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Abstract. We define Julia sets for (topological) expanding postcritically finite
branched coverings on S2, and show the existence and the uniqueness of Julia sets. Our
main aim is the investigation of codings of Julia sets (i.e. semiconjugacies between
symbolic dynamics and Julia sets). In particular, it is proved that if two expanding
branched coverings are combinatorially equivalent, then their Julia sets are topologically
conjugate.

1. Introduction.

We are concerned with the topological properties of ‘Julia sets’ for topological
branched coverings on S?. Though Julia sets are usually defined for holomorphic
dynamics, we do not assume the analyticity of the branched coverings for the following
reasons. First, for subhyperbolic maps, one often proceeds the study of the topological
properties of Julia sets without the analyticity of maps, assuming only the expanding-
ness. For example, recall the fact that the Julia set of f(z) = z? + ¢ for ¢ outside the
Mandelbrot set is totally disconnected. That is deduced from the combinatorial data
and the expandingness. Another example is the proof of the connectedness of the Julia
sets for postcritically finite rational maps. Second, expanding branched coverings are a
generalization of subhyperbolic rational maps. We will see an example of expanding
branched coverings not conjugate to any rational maps.

Thus we may expect that even if we forget the holomorphic structure, we can
find mathematical richness in the dynamics of branched coverings. In the present paper
and the succeeding [6], we investigate various aspects of Julia sets from the topological
standpoint.

We first define expandingness of topological branched covering on S? and the Julia
set for an expanding branched covering in Section 2. In Section 3 we construct a
semiconjugacy map from the full shift to the Julia set, which is called a coding map.
We also show the uniqueness of Julia sets. As well as in other hyperbolic dynamics, the
concept of symbolic dynamics plays a crucial role in our systems. We state the condi-
tion that the codes of distinct points in the Julia set coincide in Section 4. As a con-
sequence, it is proved that two equivalent expanding branched coverings are topologi-
cally conjugate on neighborhoods of their Julia sets. In Section 5 we introduce groups
and homomorphisms which describe the behavior of the dynamics of branched cov-
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erings, and restate the result on codings of Section 4. We construct an example of
expanding branched coverings not equivalent to any rational map in Section 6. Some
conditions on which expanding branched coverings are always equivalent to rational
maps are also given.

REMARK 1.1. The construction of coding maps in Sections 3 and the conditions for
the code coincidence in Section 4 are also discussed by Kimura in the hyperbolic
rational map case. By chance, Kimura and the author independently presented their
results in the same conference.

2. Definition of Julia sets.

In this section, we give the notion of the expandingness of branched coverings,
and then the definition of Julia sets. We consider only postcritically finite branched
coverings.

DEFINITION 2.1.  Suppose f : S? — S? is a topological branched covering. We say
Cr ={c|c is a critical point}

is the critical set of f and

Pr={f"(c)|ce Cryn >0}
is the postcritical set of f. We call f postcritically finite if Py is a finite set.

Throughout this paper, we assume that f is a postcritically finite branched covering
of degree d > 2.

DEerINITION 2.2. Let f be a postcritically finite branched covering. We say a
periodic cycle {xy,x2,...,xx} 1s a critical cycle of period k if it contains a critical point.
A point of a periodic cycle of period k is called a critical periodic point of period k.
We divide Py into Py and Py

P ={xePr|3k> 0, f%(x) is contained in a critical cycle}, Pl =P — P

DEeriNITION 2.3. A smooth branched covering f is said to be expanding if there
exists a Riemannian metric |- || on S? — P, which satisfies:

(1) Any compact piecewise smooth curve inside S? — Pf has finite length.

(2) The distance d(-,-) on S — Pf determined by the curve length is complete.

(3) For some constants C >0 and 0 < 4 < 1,

lol < C2*[ldf *(v)ll

for any k >0 and any tangent vector ve T,(S?) if f*(p)e S* - P;.
Then |I/| < CA*|f¥(1)| for any piecewise smooth curve [ with f¥(/) = S — Pf, where |- |
means the length of a curve.

DEFINITION 2.4. A non-empty compact set J < S? — P¢ is called a Julia set of
an expanding postcritically finite branched coverings f if f~'(J) =J = f(J).

PropoOSITION 2.5. An expanding postcritically finite branched covering [ has a
Julia set.
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Proor. Let ¢ ={p1,p2,...,pn} be a critical cycle of period n. Since the deriva-
tive of f” at p; vanishes, there is a neighborhood U of ¢ such that for xe U, f*(x)
is attracted to ¢ as k — co. Therefore A(c) = {x|f¥(x) is attracted to ¢ as k — o}
is open. Since f has infinitely many periodic points (for example, see §8.6), J =
S? — U eritical CycleA(c) is not empty. Thus J is a Julia set. ]

Since a postcritically finite rational map R is subhyperbolic (see §19), we
can easily see that R is topologically conjugate to an expanding branched covering.
Therefore the Julia set of R in the usual sense is a Julia set in our sense.

EXAMPLE 2.6. Consider f(z) =z> —2. This map has the critical set Cy = {0, 0}
and the posteritical set Py = {—2,2,0}. Let T(x) =2cosx and h(z) = [dT~!(z)/dz| =
\4—22]_1/ 2. Then the positive function / is smooth in C — {—2,2}, and the metric
h(z)|dz| satisfies (1) and (2) of Definition 2.3. In view of the relation 7'(2x) = f(T(x)),
we can see that f is expanding for the metric /(z)|dz|.

