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Abstract. Rankin obtained the asymptotic formula for the sum of coe‰cients

of Rankin-Selberg L-series associated with a cusp form and a trivial character. Ivić-

Matsumoto-Tanigawa studied the error term in it by using a mean value formula which

is yielded from the Voronoı̈ formula of the Riesz mean. In this paper, we consider

more general Rankin-Selberg L-series. It is associated with two cusp forms and a non-

trivial character mod d. Ivić-Matsumoto-Tanigawa’s method cannot be applied directly

to our case. We consider the sum of coe‰cients of twisted Rankin-Selberg L-series by

a modification of their method.

1. Introduction.

Rankin [10] obtained an asymptotic formula for the sum of the square of the

absolute value of Fourier coe‰cients of a cusp form of integral weight kb 1.

Ivić-Matsumoto-Tanigawa [6] suggested a way of improving the error term in

Rankin’s result. In this paper, we extend their method to the case of the sum of

the product of Fourier coe‰cients of a cusp form and a twisted cusp form.

Let f and g be normalized Hecke eigen cusp forms of integral weight k and

l respectively for SL2ðZÞ (we assume kb lb 12), and we use the symbols an and

bn for the n-th Fourier coe‰cients of f and g at y respectively. The Fourier

coe‰cients of f and g are known to be real. We fix a Dirichlet character w mod

d. The Rankin-Selberg L-function associated to f , g and w is defined as the

following Euler product:

Lfngðs; wÞ

¼
Y

p

ð1� apbpwð pÞp
�s�ðkþl Þ=2þ1Þ�1ð1� apbpwðpÞp

�s�ðkþl Þ=2þ1Þ�1

� ð1� apbpwðpÞp
�s�ðkþl Þ=2þ1Þ�1ð1� apbpwðpÞp

�s�ðkþl Þ=2þ1Þ�1; ð1:1Þ

where ap and bp are complex numbers satisfying
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ap þ ap ¼ ap; japj ¼ pðk�1Þ=2;

bp þ bp ¼ bp and jbpj ¼ pðl�1Þ=2:

(Here the bar symbol means the complex conjugate.) The existence of those

numbers is implied by Deligne’s result [2]. The above Euler product is abso-

lutely convergent in <ðsÞ > 1, and we know

Lfngðs; wÞ ¼ Lð2s; w2Þ
Xy

n¼1

anbnwðnÞ

nsþðkþl Þ=2�1
;

where Lðs; w2Þ is the Dirichlet L-function associated with w2. We put

Lfngðs; wÞ ¼
Xy

n¼1

cn

ns

in <ðsÞ > 1, then it is clear that

cn ¼ n1�ðkþl Þ=2wðnÞ
X

m2jn

an=m2bn=m2mkþl�2:

Deligne’s result implies cn f ne for any e > 0.

Rankin [10] and Ivić-Matsumoto-Tanigawa [6 ] investigated the sum of

cn in the case f ¼ g and w is trivial. We call this case the non-twisted case.

In this paper we are interested in the cases ‘‘f 0 g’’ or ‘‘f ¼ g and w is not

trivial’’. We call these cases the twisted case. In other words, in the non-twisted

case Lfngðs; wÞ has a pole at s ¼ 1 and in the twisted case Lfngðs; wÞ has no poles.

In the twisted case, the author [4] obtained

X

nax

cn f x5=3d 4=5þe; ð1:2Þ

when w is a primitive character. This means that

X

nax

anbnwðnÞf xðkþl Þ=2�2=5d 4=5þe:

This result is analogous to Rankin’s result [10]. In the non-twisted case, Ivić-

Matsumoto-Tanigawa [6 ] proposed a method of improving Rankin’s result. If

we apply directly Ivić-Matsumoto-Tanigawa’s method [6 ] to the twisted case, we

can see that the x-aspect of the estimate of
P

nax cn is under the same situation as

the non-twisted case, but the d-aspect of it is worse than (1.2). The aim of this
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paper is to propose a modification of Ivić-Matsumoto-Tanigawa’s method [6 ]

which improves the d-aspect. The new method introduced in the present paper

yields the following two theorems.

When w is a primitive character, we define the Riesz mean of cn as follows:

DrðxÞ ¼ Gðrþ 1Þ�1
X
nax

cnðx� nÞr; ð1:3Þ

where xb 1 and r is a real number.

Theorem 1. If D1ðxÞf xad b, where a and b are real numbers satisfying

d b
a 2x1�a=2, then we have D0ðxÞf xa=2d b=2.

Theorem 2. We put D�
1 ðtÞ ¼ D1ðtÞ � tLfngð0; wÞ. Let x > 1 be a real

number and e be an arbitrary positive number satisfying 1 > e > 0. Then we have

ð x

0

jD�
1 ðtÞj

2
dt ¼

2d 3

13ð2pÞ4

Xy
n¼1

jcnj
2

n7=4
x13=4 þOðx3þed 4þeÞ:

These theorems say that if we can obtain more detailed information on the

error term in Theorem 2, then we have the possibility of improving the estimate

in (1.2) with respect to both the x and the d-aspects. See the discussion at the

end of the present paper.

Ivić-Matsumoto-Tanigawa’s work is concerned only with the x-aspect.

When we consider the d-aspect, their method is not suitable as it is. There

are two novel points in the present paper. First, Ivić-Matsumoto-Tanigawa

[6 ] proved a mean value formula for h1ðxÞ ¼ D1ðxÞ �Q1ðxÞ (Q1ðxÞ is defined

below), but a direct generalization of this formula is not suitable for our purpose.

We should study the mean value of a modification of h1ðxÞ (see Remark 1 and

Remark 2 below).

