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Abstract. By a recent method to estimate the derivatives jwðkÞðziÞj, k > 1, at

certain a-points of a meromorphic function wðzÞ in terms of the Ahlfors-Shimizu

characteristic and of jw 0ðziÞj, we improve some classical results on the growth of

meromorphic solutions of certain algebraic di¤erential equations. Moreover, we o¤er

similar results for equations involving inverse derivatives and derivatives of a power

w t of a meromorphic function w.

Introduction.

Recently, a method has been established to estimate jwðkÞðziÞj at certain

a-points zi of a meromorphic function wðzÞ in terms of the Ahlfors-Shimizu

characteristic Aðr;wÞ for k ¼ 1 and in terms of jw 0ðziÞj for k > 1, see [3]. A

natural idea is to apply these estimates in the field of complex di¤erential

equations. In fact, if w is a solution of Pðz;w;w 0; . . . ;wðkÞÞ ¼ 0, meromorphic in

C , then by considering this equation in the sets ziða;wÞ of ‘‘good’’ a-points of

w, restrictions for Aðr;wÞ appear, making possible conclusions on the growth of

meromorphic solutions for some classes of algebraic di¤erential equations.

In Section 1 we apply the above method to improve a recent result due to

W. Bergweiler [9] and G. Frank and Y. Wang [10]. Section 2 is devoted to

considering similar equations, where the usual derivatives have been comple-

mented by the new notion of inverse derivatives, see [8]. We obtain similar

upper bounds for the growth of meromorphic solutions as in Section 1. Section

3 extends upper bound considerations to more complicated equations including

derivatives of the power w t of w in addition to derivatives and inverse derivatives.

We assume that the reader is familiar with the Nevanlinna theory including

its geometric version due to Ahlfors, see e.g. [13], as well as with the results and
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notations of the preceding articles [3], [7] and [8]. However, for the convenience

of the reader, we shall repeat some of the key results needed below.

Concerning the notation, if sðrÞ; tðrÞ; jðrÞ > 0 are real-valued functions

defined in the real axis, the notation sðrÞ ()
jðrÞ

tðrÞ will be applied for the double

inequality ð1=ðjðrÞÞÞsðrÞa tðrÞa jðrÞsðrÞ.

1. Algebraic di¤erential equations.

1.1. Revisiting a result due to Gol’dberg.

An algebraic di¤erential equation is of the form

Pðz;w;w 0; . . . ;wðkÞÞ ¼ 0; ð1:1Þ

where P is a polynomial in each of its variables. The equation is of order k,

if wðkÞ is the highest derivative appearing in P. An important part of the theory

of algebraic di¤erential equations is to investigate the order rðwÞ of solutions w

meromorphic in C , preferably in terms of P only. For k ¼ 1, A. A. Gol’dberg

proved [11] that wðzÞ must be of finite order.

The method of estimating derivatives arose in [3] where it was applied to

give a new proof for the above result of A. A. Gol’dberg. We shortly recall

the idea, see [3], Theorem 1. For certain a-points zjða;wÞ of w lying in a disk

DðrÞ :¼ fz : jzj < rg and for an arbitrary increasing real function jðrÞ ! y as

r ! y, we have

jw 0ðzjða;wÞÞjb
A1=2ðr;wÞ

jðrÞr
; r B E; ð1:2Þ

where E is a set of finite logarithmic measure. By considering now the equation

Pðz;w;w 0Þ ¼ 0 on the sets of such a-points we obtain Pðzjða;wÞ; a;w
0ðzjða;wÞÞÞ ¼

0 which immediately yields

jw 0ðzjða;wÞÞja const: jziða;wÞj
p
a const: r p ð1:3Þ

with a rational exponent p. Now, combining (1.2) and (1.3) results in

Aðr;wÞaOðr2pþ1Þ; r B E;

hence rwa 2pþ 1.

