J. Math. Soc. Japan
Vol. 55, No. 2, 2003

Selections and sandwich-like properties via

semi-continuous Banach-valued functions

By Valentin Gutev, Haruto OHTA and Kaori YAMAZAKI

(Received Feb. 2, 2001)
(Revised Nov. 22, 2001)

Abstract. We introduce lower and upper semi-continuity of a map to the Banach
space co(A) for an infinite cardinal 1. We prove that the following conditions (i), (ii) and
(1) on a Tj-space X are equivalent: (i) For every two maps g,s: X — ¢¢(4) such that ¢
is upper semi-continuous, / is lower semi-continuous and g < A, there exists a continuous
map f:X — ¢o(4), with g <f <h. (ii) For every Banach space Y, with w(Y) < 4,
every lower semi-continuous set-valued mapping ¢: X — %.(Y) admits a continuous
selection, where %.(Y) is the set of all non-empty compact convex sets in Y. (iii) X is
normal and every locally finite family Z of subsets of X, with |#| < /, has a locally finite
open expansion provided it has a point-finite open expansion. We also characterize sev-
eral paracompact-like properties by inserting continuous maps between semi-continuous
Banach-valued functions.

1. Introduction.

Throughout this paper, by a space we mean a non-empty 7j-space. Our investiga-
tion was motivated by the following two theorems; the former was proved by Katétov

[14], and Tong [29], and the latter was proved by Kando and Nedev [23]:

THeorREM 1.1 (Katétov-Tong’s insertion theorem). A space X is normal if and
only if for every two functions g,h: X — R such that g is upper semi-continuous, h is
lower semi-continuous and g < h, there exists a continuous function f : X — R such that
g<f<h.

For a Banach space Y, let Z.(Y) (resp., 4.(Y)) denote the set of all non-empty
closed (resp., non-empty compact) convex sets in Y. A map f:X — Y is called a
selection of a mapping ¢ : X — Z.(Y) if f(x) € ¢(x) for every x e X.

THEOREM 1.2 (Kando-Nedev’s selection theorem). Let A be an infinite cardinal.
Then, the following conditions on a space X are equivalent:
(1) Every point-finite open cover 4 of X, with || < A, is normal.
(2)  For every Banach space Y, with w(Y) < A, every lower semi-continuous mapping
¢: X — 6.(Y) admits a continuous selection.
(3) Every lower semi-continuous mapping ¢ : X — %.(/1(1)) admits a continuous
selection.
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can be regarded as an essential part of Michael’s selection theorem
[19, Theorem 3.2] (see, also, [2]) asserting that a space X is A-collectionwise normal if
and only if X satisfies the condition (2) with %.(Y) replaced by %.(Y)U{Y}.

For a space Y, let Cy(Y) denote the Banach space of all real-valued continuous
functions s on Y such that for each ¢ > 0 the set {y € Y : |s(y)| > ¢} is compact, where
the linear operations are defined pointwise and |[s|| = sup,.y|s(y)| for each se Co(Y).
In particular, we use cy(4) to denote the space Cy(Y), where Y is the discrete space of
cardinality 4, i.e. ¢o(4) is the Banach space consisting of all points s € R’ such that the
set {o < A:|s(a)| > ¢} is finite for each & > 0.

In this paper, we introduce lower and upper semi-continuity of a map to Cy(Y).
We prove that if the space R in is replaced by co(4), then the resulting
statement is equivalent to the conditions listed in [Theorem 1.2], see [Theorem 3.1. Thus,
insertions and selections are connected via the space c¢yp(4). As a result, we obtain
several sandwich-like analogues to selection theorems as well as selection theorems
corresponding to sandwich-like properties, see Section 4.

For set-valued mappings ¢ and y defined on a space X, we say that ¢ is a set-
valued selection of W, or Y is an expansion of ¢, if p(x) = Y(x) for each x e X. Let
%(Y) denote the set of all non-empty compact sets in a space Y. In Nedev has
characterized several paracompact-like properties by the existence of set-valued selections
of ¢ (Y)-valued mappings for completely metrizable spaces Y. In contrast to this, we
characterize expandability and almost expandability in the sense of [16], by insertion
of ¢¢(4)-valued maps, and by the existence of expansions of %(Y)-valued mappings for
completely metrizable spaces Y, see Section 5.

We often consider two kinds of maps in the same statement, i.e., a single-valued
map to a space Y and a set-valued map to a hyperspace of Y. To distinguish them, we
use the term map for the former one and the term mapping for the latter one. As usual,
a cardinal is identified with the initial ordinal and an ordinal is the set of all smaller
ordinals. The cardinality of a set A4 is denoted by |4|. Let @ denote the first infinite
cardinal and N the set of non-negative integers. Other terms and notation will be used

as in [8].

2. Semi-continuous Cj(Y)-valued functions and compact sets.

In this section, X and Y denote arbitrary spaces and A stands for a cardinal. For a
real-valued function f : X — Rand re R, let L(f,r) ={xe X : f(x) >r} and U(f,r) =
{xe X :f(x) <r}. Recall that a function f: X — R is lower (resp., upper) semi-
continuous if L(f,r) (resp., U(f,r)) is open in X for each r € R. Now, we extend these
notions to Cy(Y)-valued maps as follows:

DErFINITION 2.1. A map f: X — Cy(Y) is lower (resp., upper) semi-continuous if
for every x € X and every ¢ > 0, there is a neighbourhood G of x in X such that if

x"e G, then f(x")(y) > f(x)(y) —e (resp., f(x")(y) < f(x)(y)+¢) for each ye Y.

With every map f : X — Cp(Y) we associate another one —f : X — Cy(Y) defined
by (—f)(x)(y) = —f(x)(») for each x € X and each y € Y. The first lemma is a direct
consequence of the definition.
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LEMMA 2.2. A map [ : X — Cy(Y) is continuous if and only if it is both lower and
upper semi-continuous. A map f:X — Cyo(Y) is lower semi-continuous if and only if
the map —f is upper semi-continuous.

The following three lemmas concern only the case of c¢y(4). For each a < 4, let
m, : R* — R denote the o-th projection, i.e. m,(s) = s(x) for se R*.

LemMMmA 2.3. For a map f: X — co(4), the following are valid:

(1) f is lower semi-continuous if and only if m,of is lower semi-continuous for
each o < A, and {U(n,of,—¢):a < A} is locally finite in X for each &> 0.

(2) f is upper semi-continuous if and only if m,of is upper semi-continuous for
each o < A, and {L(nyof,¢):a < A} is locally finite in X for each ¢ > 0.

PrOOF. Note that L(m,of,e) = U(mn,o(—f),—¢) for every o < A. Hence, by
Lemma 2.2, (2) is a consequence of (1). Thus, it only suffices to prove (1). Suppose
that f is lower semi-continuous. Clearly, 7, of is lower semi-continuous for each
o< A Let e>0 be fixed, and let xe X. Since f is lower semi-continuous, there is a
neighbourhood G of x such that if y € G, then f(y)(a) > f(x)(a) —&/2 for each a < A.
We show that G intersects only finitely many U(n, o f, —¢)’s. By the definition of ¢ (1)
the set 4 ={a < A:f(x)(a) < —g/2} is finite. If ye G and o€ A\A4, then f(y)(a) >
S(xX)(0) —¢/2 > —¢/2 —¢/2 =—¢, ie. y¢ U(n,of,—¢). Hence, GNU(n,of,—¢) =
for each o e A\A.

Conversely, suppose that each n,of, o< A, 1s lower semi-continuous and the
family {U(n, of,—¢):a < A} is locally finite in X for each ¢>0. Let xe X and
&> 0 be fixed. Then, there exist a neighbourhood H of x and a finite set B< /4
such that HNU(n,of,—¢/2) = & for each a € A\B. Since f(x) € co(4), the set C =
{a < X:f(x)(a) >¢/2} is finite. Put D=BUC. 1If ye H and o« € J\D, then f(y)(a) >
—&/2 > f(x)(x) —e. For each a € D, since 7, of is lower semi-continuous, there exists
a neighbourhood H, of x such that f(y)(a) > f(x)(a) — ¢ for every y € H,. Therefore,
if yeHN(),.,H,, then f(y)(x)> f(x)(x) —e for each « <A Hence, f is lower
semi-continuous. [

LEmMMA 2.4. Let f:X — R* be a map. Then, f[X] < co(2) if and only if both
{L(nyof,e) :a< A} and {U(n,of,—¢): o< A} are point-finite in X for each ¢ > 0.

