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Polygonal presentations of semisimple tensor categories

By Shigeru YAMAGAMI

(Received Jun. 15, 2000)

Abstract. A polygonal description of semisimple tensor categories is presented and
the rigidity as well as the associated involutions are analysed in terms of this.

Introduction.

The combinatorial structures behind tensor categories play fundamental roles
in recent studies of quantum symmetries ([1], [2], [5], [1T]). Although it is common
to impose the strictness on associativity in tensor categories, which does not lose the
information thanks to the coherence theorem, an explicit use of associativity con-
straints is often convenient in concrete computations.

A direct manipulation of such combinatorial data, however, can easily lose
the navigation. When tensor categories are semisimple, we can divide the relevant
structure into two parts: the skeleton information of fusion rule (algebra) and the
remaining flesh part, which provides a kind of (non-linear) cohomological infor-
mation.

Viewing this way, semisimple tensor categories can be reconstructed from
hom-vector spaces relating three simple objects. These are then pictorially as-
signed to edges of a triangle and the general hom-sets are expressed in terms of
polygons together with triangular decompositions.

This kind of geometrical presentation of tensor categories is useful in actual
computations to get perspectives: we shall describe the rigidity as well as the as-
sociated involutions (if any exists) and show that the variety of duality isomorphisms
comes from choices of “‘characters” of fusion rules.

1. Polygonal vector spaces.

A monoidal category (%, ®,I) with @, [ and r denoting associativity, left-unit
and right-unit constraints respectively is called a tensor category over a field K
if hom-sets are K-vector spaces and all the relevant operations are K-linear.
In what follows, we shall exculisvely deal with tensor categories over the complex
number field C and vector spaces are assumed to be C-linear unless otherwise
stated.
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Given tensor categories ¥ and %’, a monoidal functor F : 4 — €' is called
an isomorphism if (i) F gives an isomorphism of vector spaces

Hom(X, Y) — Hom(F(X), F(Y))

for any pair (X, Y) of objects in 4 and (ii) each object X’ in 4’ is isomorphic
to F(X) for some object X in 4. Two tensor categories ¥ and ¢’ are said to be
isomorphic if there is an isomorphism between them.

An object X in a tensor category is simple if End(X)= Cly. A tensor
category € is semisimple if the unit object is simple and every object is isomorphic
to a direct sum of simple objects.

Given a semisimple tensor category %, we denote by S = Spec(%) the set
of equivalence classes of simple objects in %, which is referred to as the spectrum
of . The free module Z[S] generated by the set Spec(%) has the ring structure
defined by

[X][Y] =) dim(Hom(Z, X ® Y))[Z],
Z]eS

l.e., the ring Z[S] has a special basis Spec(%) for which structure constants are
non-negative integers.

Rings, furnished with such bases, are referred to as fusion algebras although
this terminology is usually used in a more restrictive sense.

For x = [X], y=[Y] and z = [Z] in Spec(%), a non-negative integer N.% is
defined as the multiplicity of Z-component in the decomposition of X ® Y, i.e.,

N =dimHom(Z, X ® Y).

The totality {N7'}, | .cspec 18, by definition, the fusion rule of €.

Let ¥ be a semisimple tensor category with the spectrum S = Spec(%).
For the time being, we fix a specific representative containing the unit object [
and regard S as a set consisting of simple objects in 4. For a finite family
{X;}o<j<m of simple objects in S, we set

(X X ]
PO — Hom(Xy ® -+ @ Xon, Xo),

—Hom(Xo Xi ® - QX
X, X om(Xp, X1 ® ® Xn),

which are finite dimensional vector spaces with the pairing
X, X, X
l 1Xo ] § leoXm] 2Sxgm e
defined by
<fag>1X0 - ng,
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1.e., we have the natural identification
Xi X, Xo *
X0 XX,
XX, . .
The vector space ¥ is graphically represented by a polygon of m + 1
0

vertices with edges labeled by the sequence { Xy, X1,..., X},} clockwise, where the
initial label X, plays a special role and we place it at the bottom edge.
XY

]} then form building blocks of
Z |)x yzes
X, X,

0
with the case m =3 and consider X ® X, ® X3. According to two ways of
grouping (X7 ® X2) ® X3 and X; ® (X> ® X3), we have two natural isomor-
phisms of vector spaces

Triangular vector spaces {l

polygonal vector spaces such as [ ] in the following sense: We begin

(X1 X, ] [ X124 ] (X1 X0 X5 ]
D ® — :
XpesStL Xlz i L XO i L XO i

[ XoXs ] [ XX (X1 X0 X5 ]
D ® — :
Yoesl X3 | | Xo | L X0

We denote this situation graphically as

X X> X> X

X X; — X Xj X X3 — X Xj

Y

Xo Xo X0 Xo

and the composite isomorphism

X X

X X3 — X Xj

X0 Xo

is referred to as an associativity transformation.
For the case m =4, we have five groupings ((X;X2)X3)X4, (X1X2)(X3Xy),
(X1(X2X3)) Xa, X1 (X2 X3)Xy), X1(Xa2(X3Xy)) with the associated vector spaces

N N

TN

X0 Xo Xo Xo Xo
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Figure 1.
where
X1X> XpX- X1nX.
_ [ ]®[1231®[1234]
X Xy X2, X123 X2 X123 Xo
Xo
and so on.

