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Abstract. We investigate the endomorphism algebras I of finite dimensional
modules having the property that every indecomposable finite dimensional /"-module is
of projective dimension at most one or injective dimension at most one. In particular,

we describe all matrix algebras [j 2} with this homological property.

0. Introduction.

Throughout the paper by an algebra we mean a finite dimensional K-algebra
(associative, with an identity) over a fixed field K. By a module we mean a finite
dimensional left module. For an algebra A, we denote by mod A the category of
all (finite dimensional) A-modules, by ind A the full subcategory of mod 4 con-
sisting of indecomposable modules, and by D the standard duality Homg(—, K) on
mod 4. Further, we denote by I'; the Auslander-Reiten quiver of 4 and by DTr,
TrD the Auslander-Reiten translations in mod 4. For a A-module M, we denote
by pd, M and id4 M the projective dimension and the injective dimension of M,
respectively. Following [4], an algebra A is said to be a shod algebra (for small
homological dimension) provided, for each indecomposable 4-module X, we have
pd,X <1 oridsX <1

The class of shod algebras contains all tilted, or more generally quasitilted,
algebras, and has been recently the object of extensive investigation (see [5], [6],
[8], [10], [15], [17], [22]). We are interested in the problem of when the endo-
morphism algebra I = End 4(M)°? of a module M over a shod algebra A is again
a shod algebra. We prove that it is the case if:

(1) M is a projective module (Section 1)

or

(2) M has no selfextensions and belongs to the additive closure of the

maximal predecessor closed subcategory of ind A4 consisting entirely of
modules of projective dimension at most one (Section 2).
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As an application, we obtain (in Section 3) a complete description of shod
2 x 2 lower triangular matrix algebras 4 = |4 | of finite dimensional alge-
bras 4 over an algebraically closed field. In particular, we show that, if such an

algebra A is shod, then A is tame of linear growth.

1. Endomorphism algebras of projective modules.

Let 4 be an algebra. For X and Y in ind 4, X is said to be a predecessor
of Y (respectively, Y is said to be a successor of X) in ind 4 if there exists a
sequence of nonzero morphisms X =2y -2, —---— Z, =Y, r>1, in ind 4.
Following [10], denote by % the family of all indecomposable 4-modules M such
that pd, X <1 for every predecessor X of M in ind 4, and by %, the family of
all indecomposable A-modules N such that id, ¥ < 1 for every successor Y of N
in ind A. It has been shown in [S5, Theorem 2.1] that A is a shod algebra if and
only if ind4 = % UZ%,. We know also that if A4 is shod then gl.dim4 <3
([10, Proposition I1.2.1]). We say that 4 is a strict shod if A is shod with
gldimA4 =3 ([5]), and A4 is quasitilted if 4 is shod with gl.dimA4 <2 ([10]).
Finally, 4 is called tilted if 4 is of the form Endy(T)", where H is a hereditary
algebra and 7 is a tilting H-module. Recall that an 4-module 7 is called a
tilting module if pd, 7 <1, Ext/lI(T ,T) =0, and the number of pairwise non-
isomorphic indecomposable direct summands of 7T equals the rank of the
Grothendieck group Ky(A4) of A4 (see [3], [11]).

Let now A be a fixed algebra, P a projective A-module, and I" = End 4(P)°".
Denote by mod P the full subcategory of mod A consisting of all modules X which
have a projective presentation P, — Py — X — 0 with Py and P; in the additive
category add P of P. Then Hom,(P, —)|,,.qp : mod P — mod I is an equivalence
of categories with add P corresponding to the category of projective /'-modules.
For a projective A-module Q, we denote by Q* the projective 4°°-module
Hom,(Q, 4). Observe that I' = End,4(P)°” = End o (P*). We need the follow-
ing simple lemma (see [23]).

Lemma 1.1. Assume A is basic, 1 =e; +---+e, for some primitive or-
thogonal idempotents ey,...,e,, P=Ades ® --- @ Ae, and S is the simple module
Aey/(rad A)e;.  Then the following hold

(@) Ifpd,S <1 then, for every projective A-module Q, Hom (P, Q) is a pro-

Jjective I'-module.

(b) If'idsS <1 then, for every projective A-module Q, Hom o (P*, Q) is a

projective I'°P-module.

Proor. (a) Let pd,S <1, Q be a projective A-module and Q = Q' @ Q"

with Q' e add P and Q" € add Ade;. Then Hom,(P, Q) = Hom,(P, Q' ® rad Q")
with Q' @ rad Q" € add P, and hence Hom,(P, Q) is a projective I'-module.
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(b) LetidsS <1. Then D(S)=Homg(S,K) = ej4/ej(rad A) is a simple
A°P-module with pd o D(S) <1, and the claim follows. O

THEOREM 1.2. In the above notation the following hold
(@) If A is shod then I is shod.

(b) If A is quasitilted then I is quasitilted.

(c) If A is tilted then I is tilted.

(d) If A is strict shod then I is strict shod or tilted.

ProoOF. Since the projective, injective and global dimensions are preserved
by the Morita equivalences we may assume that 4 is basic. Moreover, by in-
duction on the rank of Ky(A), we may also assume A = Ae; @ Ade; @ -+ @ Aey,
and P=Ade; ® --- @ Ae,. Let S = Ae;/(rad A)e;.

(a) Assume that A is shod. Let X be an indecomposable /"-module. We
shall prove that pd X <1 or idp X < 1. We know that X = Hom,(P, M) for
some A-module M from mod P. We have two cases to consider.