Proor. This follows from the definition of ¢((4). ]

For se Cy(Y) and &€ > 0, let B(s,e) ={re Co(Y): ||s—t]| <e}. For s,te Co(Y),
we write s < ¢ if s(y) < #(y) for each ye Y. Further, if s <t then we define [s,7] =
{ueRY :s<u<t}. Obviously, [s,7] is a closed convex subset of Cy(Y). In the case
of ¢o(4), we have a stronger result:

LEMMA 2.5.  For every s,t € co(4), with s < t, the subspace topology & on [s,t] coin-
cides with the subspace topology induced from the product topology © on R*. Hence, in
particular, [s,t] is a compact convex subset of co(4).

ProOF. Obviously, the topology o is finer than the subspace topology induced
from 7. To prove the converse, let u € [s,¢] and consider an ¢-neighbourhood B(u,¢)
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of u. It suffices to find V' € 7 such that ue VN |s, 7] < B(u,¢). Since s — ¢ € co(4), there
is a finite set 4 = 4 such that |s(x) — #(a)| < & for each z € A\A. Let

V= H{xe R: |u(2) — x| < &} x R*\.
oeA

Then, V' €t and it is easy to check that u e VN |[s,t] < B(u,¢). Thus, we have the first
statement. Clearly, [s,7] is convex. Since [s,7] is a compact subset of (R*,7), it finally
follows that [s, 7] is a compact subset of c¢y(1) too. ]

We now recall the definitions of upper and lower semi-continuity of set-valued
mappings. Let ¢ : X — & be a set-valued mapping, where ¥ is a family of non-empty
subsets of a space Y. For a subset U< Y, let ¢ '[U ={xe X : ¢(x)NU # &} and
¢*[U] = {xe X : 4(x) = U}. The mapping ¢: X — & is called lower (resp., upper)
semi-continuous if ¢~ '[U] (resp., ¢*[U]) is open in X for every open set U in Y. Also,
¢ 1s called continuous if it is both lower and upper semi-continuous.

For maps g,h: X — Cy(Y), we shall write g <& if g(x) < h(x) for every x € X.
With every two such maps we associate a set-valued mapping [g,h] : X — Z.(Co(Y))
defined by [g,/](x) = [g(x),h(x)] for x € X. Also, we associate two mappings [g,+0)
and (—oo,h] from X to Z(Co(Y)) by [g,+0)(x)={se Co(Y):s5s=>g(x)} and
(—o0,hl(x) ={se Co(Y) : s <h(x)} for xe X, respectively. Finally, for S < Cy(Y)
and ¢>0, let B(S,¢) denote the e-neighbourhood of S in Cy(Y), ie. B(S,¢) =
U, eg B(s,8).

LEMMA 2.6. Let g,h: X — Co(Y) be maps such that g < h.

(1) If g is upper semi-continuous, then [g,+o0) is lower semi-continuous.

(2) If h is lower semi-continuous, then (—oo,h| is lower semi-continuous.

(3) If g is upper semi-continuous and h is lower semi-continuous, then the mapping
lg,h] is lower semi-continuous.

(4) If g is lower semi-continuous, h is upper semi-continuous and Y is discrete, then
the mapping [g,h] is upper semi-continuous.

Proor. In order to prove (1), let U be an open set in Co(Y) and x € [g, +00) ' [U].
Since [g,+0)(x)NU # &, there exists s € U with g(x) <s. Choose ¢ > 0 such that
B(s,e) = U. Since ¢ is upper semi-continuous, there exists a neighbourhood G of x
such that x’ € G implies

(2.1) g(x(y) <g(x)(y) +e<s(y)+e for each yeY.

Now, we show that G < [g,+o0) '[U]. Take a point x’e€ G and define #(y) =
max{g(x")(y),s(y)} for ye Y. Then, te Cy(Y) and, by (2.1), t > g(x’) and |[|s — || < e.
Hence, 7€ [g,+0)(x’)N U, which implies that x' e [g,+oo)_1[U]. Consequently, G =
[9,4+00)"'[U], and it follows that [g,+o0) '[U] is open in X.

To prove (2), note that se (—oo,Ah](x) if and only if —se[—h,+o0)(x). Hence,
this follows from (1) because, by [Lemma 2.2, the map —/ is upper semi-continuous.

To prove (3), let us observe that [g,h] ' [U] = |g,+o0) ' [U]N (=0, k] '[U] for
every U < Cy(Y). Hence, the statement follows from (1) and (2).
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We finally prove (4). Let ¥ be an open set in Co(Y) and z e [g,h]*[V]. Then,
[9,h](z) = V. Since Y is discrete, it follows from that [g,/](z) is com-
pact. Thus, we can find 6 > 0 such that B([g,h](z),0) = V. Since g is lower semi-
continuous and /4 is upper semi-continuous, there exists a neighbourhood H of z in X
such that if z/ € H, then g(z')(y) > ¢g(z)(y) —9d and h(z')(y) < h(z)(y) +J for each
yeY. Then, it is easy to check that H < [g,h]*[V]. Hence [g,h] is upper semi-
continuous. [

For a non-empty bounded set K = Cy(Y), we define points sup K and inf K of
RY by (supK)(y) =sup{s(y):se K} and (inf K)(y) = inf{s(y): s € K}, respectively,
for each ye Y.

Lemma 2.7. If K is a non-empty compact set in Cy(Y), then supK € Co(Y) and
inf K € Co(Y). Hence, K < [inf K,sup K].

Proor. We write s =sup K for short. Since K is compact, K is equicontinuous,
which implies that s is continuous. To show that s e Cy(Y), let ¢ > 0 be fixed. If the
set A_ ={yeY :s(y) <—e} is not compact, then every point u € K is not in Cy(Y)
since A_ is closed in {y € Y : |u(y)| = ¢}. This contradiction proves that 4_ is com-
pact. Next, suppose that the set 4. ={ye Y :s(y) >¢} is not compact. For each
y € Ay, choose u, € K with u,(y) >2¢/3 and let B, ={)y" €Y :u,(y') >¢/3}. Then,
A, can not be covered by finitely many B,’s since each B, is compact. Hence, we can
find a sequence {y(n):n < w} = A, such that y(n) ¢ | J._, By for each n > 0. Then,
{uymy - n < w} is discrete closed in K, because ||uy(m) — || = ¢/3 whenever m # n.
This however contradicts the compactness of K. Thus, A, is also compact, and hence,
s€ Cyp(Y). This also implies that inf K € Cy(Y) because —(inf K) = sup(—K). ]

For a mapping ¢ : X — € (Cy(Y)), we define single-valued maps sup¢p : X — Co(Y)
and inf¢: X — Cy(Y) by (sup¢)(x) =supg(x) and (inf ¢)(x) = inf ¢(x), respectively,
for each xe X.

Lemma 2.8. Let ¢: X — €(Co(Y)) be a mapping.

(1) If ¢ is lower semi-continuous, then sup ¢ is lower semi-continuous and inf ¢ is
upper Semi-continuous.

(2) If ¢ is upper semi-continuous, then sup ¢ is upper semi-continuous and inf ¢ is
lower semi-continuous.

Proor. We prove both (1) and (2) only for sup¢, since the proofs for inf ¢ are
similar. First, assume that ¢ is lower semi-continuous and put s =sup¢. To show
that s is lower semi-continuous, take a point x € X and ¢ > 0. Fix a point € ¢(x).
Then the set 4 ={ye Y :|s(x)(y) —t(y)| = ¢/2} is compact. Since ¢(x) is compact,
#(x) is equicontinuous. Hence, for each y e Y, there exists an open neighbourhood
U, of y in Y such that

(2.2) lu(y) —u(y')| <e/4 for all ue$(x) and for all y' e U,.

This implies that
(2.3) ls(x)(») —s(x)(»")] <¢/4 for all y' e U,.
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Since A is compact, there exists a finite set B = 4 such that | J{U,:ye B} 2 4. For
each y e B, take u, € ¢(x) such that

(2.4) S()(y) = up(y) > s(x)(y) — /4.

Since ¢ is lower semi-continuous, the set

G = ¢ '[B(t,¢/2)] N (V{4 [Bluy,2/4)] : y € B}
is a neighbourhood of x in X. Let x’ e G. It suffices to show that s(x")(z) > s(x)(z) — ¢

for each ze Y. If ze A, then ze U, for some ye B. Since ¢(x') N B(uy,e/4) # &,
s(x")(z) = uy(z) —e/4. On the other hand, by (2.3), and (2.2), we have that

[s(x)(2) — up(2)] < |s(x)(2) = s(x) (V)] + [s(0) () — ()] + [y (¥) — wy(2)]
<e/d+e/4d+¢e/4=3¢/4.

Hence, s(x')(z) > s(x)(z) —e. Otherwise, z¢ A implies |s(x)(z) —#(z)] < ¢&/2. Since
d(x" )N B(t,e/2) # &, it follows that s(x’)(z) > t(z) — /2 > s(x)(z) —e. Thus, we have
proved that s is lower semi-continuous.

