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(Received Jan. 11, 2001)

Abstract. We investigate the endomorphism algebras G of finite dimensional

modules having the property that every indecomposable finite dimensional G-module is

of projective dimension at most one or injective dimension at most one. In particular,

we describe all matrix algebras A 0
A A

h i

with this homological property.

0. Introduction.

Throughout the paper by an algebra we mean a finite dimensional K-algebra

(associative, with an identity) over a fixed field K. By a module we mean a finite

dimensional left module. For an algebra L, we denote by modL the category of

all (finite dimensional) L-modules, by indL the full subcategory of modL con-

sisting of indecomposable modules, and by D the standard duality HomKð�;KÞ on

modL. Further, we denote by GL the Auslander-Reiten quiver of L and by DTr,

TrD the Auslander-Reiten translations in modL. For a L-module M, we denote

by pdA M and idA M the projective dimension and the injective dimension of M,

respectively. Following [4], an algebra L is said to be a shod algebra (for small

homological dimension) provided, for each indecomposable L-module X , we have

pd
L
Xa 1 or idL Xa 1.

The class of shod algebras contains all tilted, or more generally quasitilted,

algebras, and has been recently the object of extensive investigation (see [5], [6],

[8], [10], [15], [17], [22]). We are interested in the problem of when the endo-

morphism algebra G ¼ EndLðMÞop of a module M over a shod algebra L is again

a shod algebra. We prove that it is the case if:

(1) M is a projective module (Section 1)

or

(2) M has no selfextensions and belongs to the additive closure of the

maximal predecessor closed subcategory of indL consisting entirely of

modules of projective dimension at most one (Section 2).
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As an application, we obtain (in Section 3) a complete description of shod

2� 2 lower triangular matrix algebras L ¼ A 0
A A

h i

of finite dimensional alge-

bras A over an algebraically closed field. In particular, we show that, if such an

algebra L is shod, then L is tame of linear growth.

1. Endomorphism algebras of projective modules.

Let A be an algebra. For X and Y in indA, X is said to be a predecessor

of Y (respectively, Y is said to be a successor of X ) in indA if there exists a

sequence of nonzero morphisms X ¼ Z0 ! Z1 ! � � � ! Zr ¼ Y , rb 1, in indA.

Following [10], denote by LA the family of all indecomposable A-modules M such

that pdA Xa 1 for every predecessor X of M in indA, and by RA the family of

all indecomposable A-modules N such that idA Ya 1 for every successor Y of N

in indA. It has been shown in [5, Theorem 2.1] that A is a shod algebra if and

only if indA ¼ LA URA. We know also that if A is shod then gl:dimAa 3

([10, Proposition II.2.1]). We say that A is a strict shod if A is shod with

gl:dimA ¼ 3 ([5]), and A is quasitilted if A is shod with gl:dimAa 2 ([10]).

Finally, A is called tilted if A is of the form EndHðTÞop, where H is a hereditary

algebra and T is a tilting H-module. Recall that an A-module T is called a

tilting module if pdA Ta 1, Ext1AðT ;TÞ ¼ 0, and the number of pairwise non-

isomorphic indecomposable direct summands of T equals the rank of the

Grothendieck group K0ðAÞ of A (see [3], [11]).

Let now L be a fixed algebra, P a projective L-module, and G ¼ EndLðPÞ
op.

Denote by modP the full subcategory of modL consisting of all modules X which

have a projective presentation P1 ! P0 ! X ! 0 with P0 and P1 in the additive

category addP of P. Then HomLðP;�ÞjmodP : modP ! modG is an equivalence

of categories with addP corresponding to the category of projective G-modules.

For a projective L-module Q, we denote by Q� the projective L
op-module

HomLðQ;LÞ. Observe that G ¼ EndLðPÞ
op ¼ EndLopðP�Þ. We need the follow-

ing simple lemma (see [23]).

Lemma 1.1. Assume L is basic, 1 ¼ e1 þ � � � þ en for some primitive or-

thogonal idempotents e1; . . . ; en, P ¼ Le2 l � � � lLen and S is the simple module

Le1=ðradLÞe1. Then the following hold

(a) If pd
L
Sa 1 then, for every projective L-module Q, HomLðP;QÞ is a pro-

jective G-module.

(b) If idL Sa 1 then, for every projective L-module Q, HomL
opðP�;Q�Þ is a

projective G
op-module.

Proof. (a) Let pd
L
Sa 1, Q be a projective L-module and Q ¼ Q 0 lQ 00

with Q 0 A addP and Q 00 A addLe1. Then HomLðP;QÞ ¼ HomLðP;Q
0 l radQ 00Þ

with Q 0 l radQ 00 A addP, and hence HomLðP;QÞ is a projective G-module.
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(b) Let idL Sa 1. Then DðSÞ ¼ HomKðS;KÞG e1L=e1ðradLÞ is a simple

L
op-module with pd

L
op DðSÞa 1, and the claim follows. r

Theorem 1.2. In the above notation the following hold

(a) If L is shod then G is shod.

(b) If L is quasitilted then G is quasitilted.

(c) If L is tilted then G is tilted.

(d) If L is strict shod then G is strict shod or tilted.

Proof. Since the projective, injective and global dimensions are preserved

by the Morita equivalences we may assume that L is basic. Moreover, by in-

duction on the rank of K0ðLÞ, we may also assume L ¼ Le1 lLe2 l � � � lLen,

and P ¼ Le2 l � � � lLen. Let S ¼ Le1=ðradLÞe1.

(a) Assume that L is shod. Let X be an indecomposable G-module. We

shall prove that pd
G
Xa 1 or idG Xa 1. We know that X ¼ HomLðP;MÞ for

some L-module M from modP. We have two cases to consider.

Assume first that idL Sa 1. Since M is an indecomposable L-module, we

have pdL Ma1 or idL Ma1. If pdL Ma1 then we have a short exact sequence

0 ! P1 ! P0 ! M ! 0

with P0;P1 A addP, and applying the functor HomLðP;�Þ we obtain the pro-

jective resolution

0 ! HomLðP;P1Þ ! HomLðP;P0Þ ! HomLðP;MÞ ! 0

of X in modG , and hence pd
G
Xa 1. Assume now pd

L
Mb 2. Since L is

shod, we then have idL Ma 1, and hence pdLop DðMÞa 1. Let

0 ! Q�
1 ! Q�

0 ! DðMÞ ! 0

be a minimal projective resolution of DðMÞ in modLop. Applying Lemma 1.1(b)

we obtain a (not necessarily minimal) projective resolution

0 ! HomL
opðP�;Q�

1 Þ ! HomL
opðP�;Q�

0 Þ ! HomL
opðP�;DðMÞÞ ! 0

of HomL
opðP�;DðMÞÞ in modG op, and hence pd

G
op HomL

opðP�;DðMÞÞa 1.

