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Perturbation theory for m-accretive operators and

generalized complex Ginzburg-Landau equations
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Abstract. Global existence of unique strong solutions is proved for the generalized
complex Ginzburg-Landau equation. The proof is based on a new type perturbation
theorem for me-accretive operators in complex Hilbert spaces.

1. Introduction.

Let Q be a bounded or unbounded domain in RY with compact C2-
boundary 0Q (including R” itself). In L?*(Q) we consider the initial-boundary
value problem for the ‘“generalized” complex Ginzburg-Landau equation:

( Ou

5 + (A + i) A(x, D)u+ (k + if)g(x, [ul)u—yu=0 onQ xR,

(1.1) ) u=0 on 02 x R,,

L u(x,0) =up(x), xeQ.

Here u is a complex-valued unknown function, i = v —1, A,k e R,, a,f,7 € R are
constants, g e C'(Q x (0,0); R), and A(x,D) is the second order elliptic differ-
ential operator in divergence form:
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Problem (1.1), originally derived by Newell and Whitehead [16], appears in
the mathematical description of spatial pattern formation and of the onset of
instabilities in nonequilibrium fluid dynamical systems (see Cross and Hohenberg
[4]). Problem (1.1) is formally a mixed type model in the sense that it is reduced
to a nonlinear Schrodinger equation when 4 = x =y =0 and to a nonlinear heat
equation when o= =7y =0.
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When A(x,D)=—4 and g(x,|u|?) = [u[’"" (p>1), the existence and
uniqueness of solutions to (1.1) have been established by many authors using
various methods (cf. Bu [3], Doering, Gibbon and Levermore [5], Levermore and
Oliver [12], Okazawa and Yokota [I8], Temam [20], Unai and Okazawa
and Yang [23]). The case that g(x, lu|*) does not depend on x explicitly has been
systematically studied in more general situations by Ginibre and Velo [6], [7],
[8]. However, there seems to be no work in which the linear and nonlinear terms
depend explicitly on the spatial variables.

The purpose of this paper is to prove the global existence of unique strong
solutions to (1.1) under the condition that the coefficient x + iff of nonlinear term
satisfies

(1.2) l%s ”1;’20

without any restriction on the dimension N > 1 and the constant ¢ > 0, where
o is an upper bound of the ratio s(dg/0s)(x,s)/g(x,s) (see below); note
that 0 = (p—1)/2 and v1+20/0=2,/p/(p—1) if g(x, ) = [ulP (p>1).
It should be noted that condition excludes nonlinear Schrodinger equations.
We regard (1.1) as the initial value problem for abstract evolution equation

du

(1.3) o + Au=0, u(0)=u,

in X := L*(Q) by setting
A:=(A+i0)S+ (k+if)B—y with D(4):= D(S)ND(B),
where
Su:= A(x,D)u for ue D(S) := H*(Q)NH,(Q),
Bu = g(x,[u*)u for ue D(B) :={ue X;g(x,|u*)ue X}

According to the theory of nonlinear semigroups we have only to show that
A+ y 1s m-accretive in X. In a previous paper we proved the same result
for (1.1) with A(x,D) = —4 and g(x,|u|*) = |u[’"". In this special case the m-
accretivity of 4 4+ is a consequence of a perturbation theorem for m-accretive
operators prepared in [18]. Unfortunately, the perturbation theorem is too
simple to be applied to (1.1) itself. So the main task in this paper is to
generalize the perturbation theorem in to control the contribution of x-
dependence in the nonlinear term. Actually, the m-accretivity of 4 4+ y under
condition is guaranteed by the following two inequalities:

(1.4) |Im(Bu; — Buz,uy —uz)| < Re(Bu; — Buy,uy — up),

1+ 20
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(1.5)

l14+o
[Im(Su, Bu)| < Re(Su, Byut) + ——||S"2ul|(c1 || Bsul| + c2|ul]),

o
1+ 20 (1+20)0

where B, is the Yosida approximation of B (for J, ¢; and ¢, see and
below). Evidently, implies that (x + if)B is accretive in X under condition
(1.2). Therefore it remains to prove the maximality of the accretive operator
(A+1i0)S + (k +if)B. This is achieved by the key inequality (1.5). In this con-
nection, we note that the second term on the right-hand side of (1.5) is absent from
the perturbation theorem in [18].

This paper is organized as follows. In Section 2 we state our main result on
the global existence of unique strong solutions to (1.1) (Theorem 2.2). Section
3 is a review of the nonlinear semigroup theory. In Section 4 we develop the
perturbation theory mentioned above. Namely, we consider the m-accretivity
of linear combinations of a nonnegative selfadjoint operator and a nonlinear m-
accretive operator with complex coefficients. We prove the main result in Section
5 which is largely devoted to the proofs of and (1.5) (Lemmas and 5.3).