Next we explain the second novel point. Ivić-Matsumoto-Tanigawa’s

method is based on two Voronoı̈ formulas. They are called the truncated

Voronoı̈ formula and the Voronoı̈ formula of Meurman-type (It means the type

first introduced by Meurman [8]). In this paper, our method is also based on

the same type of Voronoı̈ formulas of DrðxÞ (see sections 3 and 5) as them. In

order to obtain them, we have to consider the d-aspect carefully. To obtain

the truncated Voronoı̈ formula is not so di‰cult. However we are confronted

with a di‰cult task of obtaining a Voronoı̈ formula of Meurman-type. A good

estimate of D1ðxÞ is necessary to obtain it. When d ¼ 1, we can estimate D1ðxÞ

by using the Voronoı̈ formula (2.2) for r ¼ 2 and the di¤erence operator. This

is easy. But in the case d0 1, we cannot obtain a good estimate of D1ðxÞ with

respect to the d-aspect when d 2
a xa d 4=16p4 if we use the same argument as

that in the non-twisted case.
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To overcome this trouble, we use a mean value formula which can be shown

by using only the truncated Voronoı̈ formula (see Lemma 2). This mean value

formula is worse than the formula in Theorem 2, but it is enough to deduce an

estimate of D1ðxÞ which is necessary to obtain the Voronoı̈ formula of Meurman-

type. In Section 4, this argument will be explained.

Then, by using this estimate of D1ðxÞ, we can obtain the Voronoı̈ formula

of Meurman-type of D1ðxÞ in the twisted case. By combining this formula with

the truncated Voronoı̈ formula, we obtain the above two theorems.

The author would like to express her deep gratitude to Professor Kohji

Matsumoto for his comments.

2. The fundamental facts.

In this section, we introduce some facts about the Rankin-Selberg L-function

and the Voronoı̈ formula for the Riesz-mean of Rankin-Selberg series, which are

defined in (1.1) and (1.3). Throughout this paper, e is an arbitrarily small pos-

itive constant.

First, we mention the facts on the Rankin-Selberg L-function. The function

Lfngðs; wÞ can be continued analytically to the whole s-plane and holomorphic

except for the simple pole at s ¼ 1 which appears when f ¼ g and w is a prin-

cipal character (see Li [7] and Ogg [9]). Li [7] proved the following functional

equation when w is a primitive character:

Cfngðs; wÞ ¼ CwCfngð1� s; wÞ; ð2:1Þ

where

Cfngðs; wÞ ¼
2p

d

� ��2p

G sþ
k � l

2

� �

G sþ
k þ l

2
� 1

� �

Lfngðs; wÞ

and Cw is a constant depending on w with jCwj ¼ 1. We know that Lfngðs; wÞ

has no zeros in <ðsÞ > 1 from the definition and Lfngðs; wÞ has zeros at s ¼ �n

(n A N, nb ðk � lÞ=2) from the functional equation (2.1). These zeros are called

trivial zeros.

Secondly, we mention some results on the Riesz mean of Rankin-Selberg

series DrðxÞ. Hafner [3] obtained the Voronoı̈ formula for the Riesz mean of

general L-functions with functional equations. The following Voronoı̈ formula is

obtained by applying his result to DrðxÞ. We have

DrðxÞ ¼ QrðxÞ þ
X

y

n¼1

Cwcnð2pd
�1Þ2

ð16p4nd�1Þ1þr
fr

16p4xn

d 4

� �

; ð2:2Þ
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where

QrðxÞ ¼
1

2pi

ð

C

GðsÞLfngðs; wÞxrþs

Gðsþ rþ 1Þ ds ð2:3Þ

and

frðxÞ ¼
1

2pi

ð

C0; b

Gð1� sÞGðsþ ðk � lÞ=2ÞGðsþ ðk þ lÞ=2� 1Þx1þr�s

Gð2þ r� sÞGð1� sþ ðk � lÞ=2ÞGð�sþ ðk þ lÞ=2Þ ds: ð2:4Þ

Here the paths of integration C and C0;b conform to Hafner’s notation;

let R be a real number satisfying R > ðk þ lÞ=2� 1, and the path C is the

rectangle with vertices bG iR and 1� bG iR and has positive orientation and

the path C0;b is the oriented polygonal path with vertices �iy, �iR, b� iR,

bþ iR, iR and iy, where b > ðk þ lÞ=2� 1. From the definition, we see that

ðd=dxÞDrðxÞ ¼ Dr�1ðxÞ and there are analogous relations for QrðxÞ and frðxÞ.
The infinite sum on the right-hand side of (2.2) is absolutely convergent for

r > 3=2 and it is convergent for r > 1=2 (see Hafner [3]). Moreover Hafner [3]

showed the asymptotic expansion of frðxÞ which holds for xb 1. From that

expansion we know

frðxÞ ¼ Oðxð3þ6rÞ=8Þ þOðx1þr�bÞ ð2:5Þ

for xb 1, where the last error term of (2.5) does not appear when b > 1þ r

and r A Z. Using Chandrasekharan-Narasimhan [1] and Hafner [3], we obtain

frðxÞ ¼
1
ffiffiffiffiffiffi

2p
p xð3þ6rÞ=8 sin 4x1=4 þ 3� 2r

4
p

� �

þOðxð1þ6rÞ=8Þ þOðx1þr�bÞ ð2:6Þ

for xb 1, where the last error term of (2.6) does not appear when b > 1þ r and

r A Z.

Lastly, we refer some facts for cn. In Section 1, we already mentioned that

cn f n e is implied by Deligne’s result [2]. We can see
P

naM jcnjfM by using

the Cauchy-Schwarz inequality and Rankin’s result [10]. And we can also show

the estimate

X

x�y<nax

jcnjf y; ð2:7Þ

where x > 0, x e < ya x and 0 < e < 1=2. In Lemma 1 of the author [4],

this estimate was proved by using Theorem 1 of Shiu [11], the Cauchy-Schwarz

inequality and applying the same method as that in the proof of Lemma 4 in

Ivić-Matsumoto-Tanigawa [6].
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3. The truncated Voronoı̈ formulas for DrðxÞ.