Assume first that id; S < 1. Since M is an indecomposable 4-module, we
have pd, M <lorid, M <1. If pdy M <1 then we have a short exact sequence

0—-P—Py— M—0

with Py, P, € add P, and applying the functor Hom,(P,—) we obtain the pro-
jective resolution

0 — Homy,(P, P;) — Homy,(P, Py) — Hom,(P, M) — 0

of X in modI, and hence pd X <1. Assume now pd,M >2. Since A is
shod, we then have id, M < 1, and hence pd, o D(M) < 1. Let

0— 0 — 0j — D(M) =0

be a minimal projective resolution of D(M) in mod 4°°.  Applying Lemma T.1/(b)
we obtain a (not necessarily minimal) projective resolution

0 — Homo (P*, Qy) — Hom o (P*, Q5) — Hom oo (P*,D(M)) — 0

of Hom o (P*,D(M)) in mod I °®, and hence pd;. Hom o (P*, D(M)) < 1.
Observe now that we have a canonical isomorphism of I'-modules

DHom o (P*,D(M))  Hom,(P,M) = X

induced by isomorphisms D(P* ®, M) =~ Hom o (P*,D(M)) and P*®;M =

Hom,(P, M). Therefore, we obtain idp X < 1. Note that in fact we have

proved the following: if id,S <1 and id4 M <1 then idy Hom,(P, M) < 1.
Assume now that id4.S > 2. Then pd,S <1, since 4 is shod. Hence we
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have id o D(S) < 1. Note that I" = End,(P*). Therefore, we prove as above,
that for the indecomposable I'°’-module Y = D(X) we have pd;e» Y <1 or
id? Y <1, and hence idr X <1 or pd X <1. This shows that I" is shod.

(b) Assume that A is quasitilted. The required fact that I” is quasitilted has
been established in [10, Proposition II.1.15] as an application of a characteriza-
tion [10, Theorem II.1.14] of quasitilted algebras. Here, we obtain an elementary
direct proof. Indeed, due to (a) it remains to show that gl.dim /" < 2. But this
fact follows immediately from [Lemma I.1.

(c) Assume that A is a tilted algebra. Then A4 = Endy(T)°® where H is a
basic hereditary algebra, 7" is a tilting H-module, and T=T,® --- ® T,, with
Ty,..., T, pairwise nonisomorphic indecomposable 4-modules such that Ae; =
Hompy (T, T;) for any ie{l,...,n}. Hence P = Hompg(T,R), for the partial
tilting H-module R=T,® --- ® T,,. It follows from [7, Corollary III.6.5] that
Endy (R) is a tilted algebra. Invoking now the Brenner-Butler theorem ([11]), we
conclude that

I' = End4(P)*® = End(Homy(T, R))*® =~ Endy(R)?

is a tilted algebra.

(d) Assume that 4 is a strict shod. If Peadd %, then it follows from
[17, Theorem 8.2] that P is a projective module over a tilted factor algebra 4,
of A (called the left tilted algebra of A) and then, from (c), I' = End,(P)" =
End,,(P)? is a tilted algebra. Therefore, we may assume that P has at least one
indecomposable direct summand, say P,, from %,\.%;. But then it follows from
the arguments applied in (a) (in the both cases: id,S <1 and pd,S < 1) that
Hom,(P, P,) is an indecomposable projective I'-module from %,. If gl.dim " =
3 then I is strict shod, because I” is shod by (a). Finally, if gl.dim /" < 2 then I
is quasitilted with %, containing a projective module, and consequently is tilted
by [10, Corollary 11.3.4]. O

The following examples show that we may have Hom (P, M) € % (respec-
tively, Hom, (P, M) € %) for an indecomposable A-module M from (%,\%)N
mod P (respectively, from (%\%,) N mod P).

ExampLE 1.3. Let A be a bound quiver algebra KQ/I, where K is a field, Q
is the quiver

122203,

and [ is the ideal in the path algebra KQ of Q generated by «f. Then A is a
tilted algebra of Dynkin type A3;. Denote by S; the simple A-module associated
to the vertex i and by P; the projective cover of S; in modA4, 1 <i<3. Let
P=P, @ P;and I' = End,(P)?. Clearly, I' is the path algebra K4, where 4 is
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the full subquiver of Q consisting of the vertices 2 and 3. We have the following
minimal projective resolution

0O—-P—-P—>P,—5—0

and consequently S3 € 24\ %. On the other hand, Hom (P, S3) is the simple -
module associated to the vertex 3 of 4, and clearly belongs to ¥ =ind I" = %,
because I is hereditary. Similarly, taking P’ = Py @ P, and I'' = End4(P")?, we
conclude that S| € %\%,, because id, Sy = 2, and Hom,(P',S) € # =ind "',

2. Endomorphism algebras of modules without selfextensions.

The aim of this section is to prove a generalization of [Theorem 1.2 for
modules without selfextensions. We need a preliminary fact.

LemmA 2.1. Let A be a connected tilted algebra and M a A-module from
add . Moreover, assume that A is not a representation-infinite tilted algebra of
Euclidean type whose preprojective component is the unique connecting component
of I'y. Then there exists a hereditary algebra H and a tilting H-module T such
that A = Endy(T)°" and M belongs to the torsion-free part

%(T) = {N emod 4| Tor{'(T,N) = 0}
of mod A determined by T.

Proor. Without loss of generality, we may assume that A4 is basic. Then
A = Endy (T")? for a connected hereditary algebra H’, say of type 4', and a
multiplicity-free tilting H'-module 7'. Then Iy admits a connected component
% = %7 containing a faithful selection of type (4’)°", consisting of the images
of the indecomposable injective H’'-modules via the functor Homy/ (7', —).
Moreover, if A is a concealed algebra, we may assume that % is preinjective.
Recall also that if 4 is not concealed then % is a unique component of I
containing a faithful section (see [7, Theorem III.7.2]).