If we apply associativity transformations to squares inside triangulated penta-
gons, then we have the commutative diagram in Figure 1, i.e., associativity trans-
formations satisfy the pentagonal relation.

Generalizing these, groupings in X| - - - X, are parametrized by triangular de-
compositions of an (m + 1)-polygon, which in turn give rise to triangular decom-
x| X,

0
tions provide the same result as long as the initial and final vector spaces are the
same (the coherence for associativity transformations).

positions of the vector space [ ] and composed associativity transforma-

Y YI
Triangular vector spaces of the form lX] and lX] are non-trivial only

X
for X =Y and, if this is the case, they admit distinguished vectors Iy € [ X]

1| . . :
and ry € [ X] given by the unit constraints.

The associativity transformation

Can
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then takes an especially simple form:
XY
Try @) =Iy®¢ for fel - ]

To facilitate the visual notation further, given a triangular decomposition of
a polygon and a family of vectors in the accompanied triangular vector spaces we
denote its tensor product by putting the vectors inside the belonging triangles: for
example, in the triangular decomposition

leXzXﬂ o leXﬂ ® lezXﬂ
Xo Yoesl A2 Xo

with ¢ e Hom(X; X3, X1,) and # € Hom(X}».X3, X)), the associated vector #(E ® 1y,)
is denoted by

x| </ |x;.

We now discuss the reverse process of the construction according to [13].
Suppose that we are given a set S with a distinguished element 1 and a family of

X0
(called triangular vector spaces) and a family of isomorphisms

X1X X12X XoX X1X
T @l 1 2]®[ 12 31_} @[231@9{ I 231
’ vhesl X12 X0 vmesl X23 X0
indexed by quadruplets (xo,x1,x2,x3) in the set S (called associativity transfor-
mations) which satisfies the pentagonal identity. Furthermore, we assume that

o : XX | . : .
finite-dimensional vector spaces l : 21 indexed by triplets (xg,x],Xx;) in the set S

C 1 1
there are distinguished vectors I, € [ x], Iy € lx ] such that
X X

Ix] [ClL ifx=y, x17 [ Cre ifx=y,
y]  L{0} otherwise, [y | | {0} otherwise,
and

Trh®0)=1,®o0, aelxsy]
(xl)y] . lx(ly)l_

for the associativity transformation 7 : l
s s
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The totality of these data is referred to as a monoidal system.

oidal system

XY xyz
{l 17Ey7lS7rS} Y
z $,X,,z€S

we define the dual system by

Xy Xyz g
{l ‘| Ty’ls’ v} 7
z $,X,,2€S

where lxy] is the dual vector space of [xy]’
zZ A

. lls]* . lslr
[ e , I €
s s

are specified by </, [’) =1=<r;,r}) and

r-nesg o] -g] o]

S S

teS teS

is defined to be the transposed inverse of 7' = T.,%~.

Given a mon-

Given a monoidal system, consider a family X = {X(s)}, ¢ of finite-
dimensional C-vector spaces with X (s) = {0} except for finitely many s e S. Let
Y ={Y(s)},.s be another such family. Thinking of these as objects and defining

hom-sets by

Hom(X, Y) = @ Hom(X(s), Y(s))
ses

with the pointwise composition, we obtain a (semisimple) category €(S).
Using the assumed triangular vector spaces, the tensor product operation in

%(S) is introduced by
xene=- @ xwWerme|”]

for objects X, Y in %(S) and

(f®9)(s)= D f(x ®1:

x,yesS

A

x,yes x,yeS

for f €e Hom(X,X’) and g e Hom(Y, Y’).

D XW® V() ® Ml ® rwerme|”|

S
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The unit object I in %(S) is defined to be

€ =
T{0)  otherwise.

Associativity and unit constraints are defined by

ax,v,z(8) = P Iy ®@ly(n ®lzpn @ : (X ®Y)RZ-X® (Y ®Z)

with
(renenn- ® xWernezas|"| e
e (rez)n- ® XWernezas|’| 8|
and |
Ix]”
IX(x):X(x)®lx] 3¢ e X(x),
x17"
rX(x):X(x)@)lx] 2@ — e X(x)
with

rexnm-xwe || wenw-xwe "],

X

It 1s immediate to see that these in fact satisfy the axioms of tensor category:
So far we have defined a semisimple tensor category (S, T).
If we identify an element x € S with the object X in %(S,T) defined by

C ifs=x,
{0} otherwise,

X ={

then the vector space Hom(x ® y,z) is naturally identified with the triangular
X D :

vector space l y] and we recover the associativity transformation 7 from the
Z

associativity constraint for %(S, T).
Two monoidal systems (S, 7), (S’, T’) with the unit elements 1 and 1" are
said to be equivalent if we can find a bijection ¢ : S — S’ such that ¢(1) = 1" and
xy} [¢(X)¢(y)
—
z #(2)

a family of isomorphisms ¢.” : l ] which makes the diagram in

Fig. 2 commutative and satisfies

B (1) = Ly B3 () = rgg.
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T To
I I3 -—T—b T T3
Lo Zo
¢ l l ¢
é(z2) é(z2)
é(z1) ¢(33)—7>¢(31) é(z3)
é(zo) (o)
Figure 2.

An equivalence {¢.”} is called a gauge transformation if it is associated to
the identity map of the index set S.
Summarizing these, we have the following.

