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Abstract. We construct approximately inner actions of discrete amenable groups
on strongly amenable subfactors of type II; with given invariants, and obtain classi-
fication results under some conditions. We also study the lifting of the relative y group.

1. Introduction.

In the theory of subfactors initiated by V. F. R. Jones in [15], analysis of
automorphisms and group actions on subfactors has been done by many people.
In [24], P. Loi introduced the Loi invariant for automorphisms of subfactors and
obtained some results on structure of subfactors of type III;, 0 < 42 < 1. In |31},
S. Popa introduced the notion of proper outerness for automorphisms of sub-
factors (Choda and Kosaki introduced the same property in [3], and they call it
strong outerness). With his classification of strongly amenable subfactors of type
I, in [32], he classified properly outer actions of discrete amenable groups on
strongly amenable subfactors of type II; by the Loi invariant, and solved the
problem of classification of subfactors of type III, raised by Loi in [24]. On the
other hand, related with orbifold construction, non-strongly outer automorphisms
are studied in [8], [10], [11], [12], [17], [18], [19], [20], [22], [25], [35] Also see
[9, Chapter 15], in which almost all contents of the above referred papers are
explained.

In [26], we classified approximately inner actions of discrete amenable groups
on strongly amenable subfactors of type II; by the characteristic invariant and
the v invariant under some assumptions. Among these assumptions, the most
important one is the triviality of the algebraic x invariant. (See and (2| for
the original definition and properties of x invariant. For a subfactor analogue
of the x invariant, see [19].) This result is a generalization of [20, Theorem
3.1]. When the algebraic x invariant is trivial, we can classify approximately
inner actions completely. Hence we have to investigate the case when the alge-
braic x invariant is not trivial. In this case, we do not know whether there exist
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actions with given invariants or not. Hence what we should do first is to find a
systematic way to construct actions with given invariants. We remark that if
the algebraic x invariant 1s trivial, then our characteristic invariant is exactly the
same as the original one in [14], but if the algebraic « invariant is not trivial, then
our characteristic invariant may be different from the usual one, and this makes
classification more difficult.

In this paper, we construct actions of discrete amenable groups on strongly
amenable subfactors of type II; with given invariants, and classify actions under
an extra assumption on the v invariant. (We emphasize that we never assume
the triviality of the algebraic x invariant.) The most essential assumption in
our theory is the extendability of the v invariant to a homomorphism from
a whole group. This assumption is similar to that of [21, Theorem 20]. In
[21], Kawahigashi, Sutherland and Takesaki have classified actions of a discrete
abelian group G on the injective type III; factor. The modular invariant v
appears as a cocycle conjugacy invariant, and this is a homomorphism from a
subgroup of G to R. Essential fact in their proof is that v can be extended to
a homomorphism of G due to the divisibility of R. (Originally this idea was
due to Connes. See [4, p. 466].)

In subfactor case, we can not expect such a property for the v invariant
generally. But if we assume the extendability of the v invariant, our proof goes
well as in the proof of [21, Theorem 20]. We remark that our results can be
viewed as a generalization of [20, Theorem 4.1].

In appendix, we discuss liftings of y,(M,N) since we have to fix one lifting
of y,(M,N) to define characteristic invariants.

ACKNOWLEDGEMENTS. The author is grateful to Professor M. Izumi for
informing of [30, Proposition 3.2], Professor Y. Kawahigashi and Professor S.
Popa for various comments on this paper. The author is supported by Grant-
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2. Main results.

Facts on automorphisms for subfactors are collected in [26, Section 2], and
we will freely use notations there.

First we recall fundamental definitions and facts on automorphisms of sub-
factors. Let N < M be a subfactor of type II; with finite index and N <« M <
M, c M,--- the Jones tower. Then «e€ Aut(M,N) can be extended to an
automorphism of M inductively by setting o(ex) = ex, where e, is the Jones
projection in Mj.

DErFINITION 2.1 ([24, Section 5]). For o, we put
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D(0) = {O‘|M/ka}1iO:1a

and we call @(a) the Loi invariant.

DErFINITION 2.2 ([3, Definition 1], [32, Definition 1.5.1]). An automorphism
g 1s said to be strongly outer if we have no non-zero ae Uk M. satisfying
g(x)a =ax for every xe M. We denote the set of non-strongly outer auto-
morphisms by Cnt,(M,N), which is a normal subgroup of Aut(M,N).