We shall prove that then ¥ admits a faithful section 4 such that all in-
decomposable direct summands of M are predecessors of 4 in ind 4. Assume
first that ¢ contains at least one injective module. Then there exists a (faith-
ful) section 4 in ¥ whose all sources are injective (see [17, Proposition 7.4]).
Then for each noninjective indecomposable module X from 4 we have
Hom,(D(A), DTr4(TrDsX)) = Hom,(D(A), X) # 0, because there is a sectional
path in % (in fact in 4) from an injective module / to X, and the composition of
irreducible morphisms forming a sectional path is nonzero ([1, Theorem VII.2.4]).
Hence, for such a module X, we have pd, TrDX > 2 (see [18, (2.4)]). Observe
also that, if an indecomposable A-module Y is a successor of a module on 4
but is not from 4, then Y is a successor of a module TrD,X, where X 1is
an indecomposable module lying on 4. This shows that ¥, consists of all
predecessors of 4 in ind A. In particular, the indecomposable direct summands
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of M are predecessors of 4 in indA. Finally, assume that ¢ has no injective
modules. Then & is not preinjective, and, by our assumption on 4 = %7, A is not
concealed. This implies also that A4’ is a wild quiver. Then invoking the results
of [13], we conclude that the family of all components of I; contained
entirely in the torsion part Z(7T')={NemodA|T'®, N =0} consists of a
unique preinjective component 2(A) of Iy and a family #(A) of connected
components whose stable parts are of the form ZA,. Moreover, since 2(A)
has no faithful section (because A is not concealed), the family %#(A) contains
at least one injective module. Applying now [2, Proposition 3.1], [14, Sections
1 and 2] and [6, Lemma 1.5], we conclude that, for every indecomposable
A-module Z from 2(A) or #(A), there exists a path in ind A of the form
I —- DTryX - Y — X —---— Z with I an indecomposable injective 4-module
from %(A). In particular, Hom,(/, DTr X) # 0 implies pd, X > 2, and con-
sequently Z ¢ %;. Observe also that every indecomposable injective A-module
lies in 2(A) or #(A). Therefore, ¥, consists of all indecomposable modules from
%(T') and the indecomposable modules from %7:.. Then there exists a positive
integer m such that 4 = (TrD,)"(4")? is a faithful section of ¥ = %7/ and the
indecomposable direct summands of M are predecessors of 4 in indA. In the
both cases, let U be the direct sum of all indecomposable A-modules lying on 4.
Then, applying [21, Theorem 3] we conclude that U is a tilting 4-module,
H =End,(U)® is a hereditary algebra of type 4°°, T = D(Uy) is a tilting
H-module, 4 =Endy(T)®, ¢ =%r is the connecting component %7 of I
determined by 7, and the indecomposable A-modules from the torsion-free part
%(T) of modA determined by 7 are exactly the predecessors of A in ind A.
In particular, M is a module from #(7T). This finishes the proof. ]

LemMMmA 2.2. Let A be a connected representation-infinite tilted algebra of
Euclidean type such that the preprojective component of Iy is the unique connecting
component of Iy. Then %y consists of all indecomposable preprojective modules
and all t4-periodic modules. Moreover, for every preprojective module M, there
exists a hereditary algebra H of Euclidean type and a tilting H-module T such that
A=Endy(T)® and M belongs to the torsion-free part %(T) = {N e mod A |
Tor{!(T,N) = 0} determined by T.

ProOF. We may assume that A is basic. Then A =~ Endy/(T")? for a con-
nected hereditary algebra H' of Euclidean type 4’ and a multiplicity-free tilting
H’-module T’. 1t follows from our assumption that the preprojective component
P(A) of Iy is the connecting component %7 of Iy determined by 7' and admits
a faithful section of type (4")°°. Moreover, I’y consists of 2(A), a preinjective
component 2(A), and an infinite family of coray tubes containing at least one
injective module, because 2(A) # #(A) is not a connecting component of I7.
Then for any indecomposable 4-module Z from 2(A) or a nonstable tube of .7 (A)
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there exists a path in ind 4 of the form / - --- = DTt X - Y - X —--- = Z
with [ injective, and hence Z ¢ ¥, because Hom (I, DTrX) # 0 implies pd, X >
2. Therefore, #; consists of all modules from 2(A) and all modules from the
stable tubes of 7 (A) (equivalently all indecomposable t74-periodic modules).
Finally, assume that M is a preprojective A-module, that is, a direct sum of
modules from #(A4). Since #(A) contains all projective 4-modules but no injec-
tive module, there exists a positive integer m such that 4 = (TrD)"(4")" is faith-
ful section of 2(A) and all indecomposable direct summands of M are prede-
cessors of 4 in #(A). Let U be the direct sum of all modules lying on 4.
Applying again [21, Theorem 3] we conclude that U is a tilting A-module, H =
End,(U) is a hereditary algebra of Euclidean type 4°°, T = D(Uy) is a tilting
H-module, 4 = Endy(T)", 2(A) is the connecting component 47 of Iy deter-
mined by 7, and the indecomposable modules from the torsion-free part %/(T')
determined by T are exactly the predecessors of 4 in mod 4. In particular, M is
a module from #(T). O

PROPOSITION 2.3. Let A be a connected tilted algebra, M a A-module with
Ext (M, M) =0 from add%; (respectively, add2,), and I = End,(M).
Moreover, assume that M is preprojective (respectively, preinjective) if A is a
representation-infinite tilted algebra of Euclidean type such that the preprojective
(respectively, preinjective) component of I is the unique connecting component of
Iy. Then I is a tilted algebra.

ProoF. We may assume that M € ¥;. Applying Lemmas and we
conclude that there exists a hereditary algebra H and a tilting H-module 7" such
that 4 = Endy(T)°® and M belongs to the torsion-free part of #(T) of mod A
determined by 7. Moreover, it follows from the Brenner-Butler theorem that
Homy (7T, —) : mod H — mod A establishes an equivalence between 7 (T) = {X €
mod H |ExtL(T,X) =0} and %(T)={Y emodA|Tor{(T,N)=0}. Hence
there exists an H-module V' in 7 (T) such that M = Homy (T, V). Moreover,
we have

Ext},(V, V) = Ext! (Homy (T, V), Homy (T, V)) = Ext! (M, M) = 0,

and consequently V' is a partial tilting H-module, because H 1is hereditary.
Applying now [7, Corollary II1.6.5] we conclude that Endy (V)" is a tilted algebra.
Therefore, applying again the Brenner-Butler theorem, we infer that End 4(M)°® =~
Endy (V)P is a tilted algebra. N

THEOREM 2.4. Let A be a connected algebra, M a A-module with Ext}I(M , M)
=0 from add % (respectively, add #,), and I' = End 4(M)°®.  Then the following
hold
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(@) If A is quasitilted then I is quasitilted.
(b) If A is strict shod then I is tilted.
(c) If A is shod then I is shod.

Proor. We may assume that M €add.%;. Then pd, M <1, and conse-
quently M is a partial tilting 4-module. Invoking now [3, Lemma 2.1] we con-
clude that there exists a short exact sequence

0—-A—E—M!'—0,

where d = dimg Ext}l(M ,A), such that N = E® M is a tilting A-module, and, if
X is an indecomposable direct summand of E, then Hom, (X, M) #0 or X is
projective.