ProrosiTiON 1.1 (Reconstruction). Two tensor categories %(S,T) and
€(S',T") are isomorphic if and only if (S,T) and (S',T') are equivalent.

ExampLE 1.2. Semisimple tensor categories with the fusion rule given by a
countable group G are parametrized by elements in the third cohomology group
H3(G) up to gauge transformations.

ProoOF. In fact, non-trivial triangular vector spaces are 1-dimensional and
. 7 h . . . . ’ h
given by lg L ], g,he H. With a choice of associative bases 0 # [g, /] € lg L ]
9 9

such that [1,g] =, and [g,1] = r,, associativity transformations are specified as

T :[g1,92) ® [9192, 93] — ¢(91,92,93)[92 ® 93] ® [91, 9293],

where ¢(g1,92,93) is a three cocycle of G.
The pentagonal identity and the unit constraint condition for 7 take the
form

—1 —1
c(92, 93, 94)c(9192, 93, 94) "~ (g1, 9293, 9a)c(91,92,9394)" (g1, 92,93) = 1

and c¢(g,1,h) =1 respectively.

The Kelley’s result on unit constraint conditions (see [7]) is then reduced to
c(1,9,h) = ¢(g,h,1) = 1, which is a direct consequence of the cocycle condition if
we take gop =1 or g3 = 1.
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If we denote by %(G,c) the semisimple tensor category associated to a
normalized 3 cocycle ¢ on a group G, then it is immediate to see that ¢(G,c) =
€(G', ') iff there is a group isomorphism ¢ : G — G’ such that ¢ and ¢’ o ¢ are
cohomologous in H*(G). ]

2. Rigidity.

Recall that an object X in a tensor category % is said to be rigid if we can
find an object X * and a pair of morphisms ¢ : X @ X* —1,0:1 — X* ® X such
that the composite morphisms (the associativity isomorphisms being omitted by
coherence theorem)

¥ Zrxeoxreox 2y 2y oxex & x
are identities. The object X* is unique up to isomorphisms and is referred to as
a dual object of X. The tensor category % is rigid if every object is rigid and
isomorphic to a dual of another object.

LemMa 2.1 (cf. [6]). For a simple object X in a rigid (semisimple) tensor
category, its dual object X* is again simple and X itself is a dual of X*.

ProoF. If X* i1s not simple, X* =~ Y* @ Z* by the rigidity of ¥ and then
X =@ Y @ Z by the uniqueness of (pre)dual objects. Thus X* is simple if X is
so. By Frobenius reciprocity and the semisimplicity of %, we have

Hom (X, X™) =~ Hom(X* ® X,/) @ Hom(/, X* ® X) = End(X),

whence there is a non-trivial morphism X — X**. Since X** is simple as a dual
of the simple object X*, they are actually isomorphic. ]

As a consequence of the above lemma, an involution is defined on the
spectrum set S of a rigid tensor category by [X]" = [X*], which satisfies the
duality relation

ley:{l 1fx:)'/,
0 otherwise.

The fusion algebra C[S] is a *-algebra by extending the involution on the set S
(see [12], [4], for more information on fusion algebras in the present context).

Assume that in the tensor category %(S, T') the fusion set S is furnished with
an involution = satisfying the duality relation. For an object X in (S, T) and a
morphism f : X — Y, we then define the object X* by

X*(s) = (X(s*))" (= the dual vector space of X(s*))
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and the morphism f": Y* — X* by
(F)s) =S (s7): Y(s7)" — X(s7)",

where f(s*) denotes the transposed map of f(s*).
The operation X*, /f gives a contravariant functor from %(S,T) into itself.

LemMma 2.2 (Local Rigidity). The semisimple tensor category (S, T) is rigid
if and only if S admits an involution x satisfying N| * =0y , and

R TERL)>=GRL, T (e®r)> #0

for O;«ése[&; 1, O;«ééerls] with s e S.

Proor. For ¢e lxly] and o0 € lyIX] , we have

(e®1D)a'(1®0) =@, T(e® L))y,
1®ea@®1) =L, T (e®@r)),

with obvious identifications on unit constraints. The condition in question is
then equivalent to the rigidity of simple objects in (.S, T'), which in turn implies

the rigidity for arbitrary objects: For each s € S, choose ¢; € lsi ] and o5 € ls 151
so that

G @1, T(es® 1)) =0, QL T ey @1p:)) = 1.

For any object X in %(S,T), we then define morphisms ¢y : X ® X* — I, dy :
I > X"®X by

D X(5)@X(s)' ® [S‘” > @ERN @ag Y & es, 000 e C=1(1),

ses ses R

I1)=C31 @y, ®de DX ®X(s)® [s*s] .

ses
Here

Ox(s) = ij* ® ¢
J

with {¢;} a basis in X(s) and {} its dual basis.
It is straightforward to check that these in fact give a rigidity pairing between
X and X*. ]

ExampLE 2.3. The tensor category %(G,c) associated to a 3 cocycle ¢ of a
group G is rigid.
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ProoF. The fusion rule set S is the group G itself and the involution is given

9,97 9]
by g*:g—l for geG Let 82[9,9_1]€l ,1 ] and 5:[g_1’g]*el 1’ ‘|
in Lemma 2.2. Then

ORr, TE®l)>=clgg™,9), COLLT e@ra))=clg g.97")"

shows that the rigidity is equivalent to

- - C1y-1
(g9 9) =clg " ,9,97) 7,

whence it follows from the cocycle condition of ¢ if we consider the condition
oc(g.97",9,97") = 1. O

Let €(S,T) be a semisimple tensor category described by a monoidal
system (S, 7) with S a fusion rule set and 7" a system of associativity transfor-
mations on S. Assume that the tensor category %(S,T) is rigid, i.e., S admits
an involution = satisfying the duality relation and the condition in [Cemma 2.2

We then choose ¢ € lsi 1, Os € [SIS] and extend it to rigidity pairings ey :
X®X*—1I 6y:1— X*®X as described in the proof of [Lemma 2.2

The following is immediate from definitions.

