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Abstract. We define Julia sets for (topological) expanding postcritically finite

branched coverings on S2, and show the existence and the uniqueness of Julia sets. Our

main aim is the investigation of codings of Julia sets (i.e. semiconjugacies between

symbolic dynamics and Julia sets). In particular, it is proved that if two expanding

branched coverings are combinatorially equivalent, then their Julia sets are topologically

conjugate.

1. Introduction.

We are concerned with the topological properties of ‘Julia sets’ for topological

branched coverings on S2. Though Julia sets are usually defined for holomorphic

dynamics, we do not assume the analyticity of the branched coverings for the following

reasons. First, for subhyperbolic maps, one often proceeds the study of the topological

properties of Julia sets without the analyticity of maps, assuming only the expanding-

ness. For example, recall the fact that the Julia set of f ðzÞ ¼ z2 þ c for c outside the

Mandelbrot set is totally disconnected. That is deduced from the combinatorial data

and the expandingness. Another example is the proof of the connectedness of the Julia

sets for postcritically finite rational maps. Second, expanding branched coverings are a

generalization of subhyperbolic rational maps. We will see an example of expanding

branched coverings not conjugate to any rational maps.

Thus we may expect that even if we forget the holomorphic structure, we can

find mathematical richness in the dynamics of branched coverings. In the present paper

and the succeeding [6], we investigate various aspects of Julia sets from the topological

standpoint.

We first define expandingness of topological branched covering on S2 and the Julia

set for an expanding branched covering in Section 2. In Section 3 we construct a

semiconjugacy map from the full shift to the Julia set, which is called a coding map.

We also show the uniqueness of Julia sets. As well as in other hyperbolic dynamics, the

concept of symbolic dynamics plays a crucial role in our systems. We state the condi-

tion that the codes of distinct points in the Julia set coincide in Section 4. As a con-

sequence, it is proved that two equivalent expanding branched coverings are topologi-

cally conjugate on neighborhoods of their Julia sets. In Section 5 we introduce groups

and homomorphisms which describe the behavior of the dynamics of branched cov-
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erings, and restate the result on codings of Section 4. We construct an example of

expanding branched coverings not equivalent to any rational map in Section 6. Some

conditions on which expanding branched coverings are always equivalent to rational

maps are also given.

Remark 1.1. The construction of coding maps in Sections 3 and the conditions for

the code coincidence in Section 4 are also discussed by Kimura [8] in the hyperbolic

rational map case. By chance, Kimura and the author independently presented their

results in the same conference.

2. Definition of Julia sets.

In this section, we give the notion of the expandingness of branched coverings,

and then the definition of Julia sets. We consider only postcritically finite branched

coverings.

Definition 2.1. Suppose f : S2 ! S2 is a topological branched covering. We say

Cf ¼ fc j c is a critical pointg

is the critical set of f and

Pf ¼ f f nðcÞ j c A Cf ; n > 0g

is the postcritical set of f . We call f postcritically finite if Pf is a finite set.

Throughout this paper, we assume that f is a postcritically finite branched covering

of degree db 2.

Definition 2.2. Let f be a postcritically finite branched covering. We say a

periodic cycle fx1; x2; . . . ; xkg is a critical cycle of period k if it contains a critical point.

A point of a periodic cycle of period k is called a critical periodic point of period k.

We divide Pf into Pa
f and P r

f .

Pa
f ¼ fx A Pf j bk > 0; f kðxÞ is contained in a critical cycleg; Pr

f ¼ Pf � Pa
f :

Definition 2.3. A smooth branched covering f is said to be expanding if there

exists a Riemannian metric k � k on S2 � Pf which satisfies:

(1) Any compact piecewise smooth curve inside S2 � Pa
f has finite length.

(2) The distance dð� ; �Þ on S2 � Pa
f determined by the curve length is complete.

(3) For some constants C > 0 and 0 < l < 1,

kvk < Cl
kkdf kðvÞk

for any k > 0 and any tangent vector v A TpðS
2Þ if f kðpÞ A S2 � Pf .

