT F(S)
= - 4 s,

300 = 35| o oy el 0x ds

By using the functional equation (2.1), we find

CX 2n ? 1+p - —_
H) =35 (j) * ;CnKp(n), (3.3)
where
B —e+iT F(S)F(l — 5+ (k — [)/2)F(_s_|_ (k_I_ l)/z) 16740 s—1
Kolr) = J—e—iT s+ 1+p) s+ k-=0/2)T(s+ (k+1)/2-1) ( 72 ) ds.

We divide the sum on the right-hand side of (3.3) into n < N and n > N. We
put T =2nd'(x+ (N +1/2))"/*. Using Stirling’s estimate and the first deriv-
ative test (see Lemma 2.1 of Ivi¢ [5]), we have

4N 1+e -1
K,(n) « <i_x> Ti-rtae (1 + (longl/Z) > + (nx) " EdARe T (34)
for n > N. For obtaining (3.4), we need to move the path of integration of
K,(n) to the line segment with vertices —e — 1/8 —iT and —e—1/8+iT in the
case 1 < p <3/2. This change of path produces the last term on the right-hand
side of (3.4). In other words, the last error term of (3.4) does not appear in the
case 0 < p < 1. The estimate (3.4) implies

C 21\
(%) zz_nxixw (7”) Y @K,y (n) + ORGP NI (3 5)
n<N

In the method of Ivic-Matsumoto-Tanigawa [6], moving the path of inte-
gration of K,(n) to a suitable path shows that K,(n) is expressed by f,(167*xn).
And they obtained the truncated Voronoi formula by using (2.6). Similarly,
in the case 16n*xn/d*>1, we use the fact that K,(n) can be expressed by
fr(16m*xn/d*). We can use (2.6) for f,(16z*xn/d*) if 16n*xn/d* > 1. Hence,
we divide the sum on the right-hand side of (3.5) into two parts d*/16z*x <
n< N and n < d*/16n*x in the case d*/16z%x > 1.
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First, we suppose d*/16n*x > 1. We change the path of integration of
K,(n) to the path L which is the oriented polygonal path with vertices u — ioo,
u—iT, —e—iT, —e+iT, p+iT and u+ ioo, where 1/4 < u < 1. Then we have

C 2m\? _
o= (F) T e

d*/l6n*x<n<N

J D(s)T(1 =2+ (k= 1)/ (=5 + (k+1)/2) (16”“X”>S_1 ds
LT

s+p+O)I(s+(k—=0/2)T(s+ (k+1)/2—-1)\ d*
C 2\’
Lyl d Z GuK,(n) + O(x1F30)/4 g1+ N (1=p) 442y (3.6)
2mi d n<d*/16n*x

by using the first derivative test. The residue theorem yields

C, 2n
=3 (7

2
d*/16n*x<n<N

1624 xn\ " 167*xn . (167*xn
() ) ew)

2
+ i)(.xH—p 2_7[ Z L_‘nKp(l’l) + 0(x(1+3p)/4d1+pN(1—p)/4+s), (37)
2mi d n<d*/16n*x

where
0,(x)
0 if k—=1=0,2 or p=0,

= z":(—l)’” T(14+m+(k=1)/2) I (m+ (k+1)/2)x""
m T(1+p—mI(—m+(k—1)/2)T(—m+ (k+1)/2—1)

otherwise,

m=1

and

min{p,u— 1} if peN,
K= 2

?—1 if p¢N.

When n < d*/16n*x, we have
Kp(l’l) « n—l—a*x—(3+p)/4d3+pN(l—p)/4+s* + n—l—a*x—l—e*d4+4s*

+ n*9/8*8x79/87£d9/2+48 T3/27p+4s
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by using the first derivative test. Here the last term on the right-hand side does
not appear in the case 0 < p < 1. These results and (2.6) imply

C, 20\ e & (8, 4 3-2p
- (7)o e

d*/16n*x<n<N
+ OO0/ N-20)/8 | o g2

+ x(1+3p)/4dl+pN(l—p)/4+£* + xp—e*d2+4e*).