1.2. Some higher order di¤erential equations.

Concerning higher order algebraic di¤erential equations, kb 2, the situation

is more complicated, and most of the existing results are restricted to special types

of equations or to meromorphic solutions under special assumptions, see e.g. [1],

[2], [12], [15]. In [4], order estimates for meromorphic solutions of some classes
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of second order algebraic di¤erential equations have been given. This article

seems to be the first one to apply the Ahlfors’ theory of covering surfaces to

studying complex di¤erential equations. A bit later, G. Barsegian extended the

results in [4] to some classes of algebraic di¤erential equations of any order k,

simultaneously improving the estimates for rðwÞ in [4]. These results were first

published in a short communication [5], while complete proofs appeared much

later in [6]. To this end, let us consider

P0ðz;wÞðw
0Þm þ

Xm�1

j¼0

Pjðz;w;w
0
; . . . ;wðkÞÞðw 0Þm�j ¼ 0; ð1:4Þ

where P0; . . . ;Pm are polynomials in each of their variables of the form

Pn ¼
X

jðnÞ

ajðnÞz
cðz; jðnÞÞwcðw; jðnÞÞðw 00Þcðw

00; jðnÞÞ � � � ðwðkÞÞcðw
ðkÞ; jðnÞÞ

for n ¼ 1; . . . ;m with constant coe‰cients ajðnÞ. Defining now

pn :¼ max
jðnÞ

f2cðw 00
; jðnÞÞ þ � � � þ kcðwðkÞ

; jðnÞÞg; n ¼ 1; . . . ;m;

we have the following

Theorem A ([5], [6]). All meromorphic solutions w of (1.4) are of finite order

of growth, provided pn < n for n ¼ 1; . . . ;m.

In fact, the proof in [6] implies that

rðwÞa 2
g

1� d
þ 2;

where

g :¼
1

n
max

1anam
fcðz; jðnÞÞg;

d :¼
1

n
max

1anam
pn:

Recently, W. Bergweiler [9] and simultaneously G. Frank and Y. Wang [10]

applied the Zalcman lemma [16] from the theory of normal families to obtain

results similar to Theorem A. More precisely, they considered slightly restricted

algebraic di¤erential equations of the form

P0ðz;wÞðw
0Þm � Pðz;w;w 0

; . . . ;wðkÞÞ ¼ 0; ð1:5Þ

where
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P ¼
X

N

n¼1

Pnðz;wÞDn½w� ¼
X

N

n¼1

Pnðz;wÞðw
0Þcð1;nÞ � � � ðwðkÞÞcðk;nÞ;

Pnðz;wÞ are polynomials in z and w with constant coe‰cients and P0ðz;wÞ0 0.

The Zalcman lemma may be applied to obtain estimates for rðwÞ, as shown in [9]

and [10]. In fact, define

pðDnÞ :¼ cð1; nÞ þ 2cð2; nÞ þ � � � þ kcðk; nÞ; n ¼ 1; . . . ;N;

pðPÞ :¼ max
1anaN

pðDnÞ;

cðz; nÞ :¼ degz Pnðz;wÞ; n ¼ 0; . . . ;N;

an :¼ max 0;
cðz; nÞ � cðz; 0Þ

m� pðDnÞ

� �

;

a :¼ max
1anaN

an;

b :¼ max
1anaN

ðcðz; nÞ � cðz; 0ÞÞ:

With these notations we get

Theorem B ([5], [6], [9], [10]). Let w be a meromorphic solution of (1.5). If

m > pðPÞ, then rðwÞa 2aþ 2, while if m ¼ pðPÞ and b < 0, then rðwÞa 2.

Below we now apply our method to get an improvement to Theorem B. To

this end, we arrange the terms in

P ¼
X

H

n¼1

Pnðz;wÞDn½w� þ
X

N

n¼Hþ1

Pnðz;wÞDn½w�

so that pðD1Þ ¼ � � � ¼ pðDHÞ ¼ pðPÞ while pðDjÞ < pðPÞ for j ¼ H þ 1; . . . ;N.

Define now

a�
:¼ max

1anaN
an; if m > pðPÞ

and

a�
:¼ max

Hþ1anaN
an; if m ¼ pðPÞ and b �

:¼ max
1anaH

ðcðz; nÞ � cðz; 0ÞÞ < 0:

Theorem 1. Let f be a meromorphic solution to (1.5). If m > pðPÞ or if

m ¼ pðPÞ and b �
< 0, then rð f Þa 2a� þ 2.

