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Abstract. We consider nonnegative solutions to the Cauchy problem for the quasi-
linear parabolic equations u; = Au™ + K(x)u” where xe R™, 1 <m < p and K(x) >0
has the following properties: K(x) ~ |[x|” (—o0 <o < o0) as |x| — co in some cone D
and K(x) =0 in the complement of D, where for ¢ = —c0 we define that K(x) has a
compact support. We find a critical exponent p,, , = p,, ,(N) such that if p <p, ,
then every nontrivial nonnegative solution is not global in time; whereas if p > P then
there exits a global solution. We also find a second critical exponent, which is another
critical exponent on the growth order o of the initial data uo(x) such that wuy(x) ~ |x|™*
as |x| — oo in some cone D’ and uy(x) =0 in the complement of D’.

1. Introduction.

In this paper we shall consider the Cauchy problem
(1.1) u, = Au" + K(x)u” (x,t) e RN x (0, T),
(1.2) u(x,0) = up(x) xeRY,

where u, = ou/dt, m>1, p>1, K(x) >0, eL?, and uy(x) >0, eC(R"). We
shall only consider nonnegative solutions u. We are interested in the existence
and nonexistence of global solutions.

When K(x) =1, the next results are well known to hold: When uy(x) €
L*(R™) a unique nonnegative weak solution of [T.1), exists locally in time
and can be extended as the time increases as far as u(-,7) € L*(R"). Further,

(I) Let 1<p<m+2/N. Then all nontrivial solutions u(x,?) of [I.I],
do not exist globally in time. Namely lim7|u(¢)||,, = o for some T > 0.
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(I) Let p>m+2/N. Then there exists a constant 4 > 0 such that if

(1.3) 1}1? inf |x|7 P~ yy(x) > A,
X|—o0
then the solution of [1.1), does not exist globally in time.
(III) Let p>m—+2/N. Then, for any a > 2/(p —m) there exists & >0
such that if

(1.4) up(x) < h{x>~* in RV
then the problem [I.TJ, has a global solution, where
(1.5) (x> =1+ x|

In case p #m+2/N, (1) is due to Fujita for m =1 and Galaktionov
et al. for m>1. In case p=m+2/N, (I) is due to Hayakawa for
m=1, N =1,2, Kobayashi et al. for m =1, N >3 and Galaktionov
(see also and [27]) for m > 1. (II) is due to Lee and Ni for m=1 and
Mukai, Mochizuki and Huang (see also [34]) for m > 1. (III) is due to Lee
and Ni (including the case when oo =2/(p —m)) for m =1 and Kawanago
[19] (see also and [29]) for m > 1.

Case (I) is called the blow-up case, case (III) is called the global existence
case. The cut off number

. 2
(1.6) Dy =M+ N
is called the critical exponent. When the critical exponent is in the blow-up
case we say the blow-up is the critical blow-up. Also we see, from (II) and
(IIT), that under the condition p >m +2/N, the number
2

1.7 2
(17) =

is another critical exponent on the growth order of the initial data wug(x). It is
called the second critical exponent ([23], [25]). Namely, when we assume

(1.8) ‘l|im x| “up(x) = 4
for some o € R and A4 > 0, the following results hold: When o < 2/(p — m), the
solution of 1.1}, does not exist globally in time. On the other hand, when
o >2/(p —m), there exists a global solution of [1.1), with the initial data
eup where ¢ > 0 is small enough.

So, we shall study about these critical exponents to more general K(x).



Quasilinear parabolic equations 749

When
(1.9) K(x) =[x (x> R)

for some o € [—00, 0) and R > 0 where we define that K(x) =1 in |x| < R and
K(x) =01n |x| > R in case ¢ = —oo, Andreuichi and DiBenedetto [2] (see Wang
for m = 1) showed that if (x>%uy(x) e L® then a solution exists locally in
time, where

-2
(110) a;:maX{pil,m}.

Moreover, when m = 1, the problems concerning the existence and nonexistence

of global solutions have been studied by many authors ([4], [35], [13], [14]).
Further, Pinsky recently showed the very interesting results about them.

We combine these results as follows: Put

2 _
(1.11) Pi,=1+ +ma§éa’ =,

(li.;) Let 1 <p<pj, . Then all nontrivial solutions u(x,) of [I.T},
do not exist globally in time.

(Ih5) Let p>max{p{ ,,1}. Then there exists a constant 4 > 0 such that
when
(1.12) lim inf x| Dy (x) > 4,
any solution of [1.1J, does not exist globally in time. Especially, when
N=2 6<-2o0or N>3 6=-2 we can take 4 =0 in [1.12).

2

(Il ;) Let p>max{p;,,1}. Ifu(x) < de " for small § > 0 and k > 0
then a global solution of [1.1), exists. Further let 0 >0 or o< -2,
N > 3. Then, forany « > (2+0)/(p — 1) there exists a constant 4 > 0 such that
if

(1.13) uo(x) < hx>™e in RN
then a global solution of [1.1J, exists.

Namely, when pj, >1, py  is the critical exponent. When >0 or
0<—=2, N>3, 240]_/(p—1) is the second critical exponent. (II;,) with
o > —2 is due to Wang [35], (III, ,) with ¢ >0 is due to Hamada and the
rest is due to Pinsky (see also Zhang for (111, ;) with N > 3, 6 < —2, and
and [4] for (;,)). But we do not see yet what is the second critical ex-
ponent when N >3, -2 <o<0or N=1,2, 6 <0. Since Pinsky’s analyses are
essentially based on the expression of solution by the heat kernel entering in the
semilinear equation, his methods of the proof can not be applied to case m > 1.
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When m > 1 there are a few works studying these problems. In the case
whrere K(x) = |x|” (6 > 0), Mukai [28] (see also [25]) showed that when 0 < ¢ <
N(p—1),m+ (2+0a)/N is the critical exponent and belongs to the blow-up case
(He also obtained the results about the global existence case when o > N(p — 1)),
and (24 a)/(p —m) is the second critical exponent. But it is not established
what is the critical exponent in case ¢ > N(p — 1) and what is the second critical
exponent in case ¢ < 0. His methods of the proof in the blow-up case are based
on the Jensen’s inequality for an integration in R and can not be applied to
general cases, for example, with R >0 or K(x) = Kp(x) bellow.

Thus, we have the following three questions when K(x) satisfies [1.9):

QuesTION 1. In the case m = 1, what is the second critical exponent when
N>3 -2<0<0or N=1,2, 0<0?

QuesTION 2. In the case m > 1, what is the critical exponent when
g>N(p—-1)?

QuesTION 3. In the case m > 1, what is the second critical exponent when
g<0?

Our purpose is to solve these problems Question 1~3 in the case where
p>m and K(x) satisfies (1.9), and to extend the above results to more gen-
eral K(x), for example, K(x) = Kp(x) which vanishes in some region of RV as
follows: For g€ (—o0, )

(1.14) KD(x):{|x|0 if xe DN{|x| > 1},
0 otherwise,
and for ¢ = —
0 if x| >1,
1.15 K =
(1.15) o(x) {1 if v < 1,

where D=RY or a cone with vertex at the origin, that is, D=
{xe RM\{0};x/|x| € Q) and Q (#&) = SV is an open connected subset with
smooth boundary. In this paper, we obtain the following results: Put

2 _
(1.16) P =m+ + max{a, N}’
’ N
(1.17) g 2rma{o, =N} (P, —mN
| 7 p—m - p-m

Tueorem 1. (i) Let m <p <p, .. Then all nontrivial solutions u(x,t) of
(1.1), (1.2) do not exist globally in time.
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(i) Let p>max{p, ,,m}. Then, if there exist an open subset V < SN
with |V| #0 and a constant A > 0 such that
(1.18) liminf r#liug(ré) > 4 for EeV,

F—00
any solution of (1.1), (1.2) does not exist globally in time, where |V| is the
Lebesgue measure of V. Especially, in case o) =0, (adding the assumption
Q =SV when N >3) we can replace assumption (1.18) by the following con-
dition:
(1.19) lim inf uy(x) > 0.
F—=0 |x|>r

(i) Let p>max{p, ,,m}. Then, for any o> o> and A >0 there exists

a constant ¢ > 0 such that if

(1.20) up(x) < min{e, A|x| "}
then a global solution of (1.1), (1.2) exists.

Namely, p;  is the critical exponent when py > m, and [«], is the second
critical exponent. We note that in (ii) we do not require the as-
sumption V < Q.

REMARK 1.1.  As in Pinsky [32], in the assumptions of (i), (ii) of

(blow-up case), no growth restrictions as |x| — oo are made on the solution.

REmARK 1.2. In this paper, we do not consider the case where 1 < p < m,
since it is difficult to apply our methods to this case.

Our proof of the blow-up case (i) and (ii) of is simpler and more
united than that of other papers. The methods of this proof are based on the
Jensen’s inequality for the integration in a bounded domain, the scaling argu-
ment for the equation and the correct asymptotic behavior of a solution of
with K(x) =0. In the proof of (iii) of we must divide it into three
cases. In the case ¢ > 0, the methods of the proof are similar to those of Mukai,
Mochizuki and Huang [29]. Namely, we use a supersolution constructed by the
solution of equation with K(x) =0. In the case ¢ <0, a) >0 we use the
L™ — L’ estimates for solutions due to Kawanago [19]. In the case o <0,
oy < 0, we construct a supersolution by stationary solutions for the proof.

The rest of the paper is organized as follows. In the next Section 2, we
define a weak solution of and state main results (Theorem 2.4 and 2.5).
Further we prepare the fundamental propositions and several preliminary lem-
mas. [Theorem 2.4 (a) is the generalization of (i) and proven in
Section 3 (in the case N >2 and the case N =1, ¢ > —1) and Section 4 (in the
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case N =1, 0 < —1). [Theorem 2.4 (b) is the generalization of Theorem 1 (ii)
and proven in Section 5 (in the general case) and Section 6 (in the special case
;= 0). is the generalization of (iii) and proven in
Section 7 (in the case ¢ > 0 and the case ¢ < 0, o7 < 0) and Section 8 (in the case
g<0, 0f>0).

2. Definitions and main results.

Let up(x) € C(R™), up >0 in R™ and K(x) e L2.(R™). In this section we
state the definition of a weak solution of and the main results.

We begin with the definition of a weak solution of |1.1).

DEFINITION 2.1.  Let G be a domain in RY. By a weak solution of equation
(1.1) in G x [0,T), we mean a function u(x,?) in G x [0, 7T) such that

(i) wu(x,t)>01in Gx[0,T) and eC(G x [0,7]) for each 0 <7< T.

