
J. Math. Soc. Japan
Vol. 55, No. 2, 2003

Selections and sandwich-like properties via

semi-continuous Banach-valued functions

By Valentin Gutev, Haruto Ohta and Kaori Yamazaki

(Received Feb. 2, 2001)

(Revised Nov. 22, 2001)

Abstract. We introduce lower and upper semi-continuity of a map to the Banach

space c0ðlÞ for an infinite cardinal l. We prove that the following conditions (i), (ii) and

(iii) on a T1-space X are equivalent: (i) For every two maps g; h : X ! c0ðlÞ such that g

is upper semi-continuous, h is lower semi-continuous and ga h, there exists a continuous

map f : X ! c0ðlÞ, with ga f a h. (ii) For every Banach space Y, with wðYÞa l,

every lower semi-continuous set-valued mapping f : X ! CcðYÞ admits a continuous

selection, where CcðYÞ is the set of all non-empty compact convex sets in Y. (iii) X is

normal and every locally finite family F of subsets of X, with jFja l, has a locally finite

open expansion provided it has a point-finite open expansion. We also characterize sev-

eral paracompact-like properties by inserting continuous maps between semi-continuous

Banach-valued functions.

1. Introduction.

Throughout this paper, by a space we mean a non-empty T1-space. Our investiga-

tion was motivated by the following two theorems; the former was proved by Katětov

[14], [15] and Tong [29], and the latter was proved by Kandô [13] and Nedev [23]:

Theorem 1.1 (Katětov-Tong’s insertion theorem). A space X is normal if and

only if for every two functions g; h : X ! R such that g is upper semi-continuous, h is

lower semi-continuous and ga h, there exists a continuous function f : X ! R such that

ga f a h.

For a Banach space Y, let FcðYÞ (resp., CcðYÞ) denote the set of all non-empty

closed (resp., non-empty compact) convex sets in Y. A map f : X ! Y is called a

selection of a mapping f : X ! FcðY Þ if f ðxÞ A fðxÞ for every x A X .

Theorem 1.2 (Kandô-Nedev’s selection theorem). Let l be an infinite cardinal.

Then, the following conditions on a space X are equivalent:

(1) Every point-finite open cover U of X, with jUja l, is normal.

(2) For every Banach space Y, with wðYÞa l, every lower semi-continuous mapping

f : X ! CcðYÞ admits a continuous selection.

(3) Every lower semi-continuous mapping f : X ! Ccðl1ðlÞÞ admits a continuous

selection.
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Theorem 1.2 can be regarded as an essential part of Michael’s selection theorem

[19, Theorem 3.2 0] (see, also, [2]) asserting that a space X is l-collectionwise normal if

and only if X satisfies the condition (2) with CcðYÞ replaced by CcðYÞU fYg.

For a space Y, let C0ðYÞ denote the Banach space of all real-valued continuous

functions s on Y such that for each e > 0 the set fy A Y : jsðyÞjb eg is compact, where

the linear operations are defined pointwise and ksk ¼ supy AY jsðyÞj for each s A C0ðYÞ.

In particular, we use c0ðlÞ to denote the space C0ðY Þ, where Y is the discrete space of

cardinality l, i.e. c0ðlÞ is the Banach space consisting of all points s A R
l such that the

set fa < l : jsðaÞjb eg is finite for each e > 0.

In this paper, we introduce lower and upper semi-continuity of a map to C0ðY Þ.

We prove that if the space R in Theorem 1.1 is replaced by c0ðlÞ, then the resulting

statement is equivalent to the conditions listed in Theorem 1.2, see Theorem 3.1. Thus,

insertions and selections are connected via the space c0ðlÞ. As a result, we obtain

several sandwich-like analogues to selection theorems as well as selection theorems

corresponding to sandwich-like properties, see Section 4.

For set-valued mappings j and c defined on a space X, we say that j is a set-

valued selection of c, or c is an expansion of j, if jðxÞJcðxÞ for each x A X . Let

CðYÞ denote the set of all non-empty compact sets in a space Y. In [23] Nedev has

characterized several paracompact-like properties by the existence of set-valued selections

of CðY Þ-valued mappings for completely metrizable spaces Y. In contrast to this, we

characterize expandability and almost expandability in the sense of [16], [27] by insertion

of c0ðlÞ-valued maps, and by the existence of expansions of CðY Þ-valued mappings for

completely metrizable spaces Y, see Section 5.

We often consider two kinds of maps in the same statement, i.e., a single-valued

map to a space Y and a set-valued map to a hyperspace of Y. To distinguish them, we

use the term map for the former one and the term mapping for the latter one. As usual,

a cardinal is identified with the initial ordinal and an ordinal is the set of all smaller

ordinals. The cardinality of a set A is denoted by jAj. Let o denote the first infinite

cardinal and N the set of non-negative integers. Other terms and notation will be used

as in [8].

2. Semi-continuous C0ðYÞ-valued functions and compact sets.

In this section, X and Y denote arbitrary spaces and l stands for a cardinal. For a

real-valued function f : X ! R and r A R, let Lð f ; rÞ ¼ fx A X : f ðxÞ > rg and Uð f ; rÞ ¼

fx A X : f ðxÞ < rg. Recall that a function f : X ! R is lower (resp., upper) semi-

continuous if Lð f ; rÞ (resp., Uð f ; rÞ) is open in X for each r A R. Now, we extend these

notions to C0ðY Þ-valued maps as follows:

Definition 2.1. A map f : X ! C0ðYÞ is lower (resp., upper) semi-continuous if

for every x A X and every e > 0, there is a neighbourhood G of x in X such that if

x 0
A G, then f ðx 0ÞðyÞ > f ðxÞðyÞ � e (resp., f ðx 0ÞðyÞ < f ðxÞðyÞ þ e) for each y A Y .

With every map f : X ! C0ðYÞ we associate another one �f : X ! C0ðY Þ defined

by ð�f ÞðxÞðyÞ ¼ �f ðxÞðyÞ for each x A X and each y A Y . The first lemma is a direct

consequence of the definition.
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Lemma 2.2. A map f : X ! C0ðYÞ is continuous if and only if it is both lower and

upper semi-continuous. A map f : X ! C0ðYÞ is lower semi-continuous if and only if

the map �f is upper semi-continuous.

The following three lemmas concern only the case of c0ðlÞ. For each a < l, let

pa : R
l ! R denote the a-th projection, i.e. paðsÞ ¼ sðaÞ for s A R

l.

Lemma 2.3. For a map f : X ! c0ðlÞ, the following are valid:

(1) f is lower semi-continuous if and only if pa � f is lower semi-continuous for

each a < l, and fUðpa � f ;�eÞ : a < lg is locally finite in X for each e > 0.

(2) f is upper semi-continuous if and only if pa � f is upper semi-continuous for

each a < l, and fLðpa � f ; eÞ : a < lg is locally finite in X for each e > 0.

Proof. Note that Lðpa � f ; eÞ ¼ Uðpa � ð�f Þ;�eÞ for every a < l. Hence, by

Lemma 2.2, (2) is a consequence of (1). Thus, it only su‰ces to prove (1). Suppose

that f is lower semi-continuous. Clearly, pa � f is lower semi-continuous for each

a < l. Let e > 0 be fixed, and let x A X . Since f is lower semi-continuous, there is a

neighbourhood G of x such that if y A G, then f ðyÞðaÞ > f ðxÞðaÞ � e=2 for each a < l.

We show that G intersects only finitely many Uðpa � f ;�eÞ’s. By the definition of c0ðlÞ

the set A ¼ fa < l : f ðxÞðaÞ < �e=2g is finite. If y A G and a A lnA, then f ðyÞðaÞ >

f ðxÞðaÞ � e=2b�e=2� e=2 ¼ �e, i.e. y B Uðpa � f ;�eÞ. Hence, GVUðpa � f ;�eÞ ¼ q

for each a A lnA.

Conversely, suppose that each pa � f , a < l, is lower semi-continuous and the

family fUðpa � f ;�eÞ : a < lg is locally finite in X for each e > 0. Let x A X and

e > 0 be fixed. Then, there exist a neighbourhood H of x and a finite set BJ l

such that H VUðpa � f ;�e=2Þ ¼ q for each a A lnB. Since f ðxÞ A c0ðlÞ, the set C ¼

fa < l : f ðxÞðaÞb e=2g is finite. Put D ¼ BUC. If y A H and a A lnD, then f ðyÞðaÞb

�e=2 > f ðxÞðaÞ � e. For each a A D, since pa � f is lower semi-continuous, there exists

a neighbourhood Ha of x such that f ðyÞðaÞ > f ðxÞðaÞ � e for every y A Ha. Therefore,

if y A H V7
a AD

Ha, then f ðyÞðaÞ > f ðxÞðaÞ � e for each a < l. Hence, f is lower

semi-continuous. r

Lemma 2.4. Let f : X ! R
l be a map. Then, f ½X �J c0ðlÞ if and only if both

fLðpa � f ; eÞ : a < lg and fUðpa � f ;�eÞ : a < lg are point-finite in X for each e > 0.

Proof. This follows from the definition of c0ðlÞ. r

For s A C0ðYÞ and e > 0, let Bðs; eÞ ¼ ft A C0ðY Þ : ks� tk < eg. For s; t A C0ðY Þ,

we write sa t if sðyÞa tðyÞ for each y A Y . Further, if sa t, then we define ½s; t� ¼

fu A R
Y
: sa ua tg. Obviously, ½s; t� is a closed convex subset of C0ðYÞ. In the case

of c0ðlÞ, we have a stronger result:

Lemma 2.5. For every s; t A c0ðlÞ, with sa t, the subspace topology s on ½s; t� coin-

cides with the subspace topology induced from the product topology t on R
l. Hence, in

particular, ½s; t� is a compact convex subset of c0ðlÞ.