Observe now that we have a canonical isomorphism of G-modules

DHomL
opðP�;DðMÞÞGHomLðP;MÞ ¼ X

induced by isomorphisms DðP� nL MÞGHomL
opðP�;DðMÞÞ and P� nL MG

HomLðP;MÞ. Therefore, we obtain idG Xa 1. Note that in fact we have

proved the following: if idL Sa 1 and idL Ma 1 then idG HomLðP;MÞa 1.

Assume now that idL Sb 2. Then pd
L
Sa 1, since L is shod. Hence we
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have idLop DðSÞa 1. Note that G GEndLopðP�Þ. Therefore, we prove as above,

that for the indecomposable G op-module Y ¼ DðX Þ we have pdG op Ya 1 or

idop
G Ya 1, and hence idG Xa 1 or pdG Xa 1. This shows that G is shod.

(b) Assume that L is quasitilted. The required fact that G is quasitilted has

been established in [10, Proposition II.1.15] as an application of a characteriza-

tion [10, Theorem II.1.14] of quasitilted algebras. Here, we obtain an elementary

direct proof. Indeed, due to (a) it remains to show that gl:dimGa 2. But this

fact follows immediately from Lemma 1.1.

(c) Assume that L is a tilted algebra. Then L ¼ EndHðTÞ
op where H is a

basic hereditary algebra, T is a tilting H-module, and T ¼ T1 l � � � lTn with

T1; . . . ;Tn pairwise nonisomorphic indecomposable L-modules such that Lei ¼

HomHðT ;TiÞ for any i A f1; . . . ; ng. Hence P ¼ HomHðT ;RÞ, for the partial

tilting H-module R ¼ T2 l � � � lTn. It follows from [7, Corollary III.6.5] that

EndHðRÞ
op is a tilted algebra. Invoking now the Brenner-Butler theorem ([11]), we

conclude that

G ¼ EndLðPÞ
op ¼ EndLðHomHðT ;RÞÞop GEndHðRÞ

op

is a tilted algebra.

(d) Assume that L is a strict shod. If P A addLL then it follows from

[17, Theorem 8.2] that P is a projective module over a tilted factor algebra Ll

of L (called the left tilted algebra of L) and then, from (c), G ¼ EndLðPÞ
op ¼

EndLl
ðPÞop is a tilted algebra. Therefore, we may assume that P has at least one

indecomposable direct summand, say Pn, from RLnLL. But then it follows from

the arguments applied in (a) (in the both cases: idL Sa 1 and pdL Sa 1) that

HomLðP;PnÞ is an indecomposable projective G-module from RG . If gl:dimG ¼

3 then G is strict shod, because G is shod by (a). Finally, if gl:dimGa 2 then G

is quasitilted with RG containing a projective module, and consequently is tilted

by [10, Corollary II.3.4]. r

The following examples show that we may have HomLðP;MÞ A LG (respec-

tively, HomLðP;MÞ A RG ) for an indecomposable L-module M from ðRLnLLÞV

modP (respectively, from ðLLnRLÞVmodP).

Example 1.3. Let L be a bound quiver algebra KQ=I , where K is a field, Q

is the quiver

1 
a
2 

b
3;

and I is the ideal in the path algebra KQ of Q generated by ab. Then L is a

tilted algebra of Dynkin type A3. Denote by Si the simple L-module associated

to the vertex i and by Pi the projective cover of Si in modL, 1a ia 3. Let

P ¼ P2 lP3 and G ¼ EndLðPÞ
op. Clearly, G is the path algebra KD, where D is
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the full subquiver of Q consisting of the vertices 2 and 3. We have the following

minimal projective resolution

0 ! P1 ! P2 ! P3 ! S3 ! 0

and consequently S3 A RLnLL. On the other hand, HomLðP;S3Þ is the simple G-

module associated to the vertex 3 of D, and clearly belongs to LG ¼ indG ¼ RG ,

because G is hereditary. Similarly, taking P 0 ¼ P1 lP2 and G
0 ¼ EndLðP

0Þop, we

conclude that S1 A LLnRL, because idL S1 ¼ 2, and HomLðP
0
;S1Þ A RG

0 ¼ indG 0.

2. Endomorphism algebras of modules without selfextensions.

The aim of this section is to prove a generalization of Theorem 1.2 for

modules without selfextensions. We need a preliminary fact.

Lemma 2.1. Let L be a connected tilted algebra and M a L-module from

addLL. Moreover, assume that L is not a representation-infinite tilted algebra of

Euclidean type whose preprojective component is the unique connecting component

of GL. Then there exists a hereditary algebra H and a tilting H-module T such

that L ¼ EndHðTÞop and M belongs to the torsion-free part

YðTÞ ¼ fN A modL jTorL1 ðT ;NÞ ¼ 0g

of modL determined by T.

Proof. Without loss of generality, we may assume that L is basic. Then

LGEndH 0ðT 0Þop for a connected hereditary algebra H 0, say of type D
0, and a

multiplicity-free tilting H 0-module T 0. Then GL admits a connected component

C ¼ CT 0 containing a faithful selection of type ðD 0Þop, consisting of the images

of the indecomposable injective H 0-modules via the functor HomH 0ðT 0
;�Þ.

Moreover, if L is a concealed algebra, we may assume that C is preinjective.

Recall also that if L is not concealed then C is a unique component of GL

containing a faithful section (see [7, Theorem III.7.2]).

We shall prove that then C admits a faithful section D such that all in-

decomposable direct summands of M are predecessors of D in indL. Assume

first that C contains at least one injective module. Then there exists a (faith-

ful) section D in C whose all sources are injective (see [17, Proposition 7.4]).

Then for each noninjective indecomposable module X from D we have

HomLðDðLÞ;DTrLðTrDLX ÞÞ ¼ HomLðDðLÞ;XÞ0 0, because there is a sectional

path in C (in fact in D) from an injective module I to X , and the composition of

irreducible morphisms forming a sectional path is nonzero ([1, Theorem VII.2.4]).

Hence, for such a module X , we have pd
L
TrDXb 2 (see [18, (2.4)]). Observe

also that, if an indecomposable L-module Y is a successor of a module on D

but is not from D, then Y is a successor of a module TrDLX , where X is

an indecomposable module lying on D. This shows that LL consists of all

predecessors of D in indL. In particular, the indecomposable direct summands
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of M are predecessors of D in indL. Finally, assume that C has no injective

modules. Then C is not preinjective, and, by our assumption on C ¼ CT 0 , L is not

concealed. This implies also that D 0 is a wild quiver. Then invoking the results

of [13], [14] we conclude that the family of all components of GL contained

entirely in the torsion part XðT 0Þ ¼ fN A modL jT 0 nL N ¼ 0g consists of a

unique preinjective component QðLÞ of GL and a family RðLÞ of connected

components whose stable parts are of the form ZAy. Moreover, since QðLÞ

has no faithful section (because L is not concealed), the family RðLÞ contains

at least one injective module. Applying now [2, Proposition 3.1], [14, Sections

1 and 2] and [6, Lemma 1.5], we conclude that, for every indecomposable

L-module Z from QðLÞ or RðLÞ, there exists a path in indL of the form

I ! DTrLX ! Y ! X ! � � � ! Z with I an indecomposable injective L-module

from RðLÞ. In particular, HomLðI ;DTrLXÞ0 0 implies pdL Xb 2, and con-

sequently Z B LL. Observe also that every indecomposable injective L-module

lies in QðLÞ or RðLÞ. Therefore, LL consists of all indecomposable modules from

YðT 0Þ and the indecomposable modules from CT 0 . Then there exists a positive

integer m such that D ¼ ðTrDLÞ
mðD 0Þop is a faithful section of C ¼ CT 0 and the

indecomposable direct summands of M are predecessors of D in indL. In the

both cases, let U be the direct sum of all indecomposable L-modules lying on D.