(i) For any bounded domain Q c G, 0 < v < T and nonnegative ¢(x,?) €
C>1(Q x [0,T)) which vanishes on the boundary 0,

(2.1) JQ u(x,7)p(x, 1) dx — L) u(x,0)p(x,0)dx

T

= J J {ud,p +u"Ap + K(x)u’p} dxdt — J
Q

J u™ 0,0 dSdt
0 0 Joo

where n denotes the outer unit normal to the boundary.
A supersolution [or subsolution] is similarly defined with equality of (2.1)
replaced by > [or <.

Here, we note that for each ¢ > 0, any restriction on the growth order of
a weak solution u(x,#) in RY x [0,T) as |x| — oo is not required in the above
definition. Hence, we do not know whether or not the uniqueness of weak
solutions of (1.1), holds.

The following comparison theorem is due to Bertsch, Kersner and Peletier [6]
(see Appendix of [6]).

PROPOSITION 2.2 (comparison theorem). Let G be a bounded domain with
smooth boundary in R or let G=R" and K(x)e L*(R™). Let u (or v) be a
supersolution (or a subsolution) of (1.1) in G x [0,T). If u>v on the parabolic
boundary of G x (0, T) and u,v e L*(G x (0,T)), then we have u > v in the whole
Gx[0,7).

In order to state our results we shall use the following spaces of functions.
For ae(—oo0,00) let LY ={f € Li;llfll, . =sup,epy<xp”[f] < oo}, which is

loc?

a Banach space with norm || - ||, ,. We set for a e (—o0, ),
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(2.2) I"=L7N{f >0}
and for o = oo,
(23) I*={feL®; f#0,suppf (the support of f) is compact in RV}

We further set for o € (—o0, 0),

(2.4) Lio= { f e Li(R);f > 0, liminf inf rf(r¢) > 0},

r—ow e
and for o = oo,
(2.5) Lo={feLj(RY):f=0,f(x)>0

in D for some nonempty open set D in RV},

where @ = S¥~! is a nonempty open connected subset in SV~! with smooth
boundary.

REMARK 2.3. When K(x)e L*(RY) satisfies K(x)=|x|" (|]x| > R), K e
I7°NI , gv1. When K(x) = Kp(x) where Kp(x) is defined by (1.14), K(x)e
I°NI,q.

We note that if K(x)eI=° and up(x) € I% for some o€ [0, 0) then a
solution of [L.TJ, exists locally in time (see Theorem 3.1 and 3.2 in [2]),
where a} is as in [1.10].

We now state our main results: Let D be R" or a cone with vertex at the
origin, that is, D = {x € RM\{0};x/|x| € Q}, where Q (#&) < V! is an open
connected subset with smooth boundary.

THEOREM 2.4. Let p>m and K(x) €l , o for some g€ [—00,00). Then,
the following results hold.

(@) Let m<p<p, , where p,  is as in (1.15). Then all nontrivial solu-
tions u(x,t) of (1.1), (1.2) do not exist globally in time.

(b) Let p>max{p, ,,m}. Then, if there exists an open subset V < SN
with |V| #0 (|V| is the Lebesgue measure of V') and a constant A > 0 such that
(2.6) liminf 7% ug(ré) > 4 for EeV,
any solution of (1.1), (1.2) does not exist globally in time, where o is as in (1.17).
Especially, when o} =0 (namely, 6 < —2 when N =2 and g = =2 when N > 3),
adding the condition K(x) €l , gv1 (=1, gv1) in case N >3, we can replace the
assumption (2.6) by
(2.7) lim inf wup(x) > 0.

F—=00 |x| >
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THEOREM 2.5.  Let p > max{m, p, .} and K(x) e I7°. Then, for any o> o;
and A >0, there exits a constant ¢ > 0 such that if

(2.8) uo(x) < min{e, A|x|*+}
then a global solution u of (1.1), (1.2) in R™ x (0, 0) exists.

REmMARK 2.6. When N =1,

m+2+co foroe(—1,0)
2.9 o =
(2.9) Pin,o {m-l—l for g € [—o0, 1],
when N =2,

m+2+0)/2 foroe(-2,0)
2.10 o =
(2.10) Do {m for o € [—o0, 2],

and when N >3

m+ (2+0)/N (>m) for g € (-2, o0)
(2.11) Pmo= {m foro = -2
m+ (2+ max{g,—N})/N (<m) foroe[-o0,-2).
When N =1
. [R2+a)/(p—m) foroe(-1,0)
(2.12) o = { 1/(p—m) for o € [0, —1],
when N =2
. [@2+a)/(p—m) foroe (-2, o)
(2.13) Yo = {O for o € [—o0, 2],
and when N >3
{(2+a)/(pm) (>0) for o € (-2, 0)
(2.14) ar=4¢0 for o = -2
(2+max{o,-N})/(p —m) (<0) foroe[-w,-2).

REMARK 2.7. Let p >max{m,p, ,} and K(x)el™°. Assume a; >0 and
let u(x,t) be a global solution of [1.1), constructed in [Theorem 2.3, where
the initial value uy(x) satisfies with o€ (e}, N), 4 >0, e>0 and ¢ >0 is
small enough. Then, we can see, from the proof of [Theorem 2.3, that in case
g>0,

(2.15) u(r)||,, < Cr®/Em=D+D for ¢ > 1
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for some C>0. Also, in case <0 we can see that for o <o’ <
min{2/(p —m),a} there exits a small & >0 such that

(2.16) Ju()||,, < Ce /=D for ¢ >0,

In the rest of this section we state the fundamental tools and lemmas which
are used later.

By the next proposition, in we shall not need the restriction
on the growth order of the initial data, except for condition (2.6).

PrOPOSITION 2.8 (construction of solutions). Let v(x,t) be a supersolution
of (1.1) in RN x (0,T). If up(x) < v(x,0) then there exists a weak solution of
(1.1), (1.2) in RN x (0,T) such that

(2.17) u(x,t) <v(x,t) in RN x (0,T).

Proor. Put B, = {|x| <n}. Let uy, e Cy°(B,) satisfy that 0 <ug , < up in
B, and ug , T up locally uniformly in RY as n — oo and let u,(x,{) be a unique
solution of the initial boundary value problem

u = Au™ + K(x)u? in B, x (0,7T),
(2.18) u(x.t) =0 on |x| = n,
u(x,0) = up n(x) in B,.

Then we see from the comparison theorem (Proposition 2.2),

(2.19) Uy < yyy <v in B, x (0,7),

and hence there exits u € L (R™) such that u,(x,?) | u(x,t) as n — oo for each
(x,1) e RN x (0,T). Tt follows from DiBenedetto [8] that u,(x,) is equicontin-
uous in each compact set of R x [0,T). Noting that u,(x,?) satisfies the in-
tegral equality like (2.1) we see that u(x,7) € C(RY x [0, T)) and u,(x,t) 1 u(x, 1)
locally uniformly in R™ x [0, T) as n — oo, and so u is a weak solution of [T.1),

in R x [0, 7). O

Next, we shall construct a supersolution of by the methods of Mukai,
Mochizuki and Huang [29]. Let w(x,¢) e L*(R™ x [0,T)) be the classical so-
lution of the problem

(2.20) w—Awm =0 (x,1) e RN x (0, w0),
(2.21) w(x,0) = p(x) xeRY,

where ¢(x) >0 in xe R". Let k() >0 be a continuous decreasing function
satisfying

(2.22) IK(w(-, )7, <k(r) for all 1> 0.
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Let a(r) be the solution of the ordinary equation o/(r) = k(1)a(t)’ ™™™ (1> 0)
with the initial data «(0) =1, that is

t —1/(p—m)
(2.23) a(t) = {1 —(p— m)J k() dt} :
0
Let b(¢) be the solution of the ordinary equation
224) b0 = (b))
and put
(2.25) w(x, 1) = a(b(t))w(x, b(t)).
PROPOSITION 2.9 (construction of supersolution). If
(2.26) (p—m)J k(1) di < % Jor 1€ (0, 0),
0

then the problem (2.24) has a unique solution b(t) in [0, c0) and w is a supersolution
of (1.1) in RN x (0, ).

Proor. The methods of the proof are the same as those of (see the
proof of Lemma 5 in [29]). By (2.26) we see that 1 < a(f) <2/~ for
te[0,00). Hence, since a(&) is a C'-function in & € [0, 0), the problem
has a unique solution 5(¢) in [0, 00), which is increasing in [0, 00). Further, we
see

v, — AW = k(b(2))a(b (1))’ w(x,b(2)) > K(x)w(x,b(1)) a(b(2))’ = K(x)w(x, 1)
and so w is a supersolution of in RN x (0, 0). ]

Next, we give several concrete solutions of [2.20). Let E,(x,t; L) (L > 0)
be the weak solution of [2.20) with E,,(x,0; L) = Ld(x) (0 is Dirac’s d-function).
Then, it is well known that

(227) En(x,6,L) = (L") N g )
where 7 = x/(L"™ ')/ =D+2 " and when m > 1
291/(m—1
(2.28) g(n) = [4 — Bl ]+/( )
with [y], = max{0, y}, B= (m—1)/2m{(m —1)N +2} and A4 chosen to satisfy

(2.29) J (A — Blx|)Y/ " Vdx =1,

and when m =1
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(2.30) gln) = (4m) eI,

That is, E,(x,t L) is the Barenblatt solution in case m > 1 (see [31I]) and the
usual heat kernel i case m = I.

PROPOSITION 2.10. Let p € L (RN)NLY(R™N) and let w(x,t) be a weak solu-
tion of (2.20), (2.21). If we put for k > 1

(2.31) we(x, 1) = kNw(kx, k>N 0m=Dy)
then
(2.32) wi(x, 1) — Ep(x,t; L)

locally uniformly in R™ x (0,00) as k — oo where

(2.33) L= JRN ¢(x) dx.

Proor. See Theorem 1.1 in [9]. ]
The following lemma follows immediately from a simple calculation.
Lemma 2.11. Let N>2, 0> -2 or N=1, 0> —1. Then if p=p, ,=
m+ (2+4a)/N and L >0,
(2.34) J J {E,(x,t; L)}’ |x|” dxdt = oo for 7> 0.
0 JRY

The next solutions of have the initial data decaying more slowly.
Let A>0, 0<a<N and ¥V < SV' be an open subset with |V|#0 and
let W(x,t;A,a,V) be the weak solution of with W, (x,0;4,a,V) =
Ay (x/|x])|x|“, where
A EelV

(2.35) Ay (&) = {0 rev

Then, it is well known (see [5], [7], and [18]) that
(236) Wnlx,t;4,a,V) = /@=D2pn 4.0, V) with 5= x/¢/ @D+,

where h(n) = h(n; A,a, V) e C(RY) is a weak solution of the problem

( 1 a
A+ —— oy Vh4+——— h=0 i RN
+(m—1)a-|—217 v +(m—1)a—|—2 0 mnekR”,
(2.37) . p N-1
lim, ., r*h(ré) = Ay (&) forée 87,
| 4(0) > 0, sup, gy <n>*hn) < .