Proof. Obviously, the topology s is finer than the subspace topology induced

from t. To prove the converse, let u A ½s; t� and consider an e-neighbourhood Bðu; eÞ
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of u. It su‰ces to find V A t such that u A V V ½s; t�JBðu; eÞ. Since s� t A c0ðlÞ, there

is a finite set AJ l such that jsðaÞ � tðaÞj < e for each a A lnA. Let

V ¼
Y

a AA

fx A R : juðaÞ � xj < eg � R
lnA

:

Then, V A t and it is easy to check that u A V V ½s; t�JBðu; eÞ. Thus, we have the first

statement. Clearly, ½s; t� is convex. Since ½s; t� is a compact subset of ðRl
; tÞ, it finally

follows that ½s; t� is a compact subset of c0ðlÞ too. r

We now recall the definitions of upper and lower semi-continuity of set-valued

mappings. Let f : X ! S be a set-valued mapping, where S is a family of non-empty

subsets of a space Y. For a subset UJY , let f�1½U � ¼ fx A X : fðxÞVU 0qg and

f#½U � ¼ fx A X : fðxÞJUg. The mapping f : X ! S is called lower (resp., upper)

semi-continuous if f�1½U � (resp., f#½U �) is open in X for every open set U in Y. Also,

f is called continuous if it is both lower and upper semi-continuous.

For maps g; h : X ! C0ðYÞ, we shall write ga h if gðxÞa hðxÞ for every x A X .

With every two such maps we associate a set-valued mapping ½g; h� : X ! FcðC0ðY ÞÞ

defined by ½g; h�ðxÞ ¼ ½gðxÞ; hðxÞ� for x A X . Also, we associate two mappings ½g;þyÞ

and ð�y; h� from X to FcðC0ðYÞÞ by ½g;þyÞðxÞ ¼ fs A C0ðY Þ : sb gðxÞg and

ð�y; h�ðxÞ ¼ fs A C0ðYÞ : sa hðxÞg for x A X , respectively. Finally, for SJC0ðY Þ

and e > 0, let BðS; eÞ denote the e-neighbourhood of S in C0ðYÞ, i.e. BðS; eÞ ¼

6
s AS

Bðs; eÞ.

Lemma 2.6. Let g; h : X ! C0ðY Þ be maps such that ga h.

(1) If g is upper semi-continuous, then ½g;þyÞ is lower semi-continuous.

(2) If h is lower semi-continuous, then ð�y; h� is lower semi-continuous.

(3) If g is upper semi-continuous and h is lower semi-continuous, then the mapping

½g; h� is lower semi-continuous.

(4) If g is lower semi-continuous, h is upper semi-continuous and Y is discrete, then

the mapping ½g; h� is upper semi-continuous.

Proof. In order to prove (1), let U be an open set in C0ðYÞ and x A ½g;þyÞ�1½U �.

Since ½g;þyÞðxÞVU 0q, there exists s A U with gðxÞa s. Choose e > 0 such that

Bðs; eÞJU . Since g is upper semi-continuous, there exists a neighbourhood G of x

such that x 0 A G implies

gðx 0ÞðyÞ < gðxÞðyÞ þ ea sðyÞ þ e; for each y A Y :ð2:1Þ

Now, we show that GJ ½g;þyÞ�1½U �. Take a point x 0 A G and define tðyÞ ¼

maxfgðx 0ÞðyÞ; sðyÞg for y A Y . Then, t A C0ðYÞ and, by (2.1), tb gðx 0Þ and ks� tk < e.

Hence, t A ½g;þyÞðx 0ÞVU , which implies that x 0 A ½g;þyÞ�1½U �. Consequently, GJ
½g;þyÞ�1½U �, and it follows that ½g;þyÞ�1½U � is open in X.

To prove (2), note that s A ð�y; h�ðxÞ if and only if �s A ½�h;þyÞðxÞ. Hence,

this follows from (1) because, by Lemma 2.2, the map �h is upper semi-continuous.

To prove (3), let us observe that ½g; h��1½U � ¼ ½g;þyÞ�1½U �V ð�y; h��1½U � for

every UJC0ðYÞ. Hence, the statement follows from (1) and (2).
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We finally prove (4). Let V be an open set in C0ðYÞ and z A ½g; h�#½V �. Then,

½g; h�ðzÞJV . Since Y is discrete, it follows from Lemma 2.5 that ½g; h�ðzÞ is com-

pact. Thus, we can find d > 0 such that Bð½g; h�ðzÞ; dÞJV . Since g is lower semi-

continuous and h is upper semi-continuous, there exists a neighbourhood H of z in X

such that if z 0 A H, then gðz 0ÞðyÞ > gðzÞðyÞ � d and hðz 0ÞðyÞ < hðzÞðyÞ þ d for each

y A Y . Then, it is easy to check that HJ ½g; h�#½V �. Hence ½g; h� is upper semi-

continuous. r

For a non-empty bounded set KJC0ðY Þ, we define points supK and inf K of

R
Y by ðsupKÞðyÞ ¼ supfsðyÞ : s A Kg and ðinf KÞðyÞ ¼ inffsðyÞ : s A Kg, respectively,

for each y A Y .

Lemma 2.7. If K is a non-empty compact set in C0ðY Þ, then supK A C0ðYÞ and

inf K A C0ðY Þ. Hence, KJ ½inf K ; supK�.

Proof. We write s ¼ supK for short. Since K is compact, K is equicontinuous,

which implies that s is continuous. To show that s A C0ðYÞ, let e > 0 be fixed. If the

set A� ¼ fy A Y : sðyÞa�eg is not compact, then every point u A K is not in C0ðY Þ

since A� is closed in fy A Y : juðyÞjb eg. This contradiction proves that A� is com-

pact. Next, suppose that the set Aþ ¼ fy A Y : sðyÞb eg is not compact. For each

y A Aþ, choose uy A K with uyðyÞb 2e=3 and let By ¼ fy 0 A Y : uyðy
0Þb e=3g. Then,

Aþ can not be covered by finitely many By’s since each By is compact. Hence, we can

find a sequence fyðnÞ : n < ogJAþ such that yðnÞ B6
i<n

ByðiÞ for each n > 0. Then,

fuyðnÞ : n < og is discrete closed in K, because kuyðmÞ � uyðnÞkb e=3 whenever m0 n.

This however contradicts the compactness of K. Thus, Aþ is also compact, and hence,

s A C0ðYÞ. This also implies that inf K A C0ðY Þ because �ðinf KÞ ¼ supð�KÞ. r

For a mapping f : X ! CðC0ðYÞÞ, we define single-valued maps sup f : X ! C0ðY Þ

and inf f : X ! C0ðYÞ by ðsup fÞðxÞ ¼ sup fðxÞ and ðinf fÞðxÞ ¼ inf fðxÞ, respectively,

for each x A X .

Lemma 2.8. Let f : X ! CðC0ðYÞÞ be a mapping.

(1) If f is lower semi-continuous, then sup f is lower semi-continuous and inf f is

upper semi-continuous.

(2) If f is upper semi-continuous, then sup f is upper semi-continuous and inf f is

lower semi-continuous.

Proof. We prove both (1) and (2) only for sup f, since the proofs for inf f are

similar. First, assume that f is lower semi-continuous and put s ¼ sup f. To show

that s is lower semi-continuous, take a point x A X and e > 0. Fix a point t A fðxÞ.

Then the set A ¼ fy A Y : jsðxÞðyÞ � tðyÞjb e=2g is compact. Since fðxÞ is compact,

fðxÞ is equicontinuous. Hence, for each y A Y , there exists an open neighbourhood

Uy of y in Y such that

juðyÞ � uðy 0Þj < e=4 for all u A fðxÞ and for all y 0 A Uy:ð2:2Þ

This implies that

jsðxÞðyÞ � sðxÞðy 0Þja e=4 for all y 0 A Uy:ð2:3Þ

Selections and sandwich-like properties 503



Since A is compact, there exists a finite set BJA such that 6fUy : y A BgKA. For

each y A B, take uy A fðxÞ such that

sðxÞðyÞb uyðyÞ > sðxÞðyÞ � e=4:ð2:4Þ

Since f is lower semi-continuous, the set

G ¼ f�1½Bðt; e=2Þ�V7ff�1½Bðuy; e=4Þ� : y A Bg

is a neighbourhood of x in X. Let x 0 A G. It su‰ces to show that sðx 0ÞðzÞ> sðxÞðzÞ � e

for each z A Y . If z A A, then z A Uy for some y A B. Since fðx 0ÞVBðuy; e=4Þ0q,

sðx 0ÞðzÞb uyðzÞ � e=4. On the other hand, by (2.3), (2.4) and (2.2), we have that

jsðxÞðzÞ � uyðzÞja jsðxÞðzÞ � sðxÞðyÞj þ jsðxÞðyÞ � uyðyÞj þ juyðyÞ � uyðzÞj

< e=4þ e=4þ e=4 ¼ 3e=4:

Hence, sðx 0ÞðzÞ > sðxÞðzÞ � e. Otherwise, z B A implies jsðxÞðzÞ � tðzÞj < e=2. Since

fðx 0ÞVBðt; e=2Þ0q, it follows that sðx 0ÞðzÞb tðzÞ � e=2 > sðxÞðzÞ � e. Thus, we have

proved that s is lower semi-continuous.

Next, assume that f is upper semi-continuous. Let x A X , e > 0 and put U ¼

BðfðxÞ; eÞ. Since f is upper semi-continuous, f#½U � is a neighbourhood of x in X.