Next, assume that ¢ is upper semi-continuous. Let xe X, ¢ >0 and put U =
B(#(x),e). Since ¢ is upper semi-continuous, ¢”[U] is a neighbourhood of x in X.
If x'e¢”[U], (supg)(x')(y) < (sup¢)(x)(y)+e& for each ye Y, because ¢(x') < U.
Hence, sup ¢ is upper semi-continuous. O]

3. Extension of Theorem 1.2.

For two families # and % of subsets of a space X, we call 4 an expansion of F
if there exists a bijection G : % — ¥ such that F < G(F) for each Fe Z. An open
expansion 1s an expansion consisting of open sets. For real-valued functions f,, « < 4,
on a space X, let A,.;f, denote the map f :X — R” such that 7,0/ = f, for each

o< A
In this section, we find a natural relationship between insertions and selections by
proving the following theorem which extends [Theorem 1.2 The equivalence of (1) and

(2) is due to Kandd and Nedev as was stated in the introduction.

THEOREM 3.1.  For an infinite cardinal 1, the following conditions on a space X are

equivalent:

(1) Every point-finite open cover U of X, with || < A, is normal.

(2) For every Banach space Y, with w(Y) < A, every lower semi-continuous mapping
¢: X — 6.(Y) admits a continuous selection.

(3) Every lower semi-continuous mapping ¢ : X — 6.(co(L)) admits a continuous
selection.

(4) For every two maps g,h: X — co(X) such that g is upper semi-continuous, h is
lower semi-continuous and g < h, there exists a continuous map [ : X — co(4)
such that g <f <h.

(5) For every two maps g,h: X — co(L) such that g is upper semi-continuous, h
is lower semi-continuous and g < h, there exist a lower semi-continuous map
fr: X — co(A) and an upper semi-continuous map f, : X — co(A) such that g <

fr <fu<h.
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(6) X is normal, and every locally finite family F of closed sets in X, with |F| < 4,
has a locally finite open expansion provided it has a point-finite open expansion.

(7) Every discrete family F of closed sets in X, with |F| < A, has a disjoint open
expansion provided it has a point-finite open expansion.

ProoF. The implication (1) = (2) is due to Nedev, while (2) = (3) is obvious.

(3) = (4): Let g,h: X — ¢o(A) be as in (4). Then, by [Lemma 2.6, the mapping
lg,h] : X — %.(co(1)) is lower semi-continuous. Hence, by (3), [g,/4] admits a contin-
uous selection f: X — ¢p(4). The map f satisfies that g < f < h.

(4) = (5): Obvious.

(5) = (6): Let, for some u <A, # ={F,:a<u} be a locally finite family of
closed sets in X and # ={U, :a < u} be a point-finite open expansion of Z, i.e.
F, = U, for each o < u. Also, let g, (resp., h,) be the characteristic functions of F,
(resp., U,) for each o < u. 1In case u < A, we define gp(x) = hg(x) =0 for each xe X
and each f, with u < f < A. Finally, define g = A,.,9, and h = A, h,. Then, by
[Lemma 2.4, we can consider both g and /& to be maps to ¢y(4). Since each g, (resp.,
hy) is upper (resp., lower) semi-continuous, it follows from that ¢ is upper
semi-continuous and / is lower semi-continuous. Since g < &, by (5), there exist a lower
semi-continuous map f; : X — ¢o(4) and an upper semi-continuous map f, : X — co(4)
such that g <f, <f, <h. Put V,=L(n,ofy,1/2) and W, = L(n,of,,1/2) for each
o < u. Then, each V, is open, and {W, : a < i} is locally finite in X by [Cemma 2.3.
Since F, = V, < W, < U, for each a < u, {V, : o < u} is a locally finite open expansion
of #. Moreover, since cly V, < U,, the above proof for u =1 provides that X is
normal.

(6) = (7): Let # be a discrete family of closed sets in X, with |#| < A, hav-
ing a point-finite open expansion. Then, by (6), there exists a locally finite family
49 ={G(F): FeZ} of open sets in X such that F = G(F) for each Fe #. Since
F is discrete, we may assume that G(F)NF’' = ¢ whenever F # F'. Let % =
GU{X\|JZ}. Then, % is a locally finite open cover of X. Since every locally finite
open cover of a normal space is normal (see [8, p. 305]),  has an open star-refinement
. Then, {St(F,7"): FeZ} is a disjoint open expansion of Z.

(7) = (1): Notice that X is normal by (7). Hence, this can be proved quite
similarly to the proof of the Michael-Nagami theorem asserting that every metacompact
collectionwise normal space is paracompact (cf. [8, Theorem 5.3.3]). ]

REMARK 3.2. The following conditions (8) and (9) are also equivalent to the con-
ditions listed in Theorem 3.1. For two mappings ¢,y : X — @(Y), we write ¢ <y if
¢(x) = y(x) for each xe X.

(8) For every metrizable space Y, with w(Y) < A, and every lower semi-continuous

mapping ¢ : X — €(Y), there exist a lower semi-continuous mapping ¢ : X —
%(Y) and an upper semi-continuous mapping  : X — %(Y) such that ¢ =
/=3
(9) There exist a space Y and a disjoint family ¥ of non-empty open sets in Y,
with |9| = 4, such that for every lower semi-continuous mapping ¢ : X —
%(Y), there exists an upper semi-continuous mapping  : X — %(Y) such that
@.

/=
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The equivalence of (1) and (8) was proved by Nedev in [23, Theorem 3], while
(8) = (9) is obvious. To show that (9) = (7), let # be a discrete family of closed
sets in X, with |#| < 4, and % = {U(F) : F € #} be a point-finite open expansion of
Z. We may assume that % covers X and U(F)NF’' = & whenever F # F'. On the
other hand, there exists a disjoint family ¥ = {G(F) : F € #} of non-empty open sets
in Y. Fix a point yre G(F) for each Fe % and define ¢: X — €(Y) by ¢(x) =
{yr:xeU(F),FeZ} for xe X. Then, ¢ is lower semi-continuous because % is an
open cover of X (see below). Hence, by (9), there exists an upper semi-
continuous mapping ¥ : X — %(Y) such that = ¢. Let V(F) = y*[G(F)] for each
FeZ Then {V(F):FeZ} is a disjoint open expansion of Z.

Let A-24" be the class of all spaces satisfying one of (and hence, all of) the
conditions listed in [Theorem 3.1. Define the class 24" by X € 24" if and only if
X € -2/ for every cardinal 4. Then, Z.A4" is included in the class .4 of all normal
spaces and contains the class %.4" of all collectionwise normal spaces, i.e. €N <
PN < N. Michael has shown that both inclusions are proper by giving the
examples which we now sketch below:

The example showing that 24" # @/ is the standard Bing’s example (cf. [8,
Example 5.1.23]). The product space X = D? of the discrete space D = {0,1} contains
a discrete subspace M, with |M| = c¢. Bing’s space Z is obtained from the space X by
making all points of X\ M isolated. It is known that Z e /"\%./". Notice that every
point-finite family of non-empty open sets in X is at most countable; this follows from
the fact that the Sanin number of X is countable (cf. [8, 2.7.11, p. 116]). Hence, it
follows that Z e ZA4". Next, consider the subspace Y =M UD of Z where D=
{xe X :{a<2°: x(a) #0} is finite}. Michael has shown that the space Y is
normal metacompact but not paracompact. Hence, Y € /\Z?A" because every meta-
compact space in ZA4" must be paracompact.

Since the space Y = M UD is closed in Bing’s space Z, the example above also
shows that the class 24" is not closed under taking closed subspaces unlike .4#" and
%./". From this fact, it is natural to ask whether a space X is in 4" if every closed
subspace of X is in ZA4". Now, we show that the answer is negative if there exists a Q-
set. To this end, let us recall that a subset 4 of the real line R is called a Q-set if A4 is
uncountable and every subset of 4 is a Gs-set in A with respect to the subspace topology
on A inherited from the usual topology on R. It is known that every uncountable
subset 4 = R, with |4| < ¢, is a Q-set under assuming Martin’s axiom and the negation
of the continuum hypothesis (see for details).

ExampLE 3.3. If there exists a Q-set in R, then there exists a perfectly normal
space X such that every subspace is in 24" but X ¢ ¢./".