2. Results.

We impose the following conditions on A4(x, D) and ¢(x,s):
(A) A(x,D) is uniformly elliptic in €, that is, there is a constant o
(0 <6 <1) such that for ¢ e RY and xeQ,

N
(2.1) e’ < Y an(x)&E <7,
j k=1

where ay = ai; € C1(Q; R)N W1 (Q; R) (cf. Brezis [1, Remarque 1X.25)).
(B) geC(Qx[0,00);R)NC' (L2 x (0,00); R) and there are constants ¢ > 0
and ¢;, ¢; >0 such that for all (x,s) e 2 x (0, 00),

(2.2) 0< S%(x, s) < ag(x,s),
(2.3) Veg(x, )| < c1g(x,s) + ca.

For example, let p > 1. Then g(x,s) := (|x|* + 1)s(?=D/2 4 |x|* satisfies and
with respective constants o = (p —1)/2 and ¢; = ¢; = 1.
Before stating our result we give a definition of strong solutions to (1.1).

DEerINITION 2.1. Let X and A4 be as defined in Section 1. Then the global
strong solution to (1.1) is defined as an X-valued function u(¢) := u(x, ¢) with the
following properties:
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(@) u(t)eD(A) YVt =0 and Au(-) e L*(0,T;X) VT > 0.

(b) u(-) is Lipschitz continuous on [0,7]: u(-)e C*'([0,T]; X) VT > 0.

(c) The strong derivative u'(z) exists for a.a. >0 and is bounded in X
on [0,T]: u(-)e Wh*(0,T;X) VT > 0.

(d) wu(-) satisfies the equation in a.e. on [0,00) as well as the initial
condition.

We now state our main result in this paper.

THEOREM 2.2. Let A >0, k>0, and k|| <1+ 20/a. Then for any
initial value uy € D(A) there exists a unique global strong solution u(t) := u(x,1)
to (1.1) in X such that

(2.4) u(-)e L*(0,T; H*(Q))NL*(0, T; D(B)) N C*V2([0, T]; H} (Q)) YT >0

with the estimates

(25) Ju(D)|| < e |luol,
(2.6) Ju(t) — o(t)|| < e”"||uo — vol,
(2.7) IVu(r) — Vo()||* < c(uo, vo)e™ ||uo — vol|,

where v(t) is a solution to (1.1) with initial value vy € D(A) and c(uy,vy) is given by
¢(up, v0) := (OK) ™ [L (|| Auol| + | 4voll) + (LI + VK ) (lluol| + [[vo]})]-

Here K, L and c depend on A+ io,  + i and the constants appearing in condition
(B).

REmMARK. 1) It is remarkable that condition is free from the fact that
A and g depend explicitly on x.

2) LetN < 3. Thenitseems that the solutionis of class C!; this may be shown
by regarding (1.1) as a semilinear evolution equation (cf. [3], [5], [12], [21], [23]).

3) Let No <2. Then it is desirable to show that (1.1) has unique global
solutions with no restriction on the coefficients 4+ i and x + iff (for mild solu-

tion cf. [6], [7], and for Cl-solution cf. [3], [5], [12], [20], [23]).

COROLLARY 2.3. In Theorem 2.2 assume further that ¢y =0 in condition
(2.3). Then

@8)  SIVu(| +elu()])? < @ Va2 + elluol]?) exp[(zw “;f(‘;j’ccz)z]

for ¢ > 0. In particular, if ¢y = cy =0, then one can take ¢ =0 in (2.8):
Vu(0)] <o™'e[Vuol.
Note that if g is independent of x: g(x,s) = g(s), then ¢; = ¢, = 0.
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3. Preliminaries.

In this section we briefly review the abstract Cauchy problem with m-
accretive operator and its relation to the theory of nonlinear semigroups.

Let X be a complex Hilbert space with inner product (-,-) and norm || - ||.

An operator 4 with domain D(A4) and range R(A4) in X is said to be
accretive (or monotone) if Re(Au; — Aup,u; —uy) >0 for uy,up € D(A). 1If, in
addition, R(1+ A) = X, then we say that A is m-accretive (or maximal mono-
tone) in X.

The following is fundamental (see Komura and Konishi [11], Miyadera [14,
pp. 145-148] and Showalter [19, Theorem IV.4.1]; cf. also [18, Lemma 2.1]).