If x 0 A f#½U �, ðsup fÞðx 0ÞðyÞ < ðsup fÞðxÞðyÞ þ e for each y A Y , because fðx 0ÞJU .

Hence, sup f is upper semi-continuous. r

3. Extension of Theorem 1.2.

For two families F and G of subsets of a space X, we call G an expansion of F

if there exists a bijection G : F ! G such that FJGðFÞ for each F A F. An open

expansion is an expansion consisting of open sets. For real-valued functions fa, a < l,

on a space X, let ha<l fa denote the map f : X ! R
l such that pa � f ¼ fa for each

a < l.

In this section, we find a natural relationship between insertions and selections by

proving the following theorem which extends Theorem 1.2. The equivalence of (1) and

(2) is due to Kandô [13] and Nedev [23] as was stated in the introduction.

Theorem 3.1. For an infinite cardinal l, the following conditions on a space X are

equivalent:

(1) Every point-finite open cover U of X, with jUja l, is normal.

(2) For every Banach space Y, with wðYÞa l, every lower semi-continuous mapping

j : X ! CcðYÞ admits a continuous selection.

(3) Every lower semi-continuous mapping j : X ! Ccðc0ðlÞÞ admits a continuous

selection.

(4) For every two maps g; h : X ! c0ðlÞ such that g is upper semi-continuous, h is

lower semi-continuous and ga h, there exists a continuous map f : X ! c0ðlÞ

such that ga f a h.

(5) For every two maps g; h : X ! c0ðlÞ such that g is upper semi-continuous, h

is lower semi-continuous and ga h, there exist a lower semi-continuous map

fl : X ! c0ðlÞ and an upper semi-continuous map fu : X ! c0ðlÞ such that ga

fla fua h.
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(6) X is normal, and every locally finite family F of closed sets in X, with jFja l,

has a locally finite open expansion provided it has a point-finite open expansion.

(7) Every discrete family F of closed sets in X, with jFja l, has a disjoint open

expansion provided it has a point-finite open expansion.

Proof. The implication ð1Þ ) ð2Þ is due to Nedev, while ð2Þ ) ð3Þ is obvious.

ð3Þ ) ð4Þ: Let g; h : X ! c0ðlÞ be as in (4). Then, by Lemma 2.6, the mapping

½g; h� : X ! Ccðc0ðlÞÞ is lower semi-continuous. Hence, by (3), ½g; h� admits a contin-

uous selection f : X ! c0ðlÞ. The map f satisfies that ga f a h.

ð4Þ ) ð5Þ: Obvious.

ð5Þ ) ð6Þ: Let, for some ma l, F ¼ fFa : a < mg be a locally finite family of

closed sets in X and U ¼ fUa : a < mg be a point-finite open expansion of F, i.e.

FaJUa for each a < m. Also, let ga (resp., ha) be the characteristic functions of Fa

(resp., Ua) for each a < m. In case m < l, we define gbðxÞ ¼ hbðxÞ ¼ 0 for each x A X

and each b, with ma b < l. Finally, define g ¼ ha<l ga and h ¼ ha<l ha. Then, by

Lemma 2.4, we can consider both g and h to be maps to c0ðlÞ. Since each ga (resp.,

ha) is upper (resp., lower) semi-continuous, it follows from Lemma 2.3 that g is upper

semi-continuous and h is lower semi-continuous. Since ga h, by (5), there exist a lower

semi-continuous map fl : X ! c0ðlÞ and an upper semi-continuous map fu : X ! c0ðlÞ

such that ga fla fua h. Put Va ¼ Lðpa � fl; 1=2Þ and Wa ¼ Lðpa � fu; 1=2Þ for each

a < m. Then, each Va is open, and fWa : a < lg is locally finite in X by Lemma 2.3.

Since FaJVaJWaJUa for each a < m, fVa : a < mg is a locally finite open expansion

of F. Moreover, since clX VaJUa, the above proof for m ¼ 1 provides that X is

normal.

ð6Þ ) ð7Þ: Let F be a discrete family of closed sets in X, with jFja l, hav-

ing a point-finite open expansion. Then, by (6), there exists a locally finite family

G ¼ fGðFÞ : F A Fg of open sets in X such that FJGðF Þ for each F A F. Since

F is discrete, we may assume that GðFÞVF 0 ¼ q whenever F 0F 0. Let U ¼

GU fXn6Fg. Then, U is a locally finite open cover of X. Since every locally finite

open cover of a normal space is normal (see [8, p. 305]), U has an open star-refinement

V. Then, fStðF ;VÞ : F A Fg is a disjoint open expansion of F.

ð7Þ ) ð1Þ: Notice that X is normal by (7). Hence, this can be proved quite

similarly to the proof of the Michael-Nagami theorem asserting that every metacompact

collectionwise normal space is paracompact (cf. [8, Theorem 5.3.3]). r

Remark 3.2. The following conditions (8) and (9) are also equivalent to the con-

ditions listed in Theorem 3.1. For two mappings j;c : X ! CðYÞ, we write jJc if

jðxÞJcðxÞ for each x A X .

(8) For every metrizable space Y, with wðYÞa l, and every lower semi-continuous

mapping f : X ! CðY Þ, there exist a lower semi-continuous mapping j : X !

CðYÞ and an upper semi-continuous mapping c : X ! CðYÞ such that jJ
cJ f.

(9) There exist a space Y and a disjoint family G of non-empty open sets in Y,

with jGj ¼ l, such that for every lower semi-continuous mapping f : X !

CðYÞ, there exists an upper semi-continuous mapping c : X ! CðYÞ such that

cJ f.
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The equivalence of (1) and (8) was proved by Nedev in [23, Theorem 3], while

ð8Þ ) ð9Þ is obvious. To show that ð9Þ ) ð7Þ, let F be a discrete family of closed

sets in X, with jFja l, and U ¼ fUðFÞ : F A Fg be a point-finite open expansion of

F. We may assume that U covers X and UðFÞVF 0 ¼ q whenever F 0F 0. On the

other hand, there exists a disjoint family G ¼ fGðFÞ : F A Fg of non-empty open sets

in Y. Fix a point yF A GðFÞ for each F A F and define f : X ! CðYÞ by fðxÞ ¼

fyF : x A UðFÞ;F A Fg for x A X . Then, f is lower semi-continuous because U is an

open cover of X (see Lemma 5.4 below). Hence, by (9), there exists an upper semi-

continuous mapping c : X ! CðYÞ such that cJ f. Let VðFÞ ¼ c#½GðF Þ� for each

F A F. Then fVðFÞ : F A Fg is a disjoint open expansion of F.

Let l-PN be the class of all spaces satisfying one of (and hence, all of ) the

conditions listed in Theorem 3.1. Define the class PN by X A PN if and only if

X A l-PN for every cardinal l. Then, PN is included in the class N of all normal

spaces and contains the class CN of all collectionwise normal spaces, i.e. CNJ

PNJN. Michael [18] has shown that both inclusions are proper by giving the

examples which we now sketch below:

The example showing that PN0CN is the standard Bing’s example (cf. [8,

Example 5.1.23]). The product space X ¼ D2c of the discrete space D ¼ f0; 1g contains

a discrete subspace M, with jMj ¼ c. Bing’s space Z is obtained from the space X by

making all points of XnM isolated. It is known that Z A NnCN. Notice that every

point-finite family of non-empty open sets in X is at most countable; this follows from

the fact that the Šanin number of X is countable (cf. [8, 2.7.11, p. 116]). Hence, it

follows that Z A PN. Next, consider the subspace Y ¼ M UD of Z, where D ¼

fx A X : fa < 2c : xðaÞ0 0g is finiteg. Michael [18] has shown that the space Y is

normal metacompact but not paracompact. Hence, Y A NnPN because every meta-

compact space in PN must be paracompact.

Since the space Y ¼ M UD is closed in Bing’s space Z, the example above also

shows that the class PN is not closed under taking closed subspaces unlike N and

CN. From this fact, it is natural to ask whether a space X is in CN if every closed

subspace of X is in PN. Now, we show that the answer is negative if there exists a Q-

set. To this end, let us recall that a subset A of the real line R is called a Q-set if A is

uncountable and every subset of A is a Gd-set in A with respect to the subspace topology

on A inherited from the usual topology on R. It is known that every uncountable

subset AJR, with jAj < c, is a Q-set under assuming Martin’s axiom and the negation

of the continuum hypothesis (see [20] for details).

Example 3.3. If there exists a Q-set in R, then there exists a perfectly normal

space X such that every subspace is in PN but X B CN.

Proof. Let L be the Niemytzki plane (cf. [8, Example 1.2.4]). All we need here is

the fact that L is the closed upper half-plane, the x-axis L1 ¼ R� f0g is closed discrete

and nowhere dense in L and the open subspace LnL1 has the usual Euclidean top-

ology. Now, assuming the existence of a Q-set AJR, we consider the subspace X ¼

ðA� f0gÞU ðLnL1Þ of L. It is known that X is perfectly normal but X B CN (cf.

[28, Example F]). We show that every subspace S of X is in PN. For SJX , let
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S0 ¼ S V clLðSnL1Þ and S1 ¼ SnS0. Then, the subspace S is the topological sum of S0

and S1. Since X is hereditarily normal, S0 is a separable normal space, and hence,

S0 A PN. On the other hand, S1 A PN because S1 is discrete. Thus, S A PN. r

Problem 3.4. Does there exist an example in ZFC of a space X B CN such that

every closed subspace of X is in PN?