LemMa 2.4. The contravariant functor (X, f)w— (X*,'f) is compatible with
the rigidity pairing {(ex,0x)}:

ey(f®1)=ex(1® ) or equivalently (1®f)ox = ('f ® 1)dy
for f:X =Y.

By the uniqueness of rigidity pairings, we can define isomorphisms cy, y :
Y*@X* - (X®Y)" by the commutativity of the diagram

XYYy ex: -2 xyex

1®CX‘YJ( J{SX ,

XYY®X®Y)" — 1
éxy
where parentheses are omitted thanks to the coherence theorem.
By the above lemma, the family {cy y} is natural in X, Y and hence it is
determined by isomorphisms ¢, , for x, ye § as

cxy(s)= @ 1®cuy(s): (Y @X)(s) = (X ®Y)'(s)

x,yeS
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with

(F'@X )= @ Y ®X()'® [y*x*] ,

x,yeS S

Xev'6- @ 10 exw e

x,yeS S

oo [T 2

S A

Here the isomorphism

is specified in the follwoing way: Starting with a vector « ® f ® ¢ in the vector

opace
wonm -7 o T e,

seSLS S
the evaluation by the morphism

() 07) 2 () )

gives

<OC, Cx,y(s)ﬁ><8s*a Us>a

whereas the evaluation by the morphism (see Fig. 3)

- a _— 1®a! o e 1®(e,®]1) .
() (¥y'x") —— x(y(y*x")) —— x((yy*)x") — x(1x7)
1®! % &y
—_ s xx —51

gives the expression
(IRTNT®1)(e @l ®ey), 0 ® R o).

Equating these, we get an explicit formula which determines cy ,(s):
oy ey ()B) =<1 ® T_l)(T ®1)(e @ L ®ey), 0@ PR e,

where &), € Hom(1,s%s) is specified by (e:,éel.) = 1.

Figure 3.
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If we change {&;},cs into {&! = ¢(s*) 'e}ses with ¢(s*) € C* and c,, into

/ / :
¢y, then ¢ satisfies

o, ¢, () = ()9 AT NT @) (6 Ol @), 0@ SOl
and the comparison with the equation for ¢, , yields
b P(s)
) = G p()

If we define a natural family of isomorphisms {¢y : X* — X*} by

by : @D &) = D bs)<(s),

ses ses

(5).

. . ;o
then it intertwines between cy y and cy y:

Cx, vy

V'ex: 2L (x@Y)

¢y®¢xl l‘ﬁ){@y .

Y'@X — (X®7Y)
Cé(,y
In other words, the monoidal functor (X*,'f,cy y) is unique up to natural
equivalences.
For an object X in %(S,T), we defined dy-: I — X ® X*, whereas we
have

1
« Sxxx

I (x@ X)) Sy @ X,

LEmMA 2.5. For an object X in 4(S,T),
th =Cx,x~* Oéx* 1 — (X@X*)*

Proor. If we regard ‘ey as an element in (X ® X*)"(1) = (X ® X*)(1),
then

. xx*
‘ex = @ Iy ®ere @ X(x) ® X(x) ®l ],
xeS xeS 1
where the second dual of (finite-dimensional) vector spaces are identified with the
original ones. Similarly dy- is identified with an element in (X** ® X*)(1) by

x 7]k

[ xx

Ox = @ Oy ®dv e D X()OX() @ |

xes xes
and then cy y-ody- takes the form
o [ xx®]
P Oy ®crr(0)e P X(x) Q@ X(x)' ®

xe§ xesS
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Thus we need to show &, = ¢y v+(dy+) In [XT ] . According to the morphism
1®Cx‘,\—* % %\ * Exx*
XRX)®(x®Xx) —— (XX ®(x®x") —— 1,
the vector
x* X '
5 @0 @1t xx* *® xx* *® 117"
* * C
A I 1 1 x X'
1

is mapped by 1 ®c, - ® 1 to the vector
L [xx* 7T [xx® 117"
6)(?* ®Cx,x*(5x*)®rl € 1 ® 1 ® 1

and then evaluated by e,,:, resulting in the scalar
<5x*7cx7x*(5x*)>-

On the other hand, the vector d,- ® d,+ ® r{ 1s transformed by an associa-
tivity transformation into dy- ® T(dy+ ® r;), which is equal to

5 @1 @0 € xx* *® x*1 *® xx* *C
X* x* x* 1 * 1 ¥ x*

X
1

by Kelly’s theorem ([7]) and then again by an associativity transformation into

*
x* X

T 160 ® 1) ®0y € [xlxl ® llx] ® [xx 1 c
X 1 X x*

The last vector is evaluated according to the morphism

(x®(x*®x))®x* 1®2-)®] x®1)®x* et xX® x* & 1

into the scalar
<3x* ® lx*a T_l(éx* ® r;*)><8xa5x*> = <8xa5x*>-

(In the last line, we used the local rigidity.)
Comparing these, we have &, = ¢, ,+(dy+), proving the assertion.
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3. Duality.