Secondly, we suppose d*/167*x < 1. We can obtain (3.7) in the same way,
but the sum for n < d*/16n*x does not appear. By using (2.6), we obtain

C, 20\ ies & (87, s 3-2p
== (7) 2, s (g b T

d*/16mx<n<N

+ 0(x(1+6p)/8d3/2+pN(1—2/1)/8)

O(Xde + x(l+3p)/4dl+pN(lfp)/4+8* + xpfa*d2+4s*) d4/167z4x > 1
0(x(1+3p)/4d1+pN(1—p)/4+8) d4/16n4x <1

We recall (3.1), (3.2) and T:2nd‘1(x+(N-|—1/2))1/4, then we obtain the
truncated Voronoi formula for D,(x). O

REMARK 1. Ivic-Matsumoto-Tanigawa’s truncated Voronoi formula
includes the term Q,(x) (see the results (1.5) and in Ivi¢-Matsumoto-
Tanigawa [6]). In our case, we do not separate the term Q,(x) from J,(x)
when d*4/16n%*x > 1. If we separate Q,(x) from J,(x) in this case, we get a
truncated Voronoi formula with an error term which is worse than
1 with respect to d. In the case d*/16z*x <1 we can obtain the following
truncated Voronoi formula:

_ G (316p)/8 71/24p & (8m, s 3=2p
Dp(x) - Qp(x) ‘|‘WX d n<ZN 5208 Sin 7()6]/1) +Tn

+ 0(x(1+6p)/8d3/2+p + x(3+3p)/4+6d1+pN(l+p)/4 + xpd2)
+ O(x"** + x(1+3p)/4d1+pN(l—p)/4+6) (3.8)

for large N with N >max{d* 16n*}. This formula corresponds to Ivi¢-
Matsumoto-Tanigawa’s result. The way of obtaining it is as follows. From the
definition of Q;(x) and (3.7), we find
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2m\ Y . (167*xn
o) " gel

n<N

(0 if k—1=0,2 or p=0,

_ EK: ()" T +m+ (k= 1)/2)0(m+ (k +1)/2)x*~"C,(2n/d) ">
ml T(L+p—=mI(=m+ (k=D (=m+ (k+1)/2 1)

= 4 m=1

— K _
X Z n +Z (=)™ Y Lygy(—m,y) otherwise
nltm m  T(14+p—m) 720 77 ’

\ n>N m=1

(0 if k—1=0,2 or p=0,

= K m _
()" . |
Z m!' T'(l+p—m) Ligg(—m,z) + O3 N~ otherwise,

\ m=1

(0,(x) if k=1,

x? :
_ QP(X) _ml’f@(J(OﬂX) if P = 0 or k 7 I: (39)
p
0,(x) — ﬁgf@g(o,x} + O(xHB 32 N1y otherwise.
\

The formula is shown from (2.6), (3.7) and (3.9), which holds in the case
d*/167°x > 1.

4. The estimate on D(x).

The truncated Voronoi formula and the Voronoi formula of Meurman-
type (which means the type introduced by Meurman [8]) give a strong mean
value result which is in Theorem 2. Before investigating the Voronoi formula of
Meurman-type for D;(x), for a preparation we have to obtain an upper bound of
Dl(x).

Rankin’s result implies the estimate of D;(x) in the non-twisted case
(see Ivic-Matsumoto-Tanigawa [6]). The same estimate can also be obtained
by using another method introduced by Landau and Walfisz. (This method
was used in the proof of (1.2). We also use this method in in this
paper.) However, in the present twisted case, we cannot obtain the desired
estimate of Dj(x) by using only the Landau-Walfisz method or (1.2). This is one
of the complications in the twisted case.