4. Sandwich-like characterizations of paracompact-like properties.

A space X is called l-collectionwise normal if every discrete family F of closed sets

in X, with jFja l, has a discrete open expansion. In what follows, for a Banach space

Y, we put C
0
c ðY Þ ¼ CcðY ÞU fYg.

Our first result is an insertion-like theorem which characterizes l-collectionwise

normality.

Theorem 4.1. Let l be an infinite cardinal. For a space X the following conditions

are equivalent:

(1) X is l-collectionwise normal.

(2) For every Banach space Y, with wðYÞa l, every lower semi-continuous map-

ping j : X ! C
0
c ðYÞ has a continuous selection.

(3) Every lower semi-continuous mapping f : X ! C
0
c ðc0ðlÞÞ has a continuous

selection.

(4) For every closed subspace A of X and for every two maps g; h : A ! c0ðlÞ such

that g is upper semi-continuous, h is lower semi-continuous and ga h, there

exists a continuous map f : X ! c0ðlÞ such that ga f jAa h.

Proof. The implication ð1Þ ) ð2Þ follows from [19, Theorem 3.2 0] (see, also, [2]),

while ð2Þ ) ð3Þ is obvious. To show ð3Þ ) ð4Þ, let AJX and g; h : A ! c0ðlÞ be as in

(4). By Lemma 2.6, ½g; h� : A ! Ccðc0ðlÞÞ is lower semi-continuous. Then, by a result

of [19], the mapping f : X ! C
0
c ðc0ðlÞÞ, defined by fðxÞ ¼ ½g; h�ðxÞ if x A A and fðxÞ ¼

c0ðlÞ otherwise, is lower semi-continuous too. Hence, by (3), f has a continuous

selection f . This f is as in (4).

ð4Þ ) ð1Þ: Let F ¼ fFa : a < lg be a discrete family of closed sets in X, and let

A ¼ 6fFa : a < lg. Note that there exists a disjoint family fGa : a < lg of non-empty

open sets in c0ðlÞ. Pick a point ya A Ga for each a < l and define maps g; h : A ! c0ðlÞ

by gðxÞ ¼ hðxÞ ¼ ya if x A Fa. Since both g and h are continuous, it follows from

(4) that there exists a continuous map f : X ! c0ðlÞ such that ga f jAa h. Then,

f f �1½Ga� : a < lg is a disjoint open expansion of F in X. Hence, X is l-collectionwise

normal. r

Our next result is a characterization of countably paracompact and l-collectionwise

normal spaces. To prepare for this, we need two lemmas, the first of which may have

an independent interest.

Let ðY ; dÞ be a metric space, and let 2Y ¼ fSHY : S0qg. In what follows,

as in the case of Banach spaces, for S A 2Y and e > 0 we use BðS; eÞ to denote the e-

neighbourhood of S in ðY ; dÞ (i.e., BðS; eÞ ¼ fy A Y : dðy;SÞ < eg). Let us recall that

a mapping j : X ! 2Y is d-upper semi-continuous if j#½BðjðxÞ; eÞ� is a neighbourhood of

x, for every x A X and e > 0. A mapping j : X ! 2Y is called d-proximal continuous
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(see [11]) if it is both lower semi-continuous and d-upper semi-continuous. It should be

mentioned that, for a metric space ðY ; dÞ, every continuous j : X ! 2Y is d-proximal

continuous but the converse is not true, see [11, Proposition 2.5]. On the other hand,

the d-proximal continuity depends on the metric d of the range Y. To avoid this, for

a metrizable Y, let us agree that a mapping j : X ! 2Y is proximal continuous if it is d-

proximal continuous with respect to some metric d on Y compatible with the topology

of Y.

Lemma 4.2. Let X be a l-collectionwise normal space, Y be a Banach space with

wðYÞa l, j : X ! FcðYÞ be a proximal continuous mapping, and let c : X ! FcðYÞ be

a lower semi-continuous set-valued selection for j such that cðxÞ is compact whenever

cðxÞ0 jðxÞ. Then, c has a continuous selection.

Proof. Let us recall that a mapping f : X ! FcðY Þ has the Selection Factorization

Property [23] if for every closed subset F of X and every locally finite collection U of

open subsets of Y such that f�1½U� ¼ ff�1½U � : U A Ug covers F, there exists a locally

finite open (in F ) covering of F which refines f�1½U�. According to [23, Proposition

4.3], it now su‰ces to show that c has the Selection Factorization Property. Towards

this end, take a closed set FJX and a locally finite family U of non-empty open sets

in Y such that FJ6c�1½U�. Since j is proximal continuous, by [11, Theorem 3.1],

there exists a locally finite open cover fVU : U A Ug of F such that VUJ j�1½U � for

every U A U. Set W1 ¼ fWU : U A Ug, where WU ¼ VU Vc�1½U �, U A U, and let W1 ¼

6W1. Then, cðxÞ is compact for every x A FnW1. Indeed, take a point x A F and

U A U such that x A VU and cðxÞ ¼ jðxÞ. Since cðxÞVU ¼ jðxÞVU , we get that

x A WUJW1. Hence, x A FnW1 implies cðxÞ0 jðxÞ and, by hypothesis, cðxÞ is com-

pact. As a result, we now have that c�1½U� is point-finite at every point of FnW1. On

the other hand, jUja l because U is locally finite in Y and wðYÞa l. Therefore, there

exists a locally finite open (in F ) cover W2 of FnW1 which refines c�1½U� because X is

l-collectionwise normal. Then, W ¼ W1 UW2 is as required. r

In our next lemma, a set-valued mapping j : X ! 2Y has an open graph if the set

fðx; yÞ A X � Y : y A jðxÞg is open in X � Y .

Lemma 4.3. Let j : X ! 2Y be a mapping with an open graph, and let f : X ! 2Y

be a lower semi-continuous mapping such that jðxÞV fðxÞ0q for every x A X . Define

another mapping c : X ! 2Y by cðxÞ ¼ jðxÞV fðxÞ, x A X . Then, c is lower semi-

continuous.

Proof. Let U be a non-empty open set in Y, and let x0 A c�1½U �. Take a point

y0 A cðx0ÞVU . Since j has an open graph, there exists a neighbourhood U0JU of

y0 and a neighbourhood V0 of x0 such that U0J jðxÞ for every x A V0. Then, V ¼

V0 V f�1½U0� is a neighbourhood of x0 such that cðxÞVU 0q whenever x A V . r

To state our characterization of countably paracompact and l-collectionwise nor-

mal spaces, we need also some terminology about Banach spaces.

Let Y be a space and let e : Y ! R
l be a map. Then we define ea ¼ pa � e, where

pa : R
l ! R is the projection to the a-th factor of Rl, for each a < l. Thus, we have

e ¼ hfea : a < lg.
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Suppose that Y is a Banach space. Let us recall that a sequence fen A Y : n < og

is a Schauder basis for Y if any point y A Y has a unique representation y ¼
P

n<o ynen
for some scalars (i.e., coordinates) yn A R, n < o. Here, y ¼

P
n<o ynen means that

limn!yky�
P

kan ykekk ¼ 0, where k:k is the norm of Y.

Note that any Schauder basis fen A Y : n < og for a Banach space Y defines a

natural linear continuous injection e : Y ! R
o, see [3, Exercise III.14.10] and [26,

Theorem 3.1]. Namely, one may define e : Y ! R
o by enðyÞ ¼ yn, n < o, where

y ¼
P

n<o ynen A Y . It should be mentioned that, with respect to this map e ¼

hfen : n < og, we have enðenÞ ¼ 1 and emðenÞ ¼ 0 for m0 n. Motivated by this, we

shall say that a map e : Y ! R
l is a generalized Schauder basis for a Banach space Y if

it is a continuous linear injection such that, whenever y A Y and a < l, there is a point

ya A Y , with ebðyaÞ ¼ ebðyÞ if b ¼ a and ebðyaÞ ¼ 0 otherwise. Clearly, the natural

linear injection e : Y ! R
o determined by a Schauder basis for Y is a generalized

Schauder basis but the converse does not hold. For instance, consider the Banach

space l
y of bounded sequences. Then the natural injection e : ly ! R

o is a gen-

eralized Schauder basis but the space l
y does not have a Schauder one since it is not

separable.

The generalized Schauder basises will be used in the following special situation.

Definition 4.4. We shall say that a generalized Schauder basis e : Y ! R
l for

a Banach space Y is a c0ðlÞ-basis for Y if e½Y �H c0ðlÞ and it is continuous as a map

from Y to c0ðlÞ. Also, we shall say that Y is a generalized c0ðlÞ-space if it is a Banach

space, with wðYÞa l, which has a c0ðlÞ-basis.

Note that c0ðlÞ is a generalized c0ðlÞ-space. Also, every Euclidean space is a

generalized c0ðlÞ-space for every infinite cardinal l. Finally, the Banach spaces lpðlÞ,

for pb 1, are another important example of generalized c0ðlÞ-spaces.

In what follows, for a convex set K of a Banach space Y, we consider a weak

convex interior wciðKÞ of K defined by

wciðKÞ ¼ fx A K : x ¼ dx1 þ ð1� dÞx2 for some x1; x2 A Knfxg and 0 < d < 1g:

Also, for s; t A R
l, we shall write s < t if sa t and sðaÞ < tðaÞ for some a < l. Finally,

for maps g; h : X ! R
l, we write g < h if gðxÞ < hðxÞ for every x A X .

Theorem 4.5. Let l be an infinite cardinal. For a space X the following conditions

are equivalent:

(1) X is countably paracompact and l-collectionwise normal.