In this section, we prove the following proposition.

Proposition 1. Let 0a ra 3=2 and 1 > e > 0. We put

e� ¼

e 0a ra 1

1

8
þ e 1 < ra 3/2.

8

<

:

Let Nb d 4 and we assume N is large enough compared with k, l and r. Then

we have the following truncated Voronoı̈ formula:

DrðxÞ ¼
xr

Gðrþ 1Þ
Lfngð0; wÞ

þ
Cw

ð2pÞrþ1
d rþ1=2xð3þ6rÞ=8

X

naN

cn

nð5þ2rÞ=8
sin

8p

d
ðxnÞ1=4 þ

3� 2r

4
p

� �

þOðxð1þ6rÞ=8d rþ3=2Nð1�2rÞ=8 þ xð1þ3rÞ=4d rþ1Nð1�rÞ=4þeÞ

þOðxð3þ3rÞ=4þed rþ1N�ð1þrÞ=4Þ

þ
Oðxrd 2 þ xð1þ3rÞ=4d rþ1Nð1�rÞ=4þe� þ xr�e�d 2þ4e�Þ if d 4=16p4xb 1

Oðxð1þ6rÞ=8d rþ3=2Þ if d 4=16p4x < 1

�

þOðxrþeÞ;

where the last error term does not appear when r ¼ 0.

The first term on the right-hand side of this truncated Voronoı̈ formula is zero

when k ¼ l, because Lfngð0; wÞ ¼ 0 in this case. This vanishing fact follows

from the functional equation (2.1).

Proof of Proposition 1. We put c ¼ 1þ e and T > 2þ ðk þ lÞ=2. We

have

DrðxÞ ¼ Irðx; cÞ þOðx1þrþeT�1�r þ xrþeÞ ð3:1Þ

where

Irðx; cÞ ¼
1

2pi

ð cþiT

c�iT

GðsÞ

Gðsþ rþ 1Þ
Lfngðs; wÞx

sþr ds:

This is shown by a way similar to the proof of Perron’s formula. The

Phragmén-Lindelöf theorem implies Lfngðs; wÞf ðdðjtj þ 1ÞÞ2ð1�sþeÞ in �ea sa

1þ e. By using this estimate and the residue theorem, we obtain
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Irðx; cÞ ¼
xr

Gðrþ 1Þ
Lfngð0; wÞ þ JrðxÞ

þOðx1þrþeT�1�r þ xr�ed 2þ4eT 1�rþ4eÞ; ð3:2Þ

where

JrðxÞ ¼
1

2pi

ð�eþiT

�e�iT

GðsÞ

Gðsþ rþ 1Þ
Lfngðs; wÞx

sþr ds:

By using the functional equation (2.1), we find

JrðxÞ ¼
Cw

2pi

2p

d

� �2

x1þr
X

y

n¼1

cnKrðnÞ; ð3:3Þ

where

KrðnÞ ¼

ð�eþiT

�e�iT

GðsÞGð1� sþ ðk � lÞ=2ÞGð�sþ ðk þ lÞ=2Þ

Gðsþ 1þ rÞGðsþ ðk � lÞ=2ÞGðsþ ðk þ lÞ=2� 1Þ

16p4xn

d 4

� �s�1

ds:

We divide the sum on the right-hand side of (3.3) into naN and n > N. We

put T ¼ 2pd�1ðxþ ðN þ 1=2ÞÞ1=4. Using Stirling’s estimate and the first deriv-

ative test (see Lemma 2.1 of Ivić [5]), we have

KrðnÞf
d 4

nx

� �1þe �

T 1�rþ4e� 1þ log
n

N þ 1=2

� ��1
 !

þ ðnxÞ�1�e
d 4þ4eT 1�rþ4e ð3:4Þ

for n > N. For obtaining (3.4), we need to move the path of integration of

KrðnÞ to the line segment with vertices �e� 1=8� iT and �e� 1=8þ iT in the

case 1 < ra 3=2. This change of path produces the last term on the right-hand

side of (3.4). In other words, the last error term of (3.4) does not appear in the

case 0a ra 1. The estimate (3.4) implies

JrðxÞ ¼
Cw

2pi
x1þr 2p

d

� �2
X

naN

cnKrðnÞ þOðxð1þ3rÞ=4d 1þrNð1�rÞ=4þeÞ: ð3:5Þ

In the method of Ivić-Matsumoto-Tanigawa [6 ], moving the path of inte-

gration of KrðnÞ to a suitable path shows that KrðnÞ is expressed by frð16p
4xnÞ.

And they obtained the truncated Voronoı̈ formula by using (2.6). Similarly,

in the case 16p4xn=d 4
b 1, we use the fact that KrðnÞ can be expressed by

frð16p
4xn=d 4Þ. We can use (2.6) for frð16p

4xn=d 4Þ if 16p4xn=d 4
b 1. Hence,

we divide the sum on the right-hand side of (3.5) into two parts d 4=16p4xa

n < N and n < d 4=16p4x in the case d 4=16p4x > 1.
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First, we suppose d 4=16p4x > 1. We change the path of integration of