Throughout this paper, we always make the following assumptions on
NcM.

(A1) N < M is extremal,

(A2) Nc M and M < M, have the trivial normalizer,

(A3) Ker® = Aut(M,N),

(A4) y,(M,N):= (Ker@NCnt,(M,N))/(Int(M,N)) is a finite group,
(AS) there exists a lifting ¢ of y,(M,N) to Aut(M,N).

The assumption (A3) means that every action has the trivial Loi invariant.
Note that we have many classes of subfactors satisfying the above assumptions,
e.g., Jones subfactors with principal graph A2n+1 in [15], or subfactors coming
from Hecke algebras in [37]. (Also see [18] and [8].) By [12, Corollary 2.2],
2.(M,N) is always abelian, and hence xa(M ,N) is a finite abelian group in our
setting.

By [26, Theorem 3.1], we have a Connes-Radon-Nikodym type cocycle
Uy o € U(N) for every a € Ker@ and o € Cnt,(M,N). The algebraic x invariant
Kq 18 defined by r,(h k) =u, , for hkey,(M,N). We can easily verify that
K, is a bicharacter of y, (M, N )

Next we recall the definition of cocycle conjugacy invariants for actions
considered in [26]. Let N — M be a subfactor of type II; with finite index, G
a discrete group, and « an action of G on N < M. Then we get cocycle con-
jugacy invariants in the following way. The first invariant is a normal subgroup
H, < G, which is the non-strongly outer part of «. Then we get a G-equivariant
homomorphism v, from H, to y,(M,N) by v,(h) = [es]. This v, is the second
cocycle conjugacy invariant, and we call this the v invariant. By the assump-
tion (AS5), a; has the form «;, = Adv,o,,4) for some unitary v, € U(N). Then
we get two scalars A,(g,h) and u,(h,k) by the following equations for g € G,
h,keH,.

0ty (Vg-1hg ) Uay, 0,0 = Fal(gs MO, OnO ) (Ok) = pty (s K )Upk.

The pair A(g,h) and wu(h,k) satisfy the following relations for /,k,/ e H and

9,91,92 € G.
(1) :u(h7 k):u(hka l) = ILL(k, Z):u(h? kl):

2) Ag192,h) = jb(9]1,}1)/1(92,gflhgl),
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(3) (g, hk)i(g,h)i(g, k) = u(h, kK)u(g~"hg, g~ kg)
(4) i(h7k) = :u(hvh_lkh):u(k7h)’ca(v(k)7 v(h)),
(5) i(ea h) = jL(gve) = /u(eak) = :u(hae) = 1.

The equation (4) shows the difference between the usual characteristic
invariant and ours. This definition of A and u depends on the choice of wvy,.
To get rid of this dependency we have to define a suitable equivalence relation
for (4,u). On this point see [26]. We denote the equivalence class of (4, u,)
by A(a) = [Ay4, 1t,], and the set of [, u] by A(G, Hlk,).

Conversely for a given normal subgroup H < G, [A,u] € A(G, H|k,) and
ve Homg(H, y,(M,N)), we will construct an action o with H, = H, A(x) = [, 4]
and v, = v in the following proposition.

PrROPOSITION 2.3. Let N = M be a strongly amenable subfactor of type I,
G a discrete amenable group. Assume that v can be extended to a homomorphism
from G. Then for every [A,u]l € A(G,H|k,) and v, there exists an action o of G
with H, = H, A(o) = [A,u] and v, = v.

Proor. By the assumptions, we have an extension of v from G to y,(M,N),
which we denote by v again. Hence g — g, is an action of Gon N = M. Let
K, be the algebraic x invariant for N = M, and set A'(g,n) := x,(v(n),v(g))A(g, n).
Then it is easy to verify that [A',4] is in A(G,H), that is, [A',4] is a usual
characteristic invariant. Let m be an action of G on the injective type Il
factor Ry with the characteristic invariant [1',u]. Define an action « of G
on NOQRycM®Ry by ay:=0,, ®my. Since N< M is isomorphic to
N®Ry= M®R, by (also see [1]), « can be regarded as an action of
N < M. Then this o 1s a desired one. ]

On classification of actions, we have the following result.

THEOREM 2.4. Let N <« M, G be as in the previous proposition. Let o and f§
be approximately inner actions of G. Assume v, can be extended to a homo-
morphism from G. Then o and f are stably conjugate if H, = Hp, A(a) = A(f)
and v, = vg hold.