758 R. Suzuki

Here, we note that when ¥ = SY~! h(y) is radially symmetric and A(7) > 0 in
R™. Further, the uniqueness theorem ([5], [7]) implies

(2.38) Wy(x,t; AB,a, V) = AW,,(x,A™ 't;B,a, V) for A,B >0,

(2.39) Wia(x,t: 4,0, V) = kW, (kx, kK= 4, a, 7).
Hence
(2.40) W(x,t; Aya, V) = AW, (x, A" 1t 1,a, V)

= A4 ) (g 10, )

where 5 = x/(4™ 1)/ “@m=D2) " Then, we can see the asymptotic behavior of
solutions of [2.20] with the initial data decaying slowly. Let ¢(x) e L*(RN)N
C(R™) satisfy that for some 0 <a < N,

(2.41) sup |x|“p(x) < o0
xeRY
and
(2.42) lim rp(rd) = Ay (&) for Le sV

PROPOSITION 2.12.  Assume (2.41) and (2.42). Let w(x,t) be the weak solu-
tion of (2.20), (2.21). If we put for each k >0,

(2.43) we(x, 1) = k®w(kx, k>Fem=1p),
then
(2.44) wi(x, 1) = Wy(x,t;4,a, V)

locally uniformly in RN x (0,00) as k — oo.
PrOOF. See Theorem 2 in and Theorem B in [1]. ]

Next, we give the L* — L’ estimate for solutions of due to Kawanago
[19], which is used in the proof of in the case where ¢ <0 and
2 >0. Let Q be a domain in RY and let u(x,¢) be a weak solution of the
initial boundary value problem

u— Au™ = K(x)u? in Q2x(0,7T),
(2.45) u(x,0) = up(x) in Q,
u(x,1) =0 on 0Q x (0, 7).

ProposITION 2.13.  Assume u(x,t)e L*(Q2 x (0,T)). Let 1<gq,r,s,<c0.
Then for any 0 >0 and t > 0,
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(246)  lu(®)ll.. <25+ BE" )7 uo| g

t/2
BN L 1K (U (2) [ g d

/2
4 gy~ Nm=1)/2s JO r_N/QSHK(x)up(l - T)“Ls(Q) dr,

where B= B(m,N,q,r,s) is a constant independent of Q.
PrOOF. See Proposition 2.4 in [19]. O

Finally, we give the well known blow-up theorem. Let G < RY be a
bounded nonempty domain with the smooth boundary. Let 4 = A be the first
eigenvalue of —4 in G with Dirichlet boundary condition and s(x) = sg(x) the
corresponding eigenfunction (s(x) is normalized: [.s(x)dx =1). Further, Let
nonnegative K(x) e L (R") satisfy that for some ¢y > 0,

(2.47) K(x)>c¢y for xeG.

PrOPOSITION 2.14. Let p > m and let u(x,t) be a weak solution of (1.1),
(1.2) with K(x) = K(x). Then, if

I\ ()

(2.48) J s(x)up(x) dx > (—) :
G o

u(x,t) is not global in RN x (0, 0).

ProOF. See Theorem 1.1 and Example 1.2 in and references of
24]. O

3. Proof of Theorem 2.4(a) in the case N > 2 and the case N =1,
o> —1.

In this section we shall show Theorem 2.4(a) in the case N > 2 and the case
N=1,0>-1. In these cases, if m<p<p, , then ¢ > -2 when N >2 and
240

3.1 £ .
(3.1) Pm,g =M+ —

The next proposition is a key proposition.

ProposITION 3.1. Assume N >2 or N=1, c>—-1. Let K(x)el ;0
(—0 <o < 0) and u(x,t) be a global weak solution of (1.1), (1.2).
(@ If m<p<p,, then

(3.2) u(x,0) =0 for (x,t)e RN x [0, o0).
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(b) If p=p,,, (>m) then there exists a constant M > 0 depending only on
g, such that

(3.3) J u(x,t)dx <M for t > 0.
RN

In order to prove this proposition we need the next lemma.

LemMa 3.2. Let p>m. Let K(x)el 5o (6> —2) and u(x,t) be a global
weak solution of (1.1), (1.2). Let G be a bounded nonempty domain in R™ with
the smooth boundary satisfying

(3.4) Gc{xeRN;%l eQ,1£|x|§2}.
Then, for large k
PN
(3.5) J s(x) kO =My (fex, 1) dx < <c_> for t >0,
G 0

where 1. = g, $(x) = sg(x) (A and sg are as in §2) and cy is a positive constant
depending only on K(x).

Proor. Since K(x) e l_, o there exist Ry > 1 and ko > 0 such that

(3.6) K(x) > ko|x|? for |x| > Rl,% €Q.

Put

(3.7)  we(x,t) = KFV =My kex k't) (k> 1) with / = — .

Then u; is a global solution of equation
(3.8) u, — Au™ = K(x)u? in RN x (0, 0),
where K(x) =k °K(kx). Note by (3.6) that for large k

(3.9) K(x) = k°K(kx) > ko|x|” > ¢y for xe G,

where ¢o = komin, <|\<>|x|”. Hence, applying [Proposition 2.14 to u; we have

I\ (p=m)
(3.10) J s(x)k =My (ex k' 1) dx < (—) for ¢ >0,
G

€o

which implies (3.5). O
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PROOF OF PrOPOSITION 3.1. Let u(x,7) be a global weak solution of [T,
1.2). Assume u(x) #0. Let vg(x,¢) be the weak solution of the problem

G.11) {v,—Avm:O in R™ x (0, o0),
. o(x,0) = up,r(x) in RV,
where
up(x) for |x| <R
3.12 =
(3.12) HO.R {0 for |x| > R.

We take R large enough to satisfy ug g(x) #0. By the proof of
2.8 and the uniqueness of solutions of (see Theorem 2 in [7]) we have

(3.13) vr(x, 1) <u(x,t) for (x,1)e RN x (0, 0).
Putting vg x(x, ) = kNvog(kx, k"= DN*2f) we obtain by [Cemma 3.2,

(3.14) J s(xX)or i (x, £) dx < kN—(2+a)/(p—m)J S(x)k(2+")/(”_m)u(kx, k(m_l)N+2z) dx
G G

1/(p—m)
< Nt/ (p=m) <i> for large k > 1,

Co

where G is as in [Lemma 3.2. Therefore, it follows from [Proposition 2.10 that
if k — oo then in case m <p <p, , (namely, N —(2+a)/(p —m) <0),

(3.15) J S(x)Em(x,t; Lg)dx <0 for t >0
G

and in case p =p,, , (namely, N —(2+a)/(p —m)=0),

I\/(p-m)
(3.16) J S(x)Ep(x,t; Lg) dx < (c_) for t >0,
G 0

where E,,(x,t;L) is defined by 2.27) and
(3.17) Lp = J up(x) dx.
|x| <R

We note that for some r; >0 and gy > 0,
(3.18) g(n) = go>0 for |y <n

and if we choose 7z to satisfy

- 2
(3.19) (Lt gg) /(U= DNH2) -

)
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that 1is,

2\ (=N +2
(3.20) tr = (—> Ly,

then we see

2\ 2\

(3.21) E,(x,tg; Lg) = Lg (—) g(rix/2) = Lg (—) go for |x| <2.
r r1

Put t=1g in (3.15) and (3.16) respectively. Then, when p <p, ., we get

Lr =0, namely up.g =0 in RY™. This is a contradiction to the assumption and

s0 ug(x) =0. When p=p, . we obtain by letting R — oo,

V) o\
3.22 dx < | — — 1| g0 -

3.2) [ o< (2)7(2) g

Thus, considering u(x,?) as the initial data for each # > 0 we have (3.3). The
proof is complete. L]

Thus, when N >2 or N =1, ¢ > —1, [Theorem 2.4 (a) is shown by Propo-
sition 3.1(a) in case m <p <p, ,. Incase p=p,  (>m) we further need the
next proposition to prove the theorem. As is seen in the proof of [Cemma 3.2,
when K(x) € I_, o there exist Ry > 1 and ko > 0 satisfying (3.6). Let a e Q and
put

E(a;2r) = {x e SN, |x — a| < 2r}.
We choose r > 0 small to satisfy
(3.23) E(a;2r) c Q.

Further put

(3.24) Dr(ar = {x eRN:x # o,% € E(a; r)},

let vo(x) € Co(Dpa;r)) satisfy
(3.25) 0 < vo(x) < up(x) in RN
and let v(x,7) be a weak solution of the problem

u, — Au™ = Ko(x)u? in RN x (0,T),
u(x,0) = vp(x) in RV,

(3.26) {

where
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ko|x|? for |x| > Ry, x/|x| € E(a;2r),
0 otherwise.

(327) K()()C) = {

Here we note
(3.28) Ko(x) < K(x) in RY.

PrOPOSITION 3.3.  Let u(x,t) be a global weak solution of (1.1), (1.2) as in
Proposition 3.1. Let K(x) satisfy (3.6) for some Ry > 1 and ko > 0. Then there
exists a global weak solution v(x,t) (#£0) of (3.26) such that

(3.29) v(x,t) <u(x,t) in RN x(0,00),
(3.30) J o(|x|)vP (x, 1) dx > ¢ J o(|x)v”(x,t)dx  for t >0,
Dg;n) RN

where ¢ = ci(r) is a constant and ¢(&) >0 in &€ R.

PrOOF OF PropPOSITION 3.3. The methods of the proof are similar to those
of [Proposition 2.8. Let v,(x,t) be the solution of the problem

u, — Au™ = Ko(x)u? in B, x (0, 7T),
(3.31) u(x,t) =0 on 0B, x (0,T),
u(x,0) = vy(x) in B,,

with B, = {|x| <n} (n>1). Noting (3.28) we have by [Proposition 2.2, T = «©
and

(3.32) Un(x, 1) <u(x,t) in B, x (0,T).

Now, we need several definitions and Lemmas concerning the ‘reflection’.
For ve SN (ie. |v| = 1), we put
(3.33) A=AW)={xeRN|v-x =0},
where “-”” means the inner product in R™. A forms a hyperplane in R™. The
upper [or lower| half space of B, with respect to A4 is defined as

(3.34) B, ,={xeB,|v-x>0} for B, ,={xeB,|v-x<0}].