KrðnÞ to the path L which is the oriented polygonal path with vertices m� iy,

m� iT , �e� iT , �eþ iT , mþ iT and mþ iy, where 1=4 < m < 1. Then we have

JrðxÞ ¼
Cw

2pi
x1þr 2p

d

� �2
X

d 4=16p 4xanaN

cn

�

ð

L

GðsÞGð1� 2þ ðk � lÞ=2ÞGð�sþ ðk þ lÞ=2Þ

Gðsþ rþ 1ÞGðsþ ðk � lÞ=2ÞGðsþ ðk þ lÞ=2� 1Þ

16p4xn

d 4

� �s�1

ds

þ
Cw

2pi
x1þr 2p

d

� �2
X

n<d 4=16p 4x

cnKrðnÞ þOðxð1þ3rÞ=4d 1þrNð1�rÞ=4þeÞ ð3:6Þ

by using the first derivative test. The residue theorem yields

JrðxÞ ¼
Cw

2pi
x1þr 2p

d

� �2
X

d 4=16p 4xanaN

cn

�
16p4xn

d 4

� ��1�r

fr
16p4xn

d 4

� �

þQ�
r

16p4xn

d 4

� �� �

þ
Cw

2pi
x1þr 2p

d

� �2
X

n<d 4=16p 4x

cnKrðnÞ þOðxð1þ3rÞ=4d 1þrNð1�rÞ=4þeÞ; ð3:7Þ

where

Q�
rðxÞ

¼

0 if k� l ¼ 0; 2 or r¼ 0;

X

K

m¼1

ð�1Þm

m!

Gð1þmþðk� lÞ=2ÞGðmþðkþ lÞ=2Þxr�m

Gð1þr�mÞGð�mþðk� lÞ=2ÞGð�mþðkþ lÞ=2�1Þ
otherwise;

8

>

>

>

<

>

>

>

:

and

K ¼
min r;

k � l

2
� 1

� �

if r A N ;

k � l

2
� 1 if r B N :

8

>

>

>

<

>

>

>

:

When n < d 4=16p4x, we have

KrðnÞf n�1�e �x�ð3þrÞ=4d 3þrNð1�rÞ=4þe � þ n�1�e�x�1�e�d 4þ4e �

þ n�9=8�ex�9=8�ed 9=2þ4eT 3=2�rþ4e
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by using the first derivative test. Here the last term on the right-hand side does

not appear in the case 0a ra 1. These results and (2.6) imply

JrðxÞ ¼
Cw
ffiffiffiffiffiffi

2p
p 2p

d

� ��r�1=2

xð3þ6rÞ=8
X

d 4=16p 4xanaN

cn

nð5þ2rÞ=8 sin
8p

d
ðxnÞ1=4 þ 3� 2r

4
p

� �

þOðxð1þ6rÞ=8d 3=2þrNð1�2rÞ=8 þ xrd 2

þ xð1þ3rÞ=4d 1þrNð1�rÞ=4þe
� þ xr�e

�
d 2þ4e �Þ:

Secondly, we suppose d 4=16p4xa 1. We can obtain (3.7) in the same way,

but the sum for n < d 4=16p4x does not appear. By using (2.6), we obtain

JrðxÞ ¼
Cw
ffiffiffiffiffiffi

2p
p 2p

d

� ��r�1=2

xð3þ6rÞ=8
X

d 4=16p 4xanaN

cn

nð5þ2rÞ=8 sin
8p

d
ðxnÞ1=4 þ 3� 2r

4
p

� �

þOðxð1þ6rÞ=8d 3=2þrNð1�2rÞ=8Þ

þ Oðxrd 2 þ xð1þ3rÞ=4d 1þrNð1�rÞ=4þe
� þ xr�e

�
d 2þ4e�Þ d 4=16p4xb 1

Oðxð1þ3rÞ=4d 1þrNð1�rÞ=4þeÞ d 4=16p4x < 1:

(

We recall (3.1), (3.2) and T ¼ 2pd�1ðxþ ðN þ 1=2ÞÞ1=4, then we obtain the

truncated Voronoı̈ formula for DrðxÞ. r

Remark 1. Ivić-Matsumoto-Tanigawa’s truncated Voronoı̈ formula

includes the term QrðxÞ (see the results (1.5) and Lemma 2 in Ivić-Matsumoto-

Tanigawa [6]). In our case, we do not separate the term QrðxÞ from JrðxÞ
when d 4=16p4x > 1. If we separate QrðxÞ from JrðxÞ in this case, we get a

truncated Voronoı̈ formula with an error term which is worse than Proposition

1 with respect to d. In the case d 4=16p4xa 1 we can obtain the following

truncated Voronoı̈ formula:

DrðxÞ ¼ QrðxÞ þ
Cw

ð2pÞ1þr
xð3þ6rÞ=8d 1=2þr

X

naN

cn

nð5þ2rÞ=8 sin
8p

d
ðxnÞ1=4 þ 3� 2r

4
p

� �

þOðxð1þ6rÞ=8d 3=2þr þ xð3þ3rÞ=4þed 1þrNð1þrÞ=4 þ xrd 2Þ

þOðxrþe þ xð1þ3rÞ=4d 1þrNð1�rÞ=4þeÞ ð3:8Þ

for large N with N > maxfd 4; 16p4g. This formula corresponds to Ivić-

Matsumoto-Tanigawa’s result. The way of obtaining it is as follows. From the

definition of Q�
r
ðxÞ and (3.7), we find
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Cw

2p

d

� ��2�4r
X

naN

Q�
r

16p4xn

d 4

� �

¼

0 if k � l ¼ 0; 2 or r ¼ 0;

�
X

K

m¼1

ð�1Þm

m!

Gð1þmþ ðk � lÞ=2ÞGðmþ ðk þ lÞ=2Þxr�mCwð2p=dÞ
�4m�2

Gð1þ r�mÞGð�mþ ðk � lÞ=2ÞGð�mþ ðk þ lÞ=2� 1Þ

�
X

n>N

cn

n1þm
þ
X

K

m¼1

ð�1Þm

m!

xr�m

Gð1þ r�mÞ
Lfngð�m; wÞ otherwise;

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

¼

0 if k � l ¼ 0; 2 or r ¼ 0;

X

K

m¼1

ð�1Þm

m!

xr�m

Gð1þ r�mÞ
Lfngð�m; wÞ þOðxð1þ6rÞ=8d 3=2þrN�1Þ otherwise;

8

>

>

<

>

>

:

¼

QrðxÞ if k ¼ l;

QrðxÞ �
xr

Gðrþ 1Þ
Lfngð0; wÞ if r ¼ 0 or k0 l;

QrðxÞ �
xr

Gðrþ 1Þ
Lfngð0; wÞ þOðxð1þ6rÞ=8d 3=2þrN�1Þ otherwise:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð3:9Þ

The formula (3.8) is shown from (2.6), (3.7) and (3.9), which holds in the case

d 4=16p4x > 1.