(a) Assume A is quasitilted. Then % contains all indecomposable projec-
tive A-modules ([10, Theorem II.1.14]), and consequently N is a tilting 4-module
from add ¥;. Applying now [10, Proposition II1.2.4] we conclude that A =
End,(N)°® is a quasitilted algebra. Observe now that I" = End,(P)°", where
P is the projective A-module Hom,(N, M). Therefore, a direct application of
Theorem 1.2(b), or [10, Proposition II.1.15], gives that I" is a quasitilted algebra.

(b) Assume that A is strict shod. Then it follows from [17, Theorem 8.2]
that A is a (strict) double tilted algebra, and hence Iy admits a connected com-
ponent ¢ with a faithful double section 4 whose left part 4; is a disjoint union
= Al(l) U--- U4, ") of faithful sections A ,(i) of connecting components of the
Auslander-Reiten quivers Ai of the connected parts A; ), 1 <i<m, of a tilted
factor algebra A, = Al(l) - X A ™ of A, and such that % consists of all pre-
decessors of 4; in ind A;. Since M belongs to add %;, we obtain that M is
a A;-module and all indecomposable direct summands of M are predecessors
of 4;inind4;. Let M =MD @ . (—B M™ where MY is a A(i -module, for
each 1 <i<m. Note that each M belongs to L”, Ext (M(), D) =0,
and I' = End(y ) = EndA/@-) (MD) x . x EndAlm (M ’”)). Moreover if /1() sa
representation-infinite tilted algebra of Euclidean type such that the preprOJec-
tive component of L) is the unique connecting component of I, then M is a
preprojective Az , because all its indecomposable direct summands are predeces-
sors of 4, " in 1nd/1( Therefore, applying [Proposition 2.3, we conclude that

I = EndA( )P is a tilted algebra.
The statement (c) is a direct consequence of (a) and (b). ]

We end this section with an example showing that the additional assump-
tions in [Proposition 2.3, concerning the Euclidean case, are necessary.

ExampLE 2.5. Let K be a field and 4 be the bound quiver algebra KQ/I,
where Q is the quiver
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and 7 is the ideal in the path algebra KQ of Q generated by #¢. Then A is the
one-point coextension [S(3)]H of the hereditary algebra H = KA, where A4 is the
convex subquiver of Q given by the vertices 1, 2, 4, 5, 6, by the simple module
S(4) at the vertex 4, lying in the unique stable tube of rank 2 in Iy. Hence 4 is
a representation-infinite tilted algebra of Euclidean type As and the preprojective
component #(A) of Iy is the unique connecting component of I (see [18, (4.9)]).
Applying we conclude that % consists of all modules from 2(A) and
all modules from the stable tubes of I, or equivalently, all tubes of I'; except the
coray tube containing the injective module E(3) with socle S(3) and top S(4).
Further, 74 admits a stable tube of rank 3 whose mouth is formed by the simple
modules S(2), S(6) and the module X of the form

0<——0

K/ }\K
SN
—

0

and such that 4y X = S(6), 741(S(6)) = S(2), and 74(S(2)) = X. Consider the A-
module M =P(1)® P(2)® P(3) ® P(4) ® P(5) ® X. Observe that M belongs
to %, and hence pd, M < 1. Moreover, Ext! (M, M)= DHom,(M, ;M) =
DHomy,(M,S(6)) =0. This implies that M is a tilting 4-module, and a direct
calculation shows that I = End (M) " is the bound quiver algebra KQ'/I', where
Q' is the quiver
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and I’ is the ideal in KQ' generated by n¢ and pw. Hence, I' is obtained from
the hereditary algebra H' = KA', where A’ is the convex subquiver of Q' given
by the vertices 1, 2, 4, 5, by the one-point coextension [S(4)]H, and next the one-
point extension [S(4)|H'[X'], with X’ of the form

N
N

Since S(4) and X’ lie in different tubes of rank 2 in Iy, the Auslander-Reiten
quiver of I' admits a coray tube containing the injective module E(3) with
soc E(3) = S(3) and a ray tube containing the projective module P(6) with
rad P(6) = X’. Therefore, I" is a representation-infinite iterated tilted algebra of
Euclidean type As but is not tilted (see [18, (4.9)]). We also note that I' is a
quasitilted algebra of canonical type (3,3), because is a semiregular branch ex-
tension of the canonical algebra H' of type (2,2) (see [15]). Finally, observe that
A is a representation-infinite tilted algebra of Euclidean type As, the pre-
injective component 2(A°) of Ijo is the unique connecting component of
Ly, D(M) is a cotilting 4°P-module from Z 0, Extlo(D(M), D(M)) = 0, and
End o (D(M))°° = I'P is iterated tilted of Euclidean type As (quasitilted of
canonical type (3,3)) but is not tilted.

3. Triangular matrix algebras.

Throughout this section K will be an algebraically closed field and 4 a fixed
basic connected (finite dimensional) algebra over K. We denote by A the algebra

j ﬂ of 2 x 2 lower triangular matrices over 4. It is well known that mod 4

is equivalent to the category whose objects are morphisms f : X — Y in mod 4

and morphisms are pairs of morphisms in mod 4 making the obvious squares

commutative. The modules over the algebras 4 = [j SJ have been the object

of studies during the last 20 years. We refer to and for a complete
description of all representation-finite and tame algebras of the form fl S and
further references.

Here we are interested in a complete description of algebras A such that the

algebra A = [j 2] is shod. It is known that gl.dimA =1+ gl.dim 4 (see |1,

Proposition I11.2.6]). Hence, if A is quasitilted (respectively, strict shod) then
gl.dimA4 <1 (respectively, gl.dim A = 2). Recall also that 4 can be presented as
an algebra 4 = KQ/I, where Q = Q4 is the Gabriel quiver of 4 and [ is an ad-
missible ideal in the path algebra KQ of Q. Moreover, A = KQ/I is hereditary
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if and only if 7 =0 and Q has no oriented cycles. The following description of
all quasitilted 2 x 2 lower triangular algebras has been established in [9, Theorem
3.1].