We describe the outline of the story how to obtain an estimate of Dj(x).
Hafner’s Voronoi formula will yield D;(x) « x%3t¢d%3+¢ by using the Landau-
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Walfisz method, except for the case d* < x < d*/16n*. 1In the excepted case, we
will obtain the same estimate as above by using a certain mean value formula for
Di(x) (see below) which will be deduced from the truncated Voronoi
formula.

We can say that the study of the estimate of D,(x) with respect to d becomes
more difficult as p grows in the twisted case. Actually, we can obtain (1.2) by
using only Hafner’s Voronoi formula with the Landau-Walfisz method, but it is
not sufficient to obtain a good estimate of Dj(x).

First, we estimate D;(x) by using the Landau-Walfisz method.

LeMMA 1. We have Di(x) <« x®3d3/3+¢ except for the case d*<x <
d*/16n*.  In particular, we have Dy(x) <« x873d®> in the case x « d>.

ProOF OF LEMMA 1. We define the operator 4, as follows;
Az(h(x)) = h(x + 1) — h(x),

where 0 < 7 < x and A(x) is a function. From (2.2), we can see

1Dx0) = 4(0:00) + 3 G (5(1E))

The definitions of D, and Q, imply

X+7
4.(Ds(x)) = J Dy (v) do (42)
T2 x+t
:rDl(x)+3Do(x)+J Z cu(x —n)dv
2
— Dy (x) + %Do(x) 40 (4.3)
and
X+7
4:(0x(x)) = O1(v) dv (4.4)
(0 if k=1,
= 27 Lrg (0, ) 2xt + 1) if k—1=2, (4.5)
| 27 Lrgy(0,7)(2xT + 1) — tLy@y(—1,%) otherwise.

As for the remaining part of (4.1), we can also obtain the expression of the
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same type as (4.2) and (4.4). By using the mean value theorem, we find that
there is a real number & in [x,x + 7] satisfying

((5) - (e (52)

The relations [4.3), (4.5) and (4.6) yield

Di(x) = —%Do(x) +0(1?)

An’d—C,é, , (16n* fn) An’d =2 C,epr! ( (16n4xn>>
+ + A\ ol —7—
2 (16m4d- 4n)2f ( 2 (167*d—*n)’ P\

n<M n>M

0 ifk=1
+ { 27 Lrey(0,7)(2x + 7) ifk—1=2, (4.7)
27 Lrey(0,7)(2x + 1) — Lygy(—1,) otherwise.

If d> < x and x > d*/16zn* we can apply (2.5) to (4.7) and we obtain

Z 4n%d=2C, e, f1<l6n fn) « 3208 118
= (lomd~ 4n)2

and

n>M (167274617_41’1)3 d4

These estimates yield

Di(x) = —%Do(x) 4O + V2322

0 ifk=1
+ { 27 Lrey(0,2)(2x + 1) ifk—1=2 (48)
27 'Wre4(0,7)(2x + 1) — Lrggy(—1,x) otherwise,

where we put M = x3d*t=%. Putting v = x*°d*?>, we obtain the estimate in

the statement of by using (4.8) and (1.2) in the case d?> <x and
x>d*/16n*. If x «d? we can prove by using (2.7). O

The following is necessary for obtaining a good estimate on
Di(x) in d? < x < d*/167".

LemMmA 2. We have

2d3X13/4 i |Cn|2

13(2 7/4 0(d7/2+6X25/8+6 4+ d4+8X3+8).
n

J:( Dy ()] dx =
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PrOOF OF LEMMA 2. From |[Proposition 1, we know

d 4

Di(x) = xLyeq(0,2) + ”(2@2 };v 778 S

+ 0(d5/2x7/8N71/8 _|_d2st _|_d2x3/2+6N71/2 _|_x1+e)’ (49)

C,d3*x%8 Cn .<8n(xn)1/4 n)

where N >d* Using the fact L;gy(0,) « d*** which can be shown by the
Phragmén-Lindeldf theorem and N > d*, we can obtain

Di(x) = on(x) + Ey(x),

where

G308 Cn . 87z(xn)1/4 T
on(x) = ) ,;v”m sin| ————+7 (4.10)

and

E}'{;(x) = 0(d5/2x7/8N—1/8 + d>xN? + d2x32reN—1/2 —I—x”ﬁ).