Proor. Set K :=y,(M,N). Let a be the extension of « on N X,K
M >, K defined in [26], and & be the natural extension of & on NcM :=
N x,K x; K< Mx,K N&f(. Let wi and v, be the usual mmplementing
unitaries of ¢,6 in M x,K and M x,K x;K respectively. Then by the
definition of & we have &,(x) = oy (x), &(wk) = tty, o,wr and &(v,) = v, for
xeM, keK and pe K. On the other hand, the second dual action 6 of o
satisfies G; =id on M x, K and 6;(v,) = <k, pyv, for peK.
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The Takesaki duality theorem says that NcM is isomorphic to N ®
B(I’(K)) = M ® B(I*(K)) via an isomorphism ¥ satisfying the following.

(1) (¥(ms0ms(@)E) (k) = o (a)é(k),
(2) (P(rs(w)E)(k) = ('),
(3) (¥(wp)&) (k) = <k, pr<(k),

where 7, is the embedding of M in M X, K, and 7; is the embedding of M X, K
into M >, K ;K.
Define a unitary ¢, € N ® B(I*(K)) by (c,¢)(k) == u: _¢(k). Since ¢,
9%
commutes with elements in N’ ® C1, ¢, is indeed in N ® B(I*(K)). Moreover
since we have

(egrg @ 1d(cp)C) (k) =, ,10g(uty, ;- 1)E(K)

97k

= u:gh./o_;l é(k)

- (Cghé) (k)7

¢y 1s an o @ 1d cocycle. Then as in the argument in [23, Section 5], it is shown
that ¥ od, 0 ¥~ ! = Adc,(a, ®id) holds.

On the other hand we have ¥ o0 ¥~ ! = 64 @ Ad pr!, where p is the left
regular representation of K.

Here we consider the Connes-Radon-Nikodym type cocycle for Adc,o, ® id
and o, ® Adp;!. Take 0 # a e M, with o(x)a = ax for every xe M. By |26,
Theorem 3.1], oy(a) = uy, 4,a holds. It is obvious that ; ® Adp; ' (x)(a ® p') =
(a ® p;)x holds for every M ® B(I*(K)). Here we have the following.

_ *
— u%’gl_lu%ﬂkau%’%lf(kl)

= u;‘wal_lu%gkak(u%’%l)af(kl)

:u* aflufx G/qaé(kl)
! 9

Uy,

= (a®pi ' O)(0).

By [26, Theorem 3.1], the above equality implies uxq,, (x@id), 0 @Ad ot =1 for
every g € G and k € K. Hence by replacing o and f if necessary, we may assume
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that u, 5 =1 and ug , =1 hold for every ge G and k€ K. This especially
implies o0, = groy and B0k = orfi,.

Define two new actions & and § by &, := ayo,, and §, := fo,}. Since
oo and f commute with o,a and f are indeed actions of G. By the con-
struction of & and f, it is easy to see H, = & ' (Cnt(M,N)) = a ' (Int(M,N)) =
B~ H(Cnt(M,N)) = p~'(Int(M, N)).

Next we compute A(%). For me H, take v,, € U(N) with o, = Ad 0,,0,().
In this case, we have Ada,, = Adv, for me H. Moreover since

1 =y, q
= UAd 1,0, (), 0k
= Ad 0y (ths, ), 0 JUAd 1, 0
= ic4(k, v(m) ) vmor (v])

holds, we have ay(v,,) = 1c,(k, v(m))vy,.
First we compute ;. Since we have u, o, = 1, ay(v,-1,4) = 44(g,)v, holds
by the definition of A,. Then we get

g (Vg-1ng) = O‘QO—V_(}J)(UW]”Q)

= ra(v(g9) ", V(1)) oty (Vg-1g)
= 1,(v(g9),v(n))Ay(g,n)v,,

and Az(g,n) = k.(v(g),v(n))i,(g,n) holds. Next we compute u;. By the defi-
nition of u,, we have v,0,u)(vn) = pt, (M, 1)Vyn, m,n e H. Hence we get v,v, =
Kq(v(m),v(n))u,(m,n)v,, and consequently u;(m,n) = r,(v(m),v(n))u,(m,n).