4. The estimate on D1ðxÞ.

The truncated Voronoı̈ formula and the Voronoı̈ formula of Meurman-

type (which means the type introduced by Meurman [8]) give a strong mean

value result which is in Theorem 2. Before investigating the Voronoı̈ formula of

Meurman-type for D1ðxÞ, for a preparation we have to obtain an upper bound of

D1ðxÞ.

Rankin’s result [10] implies the estimate of D1ðxÞ in the non-twisted case

(see Ivić-Matsumoto-Tanigawa [6 ]). The same estimate can also be obtained

by using another method introduced by Landau and Walfisz. (This method

was used in the proof of (1.2). We also use this method in Lemma 1 in this

paper.) However, in the present twisted case, we cannot obtain the desired

estimate of D1ðxÞ by using only the Landau-Walfisz method or (1.2). This is one

of the complications in the twisted case.

We describe the outline of the story how to obtain an estimate of D1ðxÞ.

Hafner’s Voronoı̈ formula will yield D1ðxÞf x6=5þed 8=5þe, by using the Landau-
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Walfisz method, except for the case d 2
a xa d 4=16p4. In the excepted case, we

will obtain the same estimate as above by using a certain mean value formula for

D1ðxÞ (see Lemma 2 below) which will be deduced from the truncated Voronoı̈

formula.

We can say that the study of the estimate of DrðxÞ with respect to d becomes

more di‰cult as r grows in the twisted case. Actually, we can obtain (1.2) by

using only Hafner’s Voronoı̈ formula with the Landau-Walfisz method, but it is

not su‰cient to obtain a good estimate of D1ðxÞ.

First, we estimate D1ðxÞ by using the Landau-Walfisz method.

Lemma 1. We have D1ðxÞf x6=5d 8=5þe except for the case d 2
a x <

d 4=16p4. In particular, we have D1ðxÞf x6=5d 8=5 in the case xf d 2.

Proof of Lemma 1. We define the operator Dt as follows;

DtðhðxÞÞ ¼ hðxþ tÞ � hðxÞ;

where 0 < ta x and hðxÞ is a function. From (2.2), we can see

DtðD2ðxÞÞ ¼ DtðQ2ðxÞÞ þ
X

y

n¼1

4p2d�2Cwcn

ð16p4d�4nÞ3
Dt f2

16p4xn

d 4

� �� �

: ð4:1Þ

The definitions of Dr and Qr imply

DtðD2ðxÞÞ ¼

ð xþt

x

D1ðvÞ dv ð4:2Þ

¼ tD1ðxÞ þ
t2

2
D0ðxÞ þ

ð xþt

x

X

x<nax

cnðx� nÞ dv

¼ tD1ðxÞ þ
t2

2
D0ðxÞ þOðt3Þ ð4:3Þ

and

DtðQ2ðxÞÞ ¼

ð xþt

x

Q1ðvÞ dv ð4:4Þ

¼

0 if k ¼ l;

2�1Lfngð0; wÞð2xtþ t2Þ if k � l ¼ 2;

2�1Lfngð0; wÞð2xtþ t2Þ � tLfngð�1; wÞ otherwise:

8

>

<

>

:

ð4:5Þ

As for the remaining part of (4.1), we can also obtain the expression of the
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same type as (4.2) and (4.4). By using the mean value theorem, we find that

there is a real number x in ½x; xþ t� satisfying

Dt f2
16p4xn

d 4

� �� �

¼
2p

d

� �2

ntf1
16p4xn

d 4

� �

: ð4:6Þ

The relations (4.3), (4.5) and (4.6) yield

D1ðxÞ ¼ �
t

2
D0ðxÞ þOðt2Þ

þ
X

naM

4p2d�2Cwcn

ð16p4d�4nÞ2
f1

16p4xn

d 4

� �

þ
X

n>M

4p2d�2Cwcnt
�1

ð16p4d�4nÞ3
Dt f2

16p4xn

d 4

� �� �

þ

0 if k ¼ l;

2�1Lfngð0; wÞð2xþ tÞ if k � l ¼ 2;

2�1Lfngð0; wÞð2xþ tÞ � Lfngð�1; wÞ otherwise.

8

<

:

ð4:7Þ

If d 2
a x and xb d 4=16p4, we can apply (2.5) to (4.7) and we obtain

X

naM

4p2d�2Cwcn

ð16p4d�4nÞ2
f1

16p4xn

d 4

� �

f d 3=2x9=8M 1=8

and
X

n>M

4p2d�2Cwcnt
�1

ð16p4d�4nÞ3
Dt f2

16p4xn

d 4

� �� �

f d 5=2x15=8M�1=8t�1:

These estimates yield

D1ðxÞ ¼ �
t

2
D0ðxÞ þOðt2 þ t�1=2x3=2d 2Þ

þ

0 if k ¼ l;

2�1Lfngð0; wÞð2xþ tÞ if k � l ¼ 2;

2�1Lfngð0; wÞð2xþ tÞ � Lfngð�1; wÞ otherwise,

8

<

:

ð4:8Þ

where we put M ¼ x3d 4t�4. Putting t ¼ x3=5d 4=5, we obtain the estimate in

the statement of Lemma 1 by using (4.8) and (1.2) in the case d 2
a x and

xb d 4=16p4. If xf d 2, we can prove Lemma 1 by using (2.7). r

The following Lemma 2 is necessary for obtaining a good estimate on

D1ðxÞ in d 2
a x < d 4=16p4.