3. Coding maps for Julia sets.

In this section, we suppose that f is an expanding postcritically finite branched
covering of degree d. In general, expansiveness often leads correspondences between
subshifts and invariant sets of dynamical systems. In our case, we construct semi-
conjugacies, which is called coding maps, between full shifts and the Julia sets of
expanding branched coverings. This depends on the choice of inverse branches of f,
which is described by a graph in S? called a ‘radial.” Using coding maps, we show the
uniqueness of Julia sets in 3.1. Various topological properties are showed in 3.2. In
3.3 we see that the inverse branches of f are lifted to contraction maps on the universal
covering, and hence the lift of the Julia set are considered as a self-similar set.

3.1. Construction of coding map.

NotaTioN 3.1. We denotes by (X;,0) the one-sided symbolic dynamics with d
symbols, that is,

Yo={12,....d¥N ={aay---|a;e{1,2,...,d}}, o¢:Z4v3mar-- —ar--- €2y

The set of sequences of the form i--- € X; is denoted by S(i) for i € {1,2,...,d}. Then
the restriction of ¢ on S(i) is invertible. We write o; = (a|S(i)) ™"

g Xsmay-- — imay - € S(i).

Consider the set of words W = {1,2,... ,d}k for k=1,2,... and Wy ={}. For
w=ayay---ax € Wi, we write a,, = g, 0 g4, 0--- 00, and S(w) =a,(2y). On W, the
shift map ¢ and the inverse maps are defined by

o Wkaalag---akHaz---ake kal
and
agj . Wkaalaz---akHiaz---ake Wk+1.

An overlined word means its infinite repeat, which is a member of X;. For
example, 1 =11--- and 123 = 123123 ---.



442 A. KAMEYAMA

DerFIniTION 3.2, Let Q; denote the graph in the plane
{tek7ld e Clo0<t<1,k=1,2,...,d}.
A radial is a piecewise smooth map r: Q; — S? — Py such that

7N 0) = {r(e*> ) |k =1,2,...,d}.

We say r(0) is the base point of r and a point of r(e¥?®/4) is a radial point of r. The

arc Iy : [0,1] 3 ¢+ r(tek?™/4) € §2 — P; is called the k-th spoke of r.

For two arcs o, : [0,1] — X with o(1) = f(0), we define the arc a + f:[0,1] = X
such that (x+f)(t) =a(2t) if 0 <t< 1/2 and («+p)(¢1) =pRt—1)if 1/2<t<1. If
a(l) = p(1), we set o — f = o+ (—f), where (—f)(¢) = (1 —1).

DerFNITION 3.3. Suppose r is a radial with base point x, radial points x; and
spokes . Let y:[0,1] — S? be an arc joining the base point x and y € S* — Py such
that p(0) = x, p(1)e S? — Py (0 << 1), p(1)=y. We define an arc wi(y) by the lift
of y by f (i.e. fowi(y) =y) which is an arc joining x; and y’, where y’ is a point of

VRGO
Let U(f,x) be the set

7(0) = x,
U(f,x)={y:[0,1] — S|y is continuous, y(f) e S* — P (0 <t < 1),
y(1) € §* — P

Then Ly : y — I + wi(y) is a map of U(f,x) to itself. We say Ly is the /ift of f~' with
respect to r. Let p: U(f,x) — S* — Pf be the natural projection p(y) = y(1).

THEOREM 3.4. Let J be a Julia set of f. Then there exists a continuous surjective
map w: 25— J such that

;-2 3y

J — J

commutes.

Proor. Take a base point x and a radial r with spokes /;. For ajay---ay € Wy,
we define /,,4,..q, = L, (lg..q,) Inductively. Then /,4,.., is an arc joining x and a point
of fﬁk<x)- I:et Xayary-ar = Pllayay-a)-

Let ye U(f,x). For ajay---ar € W, we define yy =y and y, 4,0, = Lay (Vi )-
Let Yaar-ar = POuyar-a,) FOr a=ajar--- € Xg, the limit x, = limy o0 Yo a0, €Xists
by the expandingness of f. Indeed,

d(yaIQZ“'ak’ ya1a2”'akak+l) < Cik(M + (1 —"_ j’)‘yD?

where M = max|/;|. Note that x, is independent of 7.
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Now we define a map n:2%; — S* by a— x,. The expandingness of f yields
continuity of 7. If we take y(1) € J, then each x, € J. Thus the image of = is included
in J. Conversely, take a point @€ J. Choose y(1) as a cluster point of {f*(a) |k > 0}.
Then for any ¢ >0 and K > 0, there exist k > K and aja,---a; € Wy such that the
distance between 3, 4,..4, and a is less than e. Therefore a belongs to (), and so 7
is surjective.

For a = ajay--- € X4, we denote by [, the limit of the arcs /,4,..q,. Then I, is an
arc between x and n(a). It is easy to see that L, (/,4)) = l,. This implies the com-
mutativity of the diagram. J

DerFiniTION 3.5. We call n the coding map of J with respect to r.
In the above proof, we have seen the following.

COROLLARY 3.6. An expanding postcritically finite branched covering f has the
unique Julia set, which is characterized as

o0 o0
Jr=) US*W),
n=1 k=n
where y is an arbitrary point in S* - Pf.
Set Pf={xePf | 7K (x) P¢ for any k >0} For ye S? — Pf, the Julia set
coincides with the cluster set of UZO:O k).

COROLLARY 3.7. P/ = Py NJy and Pf = PN (S* = Jp).

COROLLARY 3.8. The following are equivalent.

(1) X € Jf.

(2) For any neighborhood U of x, S* — Pf < U, f5(U).