Then, applying [21, Theorem 3] we conclude that U is a tilting L-module,

H ¼ EndLðUÞop is a hereditary algebra of type D
op, T ¼ DðUHÞ is a tilting

H-module, L ¼ EndHðTÞop, C ¼ CT 0 is the connecting component CT of GL

determined by T , and the indecomposable L-modules from the torsion-free part

YðTÞ of modL determined by T are exactly the predecessors of D in indL.

In particular, M is a module from YðTÞ. This finishes the proof. r

Lemma 2.2. Let L be a connected representation-infinite tilted algebra of

Euclidean type such that the preprojective component of GL is the unique connecting

component of GA. Then LL consists of all indecomposable preprojective modules

and all tL-periodic modules. Moreover, for every preprojective module M, there

exists a hereditary algebra H of Euclidean type and a tilting H-module T such that

L ¼ EndHðTÞop and M belongs to the torsion-free part YðTÞ ¼ fN A modL j

TorL1 ðT ;NÞ ¼ 0g determined by T.

Proof. We may assume that L is basic. Then LGEndH 0ðT 0Þop for a con-

nected hereditary algebra H 0 of Euclidean type D
0 and a multiplicity-free tilting

H 0-module T 0. It follows from our assumption that the preprojective component

PðLÞ of GL is the connecting component CT 0 of GL determined by T 0 and admits

a faithful section of type ðD 0Þop. Moreover, GL consists of PðLÞ, a preinjective

component QðLÞ, and an infinite family of coray tubes containing at least one

injective module, because QðLÞ0PðLÞ is not a connecting component of GL.

Then for any indecomposable L-module Z from QðLÞ or a nonstable tube of TðLÞ
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there exists a path in indL of the form I ! � � � ! DTrX ! Y ! X ! � � � ! Z

with I injective, and hence Z B LL, because HomLðI ;DTrXÞ0 0 implies pdL Xb

2. Therefore, LL consists of all modules from PðLÞ and all modules from the

stable tubes of TðLÞ (equivalently all indecomposable tL-periodic modules).

Finally, assume that M is a preprojective L-module, that is, a direct sum of

modules from PðLÞ. Since PðLÞ contains all projective L-modules but no injec-

tive module, there exists a positive integer m such that D ¼ ðTrDÞmðD 0Þop is faith-

ful section of PðLÞ and all indecomposable direct summands of M are prede-

cessors of D in PðLÞ. Let U be the direct sum of all modules lying on D.

Applying again [21, Theorem 3] we conclude that U is a tilting L-module, H ¼

EndLðUÞop is a hereditary algebra of Euclidean type D
op, T ¼ DðUHÞ is a tilting

H-module, L ¼ EndHðTÞop, PðLÞ is the connecting component CT of GL deter-

mined by T , and the indecomposable modules from the torsion-free part YðTÞ

determined by T are exactly the predecessors of D in modL. In particular, M is

a module from YðTÞ. r

Proposition 2.3. Let L be a connected tilted algebra, M a L-module with

Ext1
L
ðM;MÞ ¼ 0 from addLL (respectively, addRL), and G ¼ EndLðMÞop.

Moreover, assume that M is preprojective (respectively, preinjective) if L is a

representation-infinite tilted algebra of Euclidean type such that the preprojective

(respectively, preinjective) component of GL is the unique connecting component of

GL. Then G is a tilted algebra.

Proof. We may assume that M A LL. Applying Lemmas 2.1 and 2.2 we

conclude that there exists a hereditary algebra H and a tilting H-module T such

that L ¼ EndHðTÞop and M belongs to the torsion-free part of YðTÞ of modL

determined by T . Moreover, it follows from the Brenner-Butler theorem that

HomHðT ;�Þ : modH ! modL establishes an equivalence between TðTÞ ¼ fX A

modH jExt1HðT ;XÞ ¼ 0g and YðTÞ ¼ fY A modL jTorL1 ðT ;NÞ ¼ 0g. Hence

there exists an H-module V in TðTÞ such that M ¼ HomHðT ;VÞ. Moreover,

we have

Ext1HðV ;VÞGExt1
L
ðHomHðT ;VÞ;HomHðT ;VÞÞ ¼ Ext1

L
ðM;MÞ ¼ 0;

and consequently V is a partial tilting H-module, because H is hereditary.

Applying now [7, Corollary III.6.5] we conclude that EndHðVÞop is a tilted algebra.

Therefore, applying again the Brenner-Butler theorem, we infer that EndLðMÞop G

EndHðVÞop is a tilted algebra. r

Theorem 2.4. Let L be a connected algebra, M a L-module with Ext1
L
ðM;MÞ

¼ 0 from addLL (respectively, addRLÞ, and G ¼ EndLðMÞop. Then the following

hold
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(a) If L is quasitilted then G is quasitilted.

(b) If L is strict shod then G is tilted.

(c) If L is shod then G is shod.

Proof. We may assume that M A addLL. Then pd
L
Ma 1, and conse-

quently M is a partial tilting L-module. Invoking now [3, Lemma 2.1] we con-

clude that there exists a short exact sequence

0 ! L ! E ! M d ! 0;

where d ¼ dimK Ext1
L
ðM;LÞ, such that N ¼ ElM is a tilting L-module, and, if

X is an indecomposable direct summand of E, then HomLðX ;MÞ0 0 or X is

projective.

(a) Assume L is quasitilted. Then LL contains all indecomposable projec-

tive L-modules ([10, Theorem II.1.14]), and consequently N is a tilting L-module

from addLL. Applying now [10, Proposition II.2.4] we conclude that A ¼

EndLðNÞop is a quasitilted algebra. Observe now that G ¼ EndAðPÞ
op, where

P is the projective A-module HomLðN;MÞ. Therefore, a direct application of

Theorem 1.2(b), or [10, Proposition II.1.15], gives that G is a quasitilted algebra.