ProOF. Let L be the Niemytzki plane (cf. [8, Example 1.2.4]). All we need here is
the fact that L is the closed upper half-plane, the x-axis L; = R x {0} is closed discrete
and nowhere dense in L and the open subspace L\L; has the usual Euclidean top-
ology. Now, assuming the existence of a Q-set A < R, we consider the subspace X =
(A x{0})U(L\Ly) of L. It is known that X is perfectly normal but X ¢ €A~ (cf.
[28, Example F]). We show that every subspace S of X is in Z4". For S < X, let
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So=SNcl (S\L;) and S; = S\So. Then, the subspace S is the topological sum of S
and S;. Since X is hereditarily normal, Sy is a separable normal space, and hence,
So € 2A4°. On the other hand, S| € 4" because S; is discrete. Thus, Se 24", [J

ProOBLEM 3.4. Does there exist an example in ZFC of a space X ¢ ./ such that
every closed subspace of X is in ZA"?

4. Sandwich-like characterizations of paracompact-like properties.

A space X is called A-collectionwise normal if every discrete family # of closed sets
in X, with || < 4, has a discrete open expansion. In what follows, for a Banach space
Y, we put €/(Y)=%.(Y)U{Y}.

Our first result is an insertion-like theorem which characterizes /A-collectionwise
normality.

THEOREM 4.1. Let A be an infinite cardinal. For a space X the following conditions
are equivalent:

(1) X is A-collectionwise normal.

(2) For every Banach space Y, with w(Y) < A, every lower semi-continuous map-
ping ¢: X — €.(Y) has a continuous selection.

(3) Every lower semi-continuous mapping ¢: X — €.(co(1)) has a continuous
selection.

(4) For every closed subspace A of X and for every two maps g,h: A — co(L) such
that g is upper semi-continuous, h is lower semi-continuous and g < h, there
exists a continuous map [ : X — co(A) such that g <f|, <h.

ProoF. The implication (1) = (2) follows from [19, Theorem 3.2’] (see, also, [2]),
while (2) = (3) is obvious. To show (3) = (4), let A < X and g,h: A — co(A) be as in
(4). By [Lemma 2.6, [g,/h] : A — 6.(co(4)) is lower semi-continuous. Then, by a result
of [19], the mapping ¢ : X — %/(co(4)), defined by ¢(x) = [g,h](x) if x€ 4 and ¢(x) =
co(A) otherwise, is lower semi-continuous too. Hence, by (3), ¢ has a continuous
selection f. This f is as in (4).

(4) = (1): Let # ={F,:a < A} be a discrete family of closed sets in X, and let
A =|J{F,: 2 < A}. Note that there exists a disjoint family {G, : « < A} of non-empty
open sets in ¢o(4). Pick a point y, € G, for each o < 4 and define maps g,/ : A — ¢o(4)
by g(x) =h(x) =y, if xeF,. Since both g and & are continuous, it follows from
(4) that there exists a continuous map f : X — ¢o(4) such that g <f|A4 <h. Then,
{f7'[G,] : « < A} is a disjoint open expansion of % in X. Hence, X is A-collectionwise
normal. []

Our next result is a characterization of countably paracompact and A-collectionwise
normal spaces. To prepare for this, we need two lemmas, the first of which may have
an independent interest.

Let (Y,d) be a metric space, and let 2Y ={S < Y : S # ¢}. In what follows,
as in the case of Banach spaces, for Se2? and ¢ > 0 we use B(S,¢) to denote the e-
neighbourhood of S in (Y,d) (i.e., B(S,e) ={ye Y :d(y,S) <e}). Let us recall that
a mapping ¢ : X — 27 is d-upper semi-continuous if p*[B(p(x),¢)] is a neighbourhood of
x, for every xe X and ¢ >0. A mapping ¢: X — 2V is called d-proximal continuous
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(see [11]) if it is both lower semi-continuous and d-upper semi-continuous. It should be
mentioned that, for a metric space (Y,d), every continuous ¢ : X — 27 is d-proximal
continuous but the converse is not true, see [11, Proposition 2.5]. On the other hand,
the d-proximal continuity depends on the metric d of the range Y. To avoid this, for
a metrizable Y, let us agree that a mapping ¢ : X — 27V is proximal continuous if it is d-
proximal continuous with respect to some metric d on Y compatible with the topology
of Y.

LemMA 4.2. Let X be a JA-collectionwise normal space, Y be a Banach space with
w(Y) <4 ¢: X — Z(Y) be a proximal continuous mapping, and let y : X — F.(Y) be
a lower semi-continuous set-valued selection for ¢ such that y(x) is compact whenever
W (x) # @(x). Then, y has a continuous selection.

PrOOF. Let us recall that a mapping ¢ : X — Z.(Y) has the Selection Factorization
Property if for every closed subset F of X and every locally finite collection % of
open subsets of Y such that ¢ '[%] = {¢~'[U]: U e %} covers F, there exists a locally
finite open (in F) covering of F which refines ¢ '[#]. According to [23, Proposition
4.3], it now suffices to show that i has the Selection Factorization Property. Towards
this end, take a closed set F = X and a locally finite family % of non-empty open sets
in Y such that F = | Jy'[#]. Since ¢ is proximal continuous, by [11, Theorem 3.1],
there exists a locally finite open cover {Vy : U e %} of F such that Vy < ¢ ![U] for
every Ue . Set Wi ={Wy:UeaU}, where Wy = Vy Ny~ '[U], U e %, and let W, =
\J#i. Then, y(x) is compact for every x € F\W,. Indeed, take a point x € F and
Ue such that xe Vy and Y(x) = ¢(x). Since Y (x)NU =¢p(x)NU, we get that
x e Wy < Wi. Hence, x € F\ W) implies {/(x) # ¢(x) and, by hypothesis, /(x) is com-
pact. As a result, we now have that y~'[#] is point-finite at every point of F\W;. On
the other hand, |%| < A because % is locally finite in Y and w(Y) < A. Therefore, there
exists a locally finite open (in F) cover #5 of F\W; which refines y~'[#] because X is
A-collectionwise normal. Then, # = #7U #5 is as required. ]

In our next lemma, a set-valued mapping ¢ : X — 2% has an open graph if the set
{(x,y) eX xY:yep(x)} is open in X x Y.

LemMMA 4.3. Let ¢ : X — 2V be a mapping with an open graph, and let ¢ : X — 2Y
be a lower semi-continuous mapping such that ¢(x) N\ ¢(x) # & for every x € X. Define
another mapping Y : X — 2Y by y(x) = p(x)Nd(x), xe X. Then,  is lower semi-
continuous.

Proor. Let U be a non-empty open set in Y, and let xo € np‘l[U]. Take a point
yo € Y(xo)NU. Since ¢ has an open graph, there exists a neighbourhood Uy = U of
yo and a neighbourhood V) of xy such that Uy < ¢(x) for every x € Vy. Then, V =
VoNe¢ '[Up] is a neighbourhood of xy such that y(x)NU # & whenever xe V. [

To state our characterization of countably paracompact and A-collectionwise nor-
mal spaces, we need also some terminology about Banach spaces.

Let Y be a space and let e: ¥ — R* be a map. Then we define e, = 7, o e, where
n,: R* — R is the projection to the a-th factor of R*, for each o < A. Thus, we have
e= Adey: o< i}
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Suppose that Y is a Banach space. Let us recall that a sequence {e, € ¥ : n < w}
is a Schauder basis for Y if any point y € Y has a unique representation y = . Ve,
for some scalars (i.e., coordinates) y, e R, n <. Here, y =5, _. yse, means that
lim,_ oo ||y = > i<, Vkex| = 0, where ||.|| is the norm of Y.

Note that any Schauder basis {e, € Y :n < w} for a Banach space Y defines a
natural linear continuous injection e: Y — R®, see [3, Exercise III.14.10] and [26,
Theorem 3.1]. Namely, one may define e: Y — R” by e,(y) =y, n<w, where
V=2 pee Ynen €Y. It should be mentioned that, with respect to this map e=
A{e, :n < w}, we have e,(e,) =1 and e,(e,) =0 for m # n. Motivated by this, we
shall say that a map e: ¥ — R* is a generalized Schauder basis for a Banach space Y if
it is a continuous linear injection such that, whenever y € Y and « < A, there is a point
vy €Y, with eg(y,) =ep(y) if f=o and eg(y,) =0 otherwise. Clearly, the natural
linear injection e: Y — R® determined by a Schauder basis for Y is a generalized
Schauder basis but the converse does not hold. For instance, consider the Banach
space /* of bounded sequences. Then the natural injection e¢:/* — R is a gen-
eralized Schauder basis but the space /* does not have a Schauder one since it is not
separable.

The generalized Schauder basises will be used in the following special situation.

DEFINITION 4.4. We shall say that a generalized Schauder basis e¢: ¥ — R* for
a Banach space Y is a cy(4)-basis for Y if e[Y] < ¢o(4) and it is continuous as a map
from Y to ¢o(4). Also, we shall say that Y is a generalized co(1)-space if it is a Banach
space, with w(Y) < A, which has a ¢y(4)-basis.