(3) For any neighborhood U of x, there exists n >0 such that J; < f"(U).

Proor. The equivalence between (1) and (2) is a consequence of [Corollary 3.6
(1) implies (3) because any open set U < X, satisfies the property ¢"(U) = X, for some
n> 0. ]

DerINITION 3.9. Two radials r,r’ are said to be homotopic if there exists a
homotopy /: Q4 x I — S* — Py such that A(-,0) =r,h(-,1) =+ and h(-,7) is a radial
for 0 <tr<1.

Suppose ' is another radial with base point x’, radial points x; and spokes
;. Let h:Q4x[0,1] — S?>— Py be a homotopy between r and r/, and let L; be
the lift with respect to ’. By o we denote the arc «(f) = /(0,¢). Then p(Li(x)) = xp,
and Ly(x) — [] — o is trivial in S> — P;.  We define the map T : U(f,x') — U(f,x) by
T(y) =a+7y. Then T(L/(y)) and Li(T(y)) are homotopic in S? — Py with the end-
points fixed.

Let 7’ denote the coding map with respect to . Since T'(L, oL; o---oL (7))
and L, o L4 o0 0L, (T(y)) are homotopic in S* — Py with the endpoints fixed,

COROLLARY 3.10. If r and r' are homotopic, then n = n'.
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3.2. Topological properties of Julia sets.
In this subsection, we show several propositions on the topological properties of
Julia sets and Fatou sets.

DErFINITION 3.11. We say S* — J; is the Fatou set of f. A connected component
of the Fatou set is called a Fatou component. For y in the Fatou set, we denote
by Ao(y) the Fatou component containing y. Then it is easily seen that f : A¢(y) —
Ao(f(»)) is a branched covering.

LeMMA 3.12. Let ye S? — Jr, and let x1,x,,... be a sequence which converges to
y. Let ky,ky,... be an unbounded sequence of positive integers. Then a cluster point of
{fki(x;)|i=1,2,...} is contained in P In particular, a cluster point of {f* () |k =
1,2,...} is contained in Py

PrROOF. Suppose {f%(x;)|i=1,2,...} has a cluster point x in S? — Pf. Then y

lies in ()~ U,_,/*(x), and hence y e J; by [Corollary 3.6, O
Immediately,

ProrosiTioN 3.13. A Fatou component W is eventually preperiodic, that is,
f"M(W) = fm(W) for some m >0, n>1.

COROLLARY 3.14. The Fatou set S* —J; is characterized as
S? —Jy={aeS?|{f*a)} converge to some critical cycle}.

In particular, a Fatou component contains a backward image of a critical periodic
point.

CoORrROLLARY 3.15. Let p be a critical periodic point of period n. Then
limy_., f*(x) = p for any x e Ay(p).

Proor. It suffices to show that Ap(p) has no other critical periodic point.
Otherwise, take another periodic point b € Ayp(p). Let y be a path in 4y(p) between a
and b. Then there exists z € y which belongs to the boundary of {x|limy_ ., /¥ (x) =
p}. Since z must lie in Jr, we have a contradiction. ]

PROPOSITION 3.16.  The Julia set Jy has an interior point if and only if it is the entire
sphere.

PROOF. Let U be an open set of S included in Jy. Then Jy =)/, f*¥(U) = §?
by [Corollary 3.8, O

ProrosiTiON 3.17.  Let W be a Fatou component. Then W is simply connected and
#WN,_, f5(Pr)) =1. Consequently, the Julia set is connected.

ProOF. There exist k>0, n>1 such that f*(W) = fk"(W). Let p be the
periodic point of period n in f*(W). Take a disc D = 4y(p) such that DN P, = {p}.
Then each connected component of f~%(D) is simply connected and contains only one
point of f~%(p).

Let y be a closed curve in W — f~%(p). The image f**"(y) is included in D
for some large j. By deforming y continuously in W — f~%(p), we can assume
yO f~*"(p) =&, and then f*"(y) =D —{p}. If fKk"(y) is 0O-homotopic in
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D —{p}, then y is also 0-homotopic in W — f~%(p). If f*7"(y) is non-trivial in
D — {p}, then y is homotopic in W — f~%7"(p) to a connected component / of
f~k="(6D). As mentioned above, [ bounds a connected component D' = f~K="(D)
that contains only one point of f~*7(p). Thus we have proved that a simple
closed curve in W — f~*(p) is either 0-homotopic in W — f~*(p) or bounds a disc
D’ such that D' = W and #(D'N f~%(p)) = 1. Therefore W is simply connected, and
#WNfH(p) =1

Suppose that there exist distinct points a,b€ WN|J"_ f™(P;). Then f*(a) and
f*(b) are periodic points in Py for some k. Since a Fatou component contains at most
one periodic points (Corollary 3.13), we have f*(a) = f*(b). That is a contradiction to
the fact just proved. O

PROPOSITION 3.18.  There exists m > 0 such that #n~'(p) <m for peJs. In par-
ticular, n='(p) consists of periodic sequences if p is periodic.