Similar computation is valid for B, and by the assumption A(x) = A(f), we
get A(%) = A(f). Hence & and f are cocycle conjugate by [26, Theorem 5.1].
Then & and f are stably conjugate, and hence there exists an automorphism
0 € Aut(M ® B(I*(G)),N ® B(1*(G))) with 0o (B, ® Adg,) o 0~" =3, where o
is the right regular representation of G.

To prove the main theorem, we need the following proposition where N < M
can be an arbitrary subfactor of finite index.

PROPOSITION 2.5. Let o be a non-strongly outer automorphism. Take 0 #
a e M, such that a(x)a = ax holds for every xe M. Then ve M is in M? if and
only if va = av holds.

ProoF. First assume that ve M. Then we have va = g(v)a = av. Con-
versely assume that va = av holds. Then ¢(v)a =av=va holds. Hence we
have g(v)aa* = vaa*. Here aa* is in M'NM,. Let E be the minimal condi-



3

Notes on group actions on subfactors

tional expectation from M, onto M. Then we get g(v)E(aa*) = E(a(v)aa*) =
E(vaa*) = vE(aa*), and E(aa*)e MNM' = C. Since a is not zero, E(aa*) is
a non-zero scalar. Hence v 1s in M?°. O

Remark. The above proposition can be regarded as a subfactor-analogue of
the characterization of the centralizer of type III factors. Namely let M be a
type III factor, ¢ a faithful normal state of M. Then a e M is in My if and only
if [¢,a] =0.

We continue the proof of [Theorem 2.4. Since an outer action of a finite
group is stable, we can find a unitary w € N ® B(I*>(G)) such that w*o; ® id(w) =
Ug s, id- Hence 0oor ®@1id o 0! = Adup 5, zid 0 0r ®1d =Adw* oo @1do Adw
holds. If we can prove that wa, ® Adg,(w*) is in (M ® B(I*(G)))X, then
wity ® Ad gy(w*) is an o @ Adp = 4o ® Ad p cocycle and

oy ® Ad g, 0000,y ®ido 0™ =, ® Ad gy 0 Adw" 0 7,y ®id o Adw
= Ad(@ ® Ad g,(w"))ay0,,) @ Ad gy o Adw
=Adw" o Ad(wa, ® Ad g,(w*))oty ® Ad g, 0 Adw
holds and we have the following.
t®Ado=a®@Adpoo®1d
~3®Adgofoo®idod!
—0of@Adpol '0oo®idod™!
=0ofo®Adpol
—0of@Adpod".

Hence « and f are stably conjugate. So we only have to prove that
wiy ® Ad g,(w*) is in (M ® B(I*(G)))".
It is easy to see uy@Ady.aeid=1 $0 that uzgad,. oeid=
Uy o @A, o@id = Ka(k,v(g9)) holds. In the same way, we can see
g )

Uj @Adgy,0@id = kq(k,v(g)). Hence
Uz, ®Ad 9, Ad w*oo; ®idoAdw = ugo/;g@Ad Qg09_17900k®id09_1

=005 ord,. 0 0id)

= Ka(k; v(g))

holds. Take 0 # a € M, ® B(I>(G)) such that o; ® id(x)a = ax holds for every
xe M ® B(I>(G)). Then &, ® Ad g,(a) = x4(k,v(g))a holds by [26, Theorem 3.1].
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Since Adw* o gx ® id o Ad w(x)w*aw = w*awx, we also have &, ® Ad g,(w*aw) =
kq(k,v(g))w*aw. From these two equalities, we get &, ® Adg,(w*)ad; ®
Ad g,(w) = w*aw. Hence wa, ® Ad g,(w*) satisfies the condition in
2.5, and wi, ® Ad g,(w*) is in the fixed point algebra (M ® B(I*(G)))*. O

COROLLARY 2.6. If G is a finite group in Theorem 2.4, then o and f are
cocycle conjugate if and only if H, = Hg, A(a) = A(f) and v, = vg hold.

ProOF. On one hand, « ® Adp and f® Ad o are conjugate by
2.4. On the other hand, in the same way as in the proof of [16, Lemma 6.5], we
can prove that o is cocycle conjugate to o ® m, where m is an outer action of
G/H on the injective type II; factor Ry and we regard m as an action of G in
the natural way. Hence o and f are cocycle conjugate since m and m ® Ad o
are cocycle conjugate. O

In the rest of this section, we treat examples which satisfy the assumption in
Theorem 2.4. The first example is taken from [20, Theorem 4.1].