Lemma 2. We have

ðX

0

jD1ðxÞj
2
dx ¼

2d 3X 13=4

13ð2pÞ4

X

y

n¼1

jcnj
2

n7=4
þOðd 7=2þeX 25=8þe þ d 4þeX 3þeÞ:
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Proof of Lemma 2. From Proposition 1, we know

D1ðxÞ ¼ xLfngð0; wÞ þ
Cwd

3=2x9=8

ð2pÞ2

X

naN

cn

n7=8
sin

8pðxnÞ1=4

d
þ
p

4

 !

þOðd 5=2x7=8N�1=8 þ d 2xN e þ d 2x3=2þeN�1=2 þ x1þeÞ; ð4:9Þ

where Nb d 4. Using the fact Lfngð0; wÞf d 2þe which can be shown by the

Phragmén-Lindelöf theorem and Nb d 4, we can obtain

D1ðxÞ ¼ dNðxÞ þ E �
NðxÞ;

where

dNðxÞ ¼
Cwd

3=2x9=8

ð2pÞ2

X

naN

cn

n7=8
sin

8pðxnÞ1=4

d
þ
p

4

 !

ð4:10Þ

and

E �
NðxÞ ¼ Oðd 5=2x7=8N�1=8 þ d 2xN e þ d 2x3=2þeN�1=2 þ x1þeÞ:

We put N ¼ Axd 4, where A is a positive constant which is independent of x

and d. Then we have

E �
NðxÞ ¼ Oðd 2þex1þeÞ: ð4:11Þ

We write

ðX

0

jD1ðxÞj
2
dx ¼

X

y

j¼1

ð2�jþ1X

2�jX

jD1ðxÞj
2
dx ð4:12Þ

and use

ð2Y

Y

jD1ðxÞj
2
dxf

ð2Y

Y

jd1ðxÞj
2
dxþ

ð2Y

Y

jE �
NðxÞj

2
dx

þ

ð2Y

Y

jd1ðxÞj
2
dx

� �1=2 ð2Y

Y

jE �
NðxÞj

2
dx

� �1=2

ð4:13Þ

which is shown by using the Cauchy-Schwarz inequality. The same argument

as in the proof of Theorem 13.5 of Ivić [5] yields

ð2Y

Y

jd1ðxÞj
2
dx ¼

2d 3

13ð2pÞ4

X

y

n¼1

jcnj
2

n7=4
ðð2YÞ13=4 � Y 13=4Þ þOðd 4Y 3N eÞ: ð4:14Þ
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Therefore we obtain

ð2Y

Y

jD1ðxÞj
2
dx ¼

2d 3

13ð2pÞ4

X

y

n¼1

jcnj
2

n7=4
ðð2YÞ13=4 � Y 13=4Þ

þOðd 7=2þeY 25=8þe þ d 4þeY 3þeÞ

by using (4.11), (4.13) and (4.14). This result and (4.12) imply Lemma 2. r

Lemma 3. In the case d 2
a x < d 4=16p4, we have

D1ðxÞf x6=5d 8=5þe:

Proof of Lemma 3. We have

D1ðxÞ ¼
1

H

ð xþH

x

D1ðtÞ dt�
1

H

ð xþH

x

ð t

x

D0ðuÞ dudt

and D0ðuÞf u3=5d 4=5þe from (1.2). These facts imply

jD1ðxÞj
2
a

1

H

ð xþH

x

jD1ðtÞj dtþOðHx3=5d 4=5þeÞ

� �2

a

ð xþH

x

H�2 dt

� �1=2 ð xþH

x

jD1ðtÞj
2
dt

� �1=2

þOðHx3=5d 4=5þeÞ

( )2

f
1

H

ð xþH

x

jD1ðtÞj
2
dtþOðH 2x6=5d 8=5þeÞ:

By using Lemma 2 and putting H ¼ x3=5d 4=5, we obtain

jD1ðxÞj
2
f d 27=10þex101=40þe þ d 16=5þex12=5þe:

Therefore, under the condition d 2
a x < d 4=16p4, we can see that D1ðxÞf

x6=5d 8=5þe. r

5. The Voronoı̈ formula of Meurman-type for D1ðxÞ.

We have now obtained good estimates of D1ðxÞ for any case, from Lemmas

1 and 3. By using these results, we prove the Voronoı̈ formula of Meurman-type

for D1ðxÞ as follows:

Proposition 2. Let xb 1 which is not an integer, and M is a positive

number not less than d 4. Then we have
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D1ðxÞ ¼ xLfngð0; wÞ þ
Cwd

3=2x9=8

ð2pÞ2

X

naM

cn

n7=8
sin

8pðxnÞ1=4

d
þ
p

4

 !

þOðd 2x3=2þeM�1=2kxk�1 þ d 3=2þex13=8M�3=8þeÞ

þOðd 21=10þex11=8M�17=40 þ d 23=10þex9=8M�11=40Þ

þOðd 31=10þex9=8M�27=40 þ d 5=2x7=8 þ d 2x13=8M�1=2Þ

þ

0 if d 4=16p4 < 1 and k � l ¼ 0; 2;

Oðd 6Þ if d 4=16p4 < 1 and k � l0 0; 2;

Oðd 2xM eÞ otherwise,

8

<

:

where kxk means the distance between x and the nearest integer from x. Note

that Lfngð0; wÞ ¼ 0 if k ¼ l.

Proof of Proposition 2. Hafner’s Voronoı̈ formula (2.2) implies

D1ðxÞ ¼ Q1ðxÞ þ
X

y

n¼1

ð2pd�1Þ2Cwcn

ð16p4d�4nÞ2
f1

16p4xn

d 4

� �

: ð5:1Þ

First, we consider the case d 4=16p4x > 1. We divide the infinite sum of (5.1)

into three parts which are the sums over n < d 4=16p4, d 4=16p4
a x < M and

M < n. We move the path of integration of f1 in the sum over n < d 4=16p4.