PrOOF. Let p be a point in Jy. Then {/,|aen!(p)} can be divided into finite
classes Bi(p), B2(p),- .., By,)(p), each consisting of elements mutually homotopic in
S? — Py the endpoints fixed leaving. Indeed, suppose there exist infinite arcs /1,7, ...
which are not mutually homotopic with the endpoints fixed. We can assume tﬂat_{a_k }
converges to some a. Then /, is not an arc with finite length, and this is a contra-
diction. Moreover, it is similarly proved that there exists 7 such that #(y) < T for any
S J, f-

Note that o: 7~ !'(p) — n!(f(p)) is bijective if p is not a critical point, and
d'-to-one if p is a critical point of degree d'. Since p e J;, there exists ¢ > 0 such
that ¢* : 77! (p) — 7' (f*(p)) is at most c-to-one for any k > 0. Suppose ¢* : 77! (p) —
n ' (f*(p)) is d'-to-one. If a,ben '(f*(p)) and if I, ], are homotopic, then by the
homotopy lifting property, waen '(p) (we Wy) if and only if wben~!(p). Since
t(f*(p)) < T, we have #{we Wi |S(w)Nn'(p) # &} <d'T <cT. That is true for
any k >0, and hence #n !(p) < cT. ]

For a periodic p e Jy, it is not necessarily true that the periods of sequences in
n~!(p) are the same as the period of p. Indeed,

ExaMPLE 3.19. Consider a polynomial f(z)=2z3—3z. The critical set C; =
{—=1,1,00} and the postcritical set Pr = {—-2,2,00}. The dynamics on C;U Py is —1 —
2—-21—-2— -2 0w — . Take a radial as in Figure 1. Then z(1) = 7(23) =
n(32) = -2.

3.3. Self-similar sets.

We can consider the Julia set as a quotient space of self-similar set, that is, there
exists a self-similar set K and surjection p : K — Jr. We use ‘self-similar sets’ in Hut-
chinson’s sense as follows.

Facrt 3.20. Let X be a complete metric space and f, f>--- f; be contractions on X
(i.e. the Lipschitz constants of f;’s are less than one). Then there uniquely exists a non-
empty compact set K such that K = | J, fi(K), which is called a self-similar set ([3], [2]).
Moreover, there exists a continuous surjective map y : 2; — K such that yoo; = fioy
for i.
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For y,y" € U(f,x), we say y ~ 9 if they are homotopic in S? — Py with the end-
points fixed. Let U(f,x) = U(f,x)/~. Then the projection p* : U(f,x) — S* — P is
naturally defined. Besides the mapping Ly : U(f,x) — U(f,x) induces a well-defined
mapping L/ : U(f,x) — U(f,x). For [y] and [y’] in U(f,x), let

D([y),[y")) = inf{|l| : I is homotopic to —y+ 7" in S* — Py with the endpoints fixed}.

The space U(f,x) is a complete metric space in the distance D(-,:). Then L; is a
contraction, and by Fact 3.20 there exists a self-similar set K = U(f,x) and a surjection
x:2q— K. It is evident that J; = p*(K) and 7 = p* o y.

4. Equivalence Relations on the symbolic dynamics.

In this section we treat the equivalence relations on the symbolic dynamics defined
by the coding maps. In 4.1 we show that the equivalence relation is determined by
the homotopical condition. Using that, we prove that if /' and g are combinatorially
equivalent, then they are topologically conjugate on the Julia sets. In 4.2 the con-
jugacy is extended on neighborhoods of Julia sets. This is a generalization of [4]
Corollary 6.5.

4.1. Conjugacies on Julia sets.

THEOREM 4.1. Let f be an expanding postcritically finite branched covering. Let
r be a radial with base point x and n: Xy — Jr be the coding map with respect to r.
Then for a=ajay---,b=>biby--- €2y,

n(a) = n(D)

if and only if there exist curves oy,f, € U(f,x) (k=0,1,2,...) such that (0) =

Bi(0) =x, (1) = fr(1) ¢ Pr, Lo, (1) (1) = Lo, (Br1) (1), o], [Bi] < B < o0 and
o — By is homotopic to Ly, (1) — Lp,,,(Besy) in S* — Py with x fixed (k =0,1,2,...).

ProOF. We use the notation of [Theorem 3.4.

Suppose n(a) =n(b). If f*(x,) = f*(xp) is not contained in Pr for any k >0,
then oy = lyx(a), Br = lox(p) satisfy the above condition. In the case where ["(x,) =
S (xp) is contained in Pr for some m > 0, setting f;, = x (a constant map), we can take
a in a neighborhood of y; = ;x4 — l;+)- Indeed, there exists ¢ such that for any
curve y in g -neighborhood of y,, we can take y’ near y, which is homotopic to y in
S? — Py satisfying ||y’ — ||| < e

Conversely, suppose the existence of arcs oy, f5;, satisfying the condition. Let o =
Ly oLgo---0Ly () and B =Ly oLy 0---0Ly(B). Then o) (1) =p (1) and o =
lyay—a, + %> B = lbyby-by +/§k, where a; (or [fk) is one component of f () (or
f7%(B,)). Therefore the distance between X, ,..q, and Xp,p,..5, is less than 2A¥B.  Thus
n(a) = n(b). 0

DerINITION 4.2.  Let f and g be postcritically finite branched coverings. We say f
and g are equivalent, f ~ g, if there exist two orientation-preserving homeomorphisms
$1, ¢, : S* — S? such that ¢,(P;) =P, i=1,2, ¢ and ¢, are isotopic relative to Py,
and
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S 82
g

commutes.

Lemma 4.3.  Suppose [ and g are postcritically finite branched coverings. Let ¢y, ¢,
be homeomorphisms such that ¢,(P;) = P,, i=1,2 and ¢,0 f =go¢,. If H:S*x I —
S? is an isotopy such that H(-,0) = ¢, and H(Ps,t) = P, for tel, then there exist an
isotopy h:S*x I — S* such that h(-,0) = ¢,, h(Pr,t) = P, for tel, and H(f(x),t) =
g(h(x,t)) for tel.