ExampLE 2.7. We consider the case G=Z. Take ae Aut(M,N). Let
p be the strongly outer period of o«. Set g:=o”. Then v, is given by
v,(pm) = [¢"™]. Let n be the outer period of . Here assume (p,n) = 1. Then
we can find k,/ e Z such that pk+nl=1. Set v(g):=[0%]. Then we have
v(p) = [6?*] = [67""*!] = [0], and hence v, can be extended to a homomorphism
from Z.

ExaMpLE 2.8. Assume that G is of the form G = H, < K. For (hk)e
G = H, % K, define v(h,k) := v,(h). Then by using the fact v,(knk~!) = v,(n),
we get

W, k) (o, ko)) = v(hikhoky i)
= v, (hikihaky ")
= v, () vy (k1 ok )
=v(hy, k1)v(h, k?).

Hence we can extend v, to a homomorphism from G, and we can apply the main
theorem.

A. On liftings of the relative y group.

In and this paper, we fixed a lifting of y,(M,N) to Aut(M,N) for the
definition of the characteristic invariants and classification of group actions on
subfactors. However, in general, a different choice of a lifting produces a 2-
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cocycle, and this 2-cocycle may change the characteristic invariants of actions.
Hence the definition of characteristic invariants depends on the choice of a
lifting. In this appendix, we show that we can choose a unique lifting up to
cocycle perturbation by using the algebraic x invariant.

Take a lifting 0. Then the algebraic x invariant x,(h, k) is defined as
Ka(h,k) :==u; .. To specify g, we denote this x, by xJ(h k).

Fix ¢ and take another lifting 6. Then we can find a unitary u, € U(N)
with Adw,0, =6,. Since ¢ is a lifting, there exists a 2-cocycle u(h,k)e
Z*(y,(M,N),T) with oy, (ux) = u(h,k)up.. To compare k¢ and k¢, we com-
pute x¢. Then

K

S

(h,k) = us, 5,
= UAduoy, Ad w0y,
= UAd o, Adu, A Up(UAd o, 0,)
= wio (up)uguy, Aduy(Adug (g, q,)uadu,o;)
= oy (up)uy g, q,ukon (U )u,

— g (b, Rl Ryu(k, )

holds, so we get k% (h k) = k2 (h,k)u(h,k)u(k,h).

Therefore if k¢ = k7, then we must have u(h,k) = u(k,h). By [30, Prop-
osition 3.2], u is a coboundary, so we can choose u;, as a g-cocycle. Hence we
have shown the following proposition.

PropoSITION A.l. Let o and & be liftings of y,(M,N) to Aut(M,N). If
k2 =KC holds, then G is a cocycle perturbation of a.

By Proposition A.1, we can find a unique lifting ¢ up to cocycle pertur-
bation once we fix the algebraic x invariant.

In the next proposition, we do not assume Ker® = Aut(M,N). Every
0 € Aut(M,N) induces an automorphism y,(6) of y,(M,N) by y,(0)([g]) =
[focod™].

PrROPOSITION A.2. Let o be a lifting of y,(M,N) to Aut(M,N). Assume
that k7 (h,k) = kZ(x,(0)(h), x,(0)(k)) holds for every 0 € Aut(M,N). Then there
exists a a, p).)-cocycle wy, such that 0o gy o 0! = Ad WGy (0)(n) holds.

Proor. Take a unitary w, with Adw,ag, @u) = 0ca,0 0~'. Then there
exists a 2-cocycle u(h, k) satisfying wy,a,, g)n (Wr) = u(h,k)wy.  On one hand, we
have u* = 0(ug, 5,)" = K2(k,h). On the other hand, we have

foay, 00! , 00(71{0071
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U * —u *
Ooayol " Ooai 00" T TAdWiG,, o)), Ad Wiy, (0)(k)

= kg (Xa(0)(K), 1 (0) () ek, ) p(h, K).
By the assumption on x’, we can choose w; as a cocycle as in the proof of
Proposition A.1. ]

The assumption on x, in the above proposition is satisfied when either x,
is trivial or y,(M,N) is cyclic. The former is trivial so that we will see the
latter. It is easy to see xJ(h,h) =«7(x,(0)(h),x,(0)(h)) holds from the above
computation. If y,(M,N) is cyclic and g is a generator of y,(M,N), then

ag mn

kg (9" 9") = x7(9,9)
K5 (1a(0)(9), 24(0)(g))™
=15 (1(0)(9™), 2,(0)(9™))

holds.
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