Remark. Obviously, if b < 0, then b�
< 0 and a� ¼ 0. However, we may

have b�
< 0 with a� > 0. Therefore, Theorem 1 is a slight improvement of

Theorem B.
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Before proving Theorem 1, we repeat here a key result from [8] as well as

a few related notions from the earlier reference [7]. To this end, let f be

meromorphic and let a1; . . . ; aq be distinct complex numbers. Given r > 0, let

Wðr; f Þ denote a subset of the an-points, n ¼ 1; . . . ; q, of f in jzja r, and use the

notation n0ðWðr; f Þ; amÞ for the number of simple am-points, in Wðr; f Þ. We now

call the family of sets Wðr; f Þ the Ahlfors set of a-points, resp. the Ahlfors set of

simple a-points, if for any r B E, where E is an exceptional set of finite loga-

rithmic measure,

Xq

n¼1

n0ðn0ðWðr; f Þ; anÞb ðq� 2ÞAðr; f Þ � oðAðr; f ÞÞ

as r ! y, where

Aðr; f Þ ¼
1

p

ð r

0

r

ð2p

0

j f 0ðre ijÞj2

ð1þ j f ðre ijÞj2Þ2
dj dr:

Using these notations, the essential parts of [8], Theorem 2, now read as follows:

Theorem C. Given a meromorphic function f , a monotone increasing

function jðrÞ ! y as r ! y, and distinct complex numbers a1; . . . ; aq, there exists

an Ahlfors set of simple a-points. Moreover, there exist pairwise disjoint, simply

connected domains Ejðr; f Þ, j ¼ 1; . . . ;Fðr; f Þ, in jzj < r for r B E, E being an

exceptional set of finite logarithmic measure, such that the following properties

hold:

(1) All simple a1; . . . ; aq-points in 6Fðr; f Þ

j¼1
Ejðr; f Þ form an Ahlfors set in

jzj < r, r B E.

(2) The number Fðr; f Þ of the domains Ejðr; f Þ satisfies Fðr; f Þ=Aðr; f Þ ! 1

as r ! y for r B E.

(3) For any b A C and a b-point zjðb; f Þ A Ejðr; f Þ,

j f 0ðzjðb; f ÞÞj ()
jðrÞ 1

dðEjðr; f ÞÞ
b

A1=2ðr; f Þ

rjðrÞ
;

where dðEjðr; f ÞÞ stands for the diameter of Ejðr; f Þ.

(4) Given k > 1 and b A C , zjðb; f Þ A Ejðr; f Þ as in (3) above,

j f ðkÞðzjðb; f ÞÞja ðjðrÞÞkj f 0ðzjðb; f ÞÞj
k

for all r su‰ciently large.

Proof of Theorem 1. Let a1; . . . ; aq be pairwise distinct values in C , and

let Eiðr; f Þ, i ¼ 1; . . . ;Fðr; f Þ be pairwise disjoint simply connected domains as

defined in Theorem C. We restrict our consideration to those w which belong to
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f ðEiðr; f ÞÞ for all i ¼ 1; 2; . . . ;Fðr; f Þ. We now select e and R by making use of

the geometry of Eiðr; f Þ. By [7], Proposition 1, there exists a curve

gH 7
Fðr; f Þ

i¼1

f ðEiðr; f ÞÞ

such that

sup
z 0; z 00 A g

jz 0 � z 00j ¼ c0 > 0:

In fact, we may take for g the boundary of B0ðnÞ in [7], Proposition 1. Clearly,

the constant c0 is determined by the geometry of the domains f ðEiðr; f ÞÞ, de-

pending on a1; . . . ; aq only. On the other hand, by [7], Proposition 2, any of

the domains f ðEiðr; f ÞÞ is contained in fw j jwj < c1g, the constant c1 depending

on a1; . . . ; aq only. We may now choose e < c0ðN þ 1Þ�1 and R :¼ c1. By the

Cartan lemma, we find some discs

C
ðnÞ
j :¼ fw j jw� w

ðnÞ
j j < r

ðnÞ
j gH fw j jwj < Rg

with
P

j r
ðnÞ
j < e such that for a constant cðe;R;PnÞ

jPnðz;wÞj ()
cðe;R;PnÞ

jzjcðz;nÞ

as soon as jwj < R, w B 6
j
C

ðnÞ
j and jzj > rðe;R;PnÞ.