THEOREM 3.1. The algebra A = [‘j 2} is quasitilted if and only if A = KQ

for Q one of the Dynkin quivers of type Ay, Ay, A3, Ay, Dy (any orientation) or As
(orientation different from o «— @ «— o «— o «— o).

The following main result of this section extends the above theorem to a

complete description of all shod algebras of the form [j 2 .

THEOREM 3.2. The algebra A = [j 2} is a strict shod if and only if A =~

KQ/I, where (Q,I) is one of the following bound quivers

.....................

oi—e—0o ot—o—o—re e e—oi—eo
ot oo ye—y. ol ro—roi—ei—b
oi;;-o(—-'-'b—+o—)o o;)o;)'b(——o(——o

"\ ......... '\ ......... "\ ......... ’\‘ .........

0 — o —e w20 —'e

.‘/ ...... A .\/ 7

where  — o — o means that the composition of these arrows is a generator of the
ideal 1.

The proof of this theorem will be a combination of several facts established
below. We would like first to state a direct consequence of Theorems 3.1 and
B.2, and the main results of and [16]. Recall that an algebra I' is called
tame if, for any dimension d, there is a finite number of I'-K[X|-bimodules M;
which are finitely generated and free as right K[X]-modules, and satisfy the fol-
lowing condition: all but a finite number of isomorphism classes of indecom-
posable I'-modules of dimension d are of the form M; ® K[X|/(X — /) for some
/€ K and for some i. Denote by u,(d) the least number of bimodules M; sat-
isfying the above condition for d. Then I is said to be of linear growth if there
is a natural number m such that u,(d) <md for all d > 1 (see for more
details). It follows also from the validity of the second Brauer-Thrall conjecture
that u,(d) =0 for all d > 1 if and only if I" is representation-finite (the number
of isomorphism classes of indecomposable I'-modules is finite).
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COROLLARY 3.3. For A= j 91 the following hold:
(1) If A is shod then A is of linear growth.

(2) If A is strict shod then A is representation-finite.

We start our proofs with the following

ProPOSITION 3.4.  Assume that A = [‘j 2} is a strict shod. Then A is
representation-finite and tilted.

PrOOF. Observe that 4 = End (P)°P, where P is the projective A-module
[8 /ﬂ :A{g (1)] Moreover, gl.dim A4 =3 implies gl.dimA4 =2. Hence, ap-
plying Theorem 1.2(d) we conclude that A4 is tilted. It has been proved in |9,
Proposition 3.3] that if H is a hereditary algebra and there exists an indecompos-
able H-module X with DTrj X # 0 then there exists an indecomposable module
Z over {g g] of both projective and injective dimension 2. A simple analysis
of arguments used there shows that the same holds for algebras of global dimen-
sion at most 2. Since gl.dim4 =2 and A is shod, we obtain that DTr{M =0
for every indecomposable 4-module M. This implies that every DTr-orbit in the
Auslander-Reiten quiver Iy of A consists of at most 4 indecomposable modules

and contains a projective module. Therefore A is representation-finite. O

From now on we may assume that A is representation-finite. Moreover, it
follows from [4] that A has a presentation 4 = KQ/I where the ideal I is gen-
erated by paths or differences of paths (having common sources and targets) in
Q. Let Q= (0Qo, Q1), where Qy is the set of vertices of Q and Q) is the set of

arrows of Q. Then the quiver 4 = (4y,4;) of A = {j 2] can be described as

follows: Ay ={i,i*|ie Qv} and 4y = {o, 0" | e Q1 }U{y; : i* —i|ie Qp}. De-
note by J the ideal in the path algebra KQ of A generated by the elements:
(1) ay---op, of ---of, for all paths a;---o, €1,
2) op--cag—py---py, of -t —py---p7 for all differences o --- oy —
BBl a
(3) 0" —ay; for all arrows i — j from Q.
Then A =~ KA/J (see [19]). We also note that if A is tilted then Q, and hence 4,
has no oriented cycles. Further, there exists a canonical choice of primitive or-
thogonal idempotents e;, e’, i € Qy, of A such that

i

0 0 1 0 .

lo 11 —g:QOei and lo 0] —iEZQOei.
For a multiplicity-free projective A-module P = Ae; @ --- @ Ae;,, with iy,... i,
pairwise different elements of Q,, we denote by P the multiplicity-free projective
A-module Ae; @ --- @ Ade; D Ae; @ --- @ de;. Moreover, for a vertex a of Q,,
we put P(a) = Ae,, P(a*) = Ae}, E(a) = D(e,4) and E(a*) = D(e}A).
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LEMMA 3.5. Let P be a multiplicity-free projective A-module, B = End 4(P)°",

and I’ = B g} Then I' =~ End (P)".

Proor. Obvious. L]

Recall that 4 = KQ/I is called a monomial algebra provided / is generated
by paths.

LEMMA 3.6. Assume A is strict shod. Then A is a monomial algebra.

Proor. Suppose 4 = KQ/I is not a monomial algebra. Since A is
representation-finite it follows from the above discussion that Q contains a
subquiver

b ¢ 3 3] . ,ar'—l
v DN
a d

AN 5

c P (
ﬁ? ﬁa-—l

A~

such that oy - o, —f;---f,€l but ay---0,.¢1, f,---f,¢1. Take the projec-
tive A-module P = Ae, ® Ae, ® Ae, ® Aey and B=End,(P). Then B=KQ'/I'
where Q' is the quiver

b
‘7 V\
a d
\ﬁ\ /
¢
and I’ is generated by op — fflo. Then I = [g g] = KA'/J" where A’ is the
quiver
b,
@ 0
a*/ ‘\d*
‘\'c‘*’4

Ya Yd

A
v
/-
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and J' is generated by ap — fo, a*o* — fra*, v, 0 —ayy, v — Pye V0T — 0V
y.0° —ay,;. Observe that I' admits a unique indecomposable projective-injective
I''module P(d*) = E(a). Further, M = rad P(d*)/soc P(d*) is an indecompos-
able I'-module. Moreover, M has a minimal projective resolution

0 — P(a) = P(a”) ® P(b) ® P(c) — P(b") @ P(c") ® P(d) = M — 0,
and a minimal injective resolution
0> M—>Ea@)®Eb®E() - EbL")DE(c)DE() — Ed")— 0,

in mod/". Hence pd M =2 and idr M =2. On the other hand, it follows
from Theorem 2.1(d) and that I" = End4(P)? is a shod, a con-
tradiction. Therefore, 4 is a monomial algebra. ]

Lemma 3.7. Assume A is a strict shod and the bound quiver (Q,I) of A
contains a full subquiver Q' of Dynkin type As or Dy. Then Q' contains a path
belong to I.