THEOREM 3.1. Let A be an operator in X and ye R. If A + y is m-accretive
in X, then for every uye D(A) there exists a unique strong solution u(t) to the
initial value problem

(3.1) %—1— Au=0, u(0) = uy,
in the following sense:
(@) u(t)e D(A) and ||Au(?)| < e”'||Auol|| for all t > 0.
(b)  lu(t) — u(s)|| < e~ Aug)| - |t — 5|, t,5 >0, where y, :=max{0,y}.
(¢) du/dt exists a.e. on [0,00), with |(du/dt)(t)|| < e”||Aug]| (a.e.).
(d) u(-) satisfies the equation in (3.1) a.e. on [0,00) as well as the initial
condition.

We can define the solution operator U(?) : D(4) — D(A) by U(t)uy := u(t),
t > 0, where u(-) is a unique solution to in the sense of Mheorem 3.1 (a)—(d).
Denoting the continuous extension again by U(f), we obtain a one-parameter
family {U(¢);t >0} on D(A) (the closure of D(A4) in X) which satisfies

(a) UW0)=1, Ult+s)=U)U(s), t,s >0,

(b) U)o —v(t 1 0), ve D(4),

(©) U@ = U()va|| < eflor — vall, v1,02 € D(A), 12 0. .
In this paper the family {U(¢);t > 0} is called a semigroup of type y on D(A)
generated by —A.

4. Perturbations of m-accretive operators.

The following is an essence in our perturbation theory for m-accretive
operators.

PROPOSITION 4.1.  Let vy, v;,v3 € X and 4+ io, k+iff € C with 1 >0, k > 0.
Assume that there are constants ky >0, a>0, b >0 and ¢ >0 such that
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(4.1) [m (o1, 02)] < ki Re(or,02) + alfor||* + bl|oal|* + elfwol®,  and
2 2

(4.2) Kﬁzhi—bi+m2—a>0

K KZ —}—ﬁ
If kY Bl < kil, then
(4.3) Ko < LI[(2 + ix)vr + (k£ iB)oa || + VeK v,
where

2 2 \/

(4.4) ALY S oK

2 7 T '
K K>+ /K2+/32

PrOOF. Suppose that x7!|f| < k;!. Then it follows from (4.1) that
Re(vy, (k4 if)v2) = Kk Re(vy, v2) — |B] - [Im(vy, v2)]
> (ky 'k = |B)IIm(vr, v2)] = Ky 'we(allon |+ bljoal| + elfool|*)
> ki w(alon|* + blloa* + elfeol®)-
Setting N (v, v;) := ||(4 + io)vy + (x + if)va]|, we see that
Mlor]]”> = Re(vr, (4 + io)oy)
= Re(vy, (4 + io)vy + (x + iff)v2) — Re(vy, (k + iff)v2)

< N(v1,00)|Jv1 || + & 'k (al|or||” + Bl|va])* + ¢lvo]|)-

Since ||vs|| < 57 [N(v1,v2) +rljo1]|] for r:= /2% 4+ a2 and s:=\/x2 + 2, it fol-

lows that
Kllv1]|? < (k™" + 2brs™ )N (1, va)||o1 || + bs 2N (v1, 02)* + ¢||vol|%,
where K is given by (4.2). Solving this inequality, we obtain the assertion. []

COROLLARY 4.2. Let vy,vi,v0 € X. Assume that (vi,v9) =0 and there are
constants ki, k, >0 and cy,co >0 such that

(4.5) IIm (01, v2)| < k1 Re(vr, 02) + ka(v1, v0) /2 (c1][va]| + €2][vo]])-

Then for every pair of A+ia, k+ife C with >0, kx>0 the assumption of
Proposition 4.1 is satisfied.

Proor. Let ¢ > 0. Then (4.1) is derived from (4.5). In fact, for example,
we can take

(4.6) a:= %(Cl + e, bi=-—ce,
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and ¢ := (k/4)(c1e7 +2c2¢7! + ¢¢). Since &> 0 is arbitrary, is also
satisfied for any pair of A+ ix, k +if € C with 4 >0, ¥ > 0. Thus we obtain
under the condition x~!|A| < k. O

In applications we encounter rather than (4.1). But K and L in
are easily determined with the coefficients in (4.1) rather than those in [[4.5).