Note that ¢o(4) is a generalized ¢o(1)-space. Also, every Euclidean space is a
generalized co(A)-space for every infinite cardinal A. Finally, the Banach spaces /,(4),
for p > 1, are another important example of generalized cy(4)-spaces.

In what follows, for a convex set K of a Banach space Y, we consider a weak
convex interior wci(K) of K defined by

wei(K) = {xe K : x =0Jx; + (1 —d)x, for some x,x; € K\{x} and 0 <0d < 1}.

Also, for s, € R”, we shall write s < ¢ if s <t and s(a) < #() for some « < 4. Finally,
for maps g, : X — R*, we write g < h if g(x) < h(x) for every xe X.

THEOREM 4.5. Let A be an infinite cardinal. For a space X the following conditions

are equivalent:

(1) X is countably paracompact and J-collectionwise normal.

(2) Whenever Y is a generalized co(A)-space and ¢ : X — €.(Y) is a lower semi-
continuous mapping such that |p(x)| > 1 for every x € X, there exists a con-
tinuous map [ : X — Y such that f(x) e wci(¢(x)) for all xe X.

(3) For every lower semi-continuous mapping ¢ : X — 6.(co(A)), with |¢(x)] > 1
for every x € X, there exists a continuous map f : X — co(A) such that f(x) €
wei(p(x)) for all xe X.

(4)  For every closed subspace A of X and for every two maps g,h: A — co(L) such
that g is upper semi-continuous, h is lower semi-continuous and g < h, there
exists a continuous map [ : X — co(A) such that g < f|, < h.
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Proor. (1)=(2): Let Yand ¢: X — 4/(Y) be asin (2). Lete: Y — ¢o(4) be
a co(4)-basis for Y. For each n < w, let

U, = {x € X : diameter(e,[¢(x)]) > 27" for some a < A}.

Note that each U, is open in X because e is continuous and ¢ is lower semi-continuous.

Hence, the family {U,:n < w} is an open cover of X because e is injective and

|#(x)| > 1 for every x € X. Then, the countable paracompactness of X implies the

existence of a locally finite open cover {G, :n < w} of X with cly G, < U,, n < w.
Now, for every o < A and n < w, define an open subset U] of X by

U, = {x € X : diameter(e,[¢(x)]) > 27"}.

Since Y is not a singleton, the same is true for e[Y]. Then, without loss of generality,
we may suppose that eo[ Y] is not a singleton. We claim that {U : 0 < « < A} is point-
finite in X = X\UJ. To show this, first let us observe that e[¢(x)] is compact for
each x € X. Namely, if ¢(x) =Y for some xe X, then ey[¢(x)] =R and, in par-
ticular, diameter(eo[¢(x)]) > 27", so xe€ UJ. Therefore e[¢(x)] is compact for each
x € X because ¢ is ¢'(Y)-valued and e is continuous. Thus, we can define a map-
ping ¢§ : X§ — €(co(4)) which carries x to e[¢(x)]. Hence, by [Lemma 2.7, two
maps inf @y, sup gy : XJ — co(4) can also be defined. Then, the required property of
{U":0 < o< A} follows from because

{UINX) :0<o< A} ={L(nyo(supgy —inf @y),27") : 0 < o0 < A}.

Next, note that {U) : 0 < a < A} covers X' Ncly G,. Since X is A-collectionwise nor-
mal, there exists a locally finite open (in X') cover {V": 0 < o < A} of X Ncly G, such
that cly V' = U], whenever 0 < o < A. Finally, note that

cy G\ {V):0<a< i} = U]
Hence, there exists an open set V' = X such that
cy G\U{V):0<a< it sV ccly V) = Uj.

Then, let W)"=V/"NG, for every o < A. Thus, we get a locally finite open cover
{W":a < 2 and n < w} of X because so is {G, : n < w}. Therefore, the same is true
for {W, :a < i}, where W, = (J{W:n< o}, a <A

Now, for every o < A, set X, =cly W,. Next, take a fixed o < 4 such that
X, # . Note that the mapping ¢, : X, — €. (R) defined by ¢, (x) = e,[¢(x)] for x € X,
is lower semi-continuous. Let R be the extended real line [—oo,+oo]. Then, we may
consider g, =inf ¢, : X, — R and h, =sup¢, : X, — R. As a result, g, is upper semi-
continuous, /1, is lower semi-continuous (see, e.g., [Lemma 2.§), and ¢, < h, because
X, = (J{U} : n < w}. Since X, is countably paracompact and normal, by a result of
[4], [3] [14], there exists a continuous r(, , : X, — R such that g, < r,, <h,. Note
that, in fact, r, ,[X,] = R. Now, according to the same result, we may find also
continuous functions r(y ,),7(2,4), "(h,«) : X» — R such that

o < T(ga) <T1a) <TQa) <Tha < hy.
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Define a set-valued mapping ¢; , : Xy — 27 by

go(l,(x)(x) = eo?l[(r(g,a)<x)7r(l.,c{)(x>)]7 x e X,.

Note that ¢ , has an open graph, and ¢, (x)N¢(x) # & for every xeX,.
Indeed, take a point xe X, and yegq ,(x). Since e,(y) € (2 (X), 71,4 (X)), there
exists an & > 0 with [e,(y) — &, ex(¥) + €] = (r(g.0)(X), 7(1,09(x)). Then, U = e, [(es(y) —
¢,e,(y) +¢)] is a neighbourhood of y in Y because e, is continuous. Since the func-
tions r(, , and r(, are continuous, there also exists a neighbourhood V of x in X,
such that z e V' implies

r(g,a)(z) <eu(y) —e<e(y) +e< V(l,cx)(z)-

Hence, z € V' implies U < ¢(; ,)(z). That is, ¢ , has an open graph.

Now, according to [Lemma 4.3, the mapping ¥y ,)(x) = @1, (x) Nd(x), x € X, is
lower semi-continuous. In what follows, with every set-valued mapping 0: X, — 27
we associate another one 0: X, —2Y by 0(x) =cly0(x), xe X,. Thus, by a result
of Michael [19, Proposition 2.3], lﬁ(m) : X, — Z(Y) is lower semi-continuous. Also,
Y (1,4 is a set-valued selection of @ ,y, and Yy ,(x) # ¢y ,(x) for some x € X, implies
the compactness of ¥y ,(x).

In order to apply Lemma 4.2, let us show that ¢, , is ||.||-proximal continuous,
where ||.|| is the norm of Y. In fact, it only suffices to show that ¢ , is ||.||-upper
semi-continuous because ¢ ,) is lower semi-continuous as a mapping with an open
graph. Towards this end, note that ¢,[Y] = R because ¢,[Y] # {0}. Then, by the open
mapping theorem, e, is an open map, which implies that

?1,0) (x) =cly 6’;1 [(”(g,a) (x), r(1,a) (x))]

= &, [elR(r(g.0 (%), 71,20 (X)) = €, [[r(g. 29 (%) 71,0y ()]
for each x e X,. Now, take a point xp € X, and ¢ > 0. Also, let Y, ={y,:ye Y},
where y,’s are as in the definition of a generalized Schauder basis with respect to our
map e: ¥ — R*. Then, Y, is isomorphic to the real line R, so there exists a constant
¢ > 0 such that

1
(4.1) o leo(¥a)| < || yull < ¢ - lex(ys)|, for every ye Y.

Consider the neighbourhood

& &
U = {xeXa : \r(g,a)(x) — I’(g,a)(X())l <E and \r(l,a)(x) — I’(l,a)(X())l < E}

of xo in X, Finally, take a point x;e U and ye @, (x1), and let us check
that y € B(¢(1, 4 (x0),¢). Turning to this last purpose, note that there are points
Yigioy Vi1.0) € Yo such that e, (y(, ) = r(q)(xi) and ex(y; ,) =r(,q(x:), i=0,1. Since
ex(y) € [r(g,)(X1), 71, (x1)], there now exists J € [0,1] such that

Y :5')’(19,@ + (1 -9) 'y(ll,ot)‘
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Then, for i =0,1, let us consider the points

Y; = (y — Va) +y(ig,oc) and y{ =¥ _ya) +ygl’“)‘

In this way, we get a nice representation of y, namely y =9 - y; (1-0)-y{, while
z=0- y;’ +(1-9)-y)e @(1,2)(x0) because e,(y —y,) =0. Let us calculate the distance
between these two points of Y:

Iy =zl =116y, + (1 —=6)-y; =d-y) —(1=6)- ||
=16 (g =¥+ 1 =0) -y =)l
=116 (Plg) = Viyoo)) T (1 =0) - P10y = Y1)
<O N Wigoy = Vgl + (1 =8) - [9{10) = Y01 -

Then, according to (4.1), we finally get that

Hy _ZH <0J- Hy(lg,oc) _y(og:x)H + (1 _5) ’ ”y(lla() _y?l,ot)H
<8¢ len(¥ly ) — eVl + (1 =0) ¢ lex( ¥y ) — ea( V)l
=0 ¢ |r(ga(x1) = 1ga(X0)| + (1 =6) - ¢ [ra,u(x1) — 71,4 (X0)]

£ — ¢ 1—6)-e=e.
<5CC(5)6658+( 0)-e=¢

That is, y € B(§(1 4)(X0),¢), SO @1 4 1 [|.]] proximal continuous.