Fixing now c� :¼ max0anaNf1; cðe;R;PnÞg we arrive at the conclusion that

there exists a point

b A g

�

6
j;n

C
ðnÞ
j H 7

Fðr; f Þ

i¼1

f ðEiðr; f ÞÞ

and a constant c�, depending on P0; . . . ;PN and a1; . . . ; aq only such that for

ziðbÞ :¼ ziðb; f Þ A Eiðr; f Þ and for all n ¼ 0; . . . ;N,

jPnðziðbÞ; bÞj ()
c �

jziðbÞj
cðz;nÞ ð1:6Þ

holds as soon as jziðbÞj > max0anaNf1; rðe;R;PnÞg. Since ziðbÞ A Eiðr; f Þ, we

have jziðbÞj ! y as i ! y and so (1.6) holds for all i > i0 and all n ¼ 0; . . . ;N.

Given z A C , consider two terms, say Pn1ðz; f ðzÞÞ and Pn2ðz; f ðzÞÞ in (1.5)

with greatest moduli. Clearly,

1

N þ 1
jPn2 je jPn1 je ðN þ 1ÞjPn2 j; ð1:7Þ

since otherwise a contradiction to (1.5) would follow immediately. We may
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assume jPn1 je jPn2 j. If one of Pn1 or Pn2 coincides with P0ð f
0Þm, say P~nn, then

jP0j j f
0jm e ðN þ 1ÞP~nn. Otherwise, (1.7) implies that jP0j j f

0jm e ðN þ 1ÞjPn2 j.

Therefore, we always find ~nn A ð1; . . . ;NÞ such that

jP0ðz; f ðzÞÞj j f
0ðzÞjm e ðN þ 1ÞjP~nnðz; f ðzÞÞj: ð1:8Þ

Assume now m > pðPÞ. By (1.6) and Theorem C(4) above, which gives upper

bounds for higher derivatives of f , we get

1

c�
jziðbÞj

cðz;0Þj f 0ðziðbÞÞj
m
e c�ðN þ 1ÞjziðbÞj

cðz; ~nnÞj f 0ðziðbÞÞj
pðD~nnÞj pðD~nnÞðrÞ ð1:9Þ

for all i > i0. Therefore,

j f 0ðziðbÞÞje ½ðc�Þ2ðN þ 1Þ�1=ðm�pðD~nnÞÞjziðbÞj
a~nnðjðrÞÞpðD~nnÞ=ðm�pðD~nnÞÞ

e ½ðc�Þ2ðN þ 1Þ�1=ðm�pðD~nnÞÞra~nnðjðrÞÞpðD~nnÞ=ðm�pðD~nnÞÞ ð1:10Þ

and so

j f 0ðziðbÞÞje ½ðc�Þ2ðN þ 1Þ�1=ðm�pðD~nnÞÞra
�

ðjðrÞÞpðD~nnÞ=ðm�pðD~nnÞÞ

e ½ðc�Þ2ðN þ 1Þ�1=ðm�pðPÞÞ
ra

�

ðjðrÞÞpðPÞ=ðm�pðPÞÞ:

By Theorem C(3), we now obtain

Aðr; f Þe ½ðc�Þ2ðN þ 1Þ�1=ðm�pðPÞÞ
r2a

�þ2ðjðrÞÞ2þpðPÞ=ðm�pðPÞÞ

as r ! y, r B E, where E is an exceptional set of finite logarithmic measure as in

Theorem C. Choosing now jðrÞ ¼ re we get the assertion.