An operator B in X is said to be m-sectorial of type S(k) if B is m-accretive
and sectorial of type S(k): for uy,u; € D(B),

(47) |Im(Bu1 — Buy,up — u2)| < kRe(Bm — Buy,u; — uz)

(cf. Goldstein [9, Definition 1.5.8]). Let x +iff € C with x > 0 and «!|f] < k™!
Then (4.7) implies that (x + if)B is accretive in X:

Re((x + if)(Buy — Buy), uy — us) > (k™' — |B))|Im(Buy — Bua, uy — up)| > 0.
Let {B,;¢ >0} be the Yosida approximation of B:
B,:=¢ (1 -J,) =BJ,

where J,:= (1 +¢B)"', ¢>0. Then (x-+if)B, = (k+if)BJ, is also accretive
in X:

Re((k + if)(B:v1 — Byvy),v1 — v2)
= ex||Bo; — Booa||* + Re((k + iB)(B(J,01) — B(J,02)), Jov — Jyv2) > 0.

Next let S be a nonnegative selfadjoint operator in X, and A+ ix € C with
2 >0. Since (4 + ix)S is m-accretive in X, it follows that (4 + ix)S + (k + iff) B,
is also m-accretive in X (see e.g. [19, Lemma IV.2.1]). Therefore for f € X and
¢ > 0 there exists a unique solution u, € D(S) of the equation

(4.8) (A 4+ i0))Suy + (1 + iff) Bty + u, = f.
Now we can state a criterion for the m-accretivity of (4 + ia)S + (x + if)B.

LemmA 4.3. Let S be a nonnegative selfadjoint operator in X. Let B be
a nonlinear m-sectorial operator of type S(ky) in X. Let A+ ia, k +iff € C with
A>0, k>0 and k7| < kil

Then (A + io)S + (x + if)B is m-accretive in X if and only if for every f € X,
|| Beue|| is bounded as ¢ | 0, where u, is a unique solution of (4.8).

This lemma is essentially proved by Brezis, Crandall and Pazy |2, Theorem
2.1} in which A=x=1 and « =f=0. In the proof of the “only if” part we
obtain
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| Bato|| < 17"/ w2 + B2 B,

where u is a unique solution of the equation (4 + ia)Su+ (x+if)Bu+u=f.
Now we can state and prove a perturbation theorem for m-accretive oper-
ators which extends [18, Theorem 2.5] and applies to problem (1.1).

THEOREM 4.4. Let S be a nonnegative selfadjoint operator in X. Let B be a
nonlinear m-sectorial operator of type S(ky) in X. Assume that D(S) N D(B) #
and there are constants ky >0 and ¢; >0 (j=1,2) such that for ue D(S) and
e>0,

(4.9) 1Im (Su, B,u)| < ki Re(Su, Byu) + k|| S 2ul| (c1|| Byut]| + c2|ul]).

Let J+io, k+ifeC with >0, k>0 and x '|B| <k;'. Then for yeR,
A+y=(+i0)S+ (k+if)B, D(A):=D(S)ND(B),

is m-accretive in X and hence for uye D(A) and t >0,

(4.10) K(ISU(D)uo|l < Le™ || Auo|| + (Lly| + VeK)[| U ()uo,

where {U(t);t > 0} is the semigroup of type y on D(A) generated by —A and K,
L are the constants defined by (4.2), (4.4) and (4.6).

Proor. First we note that (4.9) is nothing but with vy := Su, v; := Byu
and vp = u. Thus we can determine the constants K and L such that for u € D(S),

(4.11) K|Sull < LI|(4 + i) Su + (i + if) Bou]| + VeK]|u.
Now let u, be a unique solution of [4.8). Then we see from that
K[ Su[| < LIl f = uel] + VK |ug]

Since D(S)ND(B) # &, we can conclude that {||u||} is bounded as ¢ | 0 (see
[19, Lemma IV.2.2]) and so are {||Sw.||} and {||B.u.||}, too. Therefore [Lemmal
4.3 yields that 4+ y = (A+in)S + (k + i) B is m-accretive in X.

Finally we prove [4.10). Setting u = U(t)up € D(S)N D(B) in and
noting that B, U(¢)uy — BU(t)uy (¢ | 0), we obtain

K|[SU(t)u|| < LIAU(t)uo|| + (LIy| + V cK) | U (t)uo .
Thus follows from (a). O
Here is an information on invariant sets for U(¢) (cf. [18, Corollary 2.6]).