(b) Assume that L is strict shod. Then it follows from [17, Theorem 8.2]

that L is a (strict) double tilted algebra, and hence GL admits a connected com-

ponent C with a faithful double section D whose left part Dl is a disjoint union

Dl ¼ D
ð1Þ
l U � � � UD

ðmÞ
l of faithful sections D

ðiÞ
l of connecting components of the

Auslander-Reiten quivers G
L

ðiÞ

l

of the connected parts L
ðiÞ
l , 1a iam, of a tilted

factor algebra Ll ¼ L
ð1Þ
l � � � � � L

ðmÞ
l of L, and such that LL consists of all pre-

decessors of Dl in indLl . Since M belongs to addLL, we obtain that M is

a Ll-module and all indecomposable direct summands of M are predecessors

of Dl in indLl . Let M ¼ M ð1Þ l � � � lM ðmÞ, where M ðiÞ is a L
ðiÞ
l -module, for

each 1a iam. Note that each M ðiÞ belongs to L
L

ðiÞ

l

, Ext1
L

ðiÞ

l

ðM ðiÞ;M ðiÞÞ ¼ 0,

and G ¼ EndLðMÞop ¼ End
L

ðiÞ

l

ðM ðiÞÞ � � � � � End
L

ðmÞ

l

ðM ðmÞÞ. Moreover, if L
ðiÞ
l is a

representation-infinite tilted algebra of Euclidean type such that the preprojec-

tive component of G
L

ðiÞ

l

is the unique connecting component of G
L

ðiÞ

l

, then M ðiÞ is a

preprojective L
ðiÞ
l , because all its indecomposable direct summands are predeces-

sors of D
ðiÞ
l in indL

ðiÞ
l . Therefore, applying Proposition 2.3, we conclude that

G ¼ EndLðMÞop is a tilted algebra.

The statement (c) is a direct consequence of (a) and (b). r

We end this section with an example showing that the additional assump-

tions in Proposition 2.3, concerning the Euclidean case, are necessary.

Example 2.5. Let K be a field and L be the bound quiver algebra KQ=I ,

where Q is the quiver

M. Kleiner, A. Skowroński and D. Zacharia628



and I is the ideal in the path algebra KQ of Q generated by hx. Then L is the

one-point coextension ½Sð3Þ�H of the hereditary algebra H ¼ KD, where D is the

convex subquiver of Q given by the vertices 1, 2, 4, 5, 6, by the simple module

Sð4Þ at the vertex 4, lying in the unique stable tube of rank 2 in GH . Hence L is

a representation-infinite tilted algebra of Euclidean type ~AA5 and the preprojective

component PðLÞ of GL is the unique connecting component of GL (see [18, (4.9)]).

Applying Lemma 2.2 we conclude that LL consists of all modules from PðLÞ and

all modules from the stable tubes of GL, or equivalently, all tubes of GL except the

coray tube containing the injective module Eð3Þ with socle Sð3Þ and top Sð4Þ.

Further, GL admits a stable tube of rank 3 whose mouth is formed by the simple

modules Sð2Þ, Sð6Þ and the module X of the form

and such that tLX ¼ Sð6Þ, tLðSð6ÞÞ ¼ Sð2Þ, and tLðSð2ÞÞ ¼ X . Consider the L-

module M ¼ Pð1ÞlPð2ÞlPð3ÞlPð4ÞlPð5ÞlX . Observe that M belongs

to LL, and hence pdL Ma 1. Moreover, Ext1LðM;MÞ ¼ DHomLðM; tLMÞ ¼

DHomLðM;Sð6ÞÞ ¼ 0. This implies that M is a tilting L-module, and a direct

calculation shows that G ¼ EndLðMÞop is the bound quiver algebra KQ 0=I 0, where

Q 0 is the quiver
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and I 0 is the ideal in KQ 0 generated by hx and %o. Hence, G is obtained from

the hereditary algebra H 0 ¼ KD 0, where D 0 is the convex subquiver of Q 0 given

by the vertices 1, 2, 4, 5, by the one-point coextension ½Sð4Þ�H, and next the one-

point extension ½Sð4Þ�H 0½X 0�, with X 0 of the form

Since Sð4Þ and X 0 lie in di¤erent tubes of rank 2 in GH 0 , the Auslander-Reiten

quiver of G admits a coray tube containing the injective module Eð3Þ with

socEð3Þ ¼ Sð3Þ and a ray tube containing the projective module Pð6Þ with

radPð6Þ ¼ X 0. Therefore, G is a representation-infinite iterated tilted algebra of

Euclidean type ~AA5 but is not tilted (see [18, (4.9)]). We also note that G is a

quasitilted algebra of canonical type ð3; 3Þ, because is a semiregular branch ex-

tension of the canonical algebra H 0 of type ð2; 2Þ (see [15]). Finally, observe that

Lop is a representation-infinite tilted algebra of Euclidean type ~AA5, the pre-

injective component QðLopÞ of GLop is the unique connecting component of

GLop , DðMÞ is a cotilting Lop-module from RLop , Ext1LopðDðMÞ;DðMÞÞ ¼ 0, and

EndLopðDðMÞÞop ¼ G op is iterated tilted of Euclidean type ~AA5 (quasitilted of

canonical type ð3; 3Þ) but is not tilted.

3. Triangular matrix algebras.

Throughout this section K will be an algebraically closed field and A a fixed

basic connected (finite dimensional) algebra over K . We denote by L the algebra
A 0
A A

h i

of 2� 2 lower triangular matrices over A. It is well known that modL

is equivalent to the category whose objects are morphisms f : X ! Y in modA

and morphisms are pairs of morphisms in modA making the obvious squares

commutative. The modules over the algebras L ¼ A 0
A A

h i

have been the object

of studies during the last 20 years. We refer to [12] and [16] for a complete

description of all representation-finite and tame algebras of the form A 0
A A

h i

and

further references.

Here we are interested in a complete description of algebras A such that the

algebra L ¼ A 0
A A

h i

is shod. It is known that gl:dimL ¼ 1þ gl:dimA (see [1,

Proposition III.2.6]). Hence, if L is quasitilted (respectively, strict shod) then

gl:dimAa 1 (respectively, gl:dimA ¼ 2). Recall also that A can be presented as

an algebra A ¼ KQ=I , where Q ¼ QA is the Gabriel quiver of A and I is an ad-

missible ideal in the path algebra KQ of Q. Moreover, A ¼ KQ=I is hereditary
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if and only if I ¼ 0 and Q has no oriented cycles. The following description of

all quasitilted 2� 2 lower triangular algebras has been established in [9, Theorem

3.1].

Theorem 3.1. The algebra L ¼ A 0
A A

h i

is quasitilted if and only if A ¼ KQ

for Q one of the Dynkin quivers of type A1, A2, A3, A4, D4 (any orientation) or A5

(orientation di¤erent from �  �  �  �  �Þ.

The following main result of this section extends the above theorem to a

complete description of all shod algebras of the form A 0
A A

h i

.

Theorem 3.2. The algebra L ¼ A 0
A A

h i

is a strict shod if and only if AG

KQ=I , where ðQ; IÞ is one of the following bound quivers

where � ! � ! � means that the composition of these arrows is a generator of the

ideal I.