For any x ¢ A, the reflection of x in A is denoted by o4x. Thus, we have for
each (€ A4,

(3.39) (- (04x — x) == (04x + X) - (04X — X).

N —

For any set K = RY, we define the reflection of K in A4 as

(3.36) g4K = {o4x|x € K},
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and for any function v in B,, we define the reflection of v in 4 as
(3.37) g4v(x) = v(o4x) x € B,.

We note 4B, = B,,.
Since aeQ, we can choose r>0 small enough to satisfy
{xeR";|x —a| <2r} =« R¥\{0}. Then, we give two lemmas. |

LemMa 3.4, For any be SY \E(a;2r) there exists a hyperplain A = A(vy)
such that E(a;r) = By , and o4E(a;r) = E(b;r) (=B, 4). Further, we obtain

3.38 oqv0(X) > vo(x) in B ,,
I’l,A

3.39 o4Ky(x) > Ky in B, ,.
n, A

Proor. This lemma follows immediately from the definitions of vy(x) and
K()(X). |:|

LemMA 3.5. Put v,(x,t) = oq04(x,t) (=v4(04x,1)) in B,, where A= A(v).
Then

(3.40) vn(X, 1) < Uu(x,2) in B, 4 x (0,0).
Hence
(3.41) Ua(x, 1) < 0p(x,2) in Dy N By x (0, 00).

ProOF. We can easily see that o,(x, ) is a weak solution of the equation
(3.42) u, — Au™ = a4 Ko(x)u”.

Since v,(x,0) = vo(x) < g400(x) = D,(x,0) in B, ,, and the com-
parison theorem (Proposition 2.2)) imply (3.40). ]

PrROOF OF PROPOSITION 3.3 (CONTINUE). Similarly, as in the proof of Propo-
sition 2.8, we see that v(x,) = lim,_, v,(x,?) is a weak solution of [3.26), and
(3.32) is reduced to (3.29). Let be SV \E(a;2r). Let A, = A(v;) be as in
and put 9(x,t) = o4,0(x,¢). Then, we have by [Lemma 3.5,

(3.43) v(x, 1) < Up(x,t) in Dgppy x (0, 00).
Since

SN NE(a;2r) U E(b;r)
be SN\ E(a;2r)

and SV \E(a;2r) is a compact set in SV! there exist by,bs,...,bs €
SN\ E(a;2r) such that
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SN NE(a;2r) Ul E(bi;r).

Hence, by putting v; = 0p,,

(3.44) JRN o(|x|)v? (x, 1) dx < J

DE(a; 2r

!/
o(x])e” d + Zj p(1x])" dx
) i=1 Y DEw;n

<(/+ I)J o(|x|)v” dx,
DE(a;Zr)

where ¢(¢) >0 in R. Here we used ¢(|o4x|) = ¢(|x|) and 64,Dgr) = Dgsr)-

Thus, putting ¢; =1/(/+ 1) we obtain (3.30). The proof is complete. O

PROPOSITION 3.6.  Assume p =p,, .. Let v be as in Proposition 3.3 and put
vk (x, 1) = kNv(koe, K=ON¥20) - Then there exists C > 0 such that

(3.45) J J x|7v(x,t)dxdt < C  for all k > 1.
0 J{Ix[=Ri/k}

Proor. When p=p; =m+(2+0)/N, for large k v is a global weak
solution of the problem

Ay — V2 N
(3.46) {u, Au™ = Ky (x)u?  in RY x (0, 00),

u(x,0) = ko (kx) in RY,
where

ko|x|” for |x| > Ry /k,x/|x| € E(a;2r),
0 otherwise.

(3.47) Ko k(x) = {

Since Ky x(X) € I_, E(42r), [Proposition 3.1 implies that for some M >0

(3.48) J ve(x,0) <M for k>1,t>0.
RN

Let consider ¢(x, ) =p,(x) =& (e|x]) as a test function in the integral
equality satisfied by v (see (2.1)), where & (r) € C*([0,2]) is a nonnegative non-
increasing function satisfying

(3.49) &) = {0 on 7 =2

Il mo<r<l

and for some 4; >0

(3.50) S RE

N_lf >-L1¢& forl<r<?2
r Lr =0 for0<r<l.
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We note that

2
(3.51) 4p,(x) { = ~hepx) for lje < v < 2/e
=0 for 0 < |x| <1/e
and by (3.30)
(3.52) J Kok (x)olp, dx > ¢ J ko|x|°vip,dx for k>1,1>0.
|x|<2/e 2/ex|x|=Ry [k
Hence
(3.53) M > J vk (x, 7)p,(x) dx > J J {vi"4p, + Ko xvip,} dxdt
|x[<2/e 0 Jix|<2/e

> J J {21820 + crko|x| v} }p, dxdt
0 J1/e<|x|<2/e

T

+ 1k J |x|7 v} dxdt.

0 JRl/ksmsl/s
By using the inequality a” <ca+a? (¢c=c(m,p)>0) and ¢ > —2, the first
term of the right side of the above inequality is estimated as follows:

(3.54) J {21820 + crko|x| v} }p, dx
1/e<|x|<2/e

>

J {—A1e*(cop + ) + crko|x|vF }p, dx
l/e<|x|<2/e

> —Ayce? J v dx
1/e<|x|<2/e

—I—J {=A1 x 4|x|_21)£ + crko|x| vl }p, dx
1/e<|x|<2/e

> —Jyce’ M + J x| v} p{ciko — 42)x]"* Y dx (by (3.48))
1/e<|x|<2/e

> —Jice’M  for small &> 0.

Thus, combining this and (3.53) we have

T

(355) M > —},1682MT+C1]€0J

J |x|7v} dxdt,
0 JR /k<|x|<1/e

and therefore by letting ¢ | 0 we obtain (3.45). The proof is complete. O
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PROOF OF THEOREM 2.4 (a) IN THE CASE N > 2 AND THE CASE N =1, 6 > —1.
We shall prove this theorem only in case p =p,, ,. Let K(x) el ;o satisty (3.6)
with Ry > 1 and ko > 0. Let u(x, ) be a global solution of (.1}, [T.2]. Assume
contrary up(x) #0 in RY. Then, without loss of generality we can assume
up # 0 in D) Where D,y is as in [Proposition 3.3. In fact, let vr(x,?) be as
in the proof of [Proposition 3.1. Then, since vg(x,0) = up r(x) Z 0 and vg(x,?)
is a weak solution of [3.1T), suppuz(-,?) (the support of vg(x,) in R™) spreads
out to whole RV as t+— co. Hence, by (3.13) we see that for some #; >0
u(x,t1) #0 in Dg,), and we can consider this u(x,;) as the initial data.

So, let vo(x) € Co(DE(y:r)) satisfy that vo 0 in Dgy,y and 0 <vp < up in
RY. Then, when p = DPm,os» Dy [Proposition 3.6 we see that there exists a global
weak solution v(x,7) of satisfying

(3.56) J J x|7v} (x,t)dxdt < C for k > 1,7 >0,
0 J{Ix|=Ri/k}

where v (x, 1) = kN v(kx, k"~UN*2¢). Further, similarly, as in the proof of Prop-
osition 3.1, there is a weak solution w(x, ¢) of [3.11) with w(x,0) = vy(x) satisfying

w(x, 1) < v(x,t) in RY x (0, 00). Hence, if we put wy(x, ) = kNw(kx, km=DN+2¢)
then wy < v, and

(3.57) J J |x|"wi (x,t)dxdt < C for k> 1,7>0.
0 J{Ix[=Ri/k}

Letting k — oo we have by [Proposition 2.10),

(3.58) J J |x|?EP (x,t; L) dxdt < C for 7> 0,
0JRY

where L = [~ vo(x)dx >0, however, this contradicts (2.34). Therefore, we
obtain uy = 0 in R and, hence if we consider u(x, r) as the initial data for each
t >0 then we see u(x,7) =0 in RY x (0,0). The proof is complete. O

4. Proof of Theorem 2.4(a) in the case N =1, ¢ < —1.

In this section we shall show [Theorem 2.4(a) in the case N =1, 0 < —1. In
this case

(4.1) p;;lva:m—l-l.
Let K(x) € I_, . Then, without loss of generality we can assume
(4.2) K(x) > Ki(x) in R,

where
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0 in|x| <o
4.3 K —
(43) 1) {0 in x| >0

for small 6 > 0. Let vy(x) € Co(R) satisfy that vy(x) = vo(|x|) is a radially sym-
metric function in R and a nonincreasing function in r = |x|, and

(4.4) 0 <wvp(x) <up(x) in R.
Let v(x,t) be a weak solution of the problem

u, — Au™ = Ky (x)u? in R x (0, 00),
(4:3) { u(x,0) = vo(x) in R.

As in §3, in order to prove the theorem we need several propositions.

PrOPOSITION 4.1.  Let u(x,t) be a global weak solution of (1.1), (1.2) with
K(x) satisfying (4.2). Then there exists a global weak solution v(x,t) of (4.5)
such that for each t >0 v(x,t) = v(|x|,?) is a radially symmetric function in x € R
and a nonincreasing function in r = |x|, and

(4.6) v(x,t) <u(x,t) in Rx(0,00).

Proor. The methods of the proof are the same as those of [Proposition 3.3
and so we omit the proof. ]

PROPOSITION 4.2. Let N =1, 0 < —1 and let v(x,t) be as in Proposition 4.1.
@ Ifm<p<p,,=m+1 then

(4.7) v(x,t) =0 for (x,t) e R x [0, c0).

(b) If p=p, ,=m+1 then there exists a constant M >0 depending only
on g and ¢ such that

(4.8) J v(x,t)dx <M for t > 0.
R
Hence
(4.9) J J v (x,1) < M for t >0,
0 JBw) 0

where B(0) = {|x| < J}.
We need the next lemma to prove this proposition.

LemMMA 4.3. Let N=1and 0 < —1. Let v be as in Proposition 4.1. Then,
when p > m,
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1/(p—m)
(4.10) J s(X)k Py (kx, 1) dx < ((—’51) for t=0k>1,
B(5)

where . = g and s(x) = spu)(x) are defined in §2.

ProOF. If we put vy (x, ) = kY= y(kx, k2=m=D/(P=m) ) then vy is a global
weak solution of the equation

(4.11) uy — Au™ = kK (kx)u”.