COROLLARY 4.5. In Theorem 4.4 assume further that BO =0, ¢; = 0 in (4.9)
and D(A) is dense in D(S'/?) (that is, D(A) is a core for S'/?). Then U(t) leaves
D(S'?) invariant and for ve D(S'?), t>0 and &> 0,
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A1) 6+ 9 00 < J+9) el e (74220 )

In particular, if ¢y =c, =0 in (4.9), then one can take ¢ =0 in (4.12).
Proor. It suffices to prove (4.12) for the elements in D(A4). Let ve

D(A4) and ¢> 0. Setting u(s) := U(s)v, we see that (d/ds)||(e+ S)"*u(s)||* =
2Re(u'(s), (e + S)u(s)) a.e. on [0, c0). Integrating this equality on [0, 7|, we have
t
e+ 8)Pu(@)]* = e+ )"0l —2j Re(Au(s), (& + S)uls)) ds.
0
It follows from (4.9) with ¢; =0 that

I(e+8)2u(®))* < (e + S)?0)|* + 2 JO I(e +8)"u(s)||* ds

2C2k2K‘

28 [ 5V 2u)| o)

Noting that 2y/z|S"2u(s)| - [u(s)I| < [[(z + )" ?u(s)||, we have

e+ a0l < 6+ 20l + (24258 [ )t

According to the Gronwall inequality we can obtain for ve D(4). O

5. Proof of the main theorem.

Throughout this section we assume that conditions (A) and (B) introduced
in Section 2 are satisfied. As stated in Section 1, we define two operators S, B
in X := L?*(Q) with inner product (-,-) and norm |- |:

N
Z D an@ 2 for weD(S) = HAQ)NHN(Q),
5 an

j, k=1
Bu:= g(x,Jul)u for weD(B):={ue X;g(x,|u*)ueX}.

To apply the results in Section 4, we shall show that the operators S, B satisfy
the assumption of [Theorem 4.4. It is well-known (see e.g. Mizohata [15, Section
3.16]) that S is a nonnegative selfadjoint operator in X, satisfying

(5.1) ullgr2() < e[| Sull + [lul]) Vi € D(S).

We start with the meaning of inequality [2.2).
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LeMMA 5.1. Let he C([0,0); R)NCY((0,0); R) and assume that

(5.2) 0< s@ < ah(s) Vs>0

ds
for some constant > 0. Then the function s — s[h(s)]2 is nondecreasing and for
t,s >0,

2

(5.3) ts|h(t) — h(s)|* < (= s){t[h(1)]* = s[h(s)]*}.

Proor. We modify the proof of Liskevich and Perelmuter [13, Lemma 2.2].
First we note that

1+ 20

dh\* o d
2= “ 2
r ( r) < [ 20 2 rlh(r)]”} Vr>0.

In fact, by we have

e+ 2 2202 (Y () L) (1 22, 2)

Therefore the Cauchy-Schwarz inequality yields that for z,s > 0,

IA
D
~

[N}
/\Q,
SIS
~_
\]
S5
D
\‘I
(3]
S5

IA

This is equivalent to (5.3). [
For he C([0,00); R)N C'((0,00); R) we define the operator H : C — C by
(5.4) Hz :=zh(|z]*), zeC.

LemMa 5.2. Let h and H be as defined above. Then under condition (5.2),
H is sectorial of type S(a/\/1+ 2a) in C: for z;,z, € C,

(5.5) Im(Z — %) (Hz1 — Hz)| <

ag
Re(zi — 20)(Hzy — Hzy).
NieST (Z1 — 22)(Hz 2)

Proor. Let w(zy,z3) := (21 — Z2)(Hz) — Hzp) and 6 := arg(Z1z;). Then we
have
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Rew(z1,22) = |21%h(21*) + |22 h(|22|) = [A(|21 ) + A(|22]*)] Re(Ziz2)
> |21*h(|21%) + 22 *h(|z2]) = [h(1z1]%) + B(|221)]|z1] - [22] - [eos 6]
> (|21] = |z2Dlz1h(1211%) = [z2l(|z2]));

Imw(z1,22) = [h(|21%) = h(|z2|*)] Im(122)
= [h(|211*) = h(|z2)]|z1] - |22 sin .

We see from that the function s sh(s*) is nondecreasing which implies
that Rew(z;,z;) > 0. Setting ¢:= |z;|* and s:= |z,|%, we have

Imw(z1,2)| _ h(t) — h(s)|V/5[sin ]
Rew(z1,22) ~ th(t) + sh(s) — [h(t) + h(s)]/is|cos O]

Noting that

|sin 0| 1
<

P dleosl] = o 0<q<p)
we obtain
o) O hOVE
Rewlan ) = i — s){ulh(o) - slh(9)*}
Therefore (5.5) follows from [5.3). N

Here we note that H is m-accretive on C. The question is reduced to the
real-space case. In fact, the equation z+ Hz =f in C is equivalent to

2 + [zl(|2]*) = |f], argz =argf.