ProOF. By applying the covering homotopy theorem to the covering ¢g:S> —
g '(P) — S*— P, and the isotopy Ho (f xid): (S*— f~1(P)) x I — S*— P, we
obtain a homotopy 4 : (S? — f~1(Pr)) x I — S? — g~ (P,) such that Ho (f xid) =goh
and /(-,0) = ¢,. Since for every te T, h(-,t) is a homeomorphism and is extended on
S?, we obtain the required isotopy. ]

THEOREM 4.4. Suppose that [ and g are expanding and they are equivalent to each
other. Then there exists a homeomorphism y :Jr — J, such that yo f =go y.

Proor. Since f and g are equivalent, there exist homeomorphisms ¢;, ¢, :
(S2, Py) — (S?,P,) such that ¢,o f =gog¢, and there exists an isotopy h:S? x I —
S? with h(-,0) = ¢,, h(-,1) = ¢, and h(P;, 1) = P,. Set hy=h. By [Lemma 4.3, we
have an isotopy hj:S? x I — S? such that hyo (f xid) =gohy, hi(-,0)=¢, and
I (Py,t) = P,. Inductively we have isotopies /i : S? x I — S (k=1,2,...) such that

.y
2w I g2

| Js

s — 8?2
gk
commutes and /A (-, 1) = hyyi(-,0). Write sp = hg(-,1). Note that s;_j o f = gos.
Take points xeS>— P and x'e€S*>— P, such that ¢,(x) =x'. We define @& :
U(f,x) = Ulg,x") by @o(y) =¢y0y and D1 (p) = ho(x,") + hi(x,) + -+ he(x,) +
sgoy for k=0,1,...

Let r be a radial for f with base point x. We denote by x; the radial point of r
and by /; the spoke of r. Let x/ = ¢;(x;). Then g~ !(x') = {x/|i=1,2,...,d}. Thus
we can define a radial 1’ for g with spokes // = @ (;). We denote by L] : U’ — U’ the
lift of g~! with respect to r'. We can easily see that
(1) DpoLi(y) ~ Lio®k(y).

homotopic

Let o, € U(f,x) be arcs with common endpoints. Then it is clear that @ (a)—
@i (f), k >0 are homotopic to one another in S* — P, with x’ fixed.

Let n: X; — Jy be the coding map with respect to r and n’ : 2y — J, be the coding
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map with respect to r’. Suppose n(a) = n(b). Let o and f,, k=0,1,... be curves
satisfying the condition in [Theorem 4.1. Let o = @ (), B = Pi(Bi). From (1), we
see that oy —f; is homotopic to L (% ;) — Ly (fi,,). Thus the curves o, f;
satisfy the condition of [Theorem 4.1. Therefore 7’(a) = #’(b). Consequently, the
equivalence relations derived by # and n’ are identical. Hence we have a homeomor-

phism between J; and J,. O

REMARK 4.5. The homeomorphism between J; and J, is independent of the choice
of r, and depends on the isotopy class of ¢;,#, and the homotopy class of the isotopy
h. Indeed, let

Srx = {{xx};-0|a convergent sequence such that f*(x;) = x}.

Then oy : {xx};.o — limx, is a surjection onto Jy. We set b({xi}) = {sk—1(xx)}. In
Mheorem 4.4, we have proved that b: Sy — S, and ag0boou;!: Jy — J, are well-
defined. The mapping b depends on s;, and is independent of r. O

4.2. Conjugacies on neighborhoods of Julia sets.

LEMMA 4.6. Suppose that [ and g are expanding and they are equivalent to each
other. Let (pi1,pa,...,pn) be a critical cycle of f, and (p{,p5,-..,p),) the corresponding
critical cycle of g. Then there exists a neighborhood W of J; such that the conjugacy y in
Theorem 4.4 is extended on JrU (W N U;;l Ao(p)))-

Proor. For simplicity, we consider the case n = 1. Let p be a critical fixed point
of f, and p’ the corresponding critical fixed point of g. Suppose f : Ao(p) — Ao(p) is
of degree d’. Take a small open disc D = Ay(p) containing p such that D < f~!(D).
Let Dy be the components of f~!(D) including D. Set By = Do — D and y, = D,
71 = 0Dy.

Fix a point x €y, Take a point y; €f '(x)Ny, and an orientation-preserving
homeomorphism {,: T — y, such that {,(0) = x, where T = R/Z. Then there exists
a homeomorphism {;: T — y, such that {;(0) =y, fo(l(t) = (d't). Set y, =
(f | 40(p)) " (y5_,) inductively. Take a path ¢y = By between x and y;. We inductively
define ¢x = (f'| Ao(p)) ' (ck—1) that joins yi_; and yr. Then there exists a homeomor-
phism {; : T — y; such that {;(0) = yx, foi(t) = (4_1(d't). By the expandingness of
f, the sequence {{; : T — S*} uniformly converges to a continuous map {: T — S? as
k — oo. Indeed, take a homeomorphism ¢ : T x I — By such that &(-,i) =, i=0,1
and £(0,:) =¢p. Let

M = sup inf{|c| : ¢ is homotopic to &(z,-) with the endpoints fixed}.
teT
Then we see d((i(1), k(7)) < CAKM. Note that the image of ( is equal to the
boundary of A4y(p).