The proof of this theorem will be a combination of several facts established

below. We would like first to state a direct consequence of Theorems 3.1 and

3.2, and the main results of [12] and [16]. Recall that an algebra G is called

tame if, for any dimension d, there is a finite number of G-K ½X �-bimodules Mi

which are finitely generated and free as right K ½X �-modules, and satisfy the fol-

lowing condition: all but a finite number of isomorphism classes of indecom-

posable G-modules of dimension d are of the form Mi nK ½X �=ðX � lÞ for some

l A K and for some i. Denote by mGðdÞ the least number of bimodules Mi sat-

isfying the above condition for d. Then G is said to be of linear growth if there

is a natural number m such that mGðdÞamd for all db 1 (see [20] for more

details). It follows also from the validity of the second Brauer-Thrall conjecture

that mGðdÞ ¼ 0 for all db 1 if and only if G is representation-finite (the number

of isomorphism classes of indecomposable G-modules is finite).
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Corollary 3.3. For L ¼ A 0
A A

h i

the following hold:

(1) If L is shod then L is of linear growth.

(2) If L is strict shod then L is representation-finite.

We start our proofs with the following

Proposition 3.4. Assume that L ¼ A 0
A A

h i

is a strict shod. Then A is

representation-finite and tilted.

Proof. Observe that A ¼ End ðPÞop, where P is the projective L-module
0 0
0 A

h i

¼ L 0 0
0 1

h i

. Moreover, gl:dimL ¼ 3 implies gl:dimA ¼ 2. Hence, ap-

plying Theorem 1.2(d) we conclude that A is tilted. It has been proved in [9,

Proposition 3.3] that if H is a hereditary algebra and there exists an indecompos-

able H-module X with DTr4HX 0 0 then there exists an indecomposable module

Z over H 0
H H

h i

of both projective and injective dimension 2. A simple analysis

of arguments used there shows that the same holds for algebras of global dimen-

sion at most 2. Since gl:dimA ¼ 2 and L is shod, we obtain that DTr4AM ¼ 0

for every indecomposable A-module M. This implies that every DTr-orbit in the

Auslander-Reiten quiver GA of A consists of at most 4 indecomposable modules

and contains a projective module. Therefore A is representation-finite. r

From now on we may assume that A is representation-finite. Moreover, it

follows from [4] that A has a presentation A ¼ KQ=I where the ideal I is gen-

erated by paths or di¤erences of paths (having common sources and targets) in

Q. Let Q ¼ ðQ0;Q1Þ, where Q0 is the set of vertices of Q and Q1 is the set of

arrows of Q. Then the quiver D ¼ ðD0;D1Þ of L ¼ A 0
A A

h i

can be described as

follows: D0 ¼ fi; i� j i A Q0g and D1 ¼ fa; a� j a A Q1gU fgi : i
� ! i j i A Q0g. De-

note by J the ideal in the path algebra KQ of D generated by the elements:

(1) a1 � � � ar, a�
1 � � � a

�
r , for all paths a1 � � � ar A I ,

(2) a1 � � � as � b1 � � � bt, a�
1 � � � a

�
s � b�

1 � � � b
�
t for all di¤erences a1 � � � as �

b1 � � � bt A I ,

(3) gja
� � agi for all arrows i !

a
j from Q1.

Then LGKD=J (see [19]). We also note that if A is tilted then Q, and hence D,

has no oriented cycles. Further, there exists a canonical choice of primitive or-

thogonal idempotents ei, e�i , i A Q0, of L such that

0 0

0 1

� �

¼
X

i AQ0

ei and
1 0

0 0

� �

¼
X

i AQ0

e�i :

For a multiplicity-free projective A-module P ¼ Aei1 l � � � lAeir , with i1; . . . ; ir
pairwise di¤erent elements of Q0, we denote by P the multiplicity-free projective

L-module Lei1 l � � � lLeir lLe�i1 l � � � lLe�ir . Moreover, for a vertex a of Q0,

we put PðaÞ ¼ Lea, Pða�Þ ¼ Le�a , EðaÞ ¼ DðeaLÞ and Eða�Þ ¼ Dðe�aLÞ.
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Lemma 3.5. Let P be a multiplicity-free projective A-module, B ¼ EndAðPÞ
op
,

and G ¼ B 0
B B

h i

. Then G GEndLðPÞ
op
.

Proof. Obvious. r

Recall that A ¼ KQ=I is called a monomial algebra provided I is generated

by paths.

Lemma 3.6. Assume L is strict shod. Then A is a monomial algebra.

Proof. Suppose A ¼ KQ=I is not a monomial algebra. Since A is

representation-finite it follows from the above discussion that Q contains a

subquiver

such that a1 � � � ar � b1 � � � bs A I but a1 � � � ar B I , b1 � � � bs B I . Take the projec-

tive A-module P ¼ AealAeblAeclAed and B ¼ EndAðPÞ. Then B¼ KQ 0=I 0

where Q 0 is the quiver

and I 0 is generated by a%� bs. Then G ¼ B 0
B B

h i

¼ KD 0=J 0 where D 0 is the

quiver
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and J 0 is generated by a%� bs, a�%� � b �s�, gaa
� � agb, gab

� � bgc, gb%
� � %gd ,

gcs
� � sgd . Observe that G admits a unique indecomposable projective-injective

G-module Pðd �Þ ¼ EðaÞ. Further, M ¼ radPðd �Þ=socPðd �Þ is an indecompos-

able G-module. Moreover, M has a minimal projective resolution

0! PðaÞ ! Pða�ÞlPðbÞlPðcÞ ! Pðb�ÞlPðc�ÞlPðdÞ !M ! 0;

and a minimal injective resolution

0!M ! Eða�ÞlEðbÞlEðcÞ ! Eðb�ÞlEðc�ÞlEðdÞ ! Eðd �Þ ! 0;

in modG . Hence pdG M ¼ 2 and idG M ¼ 2. On the other hand, it follows

from Theorem 2.1(d) and Lemma 3.5 that G ¼ EndLðPÞ
op is a shod, a con-

tradiction. Therefore, A is a monomial algebra. r

Lemma 3.7. Assume L is a strict shod and the bound quiver ðQ; IÞ of A

contains a full subquiver Q 0 of Dynkin type A5 or D4. Then Q 0 contains a path

belong to I.

Proof. Suppose that ðQ; IÞ contains a subquiver Q 0 of type A5 or D4,

which has no subpath belonging to I . Let P be the direct sum of indecomposable

projective A-modules corresponding to the vertices of Q 0 and B ¼ EndAðPÞ
op.