In this section, we assume that the antimonoidal functor f +— f is supple-
mented to an involution by duality isomorphisms {dx : X — X}y opieci(4)> 1-€-
the family {dy} is natural in X and multiplicative in the sense that the following
diagrams commute,

R

dy i

and 'dy = dy! : X — X* (see for more information on this).
By the naturality in X, d takes the form

X(s) 3¢ DyE™ e X(5)™ = X*(s)

for s € S with Dy e C*, where ¢ — &* denotes the natural identification X (s) =
X (s)™. The multiplicativity of d is then reduced to the commutativity of

xy1* b, [xp]”
_—
s S
DSJ/ J/Cy*,x*(s)
Xy yrx*
—_—
S fey y(5) s*

(note that ‘cy ,(s) = “(cx,,(s%))), 1e.,

Dicy ,(s) = DyDycys +(s) lxyl — [y f 1
s s

If {D{}, s gives a duality d' for the antimultiplicativity {c; ,}, then it
satisfies
Ds”c;’y(s) = D;D;c;*7x*(s),
which is equivalent to
D g(s") _DiDy g(s)
D; ¢(x*)¢(y*)  DxDy ¢(x)¢(y)

As a solution, we may take

6
D= P
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In other words, there is a natural correspondance between duality isomor-
phisms for different antimultiplicativities and we may restrict ourselves to the
case (X*,'f,c)=(X*,'f,c") for the studies of possibility of rigidity-compatible
involutions: the information on involutions is then stacked up to the choice of
duality isomorphisms.

: xx*| . : : .
ReEmMARK. Since the vector space [ i ] i1s 1-dimensional, the linear map

5] [3]

and its transposed map ‘Cy ,-(1) coincides. Thus we have
Dy =D.D,-
for any x e S. In particular, we see that
D =1, DD =1.
The condition ‘dy = dy! is a consequence of the multiplicativity.

Let d and d’ be dualities based on a common antimultiplicative functor
(X*,%f,c). If we define a family of isomorphisms {¢y : X — X} by d} = dx o ¢y,
then it is natural and multiplicative: f¢y = ¢y f for f: X — Y and ¢ygy =
¢y ® ¢y. By the naturality, such a family is determined by scalars {@(s)}, 5,
¢, € C*, defined by ¢, = ¢(s)1; and the multiplicativity is reduced to the con-
dition

| XY
o) = d0b) it || o)
In particular, it satisfies
p1) =1, §(s") = ¢(s)"

and gives a character of the fusion rule set S. (This is different from the notion
of character of the fusion algebra C[S].)

Conversely, given a character {¢(s)},.¢ of S, it induces a natural and mul-
tiplicative family of isomorphisms by

Py (x) 1 X (x) 3 & = h(x)¢ € X(x).

By point-wise multiplication, the set G(S) of characters of S becomes a
commutative group and choices of dualities for the rigidity-compatible antimul-
tiplicative functor (X*,f,c) are parametrized by elements in G(S). Since the
antimultiplicativity {cy, y} is uniquely determined by the choice {ex}, the iso-
morphism classes of the structure ({ex},{dx}) is parametrized by the set G(S) as
well.
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We now proceed into the description of Frobenius duality ([I5], [16], cf. also
[3]), which is a family {ey : X ® X* — I} together with an involution (X™*,’f, ¢,d)
satisfying

(i) (Multiplicativity)

(1®ey)®1 ry®l1
-

XQ(YQY))®Xx X QX" X®Xx:

| X

XR®Y)®(Y"® X" XRY)®XR®Y) I

I®cx v EX@Y

(ii) (Naturality)

Yoy 2L yevy

1®f/l L?Y .

XX — I
(iii) (Faithfulness) The map End(X) 32 f — ex(f ® 1) is faithful.
(iv) (Neutrality) If we define left and right dimensions (denoted by Idim(X)
and rdim(X') respectively) of an object X by the following composites

t 7] *'@
I/ (XX ) 2 xy"eXx L S xex 27,

t -1 I®

ex* * oy kXX o o dys @ * *k Ex*
I—)(X XX ) 2 x XX X X" — 1,

then they coincide (the common scalar is called the dimension of X and

denoted by dim(X)). .
s :
Starting with a choice of rigidity pairings {es l I ] }, we enlarge it to the

family {ex} and define an antimultiplicativity {cy y} as discussed before. Then
the first three properties, multiplicativity, naturality and faithfulness, are satisfied
by just giving a duality {dy : X — X*™*} for (X*,f,¢). Thus whether it gives a
Frobenius duality depends on the validity of neutrality.