Hence, considering s(x) = sp)(X) as a test function ¢(x,?) in the integral equa-
tion satisfied by v; (see (2.1)) we have

t

t gt
> J J —v)'s(x) dxdt + kJ
0 B(0)

(4.12) J ves(x) dx
B() 0 0

J ovys(x) dxdt.
x| <d/k

Here, we note that

t

t
(4.13) kJ J ovys(x) dxdt > J
x| <d/k

J ovys(x) dxdt,
0 0 Jix|<o

since for each ¢ > 0 s(x)vx(x,) is a nonincreasing function in x > 0. Therefore,
we have

t t
> J J {—Av]' + v} }s(x)dxdt for each 1€ [0, )
0 |x] <o

(4.14) JB@ vres(x) dx ;

to obtain by the similar methods to those of the proof of [Proposition 2.14}

A\ -
(4.15) J Uk (x,0)s(x) dx < (—> for k> 1.
Bo) 0
Thus, considering vy (x,?) as the initial data for each ¢ >0 we get
1/(p—m)
(4.16) J Uk (x,2)s(x) dx < <—> for k> 1 and > 0.
Bo) 0

The proof is complete. O

PROOF OF PROPOSITION 4.2. The methods of the proof are the same as those
of the proof of Proposition 3.1. Let v(x,#) be as in |Proposition 4.1. Put for
each R >0

vo(x) for |x| < R,
4.17 -
(417) to,r() { 0 for |x| > R,
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and let wg(x,t) be a weak solution of with w(x,0) = v gr(x). Then we
have wg(x, 1) <v(x,t) for (x,f)e R x (0,00), and hence putting wg(x, 1) =
kwg(kx,k™*1f) and using we obtain

1/(p—m)
s(x)o(kx, kK™ e) dx < k1 pmm) <é) :

(4.18) JB(J) s(xX)wr i(x, 1) dx < kJ 5

B()

If kK — oo, then it follows from [Proposition 2.10 that when p < m+ 1

(4.19) J S(X)Ey(x,t; Lg)dx =0 for t >0
B(0)

and when p=m+1

1/(p=m)
(4.20) J S(x)Ep(x,t; Lg) dx < <—> for t >0,
B©) 0

where Lg = le\ _gUo(x)dx. Therefore, similarly, as in the proof of
3.1, we conclude (4.7) and (4.8).

Finally, in case p=m+1 we shall show (4.9). Since v(x,1)e
L*(R x (0,7))NL'(R x (0,7)) for = > 0 by (4.8) and the monotonicity of v(-, 1),
we can consider ¢(x,7) =1 as a test function ¢ in the integral equation satisfied
by v (see (2.1)). Hence, we have

t

(4.21) M > JR

v(x, 1) dx > J

J ov" dxdt for t > 0. ]
0J B(©)

PROOF OF THEOREM 2.4 (a) IN THE CASE N =1, 0 < —1. Let K(x) satisfy
(4.2). Let u(x,t) be a global weak solution of [I.1}, [T1.2). Assume contrary
up(x) #0 in R. Then, without loss of generality we can assume

(4.22) up(x) >0 in B(20).

Let vo(x) € Co(R) satisty that vy(x) = vo(|x|) is a radially symmetric function in
x € R and a nonincreasing function in x > 0, and

(4.23) 0 <wvo(x) <up(x) in R and 0 <wpy(x) in B(J).

Then, there exists a global solution v(x, ¢) of satisfying (4.7) (when p < p; )
and (4.9) (when p = p, ) because of |Proposition 4.2, So this is a contradiction
to up #0 when m<p<p,  =m+1.

When p=p, ,=m+1, we can also drive a contradiction. In fact, as is
seen in the proof of of Mochizuki and Suzuki [27], the following
results hold: When m = 1, for any ¢, > 0 there exists a constant ¢(#) > 0 such
that v(x, 1) > c(to)E1(x,t/2;1) in R X [ty,00), and when m > 1 there exist con-
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stants ¢t} >0 and L; >0 such that v(x,7) > E,(x,t+1¢;L;) in R X [ty, o0).
Hence, when m =1

0

v2(x, 1) dx c(t0)? N 571 2(1) dx . 1/2
JB((S) (x, 1) dxdt > c(ty) JB(5)<2> g~ (m)dxdt [n=x/(t/2) "]

fo

(4.24) J

0

(00

% (;) drjm &5/ (10)2) V) dx = oo,

J 1

and when m > 1

(4.25) JJ v (x, 1) dxdt
0 JBw

0
> J J L{H+I(Linfl(t+ tl))—('ﬂ+1)/(’”+1)gm+l(’7) dxdt
0 JB(9)

= x/ (L (e + 1)) ")

o0

Zij

(t+1)" dtJ g™ e/ (L 1)) dx = oo,
0 B

)
where ¢(n) is defined by and 2.30). In any case, these results contradict
(4.9).

Thus we obtain uy(x) = 0, and hence u(x,¢) =0 in R x (0, c0) if we consider
u(x,t) as the initial data for each 7> 0. The proof is complete. O

5. Proof of Theorem 2.4(b) in general case.

In this section, we assume (2.6) and we shall show the first part of
2.4(b). The methods of the proof are similar to those of (a).

First, we consider the case N >2, 0 > —2 and the case N=1, ¢ > —1.
Then

B 240

5.1 .
(51) =

ag

(>0).

PROOF OF THEOREM 2.4 (b) IN THE CASE N > 2, ¢ > —2 AND THE CASE N = 1,
o>—1. Let Kel ,oand let V< 8V with [V| #0. Let u(x,t) be a global
weak solution of [1.1), [T.2]. Assume (2.6) for some A > 0. Then, there exists
a function p e C(R"™) such that

0 < o(x) < up(x) in R,
(5.2) sup, . g¥| X 9(x) < 00,
lim,_,, 7% p(rw) = Ay(w) for each we SV,
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where Ay (w) is defined by (2.35). Let w(x,7) be a unique weak solution (2.20),
2.21). Then, it follows from the proof of |Proposition 2.8 and the uniqueness
of the solution of {2.20) that

(5.3) w(x,t) <u(x,t) in RN x (0,0).

Putting wuy(x,¢) = k% u(kx, k=% "=D¢) and wy(x, 1) = k% w(kx, k%"= D) and
noting o} = (2+a)/(p —m), we have by Lemma 3.2,

I\ (p-m)
S(X)up(x, 1) dt < (c_> for large k,
0

(5.4) J s(x)wi(x, 1) dx < J

G G
where G, s(x), 4 and ¢p are as in Lemma 3.2 Therefore, since 0 < o) =
(2+0)/(p—m) <N in case p > p, ,, letting k — co and using [Proposition 2.12)
we obtain

I\/(p-m)
(5.5) J S(X)W(x,t; 4,00, V) dx < (c_> :
G 0

Hence, because of (2.40),

o AN/ (p=m)
(5.6) AJ (A" V)72 =D ()s(x) dx < <c—> for ¢ >0,
G 0

* V) and 5 = x/ (4™ 1)U We note by £(0) > 0
that for some r; > 0 and & > 0,

where hi(n) = h(n; 1,0

(5.7) hi(n) =& for |n| <r.

Further, we choose f; to satisfy (Am‘ltl)l/ g (m=1)42] _ 2/ry, namely, t# =
A2 /)% MU and put 1= in (5.6). Since |y| = (r1/2)|x| < r in G, we
get

1/(p—m) —ty —ty
(5.8) (i) > AJ (£> X gys(x)dx = A <E> €0-
o G \’'1 ’”1

That is,

Jl 1/(p—m) o) oy
. A< (2 =) el
(59) B (CO) (V1> 0

So, if 4 > (4/ co)l/ (p=m) (2 /rl)“;sg ! then there is no global solutions. The proof is
complete. O

Next, we consider the case where N =1 and ¢ < —1. In this case,
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1
5.10 =
(5.10) =
Similarly, as in §4, we can assume (4.2) with K;(x) defined by [4.3]. Further,
since V' (#) = 8%, we can also assume (2.6) with VV = {1}. Then, there exists

a function ¢ e C(R"™) such that

0 <p(x) <up(x) in R,
SupxeR|X|%¢)(x) < 00,
lim, ., r% (r) = A,
p(x)=0 1in x <0,

(5.11)

and we have the following

PRrOPOSITION 5.1.  Let u(x,t) be a global weak solution (1.1), (1.2). Then,
there exists a global weak solution v of (4.5) with v(x,0) = ¢(x) such that for
each t >0 v(x,t) is a nondecreasing function in x <0 and

(5.12) v(x,t) <u(x,t) in xe RN x(0,00).

Further, if we put vi(x,t) = kY ®=mp(kx, kZ=m=D/(=m¢) then we have

0 1 /N (=m)
(5.13) J s(x)opdx < = (5> for t >0,
-5

2
where 4 = A(_5s) and s(x) = s(_s,5)(x) are defined in §2.

ProorF. The methods of the proof are the same as those of
4.1 and Lemma 4.3. So, we only prove (5.13). As is seen in the proof of
Cemma 4.3, vi(x, 1) = kY= p(kx, k2=m=D/(p=m)¢) is a global weak solution of
[4.1T). Hence, we have

0 ‘ {0 {0
(5.14) J ves(x) dx| > — J J Jv's(x) dxdt + kJ J ovps(x) dxdt,
- -

0 0 0J-o/k

where 4= A5 and s(x) = 556 (x). In fact, since vi(x,?) is a nondecreasing
function in x < 0 for each 7 > 0, we see that the above inequality holds for the
classical approximate solutions of if we multiply by s(x) and in-
tegrate by parts in (—J,0). Hence, we also see that (5.14) holds for a weak
solution v;. Thus, as in the proof of [Lemma 4.3, we obtain (5.13). O

PrOOF OF THEOREM 2.4 (b) IN THE CASE N =1, ¢ < —1. We shall drive
the proof when V = {1} and K(x) satisfy (4.2) with [4.3]. Let v(x,?) be a
global solution as in [Proposition 5.1. Let w(x,?) be a unique solution of
with w(x,0) = p(x) and put wy(x, ) = k*w(kx, k7% "=} with o = 1/(p —m).
Then, it is not difficult to show that
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(5.15) wi(x, 1) < ve(x,t) in R x (0, 00).

Further, it follows from |[Proposition 35.1|

0

1 /\V/(p=m)
s(xX)vr(x,t)dx < = <—> for 1 >0,

(5.16) J:s(X)Wk(x,t)deJ 2\0

—0

where s(x) and A are as in [Proposition 5.]. We note that of =1/(p —m) < 1 by
p>py,=m+1. Therefore, if kK — oo, [Proposition 2.12 implies that

0 1/ \Y (p=m)
(5.17) J S(X)Wi(x,t; 4,0, V) dx < 2 <5) :
-5

Hence, because of (2.36),

0 e D)2 1/ 1/(p—m)
(5.18) AJ (A=)~ =2 ) s(x) dx < > <5) for ¢ >0,
-0

where  hy(n) = h(p; 1,02, V) and 5= x/(A" 1) V=DH 0 Tet 0 <6< 2.

by )

Similarly, as in the proof when N >2, 6> -2 or N=1, ¢ > —1, we have

1/ 1/(p—m) 2\%
1 A< - (= ~) gl
el

where r; and & are as in (5.7). The proof is complete. O
Finally, we show the theorem in the case N >2, ¢ < —2. Then
(5.20) a, < 0.