We put N = Axd* where A is a positive constant which is independent of x
and d. Then we have

E(x) = O(d*x!T). (4.11)
We write
X o 27ty
| P =3[ i as (4.12)
0 = J2x
and use

2Y 2Y 2Y
J |D1(x)|2dx<<J |51(x)|2dx+J |ES ()] dx
Y Y
1/2

+ (jz (P ) (f BPd) @

which is shown by using the Cauchy-Schwarz inequality. The same argument
as in the proof of Theorem 13.5 of Ivi¢ yields

1/2

2Y
2 |Cn 13/4  y/13/4 4y 3are
JY 101 (x)] dx— Z (@) YR 1L 0W@*Y3Ne).  (4.14)
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Therefore we obtain

2Y
2 |Cn| 13/4
JY 1Dy (x)] a’x— an ()B4 — Y134

+ 0(d7/2+8 Y25/8+6 + d4+6 Y3+8)

by using [4.11), (4.13) and (4.14). This result and (4.12) imply [Lemma 2. []

LEMMA 3. In the case d* < x < d*/16n* we have

Dy (x) « x8348%5+¢,

Proor or LEmMMA 3. We have
x+H 1 x+H pt

D&@:EJ zmgm—ﬁL memmm

X

and Do(u) « u¥/3d*> from (1.2). These facts imply

1 x+H )
D < { [ ol ot ra

X

([ (e

1 x+H
«HJ Dy(0)2 dit + O(H2x3d8/5+)

1/2 2
+ O(Hx3/5d4/5+8)}

By using and putting H = x*3d*", we obtain

2
D1 (x)|2 < d27/10ex 101/40 e 4 16/5 e 12/5+4

Therefore, under the condition d? < x < d*/16n* we can see that D(x) <
\6/548/5+ =

5. The Voronoi formula of Meurman-type for D(x).

We have now obtained good estimates of D(x) for any case, from Lemmas
1 and 3. By using these results, we prove the Voronoi formula of Meurman-type
for Di(x) as follows:

PROPOSITION 2. Let x > 1 which is not an integer, and M is a positive
number not less than d*. Then we have
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C,d3?x%% & . (8a(xn)'* x
Di(x) = xLygy(0,x) + (271)2 n; e sin| ——— +Z

+ O(d2x3/2+sM—l/2||x”*1 + d3/2+6x13/8M—3/8+s)
T O(dPM N0+ 118 pg=17/40 | g23/102. 9/8 ) r—11/40)

n 0(d31/10+ex9/8M—27/40 A58 d2x13/8M—1/2)

0 if d*/16n* <1 and k —1=0,2,
+< 0(d°) if d4/167* < 1 and k — 1 #0,2,
O(d*>xM?) otherwise,

where ||x|| means the distance between x and the nearest integer from x. Note
that Lrgy(0,x) =0 if k=1.

PrOOF OF PrOPOSITION 2. Hafner’s Voronoi formula (2.2) implies

0 d~1 2 = 4
pw-ae LTI () o
n=1

First, we consider the case d*/16z*x > 1. We divide the infinite sum of (5.1)
into three parts which are the sums over n < d*/167*, d*/16n* < x < M and
M < n. We move the path of integration of f; in the sum over n < d*/167*.
The new path is Cy i4,. The residue theorem and the definition of Q,(x) imply

C,c, 167*
JISEY (27zdf)6n2fl( Z4xn>

n<d*/16m*x

(S(k,lLy) if k—1=0,
xLroy(0,7) +S(k, 1) if k—1=2,

C,end® T2+ (k—01/2)F(1+ (k+1)/2
y & 2+ k=D/2)rA+(k+1)/2)

2r)n2 T(=14 (k= 1)/2)[ (=2 + (k+1)/2) otherwise,

\ n>d*/16n4x
where

S(k,1,x)