LemMa 3.1. A4 duality family {Ds}ses for a local rigidity family {eg,ds}ses

with &g € lsi 1, 05 € lslsl gives a Frobenius duality if and only if

2 <5s*785>
DS B <5S78S*>.
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ProOF. By the naturality, it is enough to check the condition for simple
X. In that case, by [Lemma 2.3, the composite morphisms in the neutrality are
reduced to

d\'* Kk % d.;l * &g s g s*
1 ss S8 I, 1 ss s's 1

and the equality of these is
Ds_1<5s*78s> = D0y, &5 ). O]
As a conclusion of our discussions, we have the following.

THEOREM 3.2. Isomorphism classes of Frobenius dualities in the tensor cate-
gory €(S,T) is, if it exists, parametrized by characters of S taking values in {+1}.

ExampLE 3.3. Let G be a (discrete) group and ¢ be a normalized cyclic 3-
cocycle (see Appendix A). The associated tensor category %(G, ¢) is reflexive and
reflexivity is parametrized by characters of G. For a cyclic cocycle ¢, d ={D},c6
itself is a character (generally, the parameter space is a principal homogeneous
space of the character group of G) and the dimension function is given by

- c(9.97",9)
1d =,
im(g) D,
Moreover, a Frobenius duality is defined by choosing D, = ¢(g,97!,g) so that
dim(g) =1 for g€ G.
T /A . g 91" .
Proor. Let ¢, =g,g ]el X ] with the accompanied J, el i ] given
by
Sy =clg,97",9) 9,979 )"
Given g, he G, let

o hrg* 1% ., _ g, h
c1h11:l ]ahl, " ,hel’]
gn(hg7") . i7" = ulg, h] oh

be the non-trivial part of ¢y .
If we start with the vector

(g(hh‘l))g‘lr’

i1 @1 @l | O

its evaluation by ¢, 0¢; 1s equal to 1, whereas repetitions of associativity trans-
formations show that it corresponds to the vector

c(g, b,k elgh, k' g g, i @ g7 @ lgh, g l(gh)(h*g*)r

1
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in the pentagonal vector space. Now the evaluation by ¢4, 0 ¢, ; gives the result

uc(g,h,h )e(gh, k™t g™

Therefore we have

clgh,h7l ™Y
M= )

Thus the equation for d takes the form

c(gh,h™t,g71)
Dol (g, h,h=1)

c(h™'g7t,g,h)
c(h~t,979)

To solve this equation, we assume the cyclic symmetry on the cocycle ¢. Then

cghh gy =ch g g,h) =1, clg,h ki) =cht g7 g),

which reduces the equation to

— D,D,

Dgh = DgDh7 9, he G7

ie., {Dy}ysec is a character of G.
The left dimension is calculated by

dim(g)1; = 8g(d;1 ® 1)dy = C(gflagagfl)_ngl- O
Remark. For a normalized cyclic 3-cocycle ¢, we have
c(gh, (gh) ™", gh) = c(g, 97", g)e(h, ™", ).

Proor. From the cocycle relation dc(g,h,h~'g~' gh) =1, we have

c(gh, ™' g7 gh) = c(h, k" g™" gh)e(g, 97", gh)e(g, h, i g™h),

which, combined with the cyclicity of ¢ (gi1g2g394 =1 implies c(g1,92,93) =
0(92,93,94)_1) of the form

c(g.hh7 gy =1, c(hh7 g7t gh) = c(h™ bk g
produces

c(9,97", gh)
(h=Y hyh=1g=1)"

c(gh,h g, gh) = -

By the cocycle relations dc(g, g, g,h) = 1 =dc(h™',h,h~",g7"), we have

c(g,g7 " gh) = clg,g7",9)clg™ ", g,h),
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whence

o clg,g7hg) gl g.h)
clghh™"g™", gh) = 1Y) e, i1, g 1)

Finally, we apply the cyclicity of ¢ in the form

(gt g, h)=cth™ g7 g) ™ = clh, k7 g7h). O

ExampLE 3.4. Let G be a finite abelian group. Given a symmetric non-
degenerate bicharacter o : G x G — T and a real number 7 satisfying 2 = |G|,
we can define a tensor category %(o,7) such that S = G U {m} with the fusion
rule am = m = ma and m> =Y, _; a other than the group operation among ele-
ments in G (see [13]).

Then the tensor category %(o,7) is reflexive and there are two choices of
reflexivity, both of which give rise to Frobenius dualities. More precisely, we
have D, =1 for ae G, D,, = +1 and the dimension function is given by

dim(a) = 1, dim(m) :T% e {+|G|""*}.

ProoOF. Recall that non-trivial triangular vector spaces are given by

[‘;bb — Cla, ], l“m’”] = Cla, m], [mm"] = C[m,d), [’”a’”] — C[d]
and associativity transformations are given by
b b
a ¢ 3[a,b)® [ab,c] — [b,c] ® |a,bc] € a c,
abc abc
b b
a m 3 [a,b] ® [ab,m] — [b,m] ® [a,m] € a m,
m m
m m
a b 3 la,m) ® [m,b] — a(a,b)m,b] ® [a,m] € a b,
m m
a a
m b 3 [m,a)l ® [m,b] — [a,b] ® [m,ab] € m b,
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a m 3 [a,m @ [b] — [a'b) @ [a,a b € a m,
b b
m m 3 [m,al ® [b] — a(a,b)la,m] ® [b] € m m,
b b
m a3ba|®bat a) — [m,a ® b e m a,
b b
m m 3 [b] ® [b,m] — L;Ga(;b)[a]@)[m,a]em m.