The new path is C0;1þe. The residue theorem and the definition of QrðxÞ imply

Q1ðxÞ þ
X

n<d 4=16p 4x

Cwcn

ð2pd�1Þ6n2
f1

16p4xn

d 4

� �

¼

Sðk; l; wÞ if k � l ¼ 0;

xLfngð0; wÞ þ Sðk; l; wÞ if k � l ¼ 2;

xLfngð0; wÞ þ Sðk; l; wÞ

þ
X

nbd 4=16p 4x

Cwcnd
6

ð2pÞ6n2
Gð2þ ðk � lÞ=2ÞGð1þ ðk þ lÞ=2Þ

Gð�1þ ðk � lÞ=2ÞGð�2þ ðk þ lÞ=2Þ
otherwise;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð5:2Þ

where

Sðk; l; wÞ

¼
X

n<d 4=16p 4x

Cwcnd
6

ð2pÞ6n2

1

2pi

ð

C0; 1þe

Gð1� sÞGð1þ ðk � lÞ=2ÞGðsþ ðk þ lÞ=2� 1Þ

Gð3� sÞGð1� sþ ðk � lÞ=2ÞGð�sþ ðk þ lÞ=2Þ

�
16p4xn

d 4

� �2�s

ds:
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Secondly, we estimate the right-hand side of (5.2) and we obtain

D1ðxÞ ¼ xLfngð0; wÞ þ
X

d 4=16p 4xan

Cwcn

n2
2p

d

� ��6

f1
16p4xn

d 4

� �

þ

0 if d 4=16p4x < 1 and k � l ¼ 0; 2;

Oðd 6Þ if d 4=16p4x < 1 and k � l0 0; 2;

Oðd 2xM eÞ otherwise.

8

<

:

ð5:3Þ

Actually, in the proof of Proposition 1, we have already estimated each part of

integrals in (5.2). Therefore we do not describe the details of the argument for

obtaining (5.3). By using (2.6), we have

D1ðxÞ ¼ dMðxÞ þ E ��
M ðxÞ;

where dMðxÞ is defined in (4.10) and

E ��
M ðxÞ ¼

Cwd
3=2x9=8

ð2pÞ2

X

n>M

cn

n7=8
sin

8pðxnÞ1=4

d
þ
p

4

 !

þOðd 5=2x7=8Þ

þ

0 if d 4=16p4x < 1 and k � l ¼ 0; 2;

Oðd 6Þ if d 4=16p4x < 1 and k � l0 0; 2;

Oðd 2xM eÞ otherwise.

8

<

:

ð5:4Þ

We put

S ¼
X

n>M

cn

n7=8
sin

8pðxnÞ1=4

d
þ
p

4

 !

:

Then we obtain

Sf

ðy

M

D0ðtÞ �
7

8t15=8
sin

8pðxnÞ1=4

d
þ
p

4

 !

þ
2px1=4

dt13=8
cos

8pðxnÞ1=4

d
þ
p

4

 ! !

dt

�

�

�

�

�

�

�

�

�

�

þM�11=40d 4=5þe ð5:5Þ

by using (1.2) and partial summation. We apply integration by parts to (5.5)

with ðd=dxÞD1ðxÞ ¼ D0ðxÞ. We already know the estimate of D1ðxÞ. Using

this, we obtain

Sf

ðy

M

D1ðtÞ
x1=2t�19=8

d 2
sin

8pðxnÞ1=4

d
þ
p

4

 !

dt

�

�

�

�

�

�

�

�

�

�

þM�11=40d 4=5þe þM�27=40d 8=5þe þM�17=40x1=4d 3=5þe: ð5:6Þ
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We put

S1 ¼

ð

y

M

D1ðtÞt
�19=8 sin

8pðxnÞ1=4

d
þ
p

4

 !

dt; ð5:7Þ

and we obtain

S1 f

ð

y

M

D1ðtÞt
�19=8 exp

8pðxnÞ1=4

d

 !�

�

�

�

�

�

�

�

�

�

þ

ð

y

M

D1ðtÞt
�19=8 exp �

8pðxnÞ1=4

d

 !�

�

�

�

�

�

�

�

�

�

: ð5:8Þ

We can investigate the right-hand side of (5.8) by the same argument as in

Lemma 5 of Ivić-Matsumoto-Tanigawa [6 ]. In their argument, they use their

truncated Voronoı̈ formula. In this paper, we have obtained the correspond-

ing formula in Proposition 1. We use it with N ¼ Yd 4. Then we find

S1 f d 5=2M�1=2 þ d 5=2x�1=8þekxk�1
M�1=2 þ d 2þeM�3=8þe: ð5:9Þ

The estimates (5.6) and (5.9) yield Proposition 2. r

When d 4=16p4xa 1, we can obtain the following formula. This formula

corresponds to Ivić-Matsumoto-Tanigawa’s result.

Remark 2. For any large number M with Mb d 4 and any non-integral

x > 1, we have

D1ðxÞ ¼ Q1ðxÞ þ
Cwd

3=2x9=8

ð2pÞ2

X

naM

cn

n7=8
sin

8pðxnÞ1=4

d
þ
p

4

 !

þOðd 2x13=8M�1=2 þ d 2x3=2þeM�1=2kxk�1Þ

þOðd 3=2þex13=8M�3=8þe þ d 5=2x7=8 þ d 23=10þex9=8M�11=40Þ

þOðd 31=10þex9=8M�27=40 þ d 21=10þex11=8M�17=40Þ ð5:10Þ

when d 4=16p4xa 1. In this case, we can see

D1ðxÞ ¼ Q1ðxÞ þ dMðxÞ þ
Cwd

3=2x9=8

ð2pÞ2

X

naM

cn

n7=8
sin

8pðxnÞ1=4

d
þ
p

4

 !