Finally, we consider the case m ¼ pðPÞ with b � < 0. If the dominant term

in (1.8) now would be such that m ¼ pðD~nnÞ, (1.9) would take the form

1e ðc�Þ2ðN þ 1ÞjziðbÞj
b �

ðjðrÞÞm:

Assuming that jziðbÞjb r=2 and taking jðrÞ ¼ re, this is a contradiction, provided

e is small enough, as r ! y. Therefore, we have m > pðD~nnÞ in (1.8), and so the

preceding part may be applied with minor modifications only, i.e. by considering

the terms Pjðz; f Þ with j ¼ H þ 1; . . . ;N only. r

Remark. Provided the solution wðzÞ of (1.4) is the derivative of a mer-

omorphic function WðzÞ, a variant of Theorem 1 follows. Of course, this is the

case if wðzÞ is entire. In fact, (1.5) may be rewritten as

P0ðz;W
0ÞðW 00Þm � Pðz;W 0;W 00; . . . ;W ðkþ1ÞÞ ¼ 0;

where
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Pðz;W 0;W 00; . . . ;W ðkþ1ÞÞ ¼
XN

n¼1

P̂PnðzÞD̂Dn½W �;

D̂Dn½W � ¼ ðW 0Þcð0;nÞðW 00Þcð1;nÞ � � � ðW ðkþ1ÞÞcðk;nÞ:

This results in a modified weight

p̂pðD̂DnÞ :¼ cð0; nÞ þ 2cð1; nÞ þ � � � þ ðk þ 1Þcðk;nÞ ð>pðDnÞÞ

to be applied for defining modified quantities p̂pðPÞ; ĉcðz; nÞ ¼ deg P̂PnðzÞ; âan; âa and b̂b.

These modified weights have been applied by W. Hayman in [14]. In fact, [14] is

the most comprehensive description for the growth of entire solutions of algebraic

di¤erential equations. As usual for entire solutions, the Wiman-Valiron method

was applied in [14].

Comparing Theorem A, resp. Theorem 1, above to the results o¤ered by

Hayman in [14], we observe that the term of highest weight in (1.5), resp. (1.4),

is the first term, while the highest term in [14], Theorem C, is of no specific

form. Since [14], Theorem C, is restricted to entire solutions only, it is natural

to ask whether meromorphic solutions of an algebraic di¤erential equation of the

general form (1.1) permit a counterpart to Theorem 1. This question remains

open.

2. Complex di¤erential equations with inverse meromorphic derivatives.

In [8], a new type of meromorphic functions F ðUÞðwðzÞÞ associated with wðzÞ

has been introduced. F ðUÞðwðzÞÞ is the composition of F
ðUÞ
i ðwÞ and wðzÞ, where

for any point zi with wðziÞ ¼ a we define FiðaÞ to be that of the branches FiðwÞ

of the inverse function FðwÞ to wðzÞ for which FiðwðziÞÞ ¼ zi and we denote

by F
ðUÞ
i ðwÞ the U th derivative of FiðwÞ with respect to w. These functions

F
ðUÞ
i ðwðzÞÞ were called ‘‘inverse meromorphic derivatives’’; they are meromor-

phic functions. Indeed, if z0 is an ordinary point then clearly in a small

neighbourhood of z0, the function F
ðUÞ
i ðwðzÞÞ is single-valued; if z is a mul-

tiple point with multiplicity k then FiðwÞ has a representation of the form

z0 þ a1ðw� wðz0ÞÞ
1=k þ a2ðw� wðz0ÞÞ

2=k þ � � � and wðzÞ � wðz0Þ a representation

of the form bkðz� z0Þ
k þ bkþ1ðz� z0Þ

kþ1 þ � � � so that F
ðUÞ
i ðwðzÞÞ is single-valued

in a small neighbourhood of z0. Moreover, z0 is a pole of multiplicity k � 1 for

F
ðUÞ
i ðwðzÞÞ. Thus the composition F

ðUÞ
i ðwðzÞÞ of F

ðUÞ
i ðwÞ and wðzÞ is a mer-

omorphic function. In particular, F
ð1Þ
i ðwðzÞÞ equals to 1=w 0ðzÞ.