Obviously, the mapping s+ s+ sh(s?) is a bijection of [0, o0).
As a consequence of [Lemma 5.2 we can obtain

LemMA 5.3. Let (Bu)(x) = g(x, [u(x)|*)u(x) for ue D(B). Then B is m-
sectorial of type S(a/v/1+20) in X: for uj,u; € D(B),
o

V1420

ProOF. Letze C and xe Q. Replace h(|z|%) in [5.4] with g(x, |z|*). Then
we have (5.5) with Hz; = g(x ,|zj|2) (j=1,2). Settlng zj =ui(x) (j=1,2) and
integrating the inequality over £, we obtain (5.6).

Next we show that B is m-accretive in X. Let f e X and ¢ > 0. Since the

(56) |Im(Bu1 — Buy,u; — u2)| <

Re(Bu1 — Buz, Uy — uz).
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operator H is m-accretive on C (as noted above), we see that for almost all
x € 2 the equation

(5.7) 2+ eg(x,|21*)z = f ()

in C has a unique solution z = u,(x) such that

(5.8) ()] + g (x, s () ) e ()] < | ()],
(5.9) (%) = @(x)] < |f (%) = F ()],

where #,(x) is a unique solution of with f replaced with f. Using ap-
proximation by simple functions, we see from that u, is measurable on Q.
Therefore u, € D(B) and we obtain R(1+¢B) = X. O

LemMA 5.4. CYQ) is invariant under (1+eB)™" for every &>0. More
precisely, put u(x) := (1 +¢B)"'f(x) for f e CY(Q) and ¢ > 0. Then u, e C'(Q)
and

1 28 ﬁg 2 -

5.10 Vu, = Vf —— —(x, |u.|")u. Re(u;,V
(5.10) F e ) S = ac 35 % ltel ")ue Re(VS )

€ 2 2

Tao 11+ eg (X [ue] ") }Vag (x, fue| s,
where

d

(5.11) Jac = {1 + egy(x, |u£|2)}{1 +eg(x, [us?) + zga—i’(x, |u6|2)|u8|2}.

In particular, W()l’p(Q) NCHD) (1 <p< ) is invariant under (1+¢B)™" for
> 0.

PrOOF. Given &> 0 let u,(x) = v,(x) + iw(x) = (1 +¢B)"'f(x) for f=
fi +if>e C'(Q). Then it follows from that

(5.12) (%) + 29 (x, ()| )t (x) = £ ().
To show that u, € C'(Q) we set
(5.13) Us(x) := "(0e(x), wo(x)),  F(x) :="(f1(x),/2(x)).

To apply the inverse function theorem, [5.12) is usually regarded as
P(x, Uy(x)) = (x, F(x))

and (x, Uy(x)) = @ !(x, F(x)) if @ is proved to be C!-bijection.
To be more precise, for x = ‘(x;,...,xy) € Q and ¢ = /(&,,&,) € R* we set
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G(X, é) = t(Gl (X, é)a GQ(X> f)) = 5'1' 8g(xa |f|2)£7
D(x,¢) = (x,G(x,&))
- l(xh -y XN, él + Eg(x, |é|2)éla 52 + eg(x, |£|2)62)

Here it is worth noticing that

(€ =) (9(x, €1 = gx, ")) = Re(z = W)(g(x, |21)z = g(x, [w[*)w),
where z:= &, +i& and w:=#; +in,. Therefore we see from that
g(x,|¢|*)¢ is accretive (or nondecreasing) on R* with respect to & so that both
G(x,-):R* = R?* and @:Q x R> — Q x R* are bijections. Moreover we can
show that @ is a C'-bijection. In fact, it follows from condition (B) that @ is
of class C' and its Jacobian matrix is given as follows: for (x,¢) e Q x R?,

0x; 0xj

<5—xk>j,k (afm)j,m Inxn Onx2
DP(x,¢) = = 0Gy 0Gy )

ey (@) |T\@) @

0xic )1k N/ m ’ 7

Jk=1,....N, Im=1,2,

where Iy y 1s the N x N unit matrix and Oyy, 1S the N x 2 zero matrix.

Denoting by 0:G(x,&) the matrix (0Gi/d¢,), ,, we have
I +ag(x, ¢ )+28—( e 28—( [{RISTS
agG(X,f) = 5g a
2 (v, €116 L+ eg(x, [¢7) + 2622 (v, [

and hence Jac(x,¢) := det D®(x,¢) = det d:G(x,&) > 1. Therefore we can con-
clude by the inverse function theorem that @' is also of class C' so that
u, € C1(Q).

Next we prove (5.10). It follows from 5.12) and [5.13) that G(x, U;(x)) =
F(x). Differentiating both sides of this equality with respect to x;, we have

0 0 dg

S Ul) = 5 Fx) = o (v ) U).