Going back to our construction, by c,b ) has a continuous selection
S, : Xo — Y because ¢, , is proximal contlnuous, and lﬁ 2)(X) # @1 4 (x) for some
x € X, implies the compactness of ; ,(x).

Next, we repeat the same trick with the second pair of maps. Namely, we may

define another set-valued mapping ¢, ,) : Xy — 2Y by

00.0(%) = €, [(r,»(X), rpa(x))], x€ X,

Just like before, ¢, ,) has an open graph, and ¢, ,)(x) N¢(x) # & for every x € X,.
Hence, by [Lemma 4.3, the mapping ¥/, ,(X) = @5, (x) N d(x), x € X,, is lower semi-
continuous, and therefore so is ‘Z(M)' Also, w (2,4)(X) 1s compact for every point x € X,
with ¥y ) (X) # @2, (x), while ¢, ,) is proximal continuous. Then, by Lemma 4.2,
Y2, has a continuous selection f,) : X, — Y. Thus, we get two pointwise disjoint
selections  f(; ), i=1,2, for @[y because ¢ ,(x)NPn ,(x) = for every xe X,.
Hence, f, = (f(1,2) +f2,4))/2 is a continuous map such that f,(x) € wci(¢(x)) for every
xeX,.

We now complete the proof of this implication as follows. Take a partition of
unity {p, : « < A} index-subordinated to the cover {W,: o < A} of X. Then, the map
f:X — Y, defined by

Z{p[X o< i}, xelX,
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is the required selection for ¢. To see this, we need only to check that f(x) e wci(¢h(x))
for every x e X. Take a point x € X, and let .o/(x) = {a < 1:p,(x) > 0}. Note that
of/(x) is a finite set. In case .o/(x) = {a}, we have f(x)= f,(x) e wci(4(x)). Other-
wise, pick a fixed f € .9/(x), and then set

5 =pp(x) and yg(x) =Y {pu(x) - fulx) s € L (\{B}}/(1 =)

Note that yg(x) € ¢(x) because > {py(x)/(1 —0): e/ (x)\{f}} =1. Hence, f(x)=
5 fp(x) + (1=0) - yy(x) e wei(g(x)). Indeed, fp(x) = yp(x) implies /(x) = fy(x) €
wei(é(x)). Otherwise, by definition, f(x) € wci(¢(x)).

(2) = (3) is obvious.

(3) = (4): Let g,h: A — co(4) be as in (4). Then, by Lemmas and 2.6,
lg,h] : A — 6.(co(2)) is lower semi-continuous. Hence, the mapping ¢ : X — €.(co(1)),
defined by ¢(x) = [g,h](x) if x € A and ¢(x) = ¢o(4) otherwise, is lower semi-continuous
too. Also, |#(x)| > 1 for every x € X because g < h. Therefore, by (3), there exists a
continuous f : X — ¢o(4) with f(x) € wci(¢(x)) for every x € X. Clearly, this f is as
required in (4).

(4) = (1): First of all, let us observe that X is a countably paracompact normal
space. Indeed, take maps go, /o : X — R such that gy is upper semi-continuous, /g is
lower semi-continuous and go(x) < hy(x) for every x € X. Next, for every 0 < o < 4,
define g,(x) = hy(x) =0, xe X. Thus, we get an upper semi-continuous map g =
AN{gy o< A} : X — ¢o(A) and a lower semi-continuous one h= A{h,:a<i}: X —
co(A) such that g < h. Hence, by (4), there exists a continuous map f : X — co(4) with
g < f <h. In particular, fy =mpof : X — R is continuous and go(x) < fo(x) < ho(x)
for every x e X. Then, by a result of [4], [5], [14], X is countably paracompact and
normal. Thus, it only remains to show that X is A-collectionwise normal. Towards
this end, take a closed set 4 = X and two maps g,/ : A4 — ¢o(4) such that g is upper
semi-continuous, 4 is lower semi-continuous and g </h. By it suffices
to show the existence of a continuous map f : X — ¢o(4) such that g <f|, <h. Let
&: 2 — A\{0} be the bijection defined by &(a) =« + 1 for & < w and &(a) = o for o > w.
For each x € X and each « < /, define ¢g'(x)() =0 for o = 0 and ¢’(x)(a) = g(x)(¢" ()
for o # 0, and also define 4’(x)(«) =1 for o =0 and /' (x)(x) = h(x)(&" (a)) for o # 0.
Then, we have two maps ¢g',h': A — co(A) such that g’ is upper semi-continuous,
h' is lower semi-continuous and ¢’ < h’. Hence, by (4), there exists a continuous
map f’: X — ¢o(4) such that g < f’|, < h. Finally, define a map f: X — co(4) by
S(x)() = f'(x)(&(a)) for x e X and o < A. Then f is continuous and g < f|, <h. [

From one hand, might be read as a possible extension of the Dowker-
Katétov characterization of countably paracompact normal spaces [5], [14], see also
[4] From another hand, Theorem 4.3 should be compared with Michael’s charac-
terization [19, Theorem 3.1"”] of perfectly normal spaces by selections avoiding sup-
porting points of convex sets. More precisely, in the Michael’s terminology [19], if ¥
is a Banach space and K € Z.(Y), then a supporting set of K is a closed convex subset
S of K, S # K, such that if an interior point of a segment in K is in S, then the
whole segment is in S. The set of all elements of K which are not in any supporting
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set of K is denoted by I(K) (suggesting “Inside of K”). Finally, as in [19], one may
consider

2(Y)={Be2": B is convex and I(cly B) < B}.

It is well known (see [19]) that Z(Y) = 2(Y); that every convex Be 2’ with a non-
empty interior belongs to Z(Y); and that every finite-dimensional convex B e 2¥ belongs
to Z(Y).

As for our weak convex interior, it is clear that I(K) < wci(K) for every K € Z.(Y)
but the converse is not true. In fact, the Michael’s [19, Theorem 3.1"] states that a
space X is perfectly normal if and only if for every separable Banach space Y, every
lower semi-continuous ¢ : X — Z(Y) has a continuous selection.

Our next result presents another possible characterization of perfectly normal spaces
in terms of selections.

THEOREM 4.6. Let A be an infinite cardinal. For a space X the following conditions

are equivalent:

(1) X is perfectly normal and J-collectionwise normal.

(2) Whenever Y is a generalized cy(A)-space, every lower semi-continuous mapping
¢: X — €(Y) has a continuous selection f such that f(x) € wci(@(x)) for every
xe X with |¢(x)| > 1.

(3) Every lower semi-continuous mapping ¢ : X — 6. (co(A)) has a continuous selec-
tion f such that f(x) e wci(¢(x)) for every x e X with |p(x)| > 1.

(4)  For every closed subspace A of X and for every two maps g,h: A — co(1) such
that g is upper semi-continuous, h is lower semi-continuous and g < h, there
exists a continuous map f : X — co(A) such that g < f|, < h and g(x) < f(x) <
h(x) whenever x € A with g(x) < h(x).