In this section we consider algebraic di¤erential equations involving inverse

meromorphic derivatives together with usual derivatives. To this end, consider

an equation of the form

P0ðz;wÞðw
0Þm � Pðz;w;w 0; . . . ;wðkÞ;F 0; . . . ;F ðsÞÞ ¼ 0; ð2:1Þ
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where

P ¼
X

N

n¼1

Pnðz;wÞGn½w;F �;

and Gn½w;F �, n ¼ 1; 2; . . . ;N, are some di¤erential monomials of the form

ðw 0Þcð1;nÞ � � � ðwðkÞÞcðk;nÞðF 0Þdð1;nÞ � � � ðF ðsÞÞdðs;nÞ:

Here m;N; k; s A N , Pnðz;wÞ are polynomials in z and w with constant coe‰cients

and P0ðz;wÞ0 0.

The weight pðGnÞ of the monomial Gn½w;F � is now defined as

pðGnÞ :¼ cð1; nÞ þ 2cð2; nÞ þ � � � þ kcðk; nÞ � ½dð1; nÞ þ dð2; nÞ þ � � � þ dðs; nÞ�;

and the weight of P as

~ppðPÞ :¼ max
1anaN

pðGnÞ:

Now, similarly as to Section 1 we may arrange the terms of P to those

monomials G �
n ½w;F � with the highest weight ~ppðPÞ and to Gn½w;F � with the

weights pðGnÞ < ~ppðPÞ so that (2.1) takes the form

P0ðz;wÞðw
0Þm �

X

H

n¼1

Pð�Þ
n ðz;wÞG ð�Þ

n ½w� þ
X

N

n¼Hþ1

Pnðz;wÞGn½w� ¼ 0: ð2:2Þ

Defining cðz; 0Þ :¼ degz P0ðz;wÞ, cðz; nÞ :¼ degz P
ð�Þ
n ðz;wÞ for n ¼ 1; 2; . . . ;H and

cðz; nÞ :¼ degz Pnðz;wÞ for n ¼ H þ 1; . . . ;N, we obtain

~aan :¼ max
cðz; nÞ � cðz; 0Þ

m� pðGnÞ
; 0

� �

:

Finally, denote

~TT :¼ max
1anaN

~aan; if m > p

and

~TT :¼ max
Hþ1anaN

~aan; if m ¼ pðPÞ and ~bb �
:¼ max

1anaH
ðcðz; nÞ � cðz; 0ÞÞ < 0:

With these notations, the following generalized version of Theorem 1 follows:

Theorem 2. Let wðzÞ be a solution of (2.2) satisfying either a) m > ~ppðPÞ, or

b) m ¼ ~ppðPÞ and ~bb�
< 0. Then rwa 2T þ 2ay.

Proof. While deriving the inequality (1.9) we have used Theorem C(4),

to obtain upper bounds for the higher order derivatives wðuÞðziðb;wÞÞ in terms of

jw 0ðziðb;wÞÞj. In the present situation, we now apply [8], Theorem 2(7), which

gives upper bounds for jF
ðUÞ
i ðwðziðb;wÞÞÞj in terms of jw 0ðziðbÞÞj. In fact, cor-
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responding to Theorem C(4), the same inequality now applies with f ðkÞ, f 0

replaced by the corresponding inverse derivatives F ðkÞ, F 0, see [8], Theorem 2(7),

for details and some further inequalities. Then, instead of the monomials D~nn, we

deal with G~nn, and instead of (1.9) we obtain

1

c�
jziðbÞj

cðz;0Þjw 0ðziðbÞÞj
m
a c�ðN þ 1ÞjziðbÞj

cðz; ~nnÞjw 0ðzðbÞÞjpðG~nnÞ
j
pðG~nnÞðrÞ:

Similarly as to the proof of Theorem 1, we now complete the proof of Theorem

2.

3. Complex di¤erential equations having composite terms.

Recently, composite entire and meromorphic functions have been under

a considerable interest. Moreover, several papers have been devoted to the

(pseudo)primeness of meromorphic solutions of certain classes of di¤erential

equations. On the other hand, it is well-known that for certain di¤erential

equations, their meromorphic solutions turn out to be composite functions.