Solving this linear system of equations with respect to 0v,/dx; and ow,/0xk, we
obtain

0:G(x, U(x))

avr . 1 2 ag 2\, 2 afl

0xy, Jac{1 +eg(x, [uel”) + 2 0s (x, Jue| "), OXk
2e dg ) of> € 2, 09 2
Jac Os (2x, [ug| ) vew, Oxe Jac{l + eg(x, [ue] ")} Oxe (2x, [ug] 7 )ve.
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Using the equality w? = |u,|* — v? and noting that Jac = det:G(x, Uy(x)) co-
incides with (5.11), we have

ov, 1 0 2¢ 0 0
(514) L o o Re (7 )
6Xk 1 + gg(x7 |up| ) an Jac 0Os an
4 24 09 2
TN 1 (] A & &
e A+ gl ) o e

Since dw,/dx; is given by with v, and f; replaced with w, and f,, re-
spectively, we see that Vu, = Vv, + iVw, can be written as (5.10). Furthermore,
it follows from [5.10), [2.3) and [5.8) that |u.(x)| <|f(x)| and

V()| < 2V (x)] + elVag(x, o (x)]P)] - ()]
< VS (x)| + creg(x, |us(x) )| (x)] + caeluy(x)]
< 2VF(x)| + (1 + c28) | £ (x)].

This proves that u, € W, ”(Q)NC(Q) if fe W,?(Q)NCYQ). ]
Now we want to prove the key inequality which generalizes [18, Lemma 3.2].

LemMa 5.5. For ue D(S) and ¢ > 0,

(5.15)

l1+0
[Tm(Su, B.u)| < Re(Su, B:u) t IS"2ull (c1|| Baul| + e2lful]),

V1420 (14 20)

where 0, a, ¢; and ¢y are the constants in (2.1)—(2.3).

PrOOF. Put Dy:= H*(Q)NH}(Q)NC!(Q). Then it follows from the
elliptic regularity and Morrey’s theorem that

Co(Q) = (1 +S)(H*(Q)NH (Q)NCH Q) (0<a<1)
c (1 +S)D()

(see e.g. Brezis [1, p. 198]). This implies that (1 4 S)Dy is dense in X and hence
Dy is a core for S (see Kato [10, Problem IIL.5.19]). Therefore it suffices to
prove (5.15) for the elements in Dy. Let fe Dy and set u, := (1 —l—sB)*lf )
Then it follows from (with p =2) that B,f = ¢ '(f —u,) € H (Q)N
CY(Q) and (0/0x;)B.f is given by
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. 5 _
l af o aue — g(X, |u8| ) 5 af _|_ 2 ag( | g| )Ug RC U‘p af
e \0xx  Oxi 1+ eg(x, |us| %) Ox; Jac Os OXyc

1 2, 09 2\—
e 1+ g fue] >}@—Xk(x,|ue| )

The integration by parts gives (Sf,B.f) =1(f) +2L(f) + I(f), where

X ) & a9 5f
I =
1) Jol —|—8g( \ug] kz J 539 ﬁxk

-t e e

j k=1

N
L(f) = Q—{l—}—eg \u8| }Z G @f 59 ‘uSIZ)u—gdx.

j k=1
Modifying the proof in [17], we shall show that

(516)  m(S/. Bef) ~ImI(/)] < —<Zo (Re(S B.f) ~Rels(/)}).

First we see from the symmetry of (ay(x)) and ellipticity that ;(f) and
Re l,(f) are nonnegative; note that

(5.17) Relz(f):J L %

2 —
I . A & R (3
— I ) Q(Re(@ V1) d
where we have set Q(h) := Z]k L @ik () (x)hy (x) for he L2(;CY). Thus we
have

(5.18) Re(Sf, B:.f) —Rei(f) = 1i(f) + 2Re b(f) = 0,

(5.19) Im(Sf, B,f) — Im I5(f) = 2Im L (f).

Applying the Cauchy-Schwarz inequality to the sum in the integrand and then
to the integral L(f), we see from [[5.17) that

BV < | o 2 ol Qvs) dv- Re (),

Since Q(V/) = |u,|*Q(Vf) and Jac > 1 + eg(x, |us|*), it follows from that

BUIP <o | foot Qs dx- Rea(s)

< O'Il(f) RCIz(f)

This enables us to estimate |Im L(f)|> = |[L(f)]* — [Re L(f)|>. In fact, we see
that
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ImL(f)]* < ol (f)Reh(f) — Re L(f)[.
Since [;(f) is given by [5.18), we obtain
Im b (f)|* < o{Re(Sf, B.f) — Re ()} Re b(f) — (1 +20)|Re L (/).