Then BGKQ 0 and G ¼ B 0
B B

h i

GEndLðPÞ
op for the corresponding projec-

tive L-module P. It has been shown in [9] that either there exists an inde-

composable G-module M with pdG M ¼ 2 and idG M ¼ 2, if Q 0 is the quiver

�  �  �  �  �, or G is a quasitilted but not tilted algebra, in the remaining

cases. On the other hand, it follows from Theorem 1.2(d) that G is either strict

shod or tilted. Since gl:dimB ¼ 1 implies gl:dimG ¼ 2, we have a contradic-

tion. This finishes the proof. r

Lemma 3.8. Assume L is strict shod. Then the bound quiver ðQ; IÞ of A

does not contain a full bound subquiver ðQ 0; I 0Þ of one of the forms

1 
a
2 

b
3!

g
4 

s
5 or 1!

b
2!

a
3 

g
4!

s
5

with I 0 generated by ab.

Proof. Suppose that ðQ; IÞ contains a full bound subquiver ðQ 0; I 0Þ of one

of the above forms and B ¼ KQ 0=I 0. By duality we may assume that ðQ 0; I 0Þ

is the left quiver. Clearly, B ¼ EndAðPÞ
op, where P is the direct sum of the

indecomposable projective A-modules corresponding to the vertices of Q 0, and

G ¼ B 0
B B

h i

GEndLðPÞ
op. Moreover, G GKD 0=J 0 where D 0 is the quiver
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1�  ���
a �

2�  ���

b �

3� ���!
% �

4�  ���
s �

5�
?
?
?
y
g1

?
?
?
y
g2

?
?
?
y
g3

?
?
?
y
g4

?
?
?
y
g5

1  ���
a

2  ���
b

3 ���!
%

4  ���
s

5

and I 0 is generated by ab, a�b�, g1a
� � ag�3 , g2b

� � bg3, g4%
� � %g3 and g4s

� � sg5.

Consider the indecomposable G-module (representation of ðD 0; J 0Þ)

M :

0  ��� 0  ��� 0 ���! 0  ��� 0
?
?
?
y

?
?
?
y

?
?
?
y

?
?
?
y

?
?
?
y

0  ��� 0  ��� K ���!
1

K  ��� 0

Then the minimal projective and injective resolutions of M in modG are of the

forms

0! Pð1Þ ! Pð2Þ ! Pð3Þ !M ! 0;

0!M ! Eð4Þ ! Eð4�ÞlEð5Þ ! Eð5�Þ ! 0;

and hence pdG M ¼ 2 and idGðMÞ ¼ 2. This contradicts Theorem 1.2, because,

by Lemma 3.4, G ¼ EndLðPÞ is a shod algebra. r

Lemma 3.9. Assume L is strict shod. Then ðQ; IÞ does not contain a full

bound subquiver ðQ 0; I 0Þ where Q 0 is the quiver

1 
a
2 

b
3 

s
4

and I 00 0.

Proof. Suppose ðQ; IÞ contains a full bound subquiver ðQ 0; I 0Þ of the above

form and I 00 0, and B ¼ KQ 0=I . Then B ¼ EndAðPÞ
op, for the corresponding

projective A-module P, and G ¼ B 0
B B

h i

GEndLðPÞ
op, for the corresponding pro-

jective L-module P. Moreover, G ¼ KD 0=J 0, where D 0 is the quiver

1�  ���
a �

2�  ���

b �

3� ���!
s �

4�
?
?
?
y
g1

?
?
?
y
g2

?
?
?
y
g3

?
?
?
y
g4

1  ���
a

2  ���
b

3  ���
s

4

Observe that I 0 is generated only by one path. Indeed, if it is not the case,

then ab; bs A I 0, and then gl:dimA ¼ 3, a contradiction, because G shod implies

gl:dimAa 2.

Assume now that I 0 is generated by abs. Then J 0 is generated by the ele-

On endomorphism algebras with small homological dimensions 635



ments abs, a�b�s�, g1a
� � ag2, g2b

� � bg3, g3s
� � sg4. Consider the indecompos-

able G-module (representation of ðQ 0; I 0Þ)

M :

K  ���

ð0;1Þ
K 2  ���

1
0ð Þ

K ���! 0
?
?
?
y

?
?
?
y
ð1;1Þ

?
?
?
y

0
1ð Þ

?
?
?
y

0  ��� K  ���
ð1;1Þ

K 2
���!
ð1;0Þ

K

Then the minimal projective and injective resolutions of M in modG are of the

forms

0! Pð1Þ ! Pð1�ÞlPð2Þ ! Pð3�ÞlPð2�ÞlPð4Þ !M ! 0

0!M ! Eð1�ÞlEð2ÞlEð3Þ

! Eð3�ÞlEð3�ÞlEð4ÞlEð4Þ ! Eð4�ÞlEð4�Þ ! 0;

and consequently pdG M ¼ 2 and idG M ¼ 2, a contradiction since G is a shod.

Assume now that I 0 is generated by a path of length 2. Without loss of

generality, we may assume that I 0 is generated by ab. Then J 0 is generated by

ab, a�b �, g1a
� � ag2, g2b

� � bg3, and g3s
� � sg4. Consider the simple G-module

Sð3Þ given by the vertex 3. Then the minimal projective and injective resolutions

of Sð3Þ in modG are of the forms

0! Pð1Þ ! Pð2Þ ! Pð3Þ ! Sð3Þ ! 0;

0! Sð3Þ ! Eð3Þ ! Eð3�ÞlEð4Þ ! Eð4�Þ ! 0;

and hence pdG Sð3Þ ¼ 2 and idG Sð3Þ ¼ 2, again a contradiction since G is

shod. r

Corollary 3.10. Assume L is strict shod. Then Q does not contain a full

subquiver Q 0 of the form

1 
a
2 

b
3 

%
4 

s
5:

Proof. Let ðQ 0; I 0Þ be the full bound subquiver of ðQ; IÞ given by Q 0, and

B ¼ KQ 0=I 0. Applying Lemmas 3.7 and 3.9, we may assume that I 0 is generated

by ab%s. Consider the projective A-module P ¼ Pð1ÞlPð2ÞlPð3ÞlPð5Þ and

C ¼ EndAðPÞ
op. Then C ¼ KQ 00=I 00 where Q 00 is the quiver

1 
a
2 

b
3 

o
5

and I 00 is generated by abo. Since C 0
C C

h i

GEndLðPÞ is a shod algebra we

obtain a contradiction with Lemma 3.9. r
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Lemma 3.11. Assume L is strict shod. Then ðQ; IÞ does not contain a full

bound subquiver ðQ 0; I 0Þ with Q 0 of the form

1 
x
2!

b
3!

a
4 

s
5

and I 0 generated by ab.