ProoF. Suppose that (Q,I) contains a subquiver Q' of type As or Dy,
which has no subpath belonging to /. Let P be the direct sum of indecomposable
projective A-modules corresponding to the vertices of Q' and B = End4(P)".
Then B~ KQ' and I = [g g] ~ End,(P)” for the corresponding projec-
tive A-module P. It has been shown in [9] that either there exists an inde-
composable I'-module M with pd, M =2 and idy M =2, if Q' is the quiver
e— e— o« o« o or [ isa quasitilted but not tilted algebra, in the remaining
cases. On the other hand, it follows from [Theorem 1.2(d) that I" is either strict
shod or tilted. Since gl.dim B =1 implies gl.dim /" =2, we have a contradic-
tion. This finishes the proof. ]

LemMa 3.8. Assume A is strict shod. Then the bound quiver (Q,I) of A
does not contain a full bound subquiver (Q',1') of one of the forms

1520325425 or 1522532455
with 1' generated by of.

Proor. Suppose that (Q, ) contains a full bound subquiver (Q’,1’) of one
of the above forms and B= KQ'/I'. By duality we may assume that (Q’, 1)
is the left quiver. Clearly, B = End,(P)°", where P is the direct sum of the
indecomposable projective 4-modules corresponding to the vertices of Q’, and
r= [g g} >~ End,(P)°®. Moreover, I~ KA'/J' where A" is the quiver
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A P A TN R A £

l% Jh J% lh l%

| 2 3 4 5
o p 0 g

and I’ is generated by of, S, yja* — oy, 1" — By, ya0" — 0y3 and .0 — ays.
Consider the indecomposable I'-module (representation of (4',J'))

L

1

Then the minimal projective and injective resolutions of M in mod " are of the
forms

0— P(l)—- P2)— P3)—M—0,
0—-M—E@4) —E4")DEGS) —ES") —0,

and hence pd, M =2 and idp(M) =2. This contradicts [Theorem 1.2, because,
by Lemma 3.4, I' = End4(P) is a shod algebra. ]

LemMa 3.9. Assume A is strict shod. Then (Q,I) does not contain a full
bound subquiver (Q',1') where Q' is the quiver

1220304

and I' # 0.

Proor. Suppose (Q, 1) contains a full bound subquiver (Q’, 1) of the above
form and I’ #0, and B= KQ'/I. Then B = Endy(P)°, for the corresponding
projective A-module P, and I" = [g %] ~ End,(P)", for the corresponding pro-

jective A-module P. Moreover, I' = KA'/J', where A’ is the quiver

PR, B S A

l?] lyz l73 l74

1 2 3 4
o p g

Observe that I’ is generated only by one path. Indeed, if it is not the case,
then off, fo e I', and then gl.dim 4 = 3, a contradiction, because I" shod implies
gl.dim4 < 2.

Assume now that I’ is generated by offig. Then J' is generated by the ele-
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ments afia, o*f a*, pia* — ap,, 12" — fys, 730 — ay,.  Consider the indecompos-
able I'-module (representation of (Q',1'))
0,1)

PGS ()
v
0

K 0

o o]
K K? K

Then the minimal projective and injective resolutions of M in mod I" are of the

forms

(—
(1,1) (1,0)

0—P1)—P1")®P2)—PB3)®PR)YDPE) - M—0
0—-M—E1")®EQ2)®EQ3)
—EB")VOEBR)YPEA4)DE4) - E4")YDE4") -0,

and consequently pd M =2 and idp M = 2, a contradiction since /" is a shod.

Assume now that I’ is generated by a path of length 2. Without loss of
generality, we may assume that I’ is generated by off. Then J’ is generated by
aff, o, yia* — oy, v — Pys, and p30* — ay,.  Consider the simple 7'-module
S(3) given by the vertex 3. Then the minimal projective and injective resolutions
of S(3) in modI" are of the forms

0— P(1) — P(2) — P(3) — S(3) — 0,
0—-S3)—EQB3)—EB3")®E4) — E4")—0,

and hence pd,S(3) =2 and id;S(3) =2, again a contradiction since I is
shod. [

COROLLARY 3.10. Assume A is strict shod. Then Q does not contain a full
subquiver Q' of the form
122032425

Proor. Let (Q',1") be the full bound subquiver of (Q,7) given by Q', and
B=KQ'/I'. Applying Lemmas B.7 and 3.9, we may assume that I’ is generated
by ofos. Consider the projective 4-module P = P(1) @ P(2) @ P(3) @ P(5) and
C =Endy(P)®. Then C = KQ"/I" where Q" is the quiver

and 7" is generated by afw. Since g g] ~ End,(P) is a shod algebra we

obtain a contradiction with ]
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LemMa 3.11.  Assume A is strict shod. Then (Q,I) does not contain a full
bound subquiver (Q',1") with Q' of the form

1 &£l 35455
and 1" generated by aof.

Proor. Suppose (Q, 1) contains a full bound subquiver (Q’,I’) of the above
form and B= KQ'/I'. Then B = End,(P)°?, where P is the direct sum of the in-
decomposable projective 4-modules corresponding to the vertices of Q’, and I' =

[g g] ~ End,(P)°". Moreover, I~ KA'/J', where A’ is the quiver

PRI, F S S AR

l% Jh lh lh l%

1 2 3 4 5
¢ B o o

and [’ is generated by of, o', p &7 =&y, 3T — By, 40t —ay3, and
740* — ays. Consider the indecomposable /"-module

1 1

S

1 1

Then the minimal projective and injective resolutions of M in mod " are of the
forms

0— P4)—PB3)Y®OPA)DPS) —PR@®PB)®P(S)— M —0,
00— M — E(l) @E(?)) @E(4*)
—E1"®EQR@®EB3")— EQ2") —0,

and hence pd M =2 and idp M = 2. This contradicts Theorem 1.2, because,
by Lemma 3.4, I' = End,(P)°® is a shod algebra. O

LemmA 3.12.  Assume A is strict shod. Then Q is a tree.