Applying the geometric-arithmetic mean inequality 2ab < a® 4+ b*> with

a = ﬁ{Re(Sf, B.f) —ReL(f)}, b:=+1+20Reh(f)

to the first term on the right-hand side, we have
2
o
ImbL(f)*< -— R B.f) — Re ()}
B = 4% 7 (Re(SF Bf) ~ ReDs(1)}
In view of (5.19) this is equivalent to (5.16). It follows from (5.16) that

()l + [Im 5(f)]

g g
|Il’Il(Sf, Baf)’ < m Re(Sf7 Bef) +\/ﬁ’ReI3
g l+o

This proves (5.15) because |I5(f)| s5’1/2||S1/2f||(c1||B3f|| +allf]). In fact, we
have

N
af dg
|I3(f)| < |u6| Z jle > — ax] ax

(%, lus|*) | dx

< |l lQWA)) P OWag el )] d.
Since B,f = Bu,, we see from [2.1), [2.3] and [[5.8] that
1 [QVeg (x, e )] < 67 u] - [Veg (o, | )

<6 (erg(x, )| + e2fuc])

<07 (el(Bf)(0)] + el £ (%))
Noting that D(S'/?) = H}(2) and

(5.20) H#szLgWwaemm»

we can obtain (5.15). ]

We are now in a position to prove [Theorem 2.2 and |Corollary 2.3.

PrOOF OF THEOREM 2.2. Define S and B as in Section 1. Then Lemmas
and show that the assumption of [Theorem 4.4 is satisfied, with

l4+o

g
S N e
Vit2e o J(1t200

k=
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Let 4>0, x>0 and x!'|f] <1+ 20/5. Then it follows from [Theorem 4.4
that
A+y=(A+in)S+ (x+if)B

is an m-accretive operator with domain D(A4) dense in X. Denoting by {U(?)}
the semigroup of type y on X generated by —A, we see that if uy € D(A) then
u(t) := U(t)up is a unique solution to [3.1]. This implies that (1.1) admits a
unique global strong solution u(x,?) in the sense of [Definition 2.1.

It remains to prove (2.4)-{2.7). From a property of the semigroup of type

y we obtain and [2.6); note that 0 € D(4) and 40 = 0. Next, together
with yields that for all 1> 0,

(5.21) K||Su(r)|| < [LllAuo || + (LIy| + VeK)l|uo ] ™

which implies by that u(-) e L*(0, T; H*(Q)) for any T > 0. By virtue of
Theorem 3.1 (a) we see also that u(-) € L*(0,T;D(B)). These prove the first
two assertions of (2.4). It follows from |(5.20}), the symmetry of (@) and ellipticity
2.1) that

(5.22) O|Vul|* < ||S"%u)|* <07 |Vu|* Yue D(S).

The first inequality in together with the Cauchy-Schwarz inequality implies
that

(5.23) OV — Vol|* < (||Sul| + ||Sv|)|ju— vl Vu,ve D(S).
Therefore follows from [2.6] and [5.21). To show that u(:)e
C%12(0, T); Hi (Q)) let t,s€[0,T]. Then by (b) we have

lu(r) — u(s)Il < > T|| Aug| - |2 .
Using and (5.23) (with u, v replaced with u(¢), u(s)), we have
SK|Vu(t) = Vu(s)||* < 2L Aug|| + (LI + VeK)l|uo|]| Auolle™ |2 — s].
Thus we obtain the remaining part of (2.4). O
PrROOF OF COROLLARY 2.3. We see from that
O|Vull* + ellull* < [[(e + ) 2ul|* < 07" Vul]* +el|ul> Vue D(S).
Since ky/ki = (1 +a)/(aV9), (2.8) follows from [4.12). ]
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Notes added in proof. 1. The proofs of Lemmas 5.4 and require a
little more care. In the proof of we have tacitly assumed that
ge CH(Q x[0,0);R) instead of that g € C!(Q x [0, 0); R). Nevertheless we can
prove by this “weak” form of Lemma 5.4. In fact, put g,(x,s) :=
g(x,s+v) for v>0. Then g, belongs to C'(Q x[0,0);R) and satisfies
and [2.3). Thus the weak form of is meaningful for (1+¢B") ",
where B'u := g,(x, |u|*)u. Consequently, we can obtain with B
replaced with B". To conclude (5.15) it suffices to note that (B”),u — B.u(v | 0)
in X.

2. After the submission of the paper, the authors could prove smoothing
effect on the solutions to (1.1). To this end the operators S and B should be cast
into the language of subdifferential operators. For details see Discrete Contin.
Dynam. Systems 2001, Added Volume, 280-288.
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