Similarly, we take a small open disc D’ = 4y(p’) containing p’ such that D’ =
g~ (D). Let ¢,,¢, be as in Mheorem 4.4. Since ¢,(y,) and y, are homotopic, they
are ambient isotopic (see p. 11). From [Lemma 4.3, changing ¢, by an isotopy if
necessary, we can assume that ¢,(y,) = 7,. Set x’ = ¢,(x) and y] = ¢;(»1). We then
define B(,y;, y; and {; similarly, and finally obtain a continuous map (' : T — dA4(p’).
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By a method similar to [Theorem 4.4, we can show that ((¢) = {(¢') & {'(¢) = {'(¢)
for ¢t,t' € T. Therefore we have a homeomorphism y': dA4o(p) — dAo(p’) such that
7' ol ={". Let s be the homeomorphisms in [Theorem 4.4 Since s (7, () = 7, the
homeomorphism y’ is the restriction of y in [Theorem 4.4.

The conjugacy y’ is extended as follows. Take an orientation-preserving homeo-
morphism y’: By — B} such that Y Ino =G0l and x|y, =¢ ol ', Set By =
(f | 4o(p)) " (Br_1), B, = (g|Ao(p))” (B,’( 1) 1nduct1ve1y Then the homeomorphlsm x
1s uniquely extended from Uk oBk onto Uk OB,’( so that y’o f=goy’. From the
expandingness of f,g, it follows that y’ is continuous on 0A4y(p). ]

THEOREM 4.7. Suppose that [ and g are expanding and they are equivalent to each
other. Then [ and g are topologically conjugate on neighborhoods of the Julia sets, that
is, there exist neighborhoods W, W' of Jr,J, and a homeomorphism y: W — W' such
that f~\(W) c W, g—‘(W/) c W' and yo f=goy on f~Y(W).

ProoF. If Pf = P! = Q then the theorem is proved in [Theorem 4.4. Suppose
that Pf = {xePf|Uk o/ F(x) = P} is equal to Pf. Then the Fatou set has only
ﬁnltely many connected components, say U, U,,...,U,. Since J; = U,Z"zl 0Uy, the the-
orem is a consequence of |

If Pf' — Pf # (J, then the cluster set of | )/ =0 f- (P“) is equal to the Julia set. Let
sk be as‘ in m Note that sx_1 | f~5(Py) : f75(Pr) — g~*(P,) is bijective and
Sk—1 | f *k(l}') =8| f *k(Pf) In view of Remark 4.5, we have a homeomorphism s :
Uico /75 (Bf) — U, g7 (Py) such that s| f~(Fr) = si1 | f75(Fy).

By _ we have a homeomorphism y :J; — J, such that yo f=goy.
Let N be a small neighborhood of P¢ such that N = f~!(N). By [Lemma 4.6, the
homeomorphism y is extended on Szf N so that y =s on Uk oS ( ) — N and
yof =goy on S*>—N. Since s is a homeomorphism, so is . ]

5. Branch groups.

In this section we define groups from the homotopical condition of f and the
radial r. We prove that the groups describe the equivalence relation, and restate

MTheorem 4.1.

DEFINITION 5.1. Let 4 be a subset of the fundamental group n(S* — Py, x). We
say A = {o;}; is bounded if there exist a family of closed curves {&;}; and B > 0 such
that &; is a representative of o; with || < B.

We define ¢ : 7(S2 — Prox) x {1,2,....d} — {1.2,....d} by j = e(oi) if Li(@)(1) =
x; for e aen(S?— Pr,x). For given oen(S*— P, x ),

e(a,-) : {1,2,...,d} = {1,2,...,d}
is a permutation, and
(2) €(O€, ) ° e(ﬁv ) = e(ﬂ(x? ')7 e(cx‘l, ) = €(O€, ')71'

We define a map L; : n(S* — Py, x) — n(S? — Py, x) as Li(«) = Li(&) — l,,,y. Then
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(3) Li(ap) = Li() Lo,y (), Li(e™") = Lo, ()~
We write L, 0L, ---0 Ly = Lyay.q,-

PropoSITION 5.2. Let f be an expanding postcritically finite branched covering.
Let r be a radial with base point x and ¢ : X4 — Jr be the coding map with respect
tor. Fora=aiar---,b=bby--- €y,

#(a) = 4(b)

if and only if there exist a bounded sequence {ui}i_o,,. . of n(S*— P, x) such that
b1 = e(0r1, ary1) and Ly, (0ki1) = 0.

Proor. If {o;} satisfies the above condition, then some family of curves {&;} con-
sisting of representatives of «;’s and a family {f,} with f;(f) = x satisfy the condition in
MTheorem 4.1. Conversely, if {&;} and {f;} satisfy the condition in [Theorem 4.1, then
{[3 — B/]} = n(S? — Py, x) satisfies the above condition. O

We introduce groups, called branch groups, by which we can describe the equiv-
alence relation on 2,;. For a set X, we denote by A(X) the set of bijections X — X.
Then A(X) is a group with the product hh' =h'oh. Let G(X)=n(S>— Pr,x)* x
A(X). We consider a product on G(X) as follows. We denote by p;,p> the pro-
jections of G(X) to the first entry and the second entry respectively. For g,¢’ €
G(X), we define the product by pi(g99’)(a) = pi(g9)(a@)pi1(9')(p2(g9)(a)) for ae X and
p2(99’) = p2(9)p2(g9’). The unity 1e G(X) is defined by pi(1)(a) =1 e n(S* — P, x)
and p,(1) =id. The inverse ¢~ is defined by pi(g7")(a) = pi(9)(p2(g9) ' (a))”" and
p2(gY) =pa(9)”". By easy calculation,

ProposITION 5.3. G(X) is a group.

Remark that p, is a homomorphism but p; is not a homomorphism.

We write G(X) = Gi (or G(X) = Gy) for X = Wy (or X = ZX,;). Since Wy = {J},
A(Wp) has only one element. Thus we can identify Gy and #n(S? — Py, x).