(2) Whenever Y is a generalized c0ðlÞ-space and f : X ! C
0
c ðY Þ is a lower semi-

continuous mapping such that jfðxÞj > 1 for every x A X , there exists a con-

tinuous map f : X ! Y such that f ðxÞ A wciðfðxÞÞ for all x A X .

(3) For every lower semi-continuous mapping f : X ! C
0
c ðc0ðlÞÞ, with jfðxÞj > 1

for every x A X , there exists a continuous map f : X ! c0ðlÞ such that f ðxÞ A

wciðfðxÞÞ for all x A X .

(4) For every closed subspace A of X and for every two maps g; h : A ! c0ðlÞ such

that g is upper semi-continuous, h is lower semi-continuous and g < h, there

exists a continuous map f : X ! c0ðlÞ such that g < f jA < h.
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Proof. ð1Þ ) ð2Þ: Let Y and f : X ! C
0
c ðYÞ be as in (2). Let e : Y ! c0ðlÞ be

a c0ðlÞ-basis for Y. For each n < o, let

Un ¼ fx A X : diameterðea½fðxÞ�Þ > 2�n for some a < lg:

Note that each Un is open in X because e is continuous and f is lower semi-continuous.

Hence, the family fUn : n < og is an open cover of X because e is injective and

jfðxÞj > 1 for every x A X . Then, the countable paracompactness of X implies the

existence of a locally finite open cover fGn : n < og of X with clX GnJUn, n < o.

Now, for every a < l and n < o, define an open subset U n
a of X by

U n
a ¼ fx A X : diameterðea½fðxÞ�Þ > 2�ng:

Since Y is not a singleton, the same is true for e½Y �. Then, without loss of generality,

we may suppose that e0½Y � is not a singleton. We claim that fU n
a : 0 < a < lg is point-

finite in X n
0 ¼ XnU n

0 . To show this, first let us observe that e½fðxÞ� is compact for

each x A X n
0 . Namely, if fðxÞ ¼ Y for some x A X , then e0½fðxÞ� ¼ R and, in par-

ticular, diameterðe0½fðxÞ�Þ > 2�n, so x A U n
0 . Therefore e½fðxÞ� is compact for each

x A X n
0 because f is C

0ðYÞ-valued and e is continuous. Thus, we can define a map-

ping fn
0 : X n

0 ! Cðc0ðlÞÞ which carries x to e½fðxÞ�. Hence, by Lemma 2.7, two

maps inf fn
0 ; sup f

n
0 : X n

0 ! c0ðlÞ can also be defined. Then, the required property of

fU n
a : 0 < a < lg follows from Lemma 2.4 because

fU n
a VX n

0 : 0 < a < lg ¼ fLðpa � ðsup f
n
0 � inf fn

0 Þ; 2
�nÞ : 0 < a < lg:

Next, note that fU n
a : 0 < a < lg covers X n

0 V clX Gn. Since X is l-collectionwise nor-

mal, there exists a locally finite open (in X ) cover fV n
a : 0 < a < lg of X n

0 V clX Gn such

that clX V n
a JU n

a , whenever 0 < a < l. Finally, note that

clX Gnn6fV n
a : 0 < a < lgJU n

0 :

Hence, there exists an open set V n
0 JX such that

clX Gnn6fV n
a : 0 < a < lgJV n

0 J clX V n
0 JU n

0 :

Then, let W n
a ¼ V n

a VGn for every a < l. Thus, we get a locally finite open cover

fW n
a : a < l and n < og of X because so is fGn : n < og. Therefore, the same is true

for fWa : a < lg, where Wa ¼6fW n
a : n < og, a < l.

Now, for every a < l, set Xa ¼ clX Wa. Next, take a fixed a < l such that

Xa 0q. Note that the mapping ja : Xa ! C
0
c ðRÞ defined by jaðxÞ ¼ ea½fðxÞ� for x A Xa

is lower semi-continuous. Let R be the extended real line ½�y;þy�. Then, we may

consider ga ¼ inf ja : Xa ! R and ha ¼ sup ja : Xa ! R. As a result, ga is upper semi-

continuous, ha is lower semi-continuous (see, e.g., Lemma 2.8), and ga < ha because

XaJ6fU n
a : n < og. Since Xa is countably paracompact and normal, by a result of

[4], [5], [14], there exists a continuous rðg;aÞ : Xa ! R such that ga < rðg;aÞ < ha. Note

that, in fact, rðg;aÞ½Xa�JR. Now, according to the same result, we may find also

continuous functions rð1;aÞ; rð2;aÞ; rðh;aÞ : Xa ! R such that

ga < rðg;aÞ < rð1;aÞ < rð2;aÞ < rðh;aÞ < ha:
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Define a set-valued mapping jð1;aÞ : Xa ! 2Y by

jð1;aÞðxÞ ¼ e�1
a ½ðrðg;aÞðxÞ; rð1;aÞðxÞÞ�; x A Xa:

Note that jð1;aÞ has an open graph, and jð1;aÞðxÞV fðxÞ0q for every x A Xa.

Indeed, take a point x A Xa and y A jð1;aÞðxÞ. Since eaðyÞ A ðrðg;aÞðxÞ; rð1;aÞðxÞÞ, there

exists an e > 0 with ½eaðyÞ � e; eaðyÞ þ e�H ðrðg;aÞðxÞ; rð1;aÞðxÞÞ. Then, U ¼ e�1
a ½ðeaðyÞ�

e; eaðyÞ þ eÞ� is a neighbourhood of y in Y because ea is continuous. Since the func-

tions rðg;aÞ and rð1;aÞ are continuous, there also exists a neighbourhood V of x in Xa

such that z A V implies

rðg;aÞðzÞ < eaðyÞ � e < eaðyÞ þ e < rð1;aÞðzÞ:

Hence, z A V implies U H jð1;aÞðzÞ. That is, jð1;aÞ has an open graph.

Now, according to Lemma 4.3, the mapping cð1;aÞðxÞ ¼ jð1;aÞðxÞV fðxÞ, x A Xa, is

lower semi-continuous. In what follows, with every set-valued mapping y : Xa ! 2Y

we associate another one y : Xa ! 2Y by yðxÞ ¼ clY yðxÞ, x A Xa. Thus, by a result

of Michael [19, Proposition 2.3], cð1;aÞ : Xa ! FcðY Þ is lower semi-continuous. Also,

cð1;aÞ is a set-valued selection of jð1;aÞ, and cð1;aÞðxÞ0 jð1;aÞðxÞ for some x A Xa implies

the compactness of cð1;aÞðxÞ.

In order to apply Lemma 4.2, let us show that jð1;aÞ is k:k-proximal continuous,

where k:k is the norm of Y. In fact, it only su‰ces to show that jð1;aÞ is k:k-upper

semi-continuous because jð1;aÞ is lower semi-continuous as a mapping with an open

graph. Towards this end, note that ea½Y � ¼ R because ea½Y �0 f0g. Then, by the open

mapping theorem, ea is an open map, which implies that

jð1;aÞðxÞ ¼ clY e�1
a ½ðrðg;aÞðxÞ; rð1;aÞðxÞÞ�

¼ e�1
a ½clRðrðg;aÞðxÞ; rð1;aÞðxÞÞ� ¼ e�1

a ½½rðg;aÞðxÞ; rð1;aÞðxÞ��

for each x A Xa. Now, take a point x0 A Xa and e > 0. Also, let Ya ¼ fya : y A Yg,

where ya’s are as in the definition of a generalized Schauder basis with respect to our

map e : Y ! R
l. Then, Ya is isomorphic to the real line R, so there exists a constant

c > 0 such that

1

c
� jeaðyaÞja kyaka c � jeaðyaÞj; for every y A Y :ð4:1Þ

Consider the neighbourhood

U ¼ x A Xa : jrðg;aÞðxÞ � rðg;aÞðx0Þj <
e

c
and jrð1;aÞðxÞ � rð1;aÞðx0Þj <

e

c

� �

of x0 in Xa. Finally, take a point x1 A U and y A jð1;aÞðx1Þ, and let us check

that y A Bðjð1;aÞðx0Þ; eÞ. Turning to this last purpose, note that there are points

y i
ðg;aÞ; y

i
ð1;aÞ A Ya such that eaðy

i
ðg;aÞÞ ¼ rðg;aÞðxiÞ and eaðy

i
ð1;aÞÞ ¼ rð1;aÞðxiÞ, i ¼ 0; 1. Since

eaðyÞ A ½rðg;aÞðx1Þ; rð1;aÞðx1Þ�, there now exists d A ½0; 1� such that

ya ¼ d � y1ðg;aÞ þ ð1� dÞ � y1ð1;aÞ:
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Then, for i ¼ 0; 1, let us consider the points

y i
g ¼ ðy� yaÞ þ y i

ðg;aÞ and y i
1 ¼ ðy� yaÞ þ y i

ð1;aÞ:

In this way, we get a nice representation of y, namely y ¼ d � y1g þ ð1� dÞ � y11 , while

z ¼ d � y0g þ ð1� dÞ � y01 A jð1;aÞðx0Þ because eaðy� yaÞ ¼ 0. Let us calculate the distance

between these two points of Y:

ky� zk ¼ kd � y1g þ ð1� dÞ � y11 � d � y0g � ð1� dÞ � y01k

¼ kd � ðy1g � y0gÞ þ ð1� dÞ � ðy11 � y01Þk

¼ kd � ðy1ðg;aÞ � y0ðg;aÞÞ þ ð1� dÞ � ðy1ð1;aÞ � y0ð1;aÞÞk

a d � ky1ðg;aÞ � y0ðg;aÞk þ ð1� dÞ � ky1ð1;aÞ � y0ð1;aÞk:

Then, according to (4.1), we finally get that

ky� zka d � ky1ðg;aÞ � y0ðg;aÞk þ ð1� dÞ � ky1ð1;aÞ � y0ð1;aÞk

a d � c � jeaðy
1
ðg;aÞÞ � eaðy

0
ðg;aÞÞj þ ð1� dÞ � c � jeaðy

1
ð1;aÞÞ � eaðy

0
ð1;aÞÞj

¼ d � c � jrðg;aÞðx1Þ � rðg;aÞðx0Þj þ ð1� dÞ � c � jrð1;aÞðx1Þ � rð1;aÞðx0Þj

< d � c �
e

c
þ ð1� dÞ � c �

e

c
¼ d � eþ ð1� dÞ � e ¼ e:

That is, y A Bðjð1;aÞðx0Þ; eÞ, so jð1;aÞ is k:k-proximal continuous.