3 C,cud LJ I =1+ (k= 1)/ (s+ (k+1)/2 - 1)
(2n)%2 21t ), TG =T (1 —s+ (k- 1)/)T (—s + (k +1)/2)

n<d*/16m*x
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Secondly, we estimate the right-hand side of and we obtain

Di(x) =xLrgg(0,0) + Y. Cncn ( > P <16n xn)

d*/16n*x<n
0 if d4/16n%x < 1and k —1=0,2,
+{ 0(d®) if d4/167%x < 1 and k — [ # 0,2, (5.3)

O(d*>xM?) otherwise.

Actually, in the proof of [Proposition 1, we have already estimated each part of
integrals in [5.2). Therefore we do not describe the details of the argument for
obtaining (5.3). By using (2.6), we have

Di(x) = dum(x) + Eyf (%),
where dy/(x) is defined in (4.10) and

o C,d*?x% & . (8a(xn)'* = 5278

i) == 2 s T g ) o)
0 if d*/16n*x <1 and k —1=0,2,
0(d®) if d*/16n*x <1 and k —1#0,2, (5.4)
O(d’xM?) otherwise.

We put

& . (8a(xn)'* =
S:ansm 7 +Z .

n>M

Then we obtain

® — 7 . (8a(xm)* m\  2mx!/4 8r(xn)/* n
JMDO(Z) (8115/3 sm( 7 +Z +W cos T—I—Z dt

+ M711/40d4/5+8 (55)

S «

by using (1.2) and partial summation. We apply integration by parts to
with (d/dx)D)(x) = Do(x). We already know the estimate of D;(x). Using
this, we obtain

S«

X208 (Ra(xm)t
JMDl(Z)TSIH T‘I‘Z dt

MO g A Se L 2T/40 g8 S+ g p—17/40 174 g3 /54 (5.6)
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We put

Ep— —~19/8 87Z(X7’l)u4 T
Si=1| Di(t)t sin T-I—Z dt, (5.7)

and we obtain

o 1/4
J Dl(t)tlg/gexp<%> +

M

YIRS (5.8)

Joomt_W/S exp (_ M) .

M

We can investigate the right-hand side of (5.8) by the same argument as in
Lemma 5 of Ivic-Matsumoto-Tanigawa [6]. In their argument, they use their
truncated Voronoi formula. In this paper, we have obtained the correspond-
ing formula in [Proposition . We use it with N = Yd*. Then we find

S| < dS/ZM—l/Z _|_d5/2x—1/8+6||x||—1M—1/2 —|—d2+8M_3/8+8. (59)

The estimates (5.6) and (5.9) yield [Proposition 2, O

When d*/16z*x <1, we can obtain the following formula. This formula
corresponds to Ivic-Matsumoto-Tanigawa’s result.

REMARK 2. For any large number M with M > d* and any non-integral
x> 1, we have

Di(x) = O1(x) +

C,d3?x%8 & . (8a(xn)'/* x
(27)? n7s 4

n<M d " 4
OB d2x3/2+8M_1/2||x||_1)
O33N B SISy g23/10409/8 11740y
4 O(@3V 108 27140 | 21/105e 1178 pp-17/40 (5.10)

when d*/16n*x < 1. 1In this case, we can see

1259/ o 1/4
Di(x) = 01 (x) +6ur(x) + C,d*>x/8 Cn_ o <8n(xn) N n)

(2n)> s d 4

n<M
+ O(d*2X713) (5.11)
from (2.2) and (2.6). This implies by the same way as in the proof of

[Proposition 2 when d*/16n*x < 1. However, the error term in [5.11) is worse
than [Proposition 2 with respect to d in the case d*/16n*x > 1.
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6. Completion of the proofs of theorems.

Now we proceed to the final stage of the proofs of our theorems. The
remaining part of the proof is quite similar to that in Ivic-Matsumoto-Tanigawa
[6], hence it is sufficient to give a brief sketch.