For k=1,2,... (or k — 1 =k = o0), we define a map Fy: Gr_; — Gy as follows.
For ae Gy, we set g = (7,h) e Gy by (i) = Li(«) for ie W, ={1,2,....d} and h=
e(a,-). By (2) and (3), F) : «+— ¢ is a homomorphism. For g = (7,h) € Gr_;, we set
g' = (v/,h") € G by t'(a) = Ly, (t(c(a))) and h'(a) = Gor(oa)),a(0(a)) for a=a;--- in
Wy (or in X;). By a straight calculation, we see that Fj : g — ¢’ is a homomorphism.
We call F; the induced homomorphism of f.

REMARK 5.4. Branch groups and induced homomorphisms are described by means
of universal coverings. See for detail.

DEerFINITION 5.5. We say g = (t,h) € G, is bounded if there exists (zx,/) € G
for k =1,2,... such that F.(t1,h) = (t,h), Foy (T, i) = (t5—1,hx—1) and U;OZI w(Zg) U
U, % (Z4) is bounded, where FX(t,h) = (Zx, hx).  Then Bound(G..) = {g|bounded}
is an F,-invariant subgroup.

THEOREM 5.6. Under the situation of Proposition 5.2, we have ¢(a) = ¢(b) if and
only if there exists (t,h) € Bound(G.,) such that h(a) = b.
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ProoF. Suppose that (7,h) € G, is bounded. Let (7%, /) € G, be as in the defi-
nition. Let a =aja;---€ Xy and h(a) =b = biby---. Set o = 14(c%(a)), k=0,1,...
Then f,a,((ock) =oy—1 and e(ox,ar) = bx. Thus the condition of [Proposition 5.2 is
satisfied.

Suppose ¢(a) = ¢(b) =y. By [Proposition 5.2 we obtain a bounded subset {oy}.
In the case that ¢ and b are not eventually periodic, we define (z,/4) as follows:

(olo/(@) = Lul) |~ forwe Wi,
L

t(ow(o ( )) = L)™' forwe Wi,
(c) = otherwise,
(GH( (Q))) = Op ‘v)(o-j<l_7)) for we Wk7

{ (0:(7(8))) = 041 (07 (@) for we W,

h(c)=c¢ otherwise,

where we denote (tx j,hk ;) = Fx—10 Fx_p0---0Fy(o;). Then 7(2,;) is bounded and
Fo(t,h) = (7, h).
In the case that ¢ and b are periodic, we define (z,,/4,) as follows:

t.(ow(0/(a))) = L,(oy) forn<j—k<n+m—1,we W,
Tu(ow(0/ (b)) = Ly(0)" forn<j—k<n+m—1,we W,
(if o™ (a) # b for any N)
([ Tn(c) =1 otherwise,

(ha(00(07())) = o4 o) (07 (D)) forn < j—k<n+m—1we W,

h(ow(a’(b))) = an, (7 (D)) forn<j—k<n+m—1,we W,
(if oV (a) # b for any N)

ha(c) = ¢ otherwise,

where m is the minimum of the periods of a and b, we denote (tx;, /i ;)=
Fk—l o] Fk—2 ©---0 F()(OC]) Then FOO (‘L’n,/’ln) = (Tnfl,//ln,o and (T(),h()) 1S bounded.

If 0%(a) and o?(b) are periodic for some integer ¢ > 0, then we construct a bounded
element FZ(zg,hy) from the periodic case above. O

EXAMPLE 5.7. Let us consider the polynomial f(z) =z —2. The critical set C; =
{0, 00} and the postcritical set Py = {—2,2}. The dynamics on CyUP; is oo — o0,
0— -2+~ 2+ 2. Take two radials r and ' as Figures 2.1 and 2.2, and generators
A, B of n(S* — Py, x) as Figure 2.3.

In the case of r, see that ¢(a) = ¢(b) (a #b) if and only if {a,b} = {o,(121),
0,(221)} for some we W. We obtain

Li(A)=A, LyA) =B, L|(B)=LsB) =1

and
e(A,1)=1, e(4,2)=2, e(B,1)=2, e(B2) =1.

Define g = (1,h) € G, by (1
a,(121), h(o,(121)) = 5,,(22
bounded.

)= A4, ©(21) = B and 7(a) = 1 otherwise, and h(z,,(221)) =
1) and h(a) =a otherwise. Then F,(g) =g, and g is
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In the case of 1/,

7 '(2) ={1,2},
Li(A)=A, LyA) =B, L(B)=A'B"', L,(B)=B4
and
e(A,1)=1, e(4,2)=2, e(B,1)=2, e(B,2)=1.
Define g, = (tp, /) € G, n=0,1,... by t,(0,1) =L, (4"*'B ), 1,(0,2) =

L,(BA7" %1 (we Wy) and t1,(a) = 1 otherwise, and ,(c,(1)) = 6,/(2), h(0,(2)) =
a,(1) (we W) and h,(a) = a otherwise, where w’ is the word given by replacing
I’'s with 2’s and 2’s with I’s in w. Then F.(g,t1) = gn, and go is bounded. Now
we show that there exists no bounded ¢ = (7,/4) such that F(g) =g for some m >0
and h(1)=2. Suppose there exists such a g = (r,4). Then L!"(z(1)) = (1) and
e(LF(z(1)),1) =2 (k=0,1,...). For X = A™BP'A™ ... B A" B+ € n(S? — Pr, x) (n;,
pi#0 fori=1,2,... k), weset [(X)=k. Note that L;(4"B%) = A", L;(A"B¥*) =
A" 1Bl L,(A"B¥) = B", Ly(A"B¥**') = B"14. 1t is easily seen that 4/(L?(X))—
1 <I(X). Consequently, /(z(1)) =0, so that we have 7(1) = 4”. Since e(A4",-) = id,

that is a contradiction. Therefore any g does not satisfy F”(g) =g and h(1) =2.