Going back to our construction, by Lemma 4.2, cð1;aÞ has a continuous selection

fð1;aÞ : Xa ! Y because jð1;aÞ is proximal continuous, and cð1;aÞðxÞ0 jð1;aÞðxÞ for some

x A Xa implies the compactness of cð1;aÞðxÞ.

Next, we repeat the same trick with the second pair of maps. Namely, we may

define another set-valued mapping jð2;aÞ : Xa ! 2Y by

jð2;aÞðxÞ ¼ e�1
a ½ðrð2;aÞðxÞ; rðh;aÞðxÞÞ�; x A Xa:

Just like before, jð2;aÞ has an open graph, and jð2;aÞðxÞV fðxÞ0q for every x A Xa.

Hence, by Lemma 4.3, the mapping cð2;aÞðxÞ ¼ jð2;aÞðxÞV fðxÞ, x A Xa, is lower semi-

continuous, and therefore so is cð2;aÞ. Also, cð2;aÞðxÞ is compact for every point x A Xa

with cð2;aÞðxÞ0 jð2;aÞðxÞ, while jð2;aÞ is proximal continuous. Then, by Lemma 4.2,

cð2;aÞ has a continuous selection fð2;aÞ : Xa ! Y . Thus, we get two pointwise disjoint

selections fði;aÞ, i ¼ 1; 2, for fjXa
because jð1;aÞðxÞV jð2;aÞðxÞ ¼ q for every x A Xa.

Hence, fa ¼ ð fð1;aÞ þ fð2;aÞÞ=2 is a continuous map such that faðxÞ A wciðfðxÞÞ for every

x A Xa.

We now complete the proof of this implication as follows. Take a partition of

unity fpa : a < lg index-subordinated to the cover fWa : a < lg of X. Then, the map

f : X ! Y , defined by

f ðxÞ ¼
X

fpaðxÞ � faðxÞ : a < lg; x A X ;
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is the required selection for f. To see this, we need only to check that f ðxÞ A wciðfðxÞÞ

for every x A X . Take a point x A X , and let AðxÞ ¼ fa < l : paðxÞ > 0g. Note that

AðxÞ is a finite set. In case AðxÞ ¼ fag, we have f ðxÞ ¼ faðxÞ A wciðfðxÞÞ. Other-

wise, pick a fixed b A AðxÞ, and then set

d ¼ pbðxÞ and ybðxÞ ¼
X

fpaðxÞ � faðxÞ : a A AðxÞnfbgg=ð1� dÞ:

Note that ybðxÞ A fðxÞ because
P

fpaðxÞ=ð1� dÞ : a A AðxÞnfbgg ¼ 1. Hence, f ðxÞ ¼

d � fbðxÞ þ ð1� dÞ � ybðxÞ A wciðfðxÞÞ. Indeed, fbðxÞ ¼ ybðxÞ implies f ðxÞ ¼ fbðxÞ A

wciðfðxÞÞ. Otherwise, by definition, f ðxÞ A wciðfðxÞÞ.

ð2Þ ) ð3Þ is obvious.

ð3Þ ) ð4Þ: Let g; h : A ! c0ðlÞ be as in (4). Then, by Lemmas 2.5 and 2.6,

½g; h� : A ! Ccðc0ðlÞÞ is lower semi-continuous. Hence, the mapping f : X ! C
0
c ðc0ðlÞÞ,

defined by fðxÞ ¼ ½g; h�ðxÞ if x A A and fðxÞ ¼ c0ðlÞ otherwise, is lower semi-continuous

too. Also, jfðxÞj > 1 for every x A X because g < h. Therefore, by (3), there exists a

continuous f : X ! c0ðlÞ with f ðxÞ A wciðfðxÞÞ for every x A X . Clearly, this f is as

required in (4).

ð4Þ ) ð1Þ: First of all, let us observe that X is a countably paracompact normal

space. Indeed, take maps g0; h0 : X ! R such that g0 is upper semi-continuous, h0 is

lower semi-continuous and g0ðxÞ < h0ðxÞ for every x A X . Next, for every 0 < a < l,

define gaðxÞ ¼ haðxÞ ¼ 0, x A X . Thus, we get an upper semi-continuous map g ¼

hfga : a < lg : X ! c0ðlÞ and a lower semi-continuous one h ¼ hfha : a < lg : X !

c0ðlÞ such that g < h. Hence, by (4), there exists a continuous map f : X ! c0ðlÞ with

g < f < h. In particular, f0 ¼ p0 � f : X ! R is continuous and g0ðxÞ < f0ðxÞ < h0ðxÞ

for every x A X . Then, by a result of [4], [5], [14], X is countably paracompact and

normal. Thus, it only remains to show that X is l-collectionwise normal. Towards

this end, take a closed set AJX and two maps g; h : A ! c0ðlÞ such that g is upper

semi-continuous, h is lower semi-continuous and ga h. By Theorem 4.1 it su‰ces

to show the existence of a continuous map f : X ! c0ðlÞ such that ga f jAa h. Let

x : l ! lnf0g be the bijection defined by xðaÞ ¼ aþ 1 for a < o and xðaÞ ¼ a for abo.

For each x A X and each a< l, define g 0ðxÞðaÞ ¼ 0 for a ¼ 0 and g 0ðxÞðaÞ ¼ gðxÞðx�1ðaÞÞ

for a0 0, and also define h 0ðxÞðaÞ ¼ 1 for a ¼ 0 and h 0ðxÞðaÞ ¼ hðxÞðx�1ðaÞÞ for a0 0.

Then, we have two maps g 0; h 0
: A ! c0ðlÞ such that g 0 is upper semi-continuous,

h 0 is lower semi-continuous and g 0 < h 0. Hence, by (4), there exists a continuous

map f 0
: X ! c0ðlÞ such that g < f 0jA < h. Finally, define a map f : X ! c0ðlÞ by

f ðxÞðaÞ ¼ f 0ðxÞðxðaÞÞ for x A X and a < l. Then f is continuous and ga f jAa h. r

From one hand, Theorem 4.5 might be read as a possible extension of the Dowker-

Katětov characterization of countably paracompact normal spaces [5], [14], see also

[4]. From another hand, Theorem 4.5 should be compared with Michael’s charac-

terization [19, Theorem 3.1 000] of perfectly normal spaces by selections avoiding sup-

porting points of convex sets. More precisely, in the Michael’s terminology [19], if Y

is a Banach space and K A FcðYÞ, then a supporting set of K is a closed convex subset

S of K, S0K , such that if an interior point of a segment in K is in S, then the

whole segment is in S. The set of all elements of K which are not in any supporting
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set of K is denoted by IðKÞ (suggesting ‘‘Inside of K ’’). Finally, as in [19], one may

consider

DðY Þ ¼ fB A 2Y
: B is convex and IðclY BÞJBg:

It is well known (see [19]) that FcðY ÞHDðYÞ; that every convex B A 2Y with a non-

empty interior belongs to DðYÞ; and that every finite-dimensional convex B A 2Y belongs

to DðY Þ.

As for our weak convex interior, it is clear that IðKÞJwciðKÞ for every K A FcðY Þ

but the converse is not true. In fact, the Michael’s [19, Theorem 3.1 000] states that a

space X is perfectly normal if and only if for every separable Banach space Y, every

lower semi-continuous f : X ! DðYÞ has a continuous selection.

Our next result presents another possible characterization of perfectly normal spaces

in terms of selections.

Theorem 4.6. Let l be an infinite cardinal. For a space X the following conditions

are equivalent:

(1) X is perfectly normal and l-collectionwise normal.

(2) Whenever Y is a generalized c0ðlÞ-space, every lower semi-continuous mapping

f : X ! C
0
c ðY Þ has a continuous selection f such that f ðxÞ A wciðfðxÞÞ for every

x A X with jfðxÞj > 1.

(3) Every lower semi-continuous mapping f : X ! C
0
c ðc0ðlÞÞ has a continuous selec-

tion f such that f ðxÞ A wciðfðxÞÞ for every x A X with jfðxÞj > 1.

(4) For every closed subspace A of X and for every two maps g; h : A ! c0ðlÞ such

that g is upper semi-continuous, h is lower semi-continuous and ga h, there

exists a continuous map f : X ! c0ðlÞ such that ga f jAa h and gðxÞ < f ðxÞ <

hðxÞ whenever x A A with gðxÞ < hðxÞ.