Proof. Suppose ðQ; IÞ contains a full bound subquiver ðQ 0; I 0Þ of the above

form and B ¼ KQ 0=I 0. Then B ¼ EndAðPÞ
op
, where P is the direct sum of the in-

decomposable projective L-modules corresponding to the vertices of Q 0, and G ¼
B 0
B B

h i

GEndLðPÞ
op
. Moreover, G GKD 0=J 0, where D 0 is the quiver

1�  ���
x �

2� ���!
b �

3� ���!
a �

4�  ���
s �

5�
?
?
?
y
g1

?
?
?
y
g2

?
?
?
y
g3

?
?
?
y
g4

?
?
?
y
g5

1  ���
x

2 ���!
b

3 ���!
a

4  ���
s

5

and I 0 is generated by ab, a�b �, g1x
� � xg2, g3b

� � bg2, g4a
� � ag3, and

g4s
� � sg5. Consider the indecomposable G-module

M :

0  ��� 0 ���! K ���!
1

K  ���
1

K
?
?
?
y

?
?
?
y

?
?
?
y
1

?
?
?
y

?
?
?
y

K  ���
1

K ���!
1

K ���! 0  ��� 0

Then the minimal projective and injective resolutions of M in modG are of the

forms

0! Pð4Þ ! Pð3�ÞlPð4�ÞlPð5Þ ! Pð2ÞlPð3�ÞlPð5�Þ !M ! 0;

0!M ! Eð1ÞlEð3ÞlEð4�Þ

! Eð1�ÞlEð2ÞlEð3�Þ ! Eð2�Þ ! 0;

and hence pdG M ¼ 2 and idG M ¼ 2. This contradicts Theorem 1.2, because,

by Lemma 3.4, G ¼ EndLðPÞ
op

is a shod algebra. r

Lemma 3.12. Assume L is strict shod. Then Q is a tree.

Proof. Suppose that the quiver Q of A contains a cycle. Since A ¼ KQ=I

is representation-finite, such a cycle contains at least one subpath from I . We

know also that Q has no oriented cycles. Invoking now our assumption on L

and the properties of ðQ; IÞ established above, we conclude that there exists a

multiplicity-free projective A-module P such that B ¼ EndAðPÞ
op

is isomorphic to

the bound quiver algebra KQ 0=I 0 of the bound quiver ðQ 0; I 0Þ of the form
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where � ! � ! � means that the composition of these two arrows belongs to I 0.

But this contradicts Lemma 3.11. r

Lemma 3.13. Assume L is strict shod. Then ðQ; IÞ does not contain a full

bound subquiver ðQ 0; I 0Þ with Q 0 of the form

Proof. Suppose ðQ; IÞ contains a full bound subquiver ðQ 0; I 0Þ of the above

form, and let B ¼ KQ 0=I 0, G ¼ B 0
B B

h i

¼ KD
0=J 0. We know that B ¼ EndAðPÞ

op

and G ¼ EndLðPÞ
op, for the corresponding projective modules P in modA and P

in modL, and in particular G is shod. Applying Lemma 3.7, we may assume

that ðQ 0; I 0Þ does not contain a full bound subquiver ðQ 00; I 00Þ, where Q 00 is a

Dynkin quiver of type D4 and I 00 ¼ 0. Hence I 0 is generated by at least two

paths (of length 2). The quiver D
0 of G is of the form

Consider the indecomposable G-module M of the form
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Without loss of generality we may assume that ab A I 0 and %s A I 0. Then M has

a minimal projective resolution in modG of the form

0 ! Pð1Þ ! Pð1�ÞlPð3ÞlN ! Pð3�ÞlPð4Þ ! M ! 0

where N ¼ 0, if %b A I 0, and N ¼ Pð2Þ if %b B I 0. Similarly, we conclude that the

minimal injective resolution of M in modG is of the form

0 ! M ! Eð2�ÞlEð3Þ ! Eð3�ÞlEð5ÞlR ! Eð5�Þ ! 0;

where R ¼ 0, if %b A I 0, and R ¼ Eð4�Þ if %b B I 0. Therefore, we have always

pdG M ¼ 2 and idG M ¼ 2, a contradiction because G is a shod. r

Lemma 3.14. Assume L is strict shod. Then ðQ; IÞ does not contain a full

bound subquiver ðQ 0; I 0Þ of one of the forms

with I 0 generated by ab.

Proof. Suppose, by duality, that ðQ; I 0Þ contains a full bound subquiver

ðQ 0; I 0Þ of the left form, and let B ¼ KQ 0=I 0, G ¼ B 0
B B

h i

¼ KD 0=J 0. Then D 0 is

of the form
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and J 0 is generated by ab, a�b�, g1a
� � ag3, g2s

� � sg3, g3b
� � bg4, g5%

� � %g4.

It follows from [12] and [16] that G is representation-finite, and hence its

Auslander-Reiten quiver consists of a finite preprojective (and preinjective) transla-

tion quiver. A direct but tedious calculation shows that it contains a full transla-

tion subquiver of the form

where X is the indecomposable G-module with the dimension-vector

dimX ¼

2 4 0 1

3

0 5 4 3

2

Since the composition of irreducible morphisms between modules forming a sec-

tional path is nonzero ([1, Theorem VII.2.4]), we have HomGðEð1Þ;DTrXÞ0 0 and

HomGðTrDX ;Pð4�ÞÞ0 0, and consequently pdG Xb 2 and idG Xb 2. This leads

to a contradiction because G ¼ EndLðPÞ
op for a projective L-module P, and so G

is shod by Theorem 1.2. r

Lemma 3.15. Assume L is strict shod. Then ðQ; IÞ does not contain a full

bound subquiver ðQ 0; I 0Þ of one of the forms

1 ���!
s

2  ���
a

3  ���

b
4

?
?
?
y
%

5

1  ���
s

2 ���!
b

3 ���!
a

4
x
?
?
?
%

5

with I 0 generated by ab.

Proof. Suppose, by duality, that ðQ; IÞ contains a full bound subquiver
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ðQ 0; I 0Þ of the left form, and let B ¼ KQ 0=I , G ¼ B 0
B B

h i

¼ KD 0=J 0. Then D 0 is

of the form

and J 0 is generated by ab, a�b�, sg1 � g2s
�, ag3 � g2a

�, bg4 � g3b
�, %g3 � g5%

�.

It follows from [12] and [16] that G is a representation-finite algebra and its

Auslander-Reiten quiver is a finite preprojective (and preinjective) translation

quiver. A direct but tedious calculation shows that it contains a full translation

subquiver of the form

Hence, as in the previous lemma, we conclude that HomGðDðGÞ;DTrGXÞ0 0,

HomGðTrDGX ;GÞ0 0, and hence pdG Xb 2 and idG Xb 2. Since G ¼ EndLðPÞ

for a projective L-module P, this contradicts Theorem 1.2, because L is shod.

r

Lemma 3.16. Assume L is strict shod. Then ðQ; IÞ does not contain a full

bound subquiver ðQ 0; I 0Þ of one of the forms

with I 0 generated by ab and sb, or oh and ox, respectively.
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Proof. Suppose, by duality, that ðQ; IÞ contains a full bound subquiver