6. Branched coverings not equivalent to rational maps.

In this section, we give an example of expanding branched coverings which is not
equivalent to any rational map. We then explain that under certain conditions, an
expanding branched covering is always equivalent to some rational map.

Let S be a 2 x 2 integer matrix with determinant bigger than one. Recall that the
quotient space R/~ is considered as S2, where we set x ~ y if x — y € Z? or x+ y € Z°.
Note that the projection p: R*> — S? is a branched covering, and Sx ~ Sy if x ~ y.
Define F: R*> — R?> by F(x) = Sx+f, where f is a 1/2-lattice point (i.e. 2f e Z?).
Thus we have an orientation-preserving branched covering f :S? — S? of degree
detS such that fop=poF. If xe F'((1/2)Z*%) — (1/2)Z?, then deg (poF)=2
(the local degree of po F at x) and deg,(p) = 1, so deg,\(f) =2. If xe (1/2)Z?, then
deg (poF) =2 and deg.(p) =2, so deg,,(f)=1 Thus Cr =p(F1((1/2)Z?%) -
(1/2)22) and P, = p((1/2)Z) = {p(0,0), p(0,1/2), p(1/2,0), p(1/2,1/2)}. Define a
metric on S? — Py by ||v]| = ||dp~!(v)| for ve Ty(S?),x e S* — Pr. Then we see that f
is expanding if S has two eigenvalues with moduli bigger than one. By the Thurston
theory ([1], Proposition 9.7), we know that f is equivalent to a rational map if and
only if the two eigenvalues of S are complex conjugate or the same integer. Therefore,

. 0 : : : :
for example, if §= ( 0 3) then f is expanding and not equivalent to a rational

map. In the case detS =2,3,4, if f is expanding, then it is equivalent to a rational
map.

As mentioned above, Thurston gives a topological condition for a postcritically
finite branched covering to be equivalent to a rational map [I]. Suppose that f is a
postcritically finite branched covering with hyperbolic orbifold. If we find a Thurston
obstruction for f, then we know that f is not equivalent to a rational map. A



On Julia sets of postcritically finite branched coverings 453

Levy cycle we define below is a special case of Thurston obstructions. In general, a
Levy cycle implies that f is not equivalent to a rational map, and the nonexistence of
Levy cycles does not imply the equivalence (for example, see [12]). However, under
certain condition, for example, the degree-two case and the topological polynomial case,
any Thurston obstruction includes a Levy cycle ([9], [13]). Thus, in these cases, if there
exists no Levy cycle, then f is equivalent to a rational map. Since an expanding
branched covering has no Levy cycle, an expanding branched covering is equivalent to a
rational map.

DeriNITION 6.1.  Let f be a postcritically finite branched covering. A closed curve
y in S? — Py is called peripheral if one of discs bounded by y contains at most one point
of Py.

DerFINITION 6.2. A collection of disjoint simple closed curves {y,75,...,7,} in
S? — Py is called a Levy cycle if each y; is not peripheral and there exists a component
7., = f~X(y;) homotopic to y,_; in S — Py and f:y/ | — y; is of degree one for i =
1,2,...,n, where y, = y,.

PropPoSITION 6.3.  Suppose f be an expanding postcritically finite branched covering.
Then there is no curve y such that for each k, there exists a component y, < f~*(y)
satisfying that f* :y, — y is one-to-one and min{|j| :  is homotopic to y,} > 0. In par-
ticular, there is no Levy cycle.

PrOOF. Assume that there exists such a curve y. We can assume that y has the
length. Then |y,| < CA*|y| and this is a contradiction. ]

DEFINITION 6.4. A postcritically finite branched covering f : S — S? is a topo-
logical polynomial if f~'(a) = {a} for some a € P.

The following fact is known ([9], [13]).

Fact 6.5. Let f be a postcritically finite branched covering with hyperbolic
orbifold which is either of degree two or a topological polynomial. If there exists no
Levy cycle, then f is equivalent to a rational map.

The following fact is proved in [4] Theorem 5.15.

Fact 6.6. Let f be a postcritically finite branched covering with hyperbolic
orbifold. Suppose that there exists a topological graph L c— S> which satisfies
the following: (1) L< f~'(L), (2) f:L — L is a homeomorphism, and (3) There
exist continuous maps Fi,F,...,F;: 8% — f7"(L) — S* for some n>0 such that
foF;=1d. If there exists no Levy cycle, then f is equivalent to a rational
map.

COROLLARY 6.7. Let [ be a postcritically finite branched covering with hyperbolic
orbifold which either is of degree two, is a topological polynomial, or satisfies the condition
in Fact 6.6. If f is expanding, then f is topologically conjugate to a rational map on
neighborhoods of their Julia sets.

Proor. This is clear by Facts 6.5, 6.6, and Theorem 4.7. O
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X1

o m

X2

Figure 1. A radial r for f(z) =z3 —3z. The codes Figure 2.1. A radial r for f(z) =z> 2.
of =2 are 1,23,32.

B A

Figure 2.3. The closed curves A4,B generate the
fundamental group #(S* — P, x).

Figure 2.2. A radial r' for f(z) =22 —2.
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