In this section, we consider di¤erential equations involving as variables

derivatives of the special composite function w t, t A N . More precisely, let us

consider

P�ðz;w;w 0
; . . . ;wðkÞ

;F 0
; . . . ;F ðsÞ

; ½w t� 0; . . . ; ½w t�ðcÞÞ ¼ 0; ð3:1Þ

where P� is a polynomial in all of its variables, k; s; t; c A N and ta c. Sup-

pose further that for t < c, substituting w; ½w t� 0; . . . ; ½w t�ðcÞ by zero we obtain the

equation

P�ðz; 0;w 0
; . . . ;wðkÞ

;F 0
; . . . ;F ðsÞ

; 0; . . . ; 0Þ ¼ 0 ð3:2Þ

which is of the form (2.1) and for t ¼ c, substituting w; ½w t� 0; . . . ; ½w t�ðc�1Þ by zero

and ½w t�ðcÞ by c!jw 0jc we obtain the equation

P�ðz; 0;w 0
; . . . ;wðkÞ

;F 0
; . . . ;F ðsÞ

; 0; . . . ; 0; c!jw 0jcÞ ¼ 0; ð3:3Þ

also of the form (2.1). As in Section 2, (3.2) and (3.3) may be written in the

form

P0ðz; 0Þðw
0Þm �

X

H

n¼1

Pð�Þ
n ðz; 0ÞGð�Þ

n ½w� þ
X

N

n¼Hþ1

Pnðz; 0ÞGn½w� ¼ 0 ð3:4Þ

corresponding to (2.2). Here G
ð�Þ
n ½w� are di¤erential monomials with coe‰cients

P
ð�Þ
n ðz; 0Þ and with the highest weight

~pp0ðPÞ :¼ max max
1anaH

pðG �
n Þ; max

Hþ1anaN
pðGnÞ

� �

;
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and Gn½w� are di¤erential monomials with coe‰cients Pnðz; 0Þ and the weight of

the pðGnÞ < ~pp0ðPÞ. Set c0ðz; 0Þ ¼ degz Pnðz; 0Þ for n ¼ 0, c0ðz; nÞ ¼ degz P
ð�Þ
n ðz; 0Þ

for n ¼ 1; 2; . . . ;H, c0ðz; nÞ ¼ degz Pnðz; 0Þ for n ¼ H þ 1; . . . ;N, and

~aanð0Þ :¼ max
c0ðz; nÞ � c0ðz; 0Þ

m� pðGnÞ
; 0

� �

:

Denote now

Tð0Þ :¼ max
qanaN

~aanð0Þ; if >~pp0ðPÞ

and

Tð0Þ :¼ max
Hþ1anaN

~aanð0Þ; if m ¼ ~pp0ðPÞ and

~bb �ð0Þ :¼ max
1anaH

ðc0ðz; nÞ � c0ðz; 0ÞÞ < 0:

It turns out that if for such a reduced form of (3.2) and (3.3), the conditions

of Theorem 2 are satisfied, then any meromorphic solution w of (3.4) has to be of

finite order rw, provided that the value 0 is ‘‘good’’ in the sense of the theory of

covering surfaces. To this notion, let Y0 be a domain containing the origin and

let n0ðr;Y0;wÞ be the number of simple islands of the covering surface Fr :¼

fwðzÞ j jzj < rg over the domain Y0. Then we say that 0 A C is good if

d0ðY0Þ :¼ lim inf
r!y

n0ðr;Y0;wÞ

Aðr;wÞ
> 0: ð3:5Þ

If d0ðY0Þ ¼ 0, this qualitatively means that the ramification of Fr in a

neighbourhood of the value 0 is maximal, so that the value 0 is exceptional

indeed in the Ahlfors theory sense.

With these notations, the following result is valid.

Theorem 3. Consider the equation (3.1), reduced over (3.2) or (3.3) to the

form (3.4) with a) m > ~pp0ðPÞ or b) m ¼ ~pp0ðPÞ and ~bb�ð0Þ < 0. If wðzÞ is a mer-

omorphic solution of (3.1) such that 0 is a good value, then rwa 2Tð0Þ þ 2 < y.