Proor. Suppose that the quiver Q of 4 contains a cycle. Since 4 = KQ/I
1s representation-finite, such a cycle contains at least one subpath from 7. We
know also that Q has no oriented cycles. Invoking now our assumption on A
and the properties of (Q,I) established above, we conclude that there exists a
multiplicity-free projective A-module P such that B = End,(P)" is isomorphic to
the bound quiver algebra KQ'/I' of the bound quiver (Q',I’) of the form
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3 >4 +—2n— 2—)211—1

4n—1—-)4n 2—-) ——>2n+4—+2n+3

where & — o — o means that the composition of these two arrows belongs to 7'.

But this contradicts [Lemma 3.11. ]

LemMa 3.13.  Assume A is strict shod. Then (Q,I) does not contain a full
bound subquiver (Q',1") with Q' of the form

e
/\

ProOF. Suppose (Q, ) contains a full bound subquiver (Q’, ') of the above
form, and let B= KQ'/I', I" = [ } =KA'/J'. We know that B=End,(P)’
and I = End(P)°, for the corresponding pI‘OJCCthG modules P in mod 4 and P
in mod 4, and in particular I" is shod. Applying [Lemma 3.7, we may assume
that (Q',1’) does not contain a full bound subquiver (Q” "), where Q" is a
Dynkin quiver of type D4 and I” =0. Hence I’ is generated by at least two
paths (of length 2). The quiver 4" of I' is of the form

L

N

Rt

2 1 4 s

Consider the indecomposable I'-module M of the form
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0 0

N
L1 .
K| )

1
5| ox
L
K-‘/
v / v
0 0

Without loss of generality we may assume that «ff € I’ and oo € I'. Then M has
a minimal projective resolution in mod /" of the form

0—>P(1) —>P(1*)@P(3)@N—>P(3*)@P(4) —- M =0

where N =0, if gpfeI’, and N = P(2) if gpf ¢ I'. Similarly, we conclude that the
minimal injective resolution of M in mod I is of the form

0—-M-—-EQ2)V®EB)—-EB)®ES)®R— E(5") —0,
where R=0, if gfel’, and R=E(4*) if of ¢ I'. Therefore, we have always
pd, M =2 and idp M =2, a contradiction because /" is a shod. O

LemMa 3.14.  Assume A is strict shod. Then (Q,I) does not contain a full
bound subquiver (Q',1") of one of the forms

with I' generated by of.

Proor. Suppose, by duality, that (Q,I’) contains a full bound subquiver
(Q',I') of the left form, and let B=KQ'/I', I' = [g g} = KA'/J'. Then 4" is
of the form

R - W TR AR P M

| 7 lﬁ lﬁ f..,

3 < 4 > 5




640 M. KLEINER, A. SKOWRONSKI and D. ZACHARIA

and J' is generated by aff, o, yja* —apy, 1,6 —ay3, p3BT = Bras ys0" — 074
It follows from and that I' is representation-finite, and hence its
Auslander-Reiten quiver consists of a finite preprojective (and preinjective) transla-
tion quiver. A direct but tedious calculation shows that it contains a full transla-
tion subquiver of the form

E(2*)
> /
NSNN NN N
\/\/\/\f\/

P(4°)
[ J

where X is the indecomposable I'-module with the dimension-vector

2401
3

0543
2

dim X =

Since the composition of irreducible morphisms between modules forming a sec-
tional path is nonzero ([1, Theorem VII.2.4]), we have Hom(E(1), DTrX) # 0 and
Hom (TrDX, P(4*)) # 0, and consequently pd X > 2 and idr X > 2. This leads
to a contradlctlon because I = End4(P)°P for a projective A-module P, and so I’

is shod by [Theorem 1.2. O

LemMa 3.15. Assume A is strict shod. Then (Q,I) does not contain a full
bound subquiver (Q',1') of one of the forms

| %2 3. 4 g Py 2y
| |
5 5

with 1" generated by of.

ProoF. Suppose, by duality, that (Q,I) contains a full bound subquiver
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(Q',I') of the left form, and let B= KQ'/I, I' = [g g} =KA'/J'. Then 4’ is
of the form

| LA U e’ 4*
Y1 Y2 5 J{’Ya l74
Y5 o
1 5 9 < 3 < 4

and J' is generated by af, o' f", oy, — 1,0%, a3 — 122" ra— 138" 003 — 750"
It follows from and [16] that I' is a representation-finite algebra and its
Auslander-Reiten quiver is a finite preprojective (and preinjective) translation
quiver. A direct but tedious calculation shows that it contains a full translation
subquiver of the form

E(2). .P(4‘)

\0 L] [ [ ] (] ® 0/‘
NN N AN N
NN AN AN
NN N
DQ. - .>. - .>‘£Jx
PN
\/

Hence, as in the previous lemma, we conclude that Homp(D(I"), DTrpX) # 0,
Hom(TrDrX,I') # 0, and hence pd; X > 2 and idr X > 2. Since I = End,(P)
for a projective A-module P, this contradicts [Theorem 1.2, because A is shod.