PROOF OF THEOREM 2.4 (b) IN THE CASE N >2, ¢ < —2. The proof is also
the same as that in the case N >2, ¢ > —2. Let K(x) e I, ¢ and let u(x,t) be
a global weak solution of [I.1}, [1.2]. Assume (2.6) with [}] =0 for some
A>0. Choose p(x)e C(RN) to satisfy with o =0. Let w(x,7) be a

unique weak solution of (2.20), (2.21). Then, we can see w(x,?) <u(x,?) in
RN x (0,00). Put wi(x,t) = w(kx,k?t). It follows from [Proposition 2.12 that

(5.21) wi(x,t) = Wpy(x,t;4,0, 1)

locally uniformly in RY x (0,00) as k — oo. Further, in virtue of the same
methods as those of Friedman and Kamin [9],

(5.22) lw(x,t) — Wy(x,t;4,0, V)] — 0
locally uniformly in R™ as ¢t — co. Therefore, if we note that

(5.23) Wy(x,t; 4,0, V) — Ahg



Quasilinear parabolic equations 775

locally uniformly in R™ as t — oo where hy = h(0;1,0, V) > 0, then we obtain
(5.24) w(x, t) — Ahy

locally uniformly in RV as t — 0.
On the other hand, by K(x) eI, ¢ there exist a domain G (#) = RY
and a constant my > 0 such that

(5.25) K(x) >my in G.

It follows form |[Proposition 2.14 that

2\ (p=m)
s(xX)u(x, t) dx < (m—o)

where s(x) = sg(x) and 2= A4g. So, since [, s(x)dx =1, if 1 — oo then Ahy <
(2/mo)" ™™ that is,

1/(p—m)
(5.27) A< <i> By

The proof is complete. ]

(5.26) JG s(x)w(x, 1) dx < J

G

6. Proof of Theorem 2.4(b) in the case o = 0.

In this section, in the case o =0 we shall show the last part of
2.4(b) under assumption [2.7), where we add assumption K(x) € I, v =1 gva
when N > 3. Then, we note that ¢ = —2 when N > 3. We need several prop-
ositions and lemmas for the proof.

Lemma 6.1. Let u(x,t) be a weak global solution of (1.1), (1.2) with the

initial data ugy satisfying (2.7). Then, there exist constants h > 0 and ty > 0 such
that

(6.1) u(x,t0) >h for xe R".

PrOOF. Assume [2.7). Let u(x,t) be a global weak solution of [1.1], [1.2)
Then, for some R; > 0 and a>0,

(6.2) up(x) = a in |x| > Ry.

First, we consider the case where m =1. Let ¢(x) satisfy

a in |x| > Ry,
6.3 =
(6:3) P(x) {O in |x| < Ry,

and let w(x, ) be a weak solution of [(2.20), with m = 1. Then, as in the
proof of [Proposition 2.8, we have
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(6.4) w(x,t) <u(x,t) in RN x (0,0).
Hence,
6.5 u(x, 1) > wix, ?) = a(drt) N/ P4 dy.
(

|y[=Ri

Therefore, when |x| > R; + 1,
(6.6)  u(x,1) = a(4m)‘N/2J e gy — a(47zt)_N/2J o4 g
—yl<1

and when |x| < R; + 1,

(6.7) u(x, t) > a(4nl)N/2e—X|2/2fJ e T2 gy

V=R
> a(47zt)_N/2e_(R1+1)2/2[J e T4 gy,
V=R

Thus, we obtain (6.1) in case m = 1.
Next, we consider the case where m > 1. Then, it is not difficult to see
that for some #; >0 and L; > 0,

(6.8) En(x,t;;L)) <a in RN and suppE,(x,t;;L;) c B(1) = {|x| < 1},

where E,,(x,t;;L;) is defined by [2.27). For each xoeRY™, put wy(x,t) =
En(x —xo,t+t1;L1). Tt follows from (6.2) and the comparison theorem that
if |xo| > R + 1 then

(6.9) Wy (x, 1) <u(x,t) in RY x (0, 0).
Hence,
(6.10) 0 < En0,¢+1t1;L1) <u(xp,t) for t>0.

On the other hand, since suppwy,(-,?) spreads out to whole RY as t — oo, there
exist 7o >0 and ¢y > 0 such that

(6.11) u(x,ty) > & for |x| <Ry + 1.

Thus, putting # = min{ey, £, (0, #; + to; L;)} we obtain (6.1). O
Hence, if we assume [2.7), then we can assume for some & >0

(6.12) up(x) = h in RV,

And, if we assume o =0, and when N >3 we further assume K(x)e€
I g1 =1, gvi1, then, without loss of generality we can assume

(6.13) K(x) > K3(x) in RV,
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where K3(x) = K3(|x|) e C* is a radially symmetric function satisfying the fol-
lowing properties: When N =2, K3(r) e C;°[0, ), K3(r) is nonincreasing in
r>0,0<K;(x)<d in RY for some J >0 and

o |x| <o
(6.14) Ks(x) = {0 x| > 26,

When N >3, K3(x) >0 in RY and for some ry, > 1 and ko > 0,
(6.15) K3(x) =ko|x|™* in |x] > ro.
Let v(x,t) be a weak solution of the problem

u, — Au™ = K3(x)u? in RN x (0, o0),

(6.16) {u(x,O) =h in RY.

PROPOSITION 6.2.  Assume (6.12) and (6.13). Let u(x,t) be a global weak
solution of (1.1), (1.2). Then, there exists a classical global weak solution v(x,t)
of (6.16) such that for each t > 0 v(x,t) = v(|x|, ) is a radially symmetric function
in xeRY (and is nonincreasing in r = |x| when N =2) and

(6.17) (0<) h<o(x,t) <u(x,t) in RN x (0, 0),
(6.18) v; >0 in RN x (0, 0).
Proor. Noting that % is a solution of (2.20), we have by the comparison

theorem,

(6.19) h<u(x,t) in RN x (0, 0).

Let v,(x,7) be a classical solution of the initial boundary value problem
u, — Au™ = K3 (x)u? in B(n) x (0,T),

(6.20) u=nh on 0B(n) x (0,T),
u(x,0)=nh in B(n),

where B(n) = {|x| <n}. Then, as in the proof of Proposition 2.8, we see that
v(x,t) = lim,_,, v, is a classical solution of satisfying (6.17), and for each
t >0 v(x,t) = v(|x|, ) is radially symmetric in R (and is nonincreasing in r = |x|
when N =2). Noting that v,(x,0) = 4v™(x,0) + K3(x)v”(x,0) = K3(x)h? > 0 in
RY, we obtain (6.18) by virtue of the comparison theorem for the equation
satisfied by v;. The proof is complete. O

PROPOSITION 6.3. Let p>m. Put G=R™M{0} if N=2 and G=
RM\B(rg+1) if N>3. Let v(x,t) be as in Proposition 6.2 and put (x) =
lim,—o, v(x,7). Then, v € LL.(G)NC*G), o(x) =0(|x|) is a radially symmetric
function in x € RN (and is nonincreasing in r =|x| when N =2) and
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(6.21) (0<) h<d(x) in RY,
(6.22) —Av = K3(x)o" in G.
In order to prove this proposition we need the following

LemMA 6.4. Let p > m and let v(x,t) be as in Proposition 6.2. Then, the
next results hold:
(i) When N =2, if r >0 then

1/(p=m)
(6.23) v(x, 1) < (%) on |x|=rt>0

and if 0 <r <o then

1/(p—m)
(6.24) v(x, 1) < (%) on |x|=rt>0,

where A, = Lpy is defined in §2.
(i) When N >3

(6.25)

<
—~
=
=
IA
()
7 N
—
~
o
+
[E—
SN—
)
>

1/(p—m)
m) for |x| =ry+ 1,

where 1., = Ap and D = B(ry + 1)\B(ry).

PrOOF. (i) Put s,(x) = sp((x). Since v(x,?) is a global solution of [6.16),
IProposition 2.14] implies that for 0 < r <,

A\ (p=m)
(6.26) J sr(x)o(x, 1) dx < (é) for ¢ > 0.
B(r)

Hence, noting that v(x,?) > v(r,t) in B(r) we have

6 (2"

and so (6.24). (6.23) is clear, because v(r,?) is nonincreasing in r > 0.
(i) Let r; >ry+ 1. Then, there exists # > 0 such that

1
(6.28) v(x, 1) > EU(”’O) in |x| <.

In fact, let w(x,?) be a weak solution of the problem
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(6.29) w(x,0) =0 in B(ry),

{W,Awm—O in B(r) x (0, 00),
w(x,t) = v(r;,0) on dB(ry) x (0, c0).

Then, since v(x,t) > v(x,0) =v(r;,0) on 0B(r;) x (0,00), it follows from the
comparison theorem that v(x,?) > w(x,?) in B(r;) x (0, 00). Further, noting that
w(x,t) — v(r;,0) uniformly in B(r;) as t — oo, we have (6.28).

Put §,,(x) = Sp(x) with D = B(rg + 1)\B(ry). By virtue of [Proposition 2.14
and the condition on Kj3(x) we get

j 1/(p—m)
(6.30) J Soo(n, ) de < [— for 1> 0
B(ro+1)\B(ro) ko(ro+ 1)
to obtain
- 1/(p—m)
1 Iy (o + 1)?
(631) EU(H,O) < (k—() . 0

PROOF OF ProOPOSITION 6.3. It is clear that o(x) = lim, v(x,?) < 00 in
xeG, i€ LE.(G), d(x) =(|x|) is a radially symmetric function in x € R™ (and
is nonincreasing in r = |x| when N =2) and (6.21) holds. Further, 5 € C*(G)
and (6.22) immediately follow from the methods of Kroner and Rodrigues [21].
In fact, let y(z) € C5°(0,1) satisfying [;"y(r)dt =1 and let &(x) € C5°(G). Put
p(x,t) = Y(1)¢(x). Then, if we consider ¢(x,?) as a test function in the integral
equation satisfied by v(x,?), for each 7 >0

(6.32)
1
J J {o(x, t + )W (D)E(x) + 0™ (x, 1 + T)WAE + K3 (x)v? (x, ¢ + 1)y &} dxde = 0.
0Je
Letting 7 — oo we have
1

(6.33) J; lp’dzJG 5(x)¢(x) dx+J

RZ jG{ﬁ'" (X)4E + K ()8 (x)¢} dx = 0,

that 1is,
(6.34) J {p"AE+ K30PE dx =0 for e Ci°(G).
G

Hence,

(6.35) Ai" + K3(x)i” =0 in D'(G).
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Noting 7€ L (G) and (6.21) we obtain & e C>(G) by the regularity theorem

loc

and so we get (6.22). The proof is complete. ]

PrROOF OF THEOREM 2.4 (b) IN THE CASE of = 0. As above-mentioned, it is
enough to show this theorem when uy(x) and K(x) satisfy (6.12) and (6.13)
respectively.