Note that, if we denote by {[a]*} the dual basis of {[a]} and so on, then we
have

m : m i
a b | sla,m ®mbl* — {a,b) ' m,b]* Qla,m € | a b1,
m m
a i a i
m m | 3[ma* @b — {a,b) a,m* @[b]" € | m m |,
b b
m : m :
m m | 3] ®[b,m]" Y 1<a,bYa]" ® [m,d]" € | m m
m ’ m

As seen in[13], the tensor category %(o, 7) is rigid. With the choice of pairings

b0 = a,a7"] € [“H en = [1] € [mﬂ

the associated copairings are given by
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Based on these data, we can calculate the maps c, ,(s):
cap(b™'a) : U’IZI] 5 a | e [“ 1
| ma” s m
Ca,m(M) : l o ]a[m,a " — [a,m] € lm]
fam]T
Cm,a(m) : [ - ] 3a,m|]" — l 1
o | mm 1w mm
cmm(a).[a*}a[a ] Hr[a]e[al.
In fact, if we start with the vector
m m '\
o' @ bm @ | .

the evaluation by ¢,,(1 ® ¢, ® 1) gives d5 1, whereas the vector is changed by as-
sociativity transformations into

©Y o(a,b)a] @la') @[a"d]" e

aeG

m m

1
If we define u(a) € C by cpm(a*)(Ja™]") = u(a)[a], then the last vector goes to

St el tal e &[] 0[] o ]

aeCG aeG

and its evaluation turns out to be

Similarly for other c, ,(s*)’s.
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It is now immediate to write down the equations for {D;}:
Dy = D,Dy, D,Dy=D,, D,=D,
with the solutions given by
D,=1, D,e{+l}.

The left dimension is then calculated by
dim(a) = e,(d;' ® 1), = 1,

B 1
~D,,’

dim(m) = en(d,' ® 1),

which is automatically *-invariant and hence the involution in consideration gives
rise to a Frobenius duality. ]

4. Positivity.

Now we shall restrict ourselves to tensor categories possessing positivity, i.e.,
C*-tensor categories.

A category % is a C*-category if each Hom(X, Y) is a Banach space with a
conjugate-linear involution Hom(X, Y) 3 f — f* € Hom(Y, X) such that || f/*f|| =
111

A tensor category % is, by definition, a C*-tensor category if it is a C*-
category at the same time in such a way that all the monoidal structures respect
the *-operation (the unit and associativity constarints are then unitaries). A
monoidal functor F between C*-tensor categories is called a C*-monoidal functor
if it preserves the *-operation: F(f)" = F(f") for f: X — Y and the multipli-
cativity my y : F(X)® F(Y) - F(X ® Y) is unitary.

Given a semisimple C*-tensor category ¢ with the spetrum set S represented

by simple objects, each triangular vector space lxy] is a finite-dimensional Hilbert
space with the inner product defined by z

Elml. =n&*, & nelxy.

1x x1

The elements (of unit constarints) I/ el ] are then unit

1 and rxel
X

vectors. Moreover, the associativity transformations

X

y Y

are unitaries.
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A monoidal system satisfying these conditions is referred to as a C*-monoidal
system.

Given a C*-monoidal system (S, T), we can reconstruct the C*-tensor category
%: an object in % is a family X = {X(s)}, ¢ of finite-dimensional Hilbert spaces
with X (s) = {0} for all but finitely many s € S. Hom-sets are then defined by

Hom(X, Y) = @ Hom(X(s), Y(s)),
ses

which is a vector space of linear maps between Hilbert spaces ), X(s) and
@, Y (s), whence it admit the norm as well as the *-operation in the obvious
manner.

It is now immediate to check that the unit and associativity constraints de-
fined before are unitaries.

In the C*-tensor category %(S,T), the operations X — X* and f — f are
defined exactly as in §2. It is then immediate to check the relation (’f)" = /(™)
for a morphism f: X — Y.

We can apply the discussions on rigidity and (Frobenius) duality to C*-tensor
categories as well. For C*-tensor cateogries, however, it is natural to require the
positivity in Frobenius duality: a Frobenius duality {ex : X ® X* — I} with an
involution (X*,f,¢,d) is positive if (dy' ® 1)cy'y."ex =&} (I* being identified
with ). |

We proved in the existence and the uniqueness of positive Frobenius du-
ality for a rigid C*-tensor category with simple unit object. The key notion there is
the balancedness of rigidity pairs: a rigidity pair {e : X ® X* —= 1,6 : [ - X* ® X}
is said to be balanced if

ea®1)e"=0"(1®a)d for any a e End(X).
By [Lemma 2.3, the positivity is equivalent in the present context to requiring
Do =&, seS.
For s # s*, we can choose balanced pairings ¢, & so that d = ¢, which
forces Dy to be 1 by positivity. For s=s*, let ¢ € <S1S) and J € (sls>* be a

balanced rigidity pair. Since both of ¢* and ¢ are non-trivial vectors in the 1-
s\ _
1 > , they are proportional

o= Je*,

dimensional vector space (

where A € C satisfies |4 by ||0]| = ||¢|| (the pair (&,0) being balanced). Since the
balanced pair (¢,6) is unique up to the phase choice (¢”e,e=8) (0 R), the phase
factor 4 does not depend on the choice of balanced pairs and is characterisrtic of
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s =s*. Thus it must coincides with the duality factor Dy for a positive duality.
On the other hand, D, satisfies DS2 = 1 for s = s*; the phase factor is either +1 or
—1.