Corollary. Suppose that in the di¤erential equation

P0ðz;wÞðw
mÞðmÞ � Pðz;w;w 0

; . . . ;wðkÞ
;F 0

; . . . ;F ðsÞÞ ¼ 0 ð3:6Þ

we have either a) m > ~pp0ðPÞ or b) m ¼ ~pp0ðPÞ and ~bb �ð0Þ < 0. If wðzÞ is a mer-

omorphic solution of the equation (3.6) such that 0 is a good value, then rwa

2Tð0Þ þ 2ay.

Theorem 4. Suppose that a di¤erential equation

Pðz;w;w 0
; . . . ;wðkÞ

;F 0
; . . . ;F ðsÞÞ ¼ 0
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can be rewritten in the form

P�ðz;w;w 0
; . . . ;wðkÞ

;F 0
; . . . ;F ðsÞ

; ½fðwÞ� 0; . . . ; ½fðwÞ�ðcÞÞ ¼ 0; ð3:7Þ

where P is a polynomial in all its variables, k; s; c A N and f is a meromorphic

function satisfying fð0Þ ¼ f 0ð0Þ ¼ � � � ¼ fðcÞð0Þ ¼ 0. Suppose also that by sub-

stituting w by zero in this equation we get an equation of the form (2.1) with a)

m > ~pp0ðPÞ or b) m ¼ ~pp0ðPÞ and ~bb�ð0Þ < 0. If wðzÞ is a meromorphic solution of

(3.7) such that 0 is a good value, then rw e 2Tð0Þ þ 2 < y.

Proof of Theorem 3. We now make use of [8], Theorem 3. By this

theorem, given e > 0, if w is a meromorphic function satisfying (3.5) for a domain

Y0, then by taking a1 ¼ 0 we may choose a1; . . . ; aq such that Theorem C is

true. By Theorem C(1) and the definition of the Ahlfors set, we get

n0ðr; 0;wÞb ðd0ðY0Þ � eÞAðr;wÞ ! 1; r B E; r > r0ðe;w; jÞ;

where n0ðr; 0;wÞ is the number of simple 0-points zið0;wÞ of w belonging to

6Fðr;wÞ

k¼1
Aiðr;wÞ.

Consequently, assuming 0 < e < d0ðY0Þ, we have some simple zeros zið0;wÞ A

Eiðr;wÞ of w in fz : jzj < rg, r B E. Consider the equation (3.1) on the set of

these simple 0-points zi ¼ zið0;wÞ. Thus for zi ¼ zið0;wÞ, we have wðziÞ ¼ 0 and

for ½w tðziÞ�
ðcÞ simple calculations yield ½w tðziÞ�

ðcÞ ¼ 0 when t < c and ½wcðziÞ�
ðcÞ ¼

c!½w 0ðziÞ�
c when t ¼ c. Therefore, in the case when t < c, the equation (3.1)

being considered at the points zi ¼ zið0;wÞ takes the form

P�ðzi; 0;w
0ðziÞ; . . . ;w

ðkÞðziÞ;F
0ðwðziÞÞ; . . . ;F

ðsÞðwðziÞÞ; 0; . . . ; 0Þ ¼ 0:

Due to the conditions of our theorem, the equation can be rewritten in the form

(3.4). If t ¼ c, the equation (3.1) being considered at the points ai ¼ zið0;wÞ

takes the form

P�ðzi; 0;w
0ðziÞ; . . . ;w

ðkÞðziÞ;F
0ðwðziÞÞ; . . . ;F

ðsÞðwðziÞÞ; 0; . . . ; 0; c!½w
0ðziÞ�

cÞ ¼ 0:

Again, the equation can be rewritten in the same form (3.4). Now we are in

the same situation as for Theorem 2 with the only di¤erence that instead of the

constants cðz; nÞ we deal with the c0ðz; nÞ. Therefore, similarly as to the proofs

of Theorem 1 and Theorem 2, we obtain Theorem 3.

To prove the Corollary, it is enough to note that ½wmðziÞ�
m ¼ c!½w 0ðziÞ�

m

so that the equation (3.6) being considered at the points zi ¼ zið0;wÞ can be

rewritten in the form (3.4) and we may proceed as to above in the proof of

Theorem 3.

For Theorem 4, it is enough to note that the equation (3.7) can be rewritten

in the same form (3.4).
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