Assume contrary that there exists a global weak solution u(x,?) of [I.1],
1.2). Then, there exists ¢ such as in [Proposition 6.3. If we put o(r) = o(x)
(r=x|) then (6.22) is reduced to

(6.36) By + NT_IU = —K;3(r)?",
where Kj3(r) = Kz(x) (r = |x|).

Hence,
(6.37) r¥ 1), = VUK ()i

Therefore, when N =2, for each r > ¢ and r € (0,0/2)

(6.38) 1oy = riop(ry) — J rKs(r)o? dr < —th rKs(r) dr,
r r

from which,
s s

(6.39) 1oy < —th rK;(r) dr = —h"’&J rdr=—c (<0),
5/2 6/2

and so

(6.40) B, < —g for r > 0.

Hence, if r > 6 then

(6.41)  o(r) <0(0) — cJ %dr = 0(0) — c¢{logr —log(d)} — —o0 as r — oo.
s

When N >3, if r>r; >ry+ 1 then we have by and (6.15),

(6.42) N, < —kohl’J N dr + V()

r

_ koh? (,,N—z

N -2 _r{v_2)+’”fv_ll~’i'(rl)-

Hence,
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(6.43) U < _mr + N1 for r > ry,
which implies
koh?
(6.44) o(r) < o(r) — ﬁ {logr —logr}
C ~N+2 _ —N+2
+T—|—2{r - }—>—OO as r — 0.

Thus, (6.41) and are contradictions to (6.21), and so global solutions
of [1.1), never exist. The proof is complete. O

7. Proof of Theorem 2.5 in the case ¢ > 0 and the case o <0, o <O0.

In this section we shall show in the case ¢ >0 and the case
g<0, of <0. We first show the theorem in the case ¢ > 0. The methods of
the proof are the same as those of Mukai, Mochizuki and Huang (see the
proof of Lemma 5 in [29]). We need the next lemma. Let W, (x,t;L,a, V) and
h(n; L,o, V') be as in §2.

Lemma 7.1. Let >0, 24+0)/(p—m)<a<N and K(x)el°. Put
Win(x,1) = Wy(x,t; L0, SN71).  Then, for some ¢; >0
(7.1) K(x)WP Y (x, 1) < ¢y (p=Drmo)/@ralm=1)) g 4 > 1,

Further, for some t; > 1

0

(72) e1(p —m) J i~ (p=V)0) [ 2ralm—1)) gy <

4

| =

Proor. Since K(x) e I7% there is a constant C > 0 such that
(7.3) Kx)YPD < o1+ 1x7"7Y) in RV.
Putting h(n) = h(n; L, o, S¥~') we have for > 1,
(7.4)  K(x)V" VW, (x, 1)
< C[—{(P—1)“—0}/(P—1){a(m—1)+2}(1 + |77|U/(p_1))h(77) (n = x/tl/(a(m—1)+2))_
Further, noting that by a/(p— 1)< 2409)/(p —m) <«
(7.5) 14 g7V < c’Gy* and  pd*h(n) < C" for ne RV,

we obtain
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(7.6) K(x)l/(p_l)Wm(x,l)gCC’C”Z_{(p_1)“_0}/(p_1){°‘(m_1)+2} for 1> 1,
which is reduced to (7.1). is obvious, since —((p—1)a—a)/

/l

(e¢(m—1)+2) < —1 by the assumptions on o. ]

PROOF OF THEOREM 2.5 IN THE CASE ¢ > 0. Let ¢ > 0 and p > max{m, p,, ,}.
Then, we note p, =m+(2+0)/N, o;=(2+0)/(p—m) and o; <N,
Further, let «) <o« < N and assume

(7.7) up(x) < min{e, A|x|"*} for xe R",

where ¢ > 0 will be chosen later. Put w(x,7) = Wy, (x,t+t1; Lo, S¥ 1) (L > A)
and k(t) = ¢ (¢t + 1)~ D2/ G-+ where > 1 and ¢; > 0 are as in (7.1)
and [7.2). Further, we put w(x,7) = a(t)w(x,b(s)) where «(z) and b(¢) are
defined by and respectively. Noting that k(7) satisfies (2.22)
and (2.26), we see by [Proposition 2.9, that w is a supersolution of in
RY x (0, x0).

On the other hand, we have

(7.8) W(x,0) = w(x,0) = Wy(x, tr; Lo, S¥) = ;0 Do) = x|y (o)

with A(y) = h(n; L,a, S¥') and 7= x/0;/"" V%2 and there exists R > 0 such
that

(7.9) n|*h(n) > A4 for |x| > R,

since |5|*h(n) — L as |n| — oo. Hence,

(7.10) w(x,0) > A|x|* > ug(x) for |x| > R,

and if ¢ is small enough then

(7.11) w(x,0) = ;P Dp) > & > wg(x)  for |x| < R.
Namely,

(7.12) w(x,0) > up(x) in RV,

Therefore, it follows form [Proposition 2.§ that there is a global weak so-

lution of [1.1), satisfying

(7.13) u(x, 1) < wix, 1) < Cr¥/CHm=0) for ¢ > 0.

The proof is complete. L]

Next, we consider the case where ¢ < 0 and «) < 0. Then, we see N > 3,
o<-2and p, , <m. If K(x)elI” then there exists ko >0 such that

(7.14) K(x) < ko<x)? in RN, where (x> =1/1+ |x|.



Quasilinear parabolic equations 783

We consider the following problem for each & > 0:

— Au™ = 7P in RN
(7.15) {u, Au™ = ko{x>°u? in R x (0,T),

u(x,0) =¢ in RY.
Then, by virtue of the usual existence and uniqueness theorem we see that a

unique weak solution of exists locally in time and can be extended uniquely
as the time increases as far as u(-,f) e L*(R™).

LEMMA 7.2. Let N >3 and o < —2. Then, if ¢ > 0 is small enough, there
exists a global weak solution u(x,t) of (7.15) such that

(7.16) sup  u(x,t) < oo.
RN % (0, 00)

Proor. First, it follows from the uniqueness of solutions that for each ¢ > 0
the solution u(x,?) of [7.15] is a radially symmetric function in x e R and
u(x,t) = u(|x|,?) is nonincreasing in r = |x| as far as u(-,t) e L*(R").

Let a #0 (aeR"™). Then, there exists 4 >0 such that
(7.17) kodx)? < A|lx —a”.

Further, let ¢ > 0 and

(7.18) max{2 — N,o+2} < ¢ <0,
and put
(7.19) va(x) = e(|x — g + 1)/

Then, we see that for small & > 0,

(7.20) Avy' 4+ ko{x>v) <0 in |x —a| > ‘%'.

In fact, from the inequality (a+ b)Y < C(q')(a? +b?) for ¢’ > 1,

> N—-10
(7.21) A0 + ko{x)vh < (arz—l—Nr 61”) v+ Alx —al”v? (r=|x—al)

< e"g(N 4 q —2)r7 2 + Ar°e? C(r’?™ + 1)
_ Emrq—2{q(N_|_ q-— 2) _I_Acgp—m(rq(p/m—l)+a+2 + I/'G_[H—Z)}.

Here, we note from (7.18), that ¢(N+¢—2) <0, g(p/m—1)+0c+2<0 and
0 —q+2<0. Hence, there exists a small ¢ > 0 such that for any r = |x —a| >
lal/2,
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(7.22) Avl' 4 ko{x ) 0P
<&"r"[q(N +q-2)
+AC ™ {(Jal2)"7TE 4 (1al/2) 7PN < 0.

So, (7.20) is obtained.
Now, we shall show

(7.23) u(0,¢) <v,(0) for t>0.
Put
(7.24) T = sup{T | u(0, ) < v,(0) for te0,T]}.

We note 7 > 0. Assume contrary T < co. Then,
(7.25) u(x, 1) < u(0,1) < v,(0) < vy(a/2) for te0,T],xeRY.

Further, as above-mentioned, for some 77 > 0 u(x,?) is extended uniquely in
RN x [0,T) + T), and for each te 0,7y +T) u(x,t) = u(|x|,?) is radially sym-
metric in x € R and nonincreasing in r = |x|. Hence, there exists T € (0, T})
such that u(0,7) < v,(a/2) in te[0,T + T,] since u(x,f) is continuous in
RN x[0,T; + T), and so

(7.26)  u(x,t) <u(0,1) < v4(a/2) =v4(x) for |x —al= |;i|, te0, T + Ty).

We see also that u(x,0) =& < v,(x) in RY and v,(x) is supersolution of (7.15)
in |[x —a|>|a|/2, te(0,T + T,] by (7.20). Therefore, applying the usual com-
parison theorem to u and v, we have

4]

(7.27) u(x,t) <vy(x) in |x—al > EX tel0, T+ T,
namely,
(7.28) u(0,1) < 0,(0) for te0,T + T].
This is a contradiction to the definition of 7 and so we obtain 7 = o, that is,
(7.23).
Thus
(7.29) u(x,t) <u(0,1) <v,(0) < o in RN x [0, ).
The proof is complete. [

PROOF OF THEOREM 2.5 IN THE CASE WHERE g < 0 AND o) < 0. In this case,
the theorem follows from and Theorem 2.8. ]
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8. Proof of Theorem 2.5 in the case o <0, o > 0.

In this section we shall show in the case where ¢ < 0 and
¢y >0. Then, N=1,2, 6 <0 or N>3, -2<0<0. We first show the next
key proposition. Let LI(RY) (1 < ¢ < o) be the usual space of Li-functions
in RY with norm /11y = /1l Lory)- When K(x) e I, there exists ko > 0 such
that

(8.1) K(x) < kox)’ in RV,

ProposiTioN 8.1. Let 0 <0, oy >0, p>p,  and K(x)el?. Further,
assume Uy € C(RN)ﬂLOO(RN)ﬂLq(RN) for some qe (po,N/o}) with py=
max{l, N(p —m)/2}. Then, there exists dy =do(m,p,N,q,a,ky) such that if
luoll, < Jo then there exists a global weak solution u(x,1) satisfying

(8.2) u(r)||,, < Cye N/ Wm=1+20) - g 50,
where Cy = Ci(m, p,N,q,0,kp).