DeriNiTION 4.1, Let S be the spectrum (fusion rule set) of a rigid C*-tensor
category with simple unit object. A self-dual element s = s* in S is said to be
real or pseudoreal according to Dy =1 or Dy = —1, namely 4 > 0 or 4 < 0, where
/. € R* is given by

with (g,0) a rigidity pair for s.
Now we can describe a positive Frobenius duality in terms of polygonal
: : .. : : ss* .
presentations. Given a rigid C*-monoidal system, a family {es el i ]} 1s
ses
called a balanced system if (e, ¢l.) is a rigidity pair for s # +s* and (e, +¢&}) is
a rigidity pair for s = +s*, where s = +s* means that s is real or pseudoreal ac-
cording to the signature.

THEOREM 4.2. In a rigid C*-monoidal system, we can always find a bal-
anced system of duality pairings. Given a balanced system {e;}scs, its canonical
extension {ex} provides a positive Frobenius duality together with the involution
(X*, %, cx v,dx), where the duality isomorphism {dy : X — X**} is specified by

D. — { —1 if se S is pseudoreal,
' 1 otherwise.

Appendix A. Group Cohomology. In the text, we have occasionally used
the cyclic normalization of cocycles in group cohomology, which would be a
known fact but we have failed in finding literatures; we shall give an account here
for completeness.

Let G be a discrete group and

Lo lco-z

be a projective resolution of the trivial G-module Z. For an abelian group A4
with a G-action, the cohomology groups are defined by

H"(G,A4) = H"(Homg(C., 4)),

which is independent of the choice of projective resolutions.
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Commonly used is the standard resolution, where

Ch= @D  Z(go,91,---+9n)
940,915 9n €G

is a free Z-module with the G-action defined by

9(90, 915 -, 9n) = (990,991, - - - 1 9Gn)-

The differential and a chain contraction s (satisfying ds + s = id) are given by

n

(90,91, ++90) = Y (=1)"(g0, -1+ ),

i=0
S(Qngla"'agn) — (17907g17"'7gn)-

As a Z(G)-basis (the so-called bar basis), we can choose

|gl|g2| e |gl’l| = (laglaglg27-.. 79192"'9;1)

(90,915 -+ 9n) = goldg ' g1lg7 92| - - 19,11 9n]). Note that
n—1 _
91192l - |gul) = anlgal -+ 1gal + D (=1)'g1| -~ |gigia |- - - lgu]
i=1

+ (=D"g1] - |gn-1]
and
s(glgrl---gnl) = lglgr|- - gnl-
For g9, g1,...,9, € G, define the wedge product by
|
goNgr N NGn = n+l(g0ag17 <. 7gl1) = m Z 8(0)(90(0)7g0(1)a ce aga(n))v

’ 06Sn+1

which is an element in Q ®, C,. These, when parametrized by unordered
n+ 1-tuple {go,g1,...,9n}, form a Z-basis of the image D, of C, under the
projection P, in Q ®, C,, and hence

Dy=Y ZgoAgiA--- A

is a free Z(G)-submodule of @ ® ; C,,. Define a Z(G)-linear map d : D, — D,
by d = P,0. Then by the formula

n

dgoAgi A Agn) = (—1)ig0A-"/\éi/\"'/\gn
i=0

we know that d% = 0.
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(Z ...,ga())>

a(O)A"'/\Qa(i>/\"'/\ga(n)

(letting 0 = 70 (i, j))

P "

L t(j)=

ge(0) N - AN Ge(i-1) A éf(j):j AN Ge(i+1) N N Ge(j=1) N (i) N Ge(j+1) A A Ga(n)

->3

ZZ )go A AGA A G
LJ i

HM

l 1 j—1—1i
=1 g0 A A Ge(iot) A ey A Ge((1) A A Gai)

=+ DN (1) g0 n o Ay A A g
=0

The chain contraction ¢ for the differential is then defined by

c(go A Agn) = Puyas(@o A Agn) =1 AGo A Agn

Thus we get another free resolution (D,d) (the wedge resolution) of the trivial G-
module Z.

Since the Z(G)-linear projections {P,,; : C, — D,} give a chain homomor-
phism (C,0) — (D,d) (see the explicit formula for d), the induced inclusion of
chain complexes

Homg(D,, A) v Homg (D, 1, A)

J |

Homg(Cy,4) —— Homg(Cpy1,4)

0
induces the isomorphisms.

As a consequence, to represent cohomology classes, we can choose cocycles,
say F € Homg(C,, A), satisfying

F(ga(0)7 s 7go(n)) = S(G)F(g07 cee 7gn)
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for 0 € S,,1. In the case of lower n, we can explicitly write down the conditions:
With

f(g17-~-7gn) :F(lagl’glgzv'"7g1g2"'gn)7

we have

flg,h) = f(gh,h™") = —gf (g~" . gh),

f(91,92,93) = =91/ (92,93, 94)

if 91929394 = 1, and so on.

ReEmMArRK. When G acts on A trivially, we can deduce

—f(g.h)=f(h"".97"), f(91,92,93) = = (92,93, 9a)

from the above conditions.
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