Proor. (1)=(2): Let Y and ¢:X — %/ (Y) be as in (2). Since X is A-
collectionwise normal, ¢ has a continuous selection 7 : X — Y, see, for instance, Theo-
rem 4.1. Let Z={xe X :|4(x)]>1}. Since ¢ is lower semi-continuous, Z is an
open subset of X. Hence, it is an F,-set because X is perfectly normal. Therefore,
by a result of [25], Z is A-collectionwise normal too. On the other hand, X is a
countably paracompact space as a perfectly normal one. Hence, Z is also count-
ably paracompact, see [30]. Thus, by [Theorem 4.3, ¢|, has a continuous selection
u:Z — Y such that u(z) € wci(¢(z)) for every ze Z. Finally, take a continuous func-
tion r: X — [0,1] such that X\Z =r"1(0). We define the required selection f for ¢
in the following way. First, define another continuous function k: Z — (0,+00) by
k(z) = max{r(z), ||\u(z) — £(z)||}, z€ Z, where ||.|| is the norm of Y. Then, the func-
tion 0 : Z — [0, 1], defined by J(z) = r(z)/k(z), z € Z, is also continuous. Now we may
define our f: X — Y by f(x) =d(x)-u(x)+ (1 —0(x))-/(x) if xe Z and f(x) =/(x)
otherwise. First, let us check that f is continuous. Clearly, f|, and f| x\z are
continuous. Hence, it suffices to check this for the points of cly ZN(X\Z) if they
exist. So, take a point xp ecly ZN(X\Z) and an ¢ > 0. Since r(xp) = 0, there exists
a neighbourhood V" of x( such that r(x) < ¢/2 for every x € V. Since / is continuous,
there also exists a neighbourhood W of xy such that ||/(x)—/(x¢)| < &/2 for every
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xe W. Then, U= VNW works as a desired neighborhood of x;. Indeed, take a
point xe UNZ. Then,

1F () =S (o)l < 1 () = 2Co)ll =+ [1£(x) = f (xo)
= [[0(x) - u(x) + (1 = (x)) - £(x) = /()| + [|£(x) = /(x0)
<0(x) - [lu(x) = £(x)|[ +¢/2

oy =L

<r(x)+e¢/2<e

That is, f is continuous. Clearly, f is a selection for ¢ because ¢ is convex-valued.
Finally, let us check that f(x)e wci(¢(x)) for every x e Z. So, take a point x € Z.
If u(x)="7,(x), we have f(x)=u(x)ewci(¢(x)). If u(x)#/(x), then, by definition,
£ (x) € wei(g(x)).

The implication (2) = (3) is obvious, while (3) = (4) repeats precisely the cor-
responding implication in the proof of [Theorem 4.3.

(4) = (1): By [Theorem 4.3, X is A-collectionwise normal. To show that X is
perfectly normal, we repeat the arguments suggested in [23, Question 2]. Take a closed
set A = X, and let gy : X — R be the constant 0, while 4y be the characteristic function
of X\A4. Next, for every 0 < o < 4, let gy, h, : X — R be the constant functions whose
value are equal to 0. Then, g = A{g,: o<1} : X — ¢o(4) is upper semi-continuous,
h= A{hy,:a <} :X — cy(4) is lower semi-continuous, and g <h. Hence, by (4),
there exists a continuous f : X — ¢y(4) such that g <f <h and g(x) < f(x) < h(x)
whenever g(x) < h(x). Then, in particular, fy =mpof : X — R is continuous, go(x) <
Jo(x) < ho(x) for every xe X, and go(x) < fo(x) < ho(x) whenever go(x) < ho(x).
According to the definition of gy and ko, the last implies that 4 = f;1(0). ]

Returning back to [Theorem 4.3, a word should be said about condition (2) of
this theorem. In fact, the reader may wonder if this condition holds for all Banach
spaces. The authors do not know if this is true, which suggests the following natural
question.

ProBLEM 4.7. Let X be a countably paracompact and A-collectionwise normal
space for some infinite cardinal A, Y be a Banach space with w(Y) < 4, and ¢ : X —
%!(Y) be lower semi-continuous such that |¢(x)| > 1 for every x € X. Does there exist
a continuous map f : X — Y such that f(x) e wci(¢(x)) for every x e X?

5. Characterizations of expandable spaces.

Let 4 be an infinite cardinal. A space X is called A-expandable (resp., almost A-
expandable) if every locally finite family & of closed sets in X, with |#| < A, has a
locally finite (resp., point-finite) open expansion (cf. [16], [27]). We state the results,
then proceed to the proofs.

THEOREM 5.1.  For an infinite cardinal 1, the following conditions on a space X are
equivalent:
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(1) X is A-expandable.

(2) For every completely metrizable space Y, with w(Y) < A, and every upper semi-
continuous mapping ¢ : X — €(Y), there exist two mappings ¢, : X — €(Y)
such that ¢ is lower semi-continuous, \ is upper semi-continuous and ¢ < ¢ < .

(3) There exists a space Y and a locally finite family 4 of non-empty open sets in Y,
with |%9| = A, such that for every upper semi-continuous mapping ¢ : X — €(Y),
there exist two mappings ¢, : X — €(Y) such that ¢ is lower semi-continuous,
W is upper semi-continuous and ¢ = ¢ <.

(4) For every upper semi-continuous map f :X — co(1), there exist two maps
g,h: X — co(A) such that g is lower semi-continuous, h is upper semi-continuous
and [ < g <h.

THEOREM 5.2.  For an infinite cardinal A, the following conditions on a space X are

equivalent:

(1) X is almost A-expandable.

(2) For every completely metrizable space Y, with w(Y) < A, and every upper semi-
continuous mapping ¢ : X — €(Y), there exists a lower semi-continuous map-
ping ¢: X — €(Y) such that ¢ < g.

(3) There exists a space Y and a locally finite family 4 of non-empty open sets in Y,
with |%9| = A, such that for every upper semi-continuous mapping ¢ : X — €(Y),
there exists a lower semi-continuous mapping ¢ : X — €(Y) such that ¢ < ¢.

(4) For every upper semi-continuous map f : X — co(1), there exists a lower semi-
continuous map ¢ : X — co(4) such that f < g.

Miyazaki has proven the equivalence (1) and (2) in assuming that
X is normal, and has shown that every metacompact space satisfies (2) in [Theorem 5.2l

To prove Theorems 5.1 and 5.2, we need some definitions and lemmas. First, let
us recall that, for a metric space (Y,d), the Hausdorff distance dy on €(Y) associated
with d is defined by

H(d)(S,T)=sup{d(S,y)+d(y,T):ye SUT}, S, Te?(Y).

Lemma 5.3 (Fort [9]). Let (Y,d) be a metric space, and let {¢,} be a sequence of
mappings from a space X to €(Y) which is uniformly convergent to a mapping ¢ : X —
€(Y) with respect to the Hausdorff distance dy on 4(Y) associated with d. Then, ¢ is
lower (resp., upper) semi-continuous if ¢, is lower (resp., upper) semi-continuous for each n.

LEmMMA 5.4. Let % ={U,: o€ o/} be a point-finite cover of a space X, and let
{yy €/} be a subset of a space Y. Define a set-valued mapping ¢ : X — €(Y) by
d(x) ={yy:x€e U,aed} for each xe X. Then, ¢ is lower semi-continuous provided
that U is an open cover, and ¢ is upper semi-continuous provided that U is a locally finite
closed cover.

ProoF. This follows from the fact that ¢ '[V]=|J{U,:y,€eV,xe o/} and
" V] = X\\{U, : y, ¢ V,a € o/} for every open set V in Y. O

Let X and Y be spaces, and ¢ : X — ¥(Y). We say that ¢ has the locally finite
(resp., point-finite) lifting property if for every family & of subsets of Y admitting a
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locally finite open expansion, there exists a locally finite (resp., point-finite) open
expansion of {¢ '[E]: E€ &} in X (see [12], [21]).

LEMMA 5.5. Let X and Y be spaces, and ¢ : X — €(Y). Then:

(1) If there exist mappings ¢, : X — €(Y) such that ¢ is lower semi-continuous,
W is upper semi-continuous and ¢ = ¢ S\, then ¢ has the locally finite lifting
property. The converse is also true if Y is completely metrizable.

(2) If there exists a lower semi-continuous mapping ¢ : X — €(Y) such that ¢ < ¢,
then ¢ has the point-finite lifting property. The converse is also true if Y is
completely metrizable.

Proor. We only prove (1) since (2) can be proved similarly. First, assume that
there exist mappings ¢, : X — %(Y) such that ¢ is lower semi-continuous, ¥/ is upper
semi-continuous and ¢ < ¢ <. Let & be a locally finite family of subsets of Y with a
locally finite open expansion {G(E) : E € &}, i.e. E < G(E) foreach E€ &. Set U(E) =
¢ '[G(E)] and V(E) =y '[G(E)] for each Ee&. Then, we have ¢ '[E] = U(E) <
V(E) for each E € &. Since ¢ is lower-semi-continuous, U(FE) is open in X for each
E e & and, since Y is upper semi-continuous, {V(E): E e &} is locally finite in X.
Thus, {U(E): E€ &} is a locally finite open expansion of {¢ '[E]: E€ &} in X.
Hence, ¢ has the locally finite lifting property.