[

LemMa 3.16. Assume A is strict shod. Then (Q,I) does not contain a full
bound subquiver (Q',1') of one of the forms

1 1
< N
3L 495 3“4 5

s /e

2 2

with I' generated by off and aff, or wn and wé, respectively.
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PrOOF. Suppose, by duality, that (Q,I) contains_a full bound subquiver
(Q',I') of the left form, and let B=KQ'/I', I' = [g g} = KA'/J'. Then A" is
of the form

1*
'\a‘ - -
nl geE— g 5

9* o

1 J/‘Ys J("H Ys
Y2

o\
J, 3 < 4 )

and J' is generated by off, aff, a*f", a* ", yjoat — oy, y,0% —ays, Y3f° — Pra,
750" — 0y4. Consider the indecomposable /I-module

o
i/J
— X
«——— o
N —— ©

<
<—
(e
s
oY
=

Then M has the following minimal projective and injective resolutions in mod I”
0— PQ2)—P2*)®P3)— PB3)YD®PA) — M—0,
0-M—-E1"Y®EB)®ES)—-E3)®E4) — E4")—0,

and hence pdj M =2 and idp M = 2. This again contradicts the fact that I"' =
End4(P)°?, for some projective 4-module P, is a shod algebra. O

LemMa 3.17. Assume A is strict shod. Then (Q,I) does not contain a full
bound subquiver (Q',1') of one of the forms

1 1
N N
3¢ 4-55 354+~ 5

s /e

2 2

with I' generated by aff, or wn, respectively.
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Proor. Suppose (by duality) that (Q,I) contains a full bound subquiver
(Q',I') of the left form, and let B= KQ'/I', I' = {g g} =KA'/J'. Then I' =
KA'/J', where 4 is the quiver described in the proof of and J’

is generated by off, a*B, pja* —oyy, p0° —ay;, 3B — Prs, and yse* — o0y,
Consider the indecomposable /'-module

0 > 0
K ¢ 1 K I > K
K/l

Then a direct checking shows that M has the minimal projective and minimal
injective resolutions in mod I of the forms

0—P(1)—-P(1")®P3)— P33 )®P4) — M—0,
0-M—->EQ2®@ES) —E@4)@E(5") — E@4") —0,

and hence pd M =2 and indp M =2. This contradicts again the fact that I
is shod, as an algebra of the form End,(P) for the corresponding projective A-
module P. ]

We may summarize our considerations above as follows: if 4 = j g
is strict shod then 4 = KQ/I for a bound quiver (Q,/) listed in [Theorem 3.2.
In order to proof the sufficiency part of it is enough to show,
thanks to Lemma 3.4, that if (Q,I) is maximal bound quiver listed in

3.2 and 4 = KQ/I then A = [j 3] is strict shod. Hence, since the opposite

algebra of a strict shod algebra is also strict shod, we have only four cases to
consider.

LemMA 3.18. Let A= KQ/I, where Q is of the form

and I is generated by off and oa. Then A is strict shod.

ProOF. Since gl.dim A4 = 2, we have gl.dim A4 = 3, and then it remains to
show that 4 is shod. We know that A4 = K4/J, where 4 is the quiver
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and J is generated by of, a*f", 00, 00", 710" — apy, 1287 — B3, 740" — 0p3, and
750" — 074 Then a direct calculation shows that A is a representation-finite
algebra and I; is of the form

where P(2*) = E(1) and P(4*) = E(5). Observe that for each indecomposable
A-module M we have

Hom,(D(A), DTryM) =0 or Hom,(TrDsM,A) =0,

and consequently pd, M <1 oridsM <1 (see [15, (2.4)]). Therefore 4 is shod.
[

LemMa 3.19. Let A = KQ/I, where Q is of the form

and I is generated by off. Then A is strict shod.

ProOF. Since gl.dim 4 = 3, it 1s enough to show that A is shod. We have
A =KA/J where 4 is the quiver described in the proof of the previous lemma
and J is generated by ofS, a*f", y,0* — apy, 1,57 — Brs, 146" — a5, and psp* — oy4.
It follows from and that 4 is a representation-finite algebra having a
directed Auslander-Reiten quiver. A direct calculation shows that I, has a full
translation subquiver of the form
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P(2)

o NN
NG ONEANC NN
P(L°) NN N

/\
N
4
N

(P(2*) = E(1)) containing all indecomposable projective A-modules. Then we
conclude that for every indecomposable 4-module M we have

Hom,(D(A),DTryM) =0 or Hom,(TrDyM,A) =0,
and hence pd, M <1 or idsM <1. Therefore A is shod. O
LemMmA 3.20. Let A= KQ/I, where Q is the quiver

and I is generated by off and aofi. Then A is strict shod.

ProoF. Since gl.dim 4 = 3, we have to show that 4 is shod. We have 4 =
KA/J, where 4 is of the form
1*

ai
L]

m| g g

| | J« J«
Y3 Y4
1
-
” AN
J<——— 4
and J is generated by of, a*f*, af, a*p*, v — oy, 1,0% — ays, 137 — Pra. Let

B = KQ be the path algebra of the subquiver Q2 of A given by the vertices 1%,
2%,3* 3 and 4. Then 4 can be obtained from B by a one-point extension B[Z]
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of B by the indecomposable B-module Z = rad P(4*) and next two one-point co-
extensions [X|[Y|B[Z] of B[Z] by two indecomposable B-modules (hence B[Z]-
modules) X = E(1)/soc E(1) and Y = E(2)/soc E(2). A simple calculation shows
that the Auslander-Reiten quiver I3 of B is of the form

/\/\/\/

HEHE

Moreover, we know by and that A is representation-finite and has a directed
(finite) Auslander-Reiten quiver I;. Then it follows that for every indecomposable
A-module M we have Hom,(D(A),DTryM)=0 or Hom,(DTrDsM,A) =0,
and so pd, M <1 or idyM <1. Therefore 4 1s shod. ]

Lemma 3.21. Let A= KQ/I, where Q is the quiver

and I is generated by off. Then A is strict shod.

PrOOF. Since gl.dim A4 = 3, it is enough to show that 4 is shod. We have
A =KA4/J, where 4 is the quiver described in the proof of Lemma 3.20 and J is
generated by aff, af*, y,0* —ayy, y,0° —ay; and p3° — fy,. 1t follows from
and and A is representation-finite and has a directed Auslander-Reiten
quiver. A direct calculation shows that Iy has a full translation subquiver of the
form

P(3) (o P(a*)=E(2)

P(1%) f\/\/\
/\/\/\/\/

> N
>\><‘%}*}§}
\/\/\/x/\/\
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containing all indecomposable projective 4-modules. Then we easily deduce that
each indecomposable 4A-module M satisfies

Hom,(D(A), DTryM) =0 or Hom,(TrD;M,A) =0,
or equivalently, pd, M <1 or id4M < 1. Therefore 4 1s a shod algebra. [
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