The methods of the proof of this proposition are similar to those of Ka-
wanago [19]. Namely, we use several energy estimates for solutions and use
[Proposition 2.13. But, in our case, it is not easy to obtain such energy estimates.
So, we need the next lemma.

Lemma 8.2, Let p>m>1. For any ue C¥(RN)N{u = 0}, the following
two inequalities hold:

()
(8.3) lu(1)||, < Coju(t )”ﬁ[Nm 1)4201/¢[f2—N)+N (m+/—1)]

X ||Vu(’”+/—1)/2||gN(f—ﬂ)//[ﬁ(z—N)w(mM—1)]

where Cy = Co(m,N,B,/) >0 is a constant and 0 < f < /.
(i) Let K(x)elI? (6<0), o) =(2+max{g,—N})/(p—m) >0 and g€
(N(p—m)/2,N/o}). Then,

&4 || K e Al vl VR,

where A, = A;(m,N,p,q,0,ky) >0 is a constant, ¢ >max{0,1 —m+
gIN = 2] /N} and ko is as in (8.1).

PROOF. is some version of the Gagliardo-Nirenberg inequality (see
and Lemma 2.8 of [33]). We shall show [8.4).

/)

Let 0 < o) < min{N,2,—c}. Then, by the Holder inequality
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(8.5) JRN K(x)u "V dx < ko JR

Jl/N (N_Jl)/N
< kO{J <x>N0'/U1 dx} {J u(p+/—1)N/(N—01) dx}
RN RN

(N—O'l)/N
- C{ J P+ -DN/(N-a) dx} .
RN

Here, we shall use another version of the Gagliardo-Nirenberg inequality: Let
l<s<N/[N-2],.

<X>aup+/—1 dx
N

1s IN—s(N—2)]/sN
(8.6) U uS =1 dx] <C U SN (p=m)/[N=s(N=2)] dx]
RN RN

x a2

where 7 > 0 must satisfy

N ></+m—1
N—2]+ p+{—1°

(8.7) s < [

The above inequality is obtained if we put [f=u"/"02 ;=
R(p—m)/(im+¢—1)] x[sN/(N—s(N—-2))] and 7 =2s(p+/—1)/(im+/—1)
in the Gagliardo-Nirenberg inequality

—1 1

— 7

~ o 1-0 0 r
(53) 171 < CHLEI VA where 0= ~————
where 0 <r <max{l,r} <7#<2N/[N —2],.
Put
N
8.9 = ,

Then, 1 <s< N/[N—2], by the assumption of oy. Further, putting ¢ =
sN(p—m)/[N —s(N —2)], by (8.5) and (8.6) we have

[N—s(N-2)]/sN
(8.10) J K(x)up+(_1dngU SN (=) [IN=5(N=2)] 7
RN R

N

X 7R
= Clluly ™" w02,

where / > 0 must satisfy [8.7).



Quasilinear parabolic equations 787

Note ¢ = N(p —m)/(2 —0o1) by a simple calculation. Then we can easily see
by o) >0, that 0 < ; < min{N,2,—o} if and only if N(p —m)/2 < q < N/o}.
Also, it is not difficult to see that inequality /> max{0,1 —m+ ¢[N — 2], /N}
implies [8.7). The proof is complete. O

ProoF OF ProposiTION 8.1. Let p>p; ., 0<0, af >0 and K(x)el™°.
Further, let ky be as in (8.1). Then, we note N/o’>1 since p > P =
m+o’(p—m)/N. Hence, we see py < N/a with py =max{l,N(p —m)/2}.

First, we construct a approximate solution u,(x, ) as follows: Let {up ,} <
Co(B(n)) with B(n) = {|x| < n} satisfy that 0 <uwup, <up 1 <up in RY and
uo.n(x) =up(x) in B(n—1). Let u,(x,¢) be the weak solution of the initial
boundary problem

u, — Au™ = K(x)u? 1in B(n) x (0, T,),
(8.11) u(x,0) = up (x) in B(n),
u(x,t) =0 on 0B(n) x (0, T,).

Then, similarly, as in the proof of Lemma 4.1 of [19], we obtain the next estimate
for u,: Put

1/(p=m)
1| 4m(/ -1
(8.12) B, — 1|4 )2 ,
214/ (m+¢—-1)
where A, is as in [8.4]. We define u,(x,7) =0 in x e RV\B(n). O

Lemma 8.3. Let g€ (po,N/a)) with py =max{1,N(p —m)/2} and ¢ > q.
Then, if |lup x|, < min{By, B/}/2,

(8.13) ua(2)], < Cpt N/ DAN=D120}) 4y 0 < 1 < T,
where C;, = Cs(m, p,N,q,0,kp).

Proor. Put u=u,. By the similar methods to those of Suzuki [33] (see
of [33]), we have for /> 1 and 0 <71 <s< T,

S+_4m/@t—1)Js

. ”Vu(m+/71)/2|‘§d[

(8.14) J u’ dx
RN

T

</ J K(x)uP*' =1 dxds.
RN

JT

Hence, by

(8.15) J u’ dx
RN

S5 dml(4 -1 .
+j—ﬁi—JT4@mM [Vu™ D23 dr < 0
T T (m‘{—/—l)
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for /> max{l,1-m+¢q[N —-2],/N}. Put /=gq in the above inequality.
Since |u(¢)]|,, is continuous in [0, 7},), if |lug ||, < By then [lu(7)[, is nonincreasing
in >0 and so [u(?)|l, < By in ¢ >0. Therefore, if |uo,ul|, < min{B,, B/} and
¢ >max{l,1 —m+¢q[N — 2] /N}, then

(8.16) J u dx
RN

N s
+ cJ [Vu"*/=D72|2 dr < 0
T T

for some C > 0, and we see that |lu(¢)||, is nonincreasing in ¢ > 0. Hence, using
with f=¢ we have for / >¢q and 0 <7t <s< T,

(8.17) lu(s)||; + cj {Jfu(e)||} TN DRONED) G < u(o)]|]).

Thus, by Lemma 5.2 of we get

D) 2g ) NN 1) +2q)
(8.18) ||u(S)||§S{C><N<n]\/II(/_);; 9 } for 0<s< T,
to obtain (8.13). The proof is complete. ]

The next lemma is useful.

LeMmA 84. Let 6 <0 and K(x)el °. Further, let r>1 and 0<n<
min{N, —ra}. Then, for any ue C; N{u >0} the following inequality holds: for
some C3 >0

(8.19) K[l < Csllull v

Proor. By the Holder inequality we have

(8.20) JRN{K(x)uP}" dx <k JR

n/N (N—n)/N
) k(;{JRN <x>N"’/’7 dx} {JRN e dx} ’

where ko is as in (8.1). Hence, we obtain since ro +7 < 0. N

O u'? dx
N

PROOF OF PROPOSITION 8.1 (CONTINUE). Let g € (po,N/o;). We shall show
the next results: There exists a constant dy = do(m, p, N,q,0,ky) such that if
[to.nll, < o then

(8.21) ua(1)]],, < Cqt™V/W=D+2 for 0 < t < T,

where Cy = C4(m, p,N,q,0,ko).
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For this aim we apply [Proposition 2.13 to u = u,. Choose real numbers r and s
to satisfy

(8.22)

max IL <r<minﬁ and maxN _aN <s<ﬁ
"Nm + 2¢ o] 2 Nm+2q o
where o) satisfies equation
(8.23) g=N(p—-—m)/(2—a).

Here, we note that ¢ e (po, N/o}) implies 0 < oy < min{N,2,—c} as in the
proof of [Lemma 82, and hence max{l,¢gN/(Nm+2q)} < min{N/oy,q} and
max{N/2,qN/(Nm+2¢q)} < N/oy. Furthermore, put ¢ = ¢ N/INtm=1)+2 jp
(2.46), set

| .
(824) do = E X mln{Bq7 BNrp/(N—rol)a BNsp/(N—sal)}
and let [lug .|, <do. Here, we note max{roj,so1} <N and ¢<
min{Nrp/(N —roy), Nsp/(N — sa1)} by the relation
(8.25) qo1 =2 — N(p —m).

Therefore, by means of [Lemma 8.3 and [Lemma 8.4 we have for some C >0
and C' >0,

(826) Hun(t)Hoc < 2t—N/(N(m—l)+2q) +B(t—N(m—l)/(N(m—1)+2q)+1)—N/261Hu07n”q

dt

t/2
B t_N(m_l)/(N<m—1)+2q>+1)N/z"J Calletn (D) 151 (v —r01)
0

+ B(I—N/(N(m—l)+2q))—N(m—l)/2s v

t/2

< (2 4 Boy)r N/ Nm=1)+2q)

t/2
+ BCCs=Na/n)/(N(m=1)+2q) J L(~Nm=24-+gN 1)/ (N(m—1)+2q) 1

0

+ BCG; ZNZ(mfl)/2s(N(m71)+2q) %

2
y Jt/ (t — ) Nm=2akaN[9)/(Nn=1)+24) =N/2s g
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Here, we used and inequalities (—Nm — 2g + gN/r)/(N(m — 1) +2q) > —1,
—N/2s > —1 and —Nm —2q+qN/s < 0. Thus, we have proven (8.21).

So, let [ugll, <Jo. Then, we get (8.21) because of |lug .|, < |luoll, < do.
Hence, it follows from the uniqueness and existence theorem for solutions of
that 7, = oo and (8.21) holds with 7, = co. Thus, by the same methods
as those of (see also the proof of Theorem 2 in [33]) we see that u(x,?) =

lim,,_.o, u,(x,7) is a global weak solution of [1.1J, satisfying (8.2). O

PROOF OF THEOREM 2.5 IN THE CASE ¢ < 0, o> >0. Let o > o’ and 4 > 0.
For ¢ >0 we assume

(8.27) up(x) < min{e, A|x| "} in RV,

Then, if ¢ is small enough,

(8.28) uo(x) < minfe, (4 + 1){x>"*} = hy(x) in RV,

We choose ¢ to satisfy max{po, N/a} < q < N/a}, where p is as in
8.1. Then, by inequality —ag+ N — 1 < —1 we have

(8.29) JRN(A 1)1 M dx < oo

Hence, the Lebesgue dominated theorem implies that |Afl, —0 as ¢—0.
Therefore, if ¢ is small enough further, then |ul| , <00 where Jy is as in
IProposition 8.1. So, applying [Proposition 8.1 we get the existence of a global
weak solution u(x,?) of [I.1), satisfying (8.2). The proof is complete.

]
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