Next, assume that ¢ has the locally finite lifting property and Y is a completely
metrizable space. Fix a complete metric d on Y. Then, there exist locally finite open
covers ¥, ={G,: o€ o,}, ne N, of Y and a chain of maps

D1 P2 D
Al = oy = oy — oy g

such that G, = | J{Gs : Bep,'(«)} and diameter(G,) < 1/2" for each x € o7, and ne N.
Since ¢ has the locally finite lifting property, {¢ '[G,]: o € .2Z,} has a locally finite
open expansion for each ne N. Moreover, ¢ '[G,] = ( J{¢"'[Gs] : B € p,'(2)} for each
owe .o/, and ne N. Thus, we can construct inductively locally finite open covers %, =
{U,:a€.,}, ne N, of X with the same index set as %, such that

¢71[Ga] cU,= U{Uﬁ :ﬂeprjl(a)}
for each o € .o/, and each n e N. Whenever n e N, fix a point y, € G, for each « € .o/,
and define mappings ¢,,¥, : X — (Y) by ¢,(x) = {y,: xe U, ae.o,} and y,(x) =
{y,:xecly U,,a € .o/,}, respectively, for x e X. Then, it follows from [Lemma 5.4 that
@, 1s lower semi-continuous and , is upper semi-continuous. Let dy be the Hausdorff

metric on %(Y) associated to the metric d of Y. According to the definitions of ¢,
and y,,

dH((Dn(X),(0n+1<X)) < 1/211 and dH(‘ﬁn(x)’lpn—&-l(x)) < 1/211

for each x € X and each ne NV, i.e. {¢,} and {y,} are Cauchy sequences in the uniform
space of all maps from X to (¢(Y),dy). Since (¢(Y),dy) is complete by [8, 4.5.23 (d),
p. 298], {¢,} uniformly converges to a map ¢: X — %¢(Y), and {y,} uniformly con-
verges to a map ¥ : X — ¢(Y). By [Lemma 5.3, ¢ is lower semi-continuous and y is
upper semi-continuous. Finally, it is easy to check that ¢ < ¢ < . ]

Now, we are ready to prove Theorems 5.1 and B.2.
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PrOOF oOF THEOREM 5.1. (1)= (2): Let ¢: X — %(Y) be an upper semi-
continuous mapping. Then, {¢ '[E] : E € &} is locally finite in X for every locally finite
family & of subsets in Y. Thus, (1) implies that ¢ has the locally finite lifting property.
Hence, we have (2) by [Lemma 5.5.

(2) = (4): Let f:X — co(4) be an upper semi-continuous map. Then, the map
h:X — co(A), defined by A(x) = max{f(x),0}, x € X, is also upper semi-continuous by
[Lemma 2.3. Hence, it follows from that the mapping [0,/4] : X — €(co(4)),
which carries x to [0, /(x)], is upper semi-continuous. By (2), there exist two mappings
o, 1 X — €(co(4)) such that ¢ is lower semi-continuous, y is upper semi-continuous
and [0,h] < ¢ = . Finally, by [Lemma 2.8, supgp: X — co(4) is lower semi-continuous,
supy : X — ¢o(4) is upper semi-continuous and f < h < sup¢p < sup.

(4) = (3): We show that cy(4) satisfies the conditions on Y stated in (3). Clearly,
{m;'[(1,400)] : « < A} is a locally finite family of non-empty open sets in c¢o(4) with
cardinality A. Let ¢: X — %(co(4)) be an upper semi-continuous mapping. Then, it
follows from that sup ¢ is upper semi-continuous and inf ¢ is lower semi-
continuous. Thus, by (4) and the second statement of [Lemma 2.2, we can find lower
semi-continuous maps ¢g,,/h, : X — ¢o(4) and upper semi-continuous maps g,,/, : X —
co(4) such that

(5.1) hy <g,<inf¢ <supop <g, <h,.

Define ¢ = (g4, g/] and = [hs,h,]. Then, ¢ is lower semi-continuous and s is upper
semi-continuous by [Lemma 2.6, and ¢ = ¢ = ¢ by (5.1).

(3) = (1): To show that X is A-expandable, let # be a locally finite family of
closed sets in X with |#| < A. We may assume that & covers X. Also, let Y be as in
(3). Then, Y has a locally finite family ¥ = {G(F) : F € # } of non-empty open sets in
Y. Choose a point yr € G(F) for each F € %, and define a mapping ¢ : X — ¢ (Y) by
¢(x)={yr:xeFeZF} for xe X. Then, ¢ is upper semi-continuous by [CLemma 5.4.
According to the properties of Y and Lemma 3.3, ¢ has the locally finite lifting
property. Hence, the family {¢'[{yr}] : F € #} has a locally finite open expansion %
in X, because ¥ is an open expansion of {{yz}: Fe Z}. Since F = ¢ '[{yr}] for each
F e Z, 9 is also an expansion of Z. ]

The proof of [Theorem 5.2 is left to the reader since it is almost same as that of
Theorem 5.1.

It is known ([16]) that a space X is w-expandable if and only if it is countably
paracompact. Hence, by the definitions, a space X is /-collectionwise normal and
countably paracompact if and only if X satisfies one of the following two conditions:
(i) X is A-expandable and X € 4-Z.47; (ii) X is almost A-expandable and X € A-Z.4".
Thus, we get several characterizations of a A-collectionwise normal and countably par-
acompact space by combining one of the conditions in Theorems 5.1 and with one
of the conditions (1)—(9) in and Remark 3.2. 1In particular, we have the
following consequence which is a mapping analogue of the Dowker’s characterization
[6] of collectionwise normal and countably paracompact spaces.

COROLLARY 5.6. For an infinite cardinal 4, the following conditions on a normal
space X are equivalent:
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(1) X is A-collectionwise normal and countably paracompact.
(2) For every upper semi-continuous map ¢: X — co(4), there exists a continuous
map f: X — co(L) such that g <f.

For other characterizations of collectionwise normal countably paracompact spaces,
see [21].

We complete this paper with the following characterization of paracompact spaces
which is just like [Corollary 5.6, only it deals with maps to Cy(4), where 4 is the space
of all ordinals less than 4 with the usual order topology.

THEOREM 5.7. For an infinite cardinal A, the following conditions on a normal space
X are equivalent:

(1) X is A-paracompact.

(2) For every space Y, with w(Y) <A, and for every upper semi-continuous
map g: X — Co(Y), there exists a continuous map f: X — Co(Y) such that
g<f.

(3) For every upper semi-continuous map g : X — Cy(1), there exists a continuous
map f: X — Co(A) such that g <f.

ProOF. The implication (1) =-(2) is a consequence of [19, Theorem 3.2”].
Namely, let ¥ and g: X — Cy(Y) be as in (2). Then, the mapping [g,+x0): X —
Z.(Cy(Y)) is lower semi-continuous by [Lemma 2.6l Hence, by the mentioned Michael’s
result, ¢ has a continuous selection f. This f is as required in (2).

Since (2) = (3) is obvious, we complete the proof showing that (3) = (1). To this
end, take a monotone increasing open cover % = {U, : « < A} of X. By [17, Theorem
5], it suffices to show that % has a locally finite open refinement. For each x € X, let
a(x) =min{a < A: xe U,}. Finally, define a map g: X — Cy(1) by

1 for a < a(x)
900)(=) = {O for a > a(x).

Let us show that g is upper semi-continuous. Let x € X and ¢ > 0 be fixed. For every
X' € Uy, if a < a(x), then g(x')(x) <1 < g(x)(a) +e, and if o > a(x), then g(x')(x) =
0 < g(x)(x) + & because a(x’) < a(x). Since U, is a neighbourhood of x, this means
that g is upper semi-continuous. As a result, by (3), there exists a continuous map
f:X — Cy(A) with g <f. Take a locally finite open cover 7~ of X such that
diameter f[V] < 1/2 for each V' e ¥". To show that ¥  refines %, let V € ¥~ and fix
a point xe V. Since f(x)e Co(4), f(x)(a) <1/2 for some o < A. If there exists a
point y € V\U,, then a(y) > o and hence f(y)(a) > g(y)(x) =1 by the definition of g.
Thus, ||f(x) —f(»)|| > 1/2, which contradicts the assumption that diameter f[V] < 1/2.
Hence, V" must be included in U,. That is, ¥~ is a locally finite open refinement of

U. [

In the proof of Theorem 3.7, the normality of X is only used to apply Michael’s
result in the implication (1) = (2). Thus, we have the following corollary.

COROLLARY 5.8. The following conditions on a Hausdorff space X are equivalent:
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(1) X is paracompact.

(2) For every space Y and every upper semi-continuous map g: X — Co(Y), there
exists a continuous map [ : X — Cy(Y) such that g <f.

(3)  For every infinite cardinal A and every upper semi-continuous map g : X — Cy(4),
there exists a continuous map f: X — Co(A) such that g < f.

Concerning the statements of Corolary 5.8, the following question naturally arises.

ProBLEM 5.9. Is a space X paracompact provided for every space Y and every two

maps ¢,h : X — Cy(Y) such that g is upper semi-continuous, / is lower semi-continuous
and g < h, there exists a continuous map f : X — Cy(Y) with g <f <h?
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