þOðd 5=2x7=8Þ ð5:11Þ

from (2.2) and (2.6). This implies (5.10) by the same way as in the proof of

Proposition 2 when d 4=16p4x < 1. However, the error term in (5.11) is worse

than Proposition 2 with respect to d in the case d 4=16p4xb 1.
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6. Completion of the proofs of theorems.

Now we proceed to the final stage of the proofs of our theorems. The

remaining part of the proof is quite similar to that in Ivić-Matsumoto-Tanigawa

[6 ], hence it is su‰cient to give a brief sketch.

We can prove Theorem 1 easily by the same argument as in Ivić-

Matsumoto-Tanigawa [6 ]. As for Ivić-Matsumoto-Tanigawa’s notations H1 and

H2, they put H1 ¼ H2 ¼ xa=2, but we put H1 ¼ H2 ¼ xa=2d b=2 in our case.

For the proof of Theorem 2, we recall the argument in the proof of Lemma

2. We note that the important steps are the evaluations of
Ð 2Y

Y
jdNðtÞj

2
dt and

Ð 2Y

Y
jENðtÞj

2
dt, where dNðtÞ is defined in (4.10) and we put ENðtÞ ¼ D�

1 ðtÞ�

dNðtÞ. The former have been investigated and the result is (4.14). The latter

can be estimated by using the truncated Voronoı̈ formula for D1ðxÞ (see Propo-

sition 1) and the Voronoı̈ formula of Meurman-type for D1ðxÞ (see Proposition

2) with N ¼ M ¼ AX sd 4, where A is a constant which is independent of x and

d. The argument for estimating the latter is the same as that in Ivić-Matsumoto-

Tanigawa [6 ]. Then we obtain Theorem 2.

We conclude this paper with the following remarks which correspond

to Theorem 3 of Ivić-Matsumoto-Tanigawa [6 ]. We put D�
0ðtÞ ¼ D0ðtÞ�

Lfngð0; wÞ, then we have ðd=dxÞD�
1 ðxÞ ¼ D�

0ðxÞ. From this relation we have

D�
1 ðxÞ ¼

1

H

ð xþH

x

D�
1 ðtÞ dt�

1

H

ð xþH

x

ð t

x

D�
0ðuÞ dudt; ð6:1Þ

where 0 < Hf x. We know D�
0ðuÞf u3=5d 4=5þe from (1.2) if d 2 f x, because

Lfngð0; wÞf d 2þe which was already mentioned. Then we find that

D�
1 ðxÞ ¼

1

H

ð xþH

x

D�
1 ðtÞ dt�

1

H

ð xþH

x

ð t

x

D0ðuÞ dudtþ
H

2
Lfngð0; wÞ: ð6:2Þ

This equation implies

D�
1 ðxÞ �

H

2
Lfngð0; wÞ

�

�

�

�

�

�

�

�

2

a

ð xþH

x

H�2 dt

� �1=2 ð xþH

x

jD�
1 ðtÞj

2
dt

� �1=2

þOðHx3=5d 4=5þeÞ

( )2

f
1

H

ð xþH

x

jD�
1 ðtÞj

2
dtþOðH 2x6=5d 8=5þeÞ ð6:3Þ

by using the Cauchy-Schwarz inequality and (1.2). Theorem 2 yields
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D�
1 ðxÞ �

H

2
Lfngð0; wÞ

�

�

�

�

�

�

�

�

2

f
1

H

2d 3

13ð2pÞ4
ððxþHÞ13=4 � x13=4Þ

X

y

n¼1

jcnj
2

n7=4
þOðx3þed 4þeÞ

( )

þH 2x6=5d 8=5þe

f x9=4d 3 þH�1x3þed 4þe þH 2x6=5d 8=5þe: ð6:4Þ

We put H ¼ x3=5d 4=5 (here, the relation Hf x implies d 2 f x), and we obtain

D�
1 ðxÞ �

H

2
Lfngð0; wÞ

�

�

�

�

�

�

�

�

2

f x12=5þed 16=5þe:

This yields

D1ðxÞf x6=5þed 8=5þe;

when d 2 f x. This result combined with Theorem 1 does not improve (1.2),

similar to the case of Ivić-Matsumoto-Tanigawa [6 ]. However, the argument

analogous to them gives us the following observation by using Theorem 2. If

one can obtain

ð x

0

jD�
1 ðtÞj

2
dt ¼

2d 3

13ð2pÞ4

X

y

n¼1

jcnj
2

n7=4
x13=4 þ F ðxÞ;

and

F ðxÞ ¼ d 4x3Pðlog xdÞ þOðxad bÞ; ð6:5Þ

where PðxÞ is a polynomial of degree m and a is a real number satisfying a < 3,

then one can see

D�
1 ðxÞf x9=4d 3 þ x2d 4ðlog xdÞm þH�1xad b þH 2x6=5d 8=5þe

under the condition d 2 f x by using the same method as (6.1)–(6.4). In fact,

the condition d 2 f x and Lfngð0; wÞf d 2þe imply Lfngð0; wÞf x3=5d 4=5þe. Then

this estimate and (1.2) imply D�
0ðxÞf x3=5d 4=5þe. Therefore we have the above

estimate.

We put H ¼ xð5a�6Þ=15dð5b�8Þ=15 (here the relation Hf x implies dð5b�8Þ=15 f

xð21�5aÞ=15), and we obtain

D1ðxÞf x9=8d 3=2 þ x1þed 2þe þ xð3þ5aÞ=15dð4þ5bÞ=15; ð6:6Þ

under the condition dð5b�8Þ=15 f xð21�5aÞ=15 and d 2 f x. This estimate suggests

a possibility of an improvement of (1.2) with respect to both x and d.
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