We can prove easily by the same argument as in Ivic¢-
Matsumoto-Tanigawa [6]. As for Ivic-Matsumoto-Tanigawa’s notations H; and
H,, they put H; = H, = x*?, but we put H; = H, = x*>d#/> in our case.

For the proof of Theorem 2, we recall the argument in the proof of
2. We note that the important steps are the evaluations of jY 05 (0)|* dt and
f |EN )2 dt, where dy(r) is defined in (4.10) and we put Ey(f) = D{(t)—
on(t). The former have been investigated and the result is (4.14). The latter
can be estimated by using the truncated Voronoi formula for D;(x) (see Propo-
sition 1) and the Voronoi formula of Meurman-type for D;(x) (see
2) with N = M = AX*d*, where A4 is a constant which is independent of x and
d. The argument for estimating the latter is the same as that in Ivic-Matsumoto-
Tanigawa [6]. Then we obtain Theorem 2.

We conclude this paper with the following remarks which correspond
to Theorem 3 of Ivic-Matsumoto-Tanigawa [6]. We put D{(r) = Dy(t) —
L;g4(0,x), then we have (d/dx)Df(x) = Dj(x). From this relation we have

1 x+H 1 x+H pt
Dﬁ@):iij Dﬁndp—ﬁj J‘Dauymm, (6.1)

X X

where 0 < H « x. We know D (u) « u33d*5+¢ from (1.2) if d* « x, because
Lrg,(0,7) « d*™® which was already mentioned. Then we find that

1 x+H 1 x+H pt H
Di(x) = EL D{ () dt — EL L Do (u) dudt +?L/’®g(0,)(). (6.2)
This equation implies

2

O H
i) -5 17,02

< { (J:w H™? a’z>l/2 <J:+H |Di“(r)|2 dl)

1 x+H
«EJ D; (1)) di + O(Hx5/5a%/5+) (6.3)

X

1/2 2
_|_0(Hx3/5d4/5+a) }

by using the Cauchy-Schwarz inequality and (1.2). Theorem 2 yields
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2

. H
i) -5 Lys,(0.2)

\S]

13(27)*

n=1

1) 2d° 134 134 N\ Gl I4e jdte 2.6/5 18/5+¢
«H{ (x+H)"" —x )Zn7/4+0(x d*) b + H* xS q%

< X3 4 e 4 RSP g8 (6.4)

We put H = x3/3d*> (here, the relation H « x implies d” « x), and we obtain

2

« X12/5+8d16/5+£.

. H
i)~ 5 Lrs, (0.0

This yields

D](x) « x6/5+£d8/5+s,

when d? « x. This result combined with [Theorem 1 does not improve (1.2),
similar to the case of Ivic-Matsumoto-Tanigawa [6]. However, the argument
analogous to them gives us the following observation by using Theorem 2. If
one can obtain

JX |D*(l)|2 dt — 2d3 i |Cn|2x13/4 +F(X)
0o 1320)* = n7/4 ’
and
F(x) = d*x*P(log xd) + O(x*d"), (6.5)

where P(x) is a polynomial of degree m and « is a real number satisfying o < 3,
then one can see

D;(x) « x4d® + x*d*(log xd)" + H™'x*d? + H>x%/34%/+¢

under the condition d? « x by using the same method as (6.1)-{6.4). In fact,
the condition d? « x and Lrgy(0,)) « d**¢ imply Lyg,(0, ) « x¥3d4/5+%. Then
this estimate and (1.2) imply Dj(x) « x*3d*+¢. Therefore we have the above
estimate.

We put H = x0+=0/154GF=8)/15 (here the relation H « x implies d¥f=8/15 «

x21=50/15) " and we obtain

D](X) « X9/8d3/2 + x1+6d2+£ + x(3+50¢)/15d(4+5[)’)/15, (66)

under the condition dF=8/15 « x(21=50)/15 and g2 « x. This estimate suggests
a possibility of an improvement of (1.2) with respect to both x and d.
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