ðQ 0; I 0Þ of the left form, and let B ¼ KQ 0=I 0, G ¼ B 0
B B

h i

¼ KD 0=J 0. Then D 0 is

of the form

and J 0 is generated by ab, sb, a�b �, s�b �, g1a
� � ag3, g2s

� � sg3, g3b
� � bg4,

g5%
� � %g4. Consider the indecomposable G-module

Then M has the following minimal projective and injective resolutions in modG

0 ! Pð2Þ ! Pð2�ÞlPð3Þ ! Pð3�ÞlPð4Þ ! M ! 0;

0 ! M ! Eð1�ÞlEð3ÞlEð5Þ ! Eð3�ÞlEð4Þ ! Eð4�Þ ! 0;

and hence pdG M ¼ 2 and idG M ¼ 2. This again contradicts the fact that G ¼

EndLðPÞ
op
, for some projective L-module P, is a shod algebra. r

Lemma 3.17. Assume L is strict shod. Then ðQ; IÞ does not contain a full

bound subquiver ðQ 0; I 0Þ of one of the forms

with I 0 generated by ab, or oh, respectively.
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Proof. Suppose (by duality) that ðQ; IÞ contains a full bound subquiver

ðQ 0; I 0Þ of the left form, and let B ¼ KQ 0=I 0, G ¼ B 0
B B

h i

¼ KD 0=J 0. Then G ¼

KD 0=J 0, where D is the quiver described in the proof of Lemma 3.16 and J 0

is generated by ab, a�b�, g1a
� � ag3, g2s

� � sg3, g3b
� � bg4, and g5%

� � %g4.

Consider the indecomposable G-module

Then a direct checking shows that M has the minimal projective and minimal

injective resolutions in modG of the forms

0! Pð1Þ ! Pð1�ÞlPð3Þ ! Pð3�ÞlPð4Þ !M ! 0;

0!M ! Eð2ÞlEð5Þ ! Eð4ÞlEð5�Þ ! Eð4�Þ ! 0;

and hence pdG M ¼ 2 and indG M ¼ 2. This contradicts again the fact that G

is shod, as an algebra of the form EndLðPÞ for the corresponding projective L-

module P. r

We may summarize our considerations above as follows: if L ¼ A 0
A A

h i

is strict shod then A ¼ KQ=I for a bound quiver ðQ; IÞ listed in Theorem 3.2.

In order to proof the su‰ciency part of Theorem 3.2 it is enough to show,

thanks to Lemma 3.4, that if ðQ; IÞ is maximal bound quiver listed in Theorem

3.2 and A ¼ KQ=I then L ¼ A 0
A A

h i

is strict shod. Hence, since the opposite

algebra of a strict shod algebra is also strict shod, we have only four cases to

consider.

Lemma 3.18. Let A ¼ KQ=I , where Q is of the form

1 
a
2 

b
3!

s
4!

%
5

and I is generated by ab and %s. Then L is strict shod.

Proof. Since gl:dimA ¼ 2, we have gl:dimL ¼ 3, and then it remains to

show that L is shod. We know that L ¼ KD=J, where D is the quiver
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1�  ���
a �

2�  ���

b �

3� ���!
s �

4� ���!
% �

5�
?
?
?
y
g1

?
?
?
y
g2

?
?
?
y
g3

?
?
?
y
g4

?
?
?
y
g5

1  ���
a

2  ���
b

3 ���!
s

4 ���!
%

5

and J is generated by ab, a�b�, %s, %�s�, g1a
� � ag2, g2b

� � bg3, g4s
� � sg3, and

g5%
� � %g4. Then a direct calculation shows that L is a representation-finite

algebra and GL is of the form

where Pð2�Þ ¼ Eð1Þ and Pð4�Þ ¼ Eð5Þ. Observe that for each indecomposable

L-module M we have

HomLðDðLÞ;DTrLMÞ ¼ 0 or HomLðTrDLM;LÞ ¼ 0;

and consequently pdL Ma 1 or idL Ma 1 (see [15, (2.4)]). Therefore L is shod.

r

Lemma 3.19. Let A ¼ KQ=I , where Q is of the form

1 
a
2 

b
3!

s
4!

%
5

and I is generated by ab. Then L is strict shod.

Proof. Since gl:dimL ¼ 3, it is enough to show that L is shod. We have

L ¼ KD=J where D is the quiver described in the proof of the previous lemma

and J is generated by ab, a�b �, g1a
� � ag2, g2b

� � bg3, g4s
� � sg3, and g5%

� � %g4.

It follows from [12] and [16] that L is a representation-finite algebra having a

directed Auslander-Reiten quiver. A direct calculation shows that GL has a full

translation subquiver of the form
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(Pð2�Þ ¼ Eð1Þ) containing all indecomposable projective L-modules. Then we

conclude that for every indecomposable L-module M we have

HomLðDðLÞ;DTrLMÞ ¼ 0 or HomLðTrDLM;LÞ ¼ 0;

and hence pdL Ma 1 or idL Ma 1. Therefore L is shod. r

Lemma 3.20. Let A ¼ KQ=I , where Q is the quiver

and I is generated by ab and sb. Then L is strict shod.

Proof. Since gl:dimL ¼ 3, we have to show that L is shod. We have L ¼

KD=J, where D is of the form

and J is generated by ab, a�b �, sb, s�b�, g1a
� � ag3, g2s

� � sg3, g3b
� � bg4. Let

B ¼ KW be the path algebra of the subquiver W of D given by the vertices 1�,

2�, 3�, 3 and 4. Then L can be obtained from B by a one-point extension B½Z �
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of B by the indecomposable B-module Z ¼ radPð4�Þ and next two one-point co-

extensions ½X �½Y �B½Z� of B½Z � by two indecomposable B-modules (hence B½Z �-

modules) X ¼ Eð1Þ=socEð1Þ and Y ¼ Eð2Þ=socEð2Þ. A simple calculation shows

that the Auslander-Reiten quiver GB of B is of the form

Moreover, we know by [12] and [16] that L is representation-finite and has a directed

(finite) Auslander-Reiten quiver GL. Then it follows that for every indecomposable

L-module M we have HomLðDðLÞ;DTrLMÞ ¼ 0 or HomLðDTrDLM;LÞ ¼ 0,

and so pdL Ma 1 or idL Ma 1. Therefore L is shod. r

Lemma 3.21. Let A ¼ KQ=I , where Q is the quiver

and I is generated by ab. Then L is strict shod.

Proof. Since gl:dimL ¼ 3, it is enough to show that L is shod. We have

L ¼ KD=J, where D is the quiver described in the proof of Lemma 3.20 and J is

generated by ab, a�b �, g1a
� � ag3, g2s

� � sg3 and g3b
� � bg4. It follows from

[12] and [16] and L is representation-finite and has a directed Auslander-Reiten

quiver. A direct calculation shows that GL has a full translation subquiver of the

form
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containing all indecomposable projective L-modules. Then we easily deduce that

each indecomposable L-module M satisfies

HomLðDðLÞ;DTrLMÞ ¼ 0 or HomLðTrDLM;LÞ ¼ 0;

or equivalently, pd
L
Ma 1 or idL Ma 1. Therefore L is a shod algebra. r
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