Proof. ð1Þ ) ð2Þ: Let Y and f : X ! C
0
c ðYÞ be as in (2). Since X is l-

collectionwise normal, f has a continuous selection l : X ! Y , see, for instance, Theo-

rem 4.1. Let Z ¼ fx A X : jfðxÞj > 1g. Since f is lower semi-continuous, Z is an

open subset of X. Hence, it is an Fs-set because X is perfectly normal. Therefore,

by a result of [25], Z is l-collectionwise normal too. On the other hand, X is a

countably paracompact space as a perfectly normal one. Hence, Z is also count-

ably paracompact, see [30]. Thus, by Theorem 4.5, fjZ has a continuous selection

u : Z ! Y such that uðzÞ A wciðfðzÞÞ for every z A Z. Finally, take a continuous func-

tion r : X ! ½0; 1� such that XnZ ¼ r�1ð0Þ. We define the required selection f for f

in the following way. First, define another continuous function k : Z ! ð0;þyÞ by

kðzÞ ¼ maxfrðzÞ; kuðzÞ � lðzÞkg, z A Z, where k:k is the norm of Y. Then, the func-

tion d : Z ! ½0; 1�, defined by dðzÞ ¼ rðzÞ=kðzÞ, z A Z, is also continuous. Now we may

define our f : X ! Y by f ðxÞ ¼ dðxÞ � uðxÞ þ ð1� dðxÞÞ � lðxÞ if x A Z and f ðxÞ ¼ lðxÞ

otherwise. First, let us check that f is continuous. Clearly, f jZ and f jXnZ are

continuous. Hence, it su‰ces to check this for the points of clX ZV ðXnZÞ if they

exist. So, take a point x0 A clX ZV ðXnZÞ and an e > 0. Since rðx0Þ ¼ 0, there exists

a neighbourhood V of x0 such that rðxÞ < e=2 for every x A V . Since l is continuous,

there also exists a neighbourhood W of x0 such that klðxÞ � lðx0Þk < e=2 for every
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x A W . Then, U ¼ V VW works as a desired neighborhood of x0. Indeed, take a

point x A U VZ. Then,

k f ðxÞ � f ðx0Þka k f ðxÞ � lðxÞk þ klðxÞ � f ðx0Þk

¼ kdðxÞ � uðxÞ þ ð1� dðxÞÞ � lðxÞ � lðxÞk þ klðxÞ � lðx0Þk

< dðxÞ � kuðxÞ � lðxÞk þ e=2

¼ rðxÞ �
kuðxÞ � lðxÞk

kðxÞ
þ e=2

a rðxÞ þ e=2 < e:

That is, f is continuous. Clearly, f is a selection for f because f is convex-valued.

Finally, let us check that f ðxÞ A wciðfðxÞÞ for every x A Z. So, take a point x A Z.

If uðxÞ ¼ lðxÞ, we have f ðxÞ ¼ uðxÞ A wciðfðxÞÞ. If uðxÞ0 lðxÞ, then, by definition,

f ðxÞ A wciðfðxÞÞ.

The implication ð2Þ ) ð3Þ is obvious, while ð3Þ ) ð4Þ repeats precisely the cor-

responding implication in the proof of Theorem 4.5.

ð4Þ ) ð1Þ: By Theorem 4.5, X is l-collectionwise normal. To show that X is

perfectly normal, we repeat the arguments suggested in [23, Question 2]. Take a closed

set AJX , and let g0 : X ! R be the constant 0, while h0 be the characteristic function

of XnA. Next, for every 0 < a < l, let ga; ha : X ! R be the constant functions whose

value are equal to 0. Then, g ¼ hfga : a < lg : X ! c0ðlÞ is upper semi-continuous,

h ¼ hfha : a < lg : X ! c0ðlÞ is lower semi-continuous, and ga h. Hence, by (4),

there exists a continuous f : X ! c0ðlÞ such that ga f a h and gðxÞ < f ðxÞ < hðxÞ

whenever gðxÞ < hðxÞ. Then, in particular, f0 ¼ p0 � f : X ! R is continuous, g0ðxÞa

f0ðxÞa h0ðxÞ for every x A X , and g0ðxÞ < f0ðxÞ < h0ðxÞ whenever g0ðxÞ < h0ðxÞ.

According to the definition of g0 and h0, the last implies that A ¼ f �1
0 ð0Þ. r

Returning back to Theorem 4.5, a word should be said about condition (2) of

this theorem. In fact, the reader may wonder if this condition holds for all Banach

spaces. The authors do not know if this is true, which suggests the following natural

question.

Problem 4.7. Let X be a countably paracompact and l-collectionwise normal

space for some infinite cardinal l, Y be a Banach space with wðYÞa l, and f : X !

C
0
c ðY Þ be lower semi-continuous such that jfðxÞj > 1 for every x A X . Does there exist

a continuous map f : X ! Y such that f ðxÞ A wciðfðxÞÞ for every x A X ?

5. Characterizations of expandable spaces.

Let l be an infinite cardinal. A space X is called l-expandable (resp., almost l-

expandable) if every locally finite family F of closed sets in X, with jFja l, has a

locally finite (resp., point-finite) open expansion (cf. [16], [27]). We state the results,

then proceed to the proofs.

Theorem 5.1. For an infinite cardinal l, the following conditions on a space X are

equivalent:
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(1) X is l-expandable.

(2) For every completely metrizable space Y, with wðYÞa l, and every upper semi-

continuous mapping f : X ! CðYÞ, there exist two mappings j;c : X ! CðY Þ

such that j is lower semi-continuous, c is upper semi-continuous and fJ jJc.

(3) There exists a space Y and a locally finite family G of non-empty open sets in Y,

with jGj ¼ l, such that for every upper semi-continuous mapping f : X ! CðY Þ,

there exist two mappings j;c : X ! CðYÞ such that j is lower semi-continuous,

c is upper semi-continuous and fJ jJc.

(4) For every upper semi-continuous map f : X ! c0ðlÞ, there exist two maps

g; h : X ! c0ðlÞ such that g is lower semi-continuous, h is upper semi-continuous

and f a ga h.

Theorem 5.2. For an infinite cardinal l, the following conditions on a space X are

equivalent:

(1) X is almost l-expandable.

(2) For every completely metrizable space Y, with wðYÞa l, and every upper semi-

continuous mapping f : X ! CðY Þ, there exists a lower semi-continuous map-

ping j : X ! CðY Þ such that fJ j.

(3) There exists a space Y and a locally finite family G of non-empty open sets in Y,

with jGj ¼ l, such that for every upper semi-continuous mapping f : X ! CðY Þ,

there exists a lower semi-continuous mapping j : X ! CðYÞ such that fJ j.

(4) For every upper semi-continuous map f : X ! c0ðlÞ, there exists a lower semi-

continuous map g : X ! c0ðlÞ such that f a g.

Miyazaki [21] has proven the equivalence (1) and (2) in Theorem 5.1 assuming that

X is normal, and has shown that every metacompact space satisfies (2) in Theorem 5.2.

To prove Theorems 5.1 and 5.2, we need some definitions and lemmas. First, let

us recall that, for a metric space ðY ; dÞ, the Hausdor¤ distance dH on CðYÞ associated

with d is defined by

HðdÞðS;TÞ ¼ supfdðS; yÞ þ dðy;TÞ : y A S UTg; S;T A CðY Þ:

Lemma 5.3 (Fort [9]). Let ðY ; dÞ be a metric space, and let fjng be a sequence of

mappings from a space X to CðYÞ which is uniformly convergent to a mapping j : X !

CðYÞ with respect to the Hausdor¤ distance dH on CðYÞ associated with d. Then, j is

lower (resp., upper) semi-continuous if jn is lower (resp., upper) semi-continuous for each n.

Lemma 5.4. Let U ¼ fUa : a A Ag be a point-finite cover of a space X, and let

fya : a A Ag be a subset of a space Y. Define a set-valued mapping f : X ! CðYÞ by

fðxÞ ¼ fya : x A Ua; a A Ag for each x A X . Then, f is lower semi-continuous provided

that U is an open cover, and f is upper semi-continuous provided that U is a locally finite

closed cover.

Proof. This follows from the fact that f�1½V � ¼6fUa : ya A V ; a A Ag and

f#½V � ¼ Xn6fUa : ya B V ; a A Ag for every open set V in Y. r

Let X and Y be spaces, and f : X ! CðYÞ. We say that f has the locally finite

(resp., point-finite) lifting property if for every family E of subsets of Y admitting a
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locally finite open expansion, there exists a locally finite (resp., point-finite) open

expansion of ff�1½E� : E A Eg in X (see [12], [21]).

Lemma 5.5. Let X and Y be spaces, and f : X ! CðYÞ. Then:

(1) If there exist mappings j;c : X ! CðYÞ such that j is lower semi-continuous,

c is upper semi-continuous and fJ jJc, then f has the locally finite lifting

property. The converse is also true if Y is completely metrizable.

(2) If there exists a lower semi-continuous mapping j : X ! CðY Þ such that fJ j,

then f has the point-finite lifting property. The converse is also true if Y is

completely metrizable.

Proof. We only prove (1) since (2) can be proved similarly. First, assume that

there exist mappings j;c : X ! CðY Þ such that j is lower semi-continuous, c is upper

semi-continuous and fJ jJc. Let E be a locally finite family of subsets of Y with a

locally finite open expansion fGðEÞ : E A Eg, i.e. EJGðEÞ for each E A E. Set UðEÞ ¼

j�1½GðEÞ� and VðEÞ ¼ c�1½GðEÞ� for each E A E. Then, we have f�1½E�JUðEÞJ
VðEÞ for each E A E. Since j is lower-semi-continuous, UðEÞ is open in X for each

E A E and, since c is upper semi-continuous, fVðEÞ : E A Eg is locally finite in X.

Thus, fUðEÞ : E A Eg is a locally finite open expansion of ff�1½E� : E A Eg in X.

Hence, f has the locally finite lifting property.

Next, assume that f has the locally finite lifting property and Y is a completely

metrizable space. Fix a complete metric d on Y. Then, there exist locally finite open

covers Gn ¼ fGa : a A Ang, n A N , of Y and a chain of maps

A1  
p1
A2  

p2
A3  � � �  An  

pn
Anþ1  � � �

such that Ga ¼6fGb : b A p�1n ðaÞg and diameterðGaÞ < 1=2n for each a A An and n A N .

Since f has the locally finite lifting property, ff�1½Ga� : a A Ang has a locally finite

open expansion for each n A N . Moreover, f�1½Ga� ¼6ff
�1½Gb� : b A p�1n ðaÞg for each

a A An and n A N . Thus, we can construct inductively locally finite open covers Un ¼

fUa : a A Ang, n A N , of X with the same index set as Gn such that

f�1½Ga�JUa ¼6fUb : b A p�1n ðaÞg

for each a A An and each n A N . Whenever n A N , fix a point ya A Ga for each a A An,

and define mappings jn;cn : X ! CðY Þ by jnðxÞ ¼ fya : x A Ua; a A Ang and cnðxÞ ¼

fya : x A clX Ua; a A Ang, respectively, for x A X . Then, it follows from Lemma 5.4 that

jn is lower semi-continuous and cn is upper semi-continuous. Let dH be the Hausdor¤

metric on CðYÞ associated to the metric d of Y. According to the definitions of jn
and cn,

dHðjnðxÞ; jnþ1ðxÞÞ < 1=2n and dHðcnðxÞ;cnþ1ðxÞÞ < 1=2n

for each x A X and each n A N , i.e. fjng and fcng are Cauchy sequences in the uniform

space of all maps from X to ðCðYÞ; dHÞ. Since ðCðYÞ; dHÞ is complete by [8, 4.5.23 (d),

p. 298], fjng uniformly converges to a map j : X ! CðYÞ, and fcng uniformly con-

verges to a map c : X ! CðYÞ. By Lemma 5.3, j is lower semi-continuous and c is

upper semi-continuous. Finally, it is easy to check that fJ jJc. r

Now, we are ready to prove Theorems 5.1 and 5.2.
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Proof of Theorem 5.1. ð1Þ ) ð2Þ: Let f : X ! CðY Þ be an upper semi-

continuous mapping. Then, ff�1½E� : E A Eg is locally finite in X for every locally finite

family E of subsets in Y. Thus, (1) implies that f has the locally finite lifting property.

Hence, we have (2) by Lemma 5.5.

ð2Þ ) ð4Þ: Let f : X ! c0ðlÞ be an upper semi-continuous map. Then, the map

h : X ! c0ðlÞ, defined by hðxÞ ¼ maxf f ðxÞ; 0g, x A X , is also upper semi-continuous by

Lemma 2.3. Hence, it follows from Lemma 2.6 that the mapping ½0; h� : X ! Cðc0ðlÞÞ,

which carries x to ½0; hðxÞ�, is upper semi-continuous. By (2), there exist two mappings

j;c : X ! Cðc0ðlÞÞ such that j is lower semi-continuous, c is upper semi-continuous

and ½0; h�J jJc. Finally, by Lemma 2.8, sup j : X ! c0ðlÞ is lower semi-continuous,

supc : X ! c0ðlÞ is upper semi-continuous and f a ha sup ja supc.

ð4Þ ) ð3Þ: We show that c0ðlÞ satisfies the conditions on Y stated in (3). Clearly,

fp�1
a ½ð1;þyÞ� : a < lg is a locally finite family of non-empty open sets in c0ðlÞ with

cardinality l. Let f : X ! Cðc0ðlÞÞ be an upper semi-continuous mapping. Then, it

follows from Lemma 2.8 that sup f is upper semi-continuous and inf f is lower semi-

continuous. Thus, by (4) and the second statement of Lemma 2.2, we can find lower

semi-continuous maps gl; hl : X ! c0ðlÞ and upper semi-continuous maps gu; hu : X !

c0ðlÞ such that

hla gua inf fa sup fa gla hu:ð5:1Þ

Define j ¼ ½gu; gl� and c ¼ ½hl; hu�. Then, j is lower semi-continuous and c is upper

semi-continuous by Lemma 2.6, and fJ jJc by (5.1).

ð3Þ ) ð1Þ: To show that X is l-expandable, let F be a locally finite family of

closed sets in X with jFja l. We may assume that F covers X. Also, let Y be as in

(3). Then, Y has a locally finite family G ¼ fGðFÞ : F A Fg of non-empty open sets in

Y. Choose a point yF A GðFÞ for each F A F, and define a mapping f : X ! CðY Þ by

fðxÞ ¼ fyF : x A F A Fg for x A X . Then, f is upper semi-continuous by Lemma 5.4.

According to the properties of Y and Lemma 5.5, f has the locally finite lifting

property. Hence, the family ff�1½fyFg� : F A Fg has a locally finite open expansion U

in X, because G is an open expansion of ffyFg : F A Fg. Since FJ f�1½fyFg� for each

F A F, U is also an expansion of F. r

The proof of Theorem 5.2 is left to the reader since it is almost same as that of

Theorem 5.1.

It is known ([16]) that a space X is o-expandable if and only if it is countably

paracompact. Hence, by the definitions, a space X is l-collectionwise normal and

countably paracompact if and only if X satisfies one of the following two conditions:

(i) X is l-expandable and X A l-PN; (ii) X is almost l-expandable and X A l-PN.

Thus, we get several characterizations of a l-collectionwise normal and countably par-

acompact space by combining one of the conditions in Theorems 5.1 and 5.2 with one

of the conditions (1)–(9) in Theorem 3.1 and Remark 3.2. In particular, we have the

following consequence which is a mapping analogue of the Dowker’s characterization

[6] of collectionwise normal and countably paracompact spaces.

Corollary 5.6. For an infinite cardinal l, the following conditions on a normal

space X are equivalent:
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(1) X is l-collectionwise normal and countably paracompact.

(2) For every upper semi-continuous map g : X ! c0ðlÞ, there exists a continuous

map f : X ! c0ðlÞ such that ga f .

For other characterizations of collectionwise normal countably paracompact spaces,

see [21].

We complete this paper with the following characterization of paracompact spaces

which is just like Corollary 5.6, only it deals with maps to C0ðlÞ, where l is the space

of all ordinals less than l with the usual order topology.

Theorem 5.7. For an infinite cardinal l, the following conditions on a normal space

X are equivalent:

(1) X is l-paracompact.

(2) For every space Y, with wðY Þa l, and for every upper semi-continuous

map g : X ! C0ðY Þ, there exists a continuous map f : X ! C0ðYÞ such that

ga f .

(3) For every upper semi-continuous map g : X ! C0ðlÞ, there exists a continuous

map f : X ! C0ðlÞ such that ga f .

Proof. The implication ð1Þ ) ð2Þ is a consequence of [19, Theorem 3.2 00].

Namely, let Y and g : X ! C0ðYÞ be as in (2). Then, the mapping ½g;þyÞ : X !

FcðC0ðYÞÞ is lower semi-continuous by Lemma 2.6. Hence, by the mentioned Michael’s

result, f has a continuous selection f . This f is as required in (2).

Since ð2Þ ) ð3Þ is obvious, we complete the proof showing that ð3Þ ) ð1Þ. To this

end, take a monotone increasing open cover U ¼ fUa : a < lg of X. By [17, Theorem

5], it su‰ces to show that U has a locally finite open refinement. For each x A X , let

aðxÞ ¼ minfa < l : x A Uag. Finally, define a map g : X ! C0ðlÞ by

gðxÞðaÞ ¼
1 for aa aðxÞ

0 for a > aðxÞ:

�

Let us show that g is upper semi-continuous. Let x A X and e > 0 be fixed. For every

x 0 A UaðxÞ, if aa aðxÞ, then gðx 0ÞðaÞa 1 < gðxÞðaÞ þ e, and if a > aðxÞ, then gðx 0ÞðaÞ ¼

0 < gðxÞðaÞ þ e because aðx 0Þa aðxÞ. Since UaðxÞ is a neighbourhood of x, this means

that g is upper semi-continuous. As a result, by (3), there exists a continuous map

f : X ! C0ðlÞ with ga f . Take a locally finite open cover V of X such that

diameter f ½V �a 1=2 for each V A V. To show that V refines U, let V A V and fix

a point x A V . Since f ðxÞ A C0ðlÞ, f ðxÞðaÞ < 1=2 for some a < l. If there exists a

point y A VnUa, then aðyÞ > a and hence f ðyÞðaÞb gðyÞðaÞ ¼ 1 by the definition of g.

Thus, k f ðxÞ � f ðyÞk > 1=2, which contradicts the assumption that diameter f ½V �a 1=2.

Hence, V must be included in Ua. That is, V is a locally finite open refinement of

U. r

In the proof of Theorem 5.7, the normality of X is only used to apply Michael’s

result in the implication ð1Þ ) ð2Þ. Thus, we have the following corollary.

Corollary 5.8. The following conditions on a Hausdor¤ space X are equivalent:
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(1) X is paracompact.

(2) For every space Y and every upper semi-continuous map g : X ! C0ðYÞ, there

exists a continuous map f : X ! C0ðYÞ such that ga f .

(3) For every infinite cardinal l and every upper semi-continuous map g : X !C0ðlÞ,

there exists a continuous map f : X ! C0ðlÞ such that ga f .

Concerning the statements of Corolary 5.8, the following question naturally arises.

Problem 5.9. Is a space X paracompact provided for every space Y and every two

maps g; h : X ! C0ðY Þ such that g is upper semi-continuous, h is lower semi-continuous

and ga h, there exists a continuous map f : X ! C0ðYÞ with ga f a h?
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