Then jlj < Cl
kj f kðlÞj for any piecewise smooth curve l with f kðlÞHS2 � Pa

f , where j � j

means the length of a curve.

Definition 2.4. A non-empty compact set JHS2 � Pa
f is called a Julia set of

an expanding postcritically finite branched coverings f if f �1ðJÞ ¼ J ¼ f ðJÞ.

Proposition 2.5. An expanding postcritically finite branched covering f has a

Julia set.
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Proof. Let c ¼ fp1; p2; . . . ; png be a critical cycle of period n. Since the deriva-

tive of f n at p1 vanishes, there is a neighborhood U of c such that for x A U , f kðxÞ

is attracted to c as k ! y. Therefore AðcÞ ¼ fx j f kðxÞ is attracted to c as k ! yg

is open. Since f has infinitely many periodic points (for example, see [7] §8.6), J ¼

S2 �6
c: critical cycle

AðcÞ is not empty. Thus J is a Julia set. r

Since a postcritically finite rational map R is subhyperbolic (see [10] §19), we

can easily see that R is topologically conjugate to an expanding branched covering.

Therefore the Julia set of R in the usual sense is a Julia set in our sense.

Example 2.6. Consider f ðzÞ ¼ z2 � 2. This map has the critical set Cf ¼ f0;yg

and the postcritical set Pf ¼ f�2; 2;yg. Let TðxÞ ¼ 2 cos x and hðzÞ ¼ jdT�1ðzÞ=dzj ¼

j4� z2j�1=2. Then the positive function h is smooth in C � f�2; 2g, and the metric

hðzÞjdzj satisfies (1) and (2) of Definition 2.3. In view of the relation Tð2xÞ ¼ f ðTðxÞÞ,

we can see that f is expanding for the metric hðzÞjdzj.

3. Coding maps for Julia sets.

In this section, we suppose that f is an expanding postcritically finite branched

covering of degree d. In general, expansiveness often leads correspondences between

subshifts and invariant sets of dynamical systems. In our case, we construct semi-

conjugacies, which is called coding maps, between full shifts and the Julia sets of

expanding branched coverings. This depends on the choice of inverse branches of f ,

which is described by a graph in S2 called a ‘radial.’ Using coding maps, we show the

uniqueness of Julia sets in 3.1. Various topological properties are showed in 3.2. In

3.3 we see that the inverse branches of f are lifted to contraction maps on the universal

covering, and hence the lift of the Julia set are considered as a self-similar set.

3.1. Construction of coding map.

Notation 3.1. We denotes by ðSd ; sÞ the one-sided symbolic dynamics with d

symbols, that is,

Sd ¼ f1; 2; . . . ; dgN ¼ fa1a2 � � � j ai A f1; 2; . . . ; dgg; s : Sd C a1a2 � � � 7! a2 � � � A Sd :

The set of sequences of the form i � � � A Sd is denoted by SðiÞ for i A f1; 2; . . . ; dg. Then

the restriction of s on SðiÞ is invertible. We write si ¼ ðs jSðiÞÞ�1:

si : S C a1a2 � � � 7! ia1a2 � � � A SðiÞ:

Consider the set of words Wk ¼ f1; 2; . . . ; dgk for k ¼ 1; 2; . . . and W0 ¼ fqg. For

w ¼ a1a2 � � � ak A Wk, we write sw ¼ sa1 � sa2 � � � � � sak and SðwÞ ¼ swðSdÞ. On Wk, the

shift map s and the inverse maps are defined by

s : Wk C a1a2 � � � ak 7! a2 � � � ak A Wk�1

and

si : Wk C a1a2 � � � ak 7! ia2 � � � ak A Wkþ1:

An overlined word means its infinite repeat, which is a member of Sd . For

example, 1 ¼ 11 � � � and 123 ¼ 123123 � � � :
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Definition 3.2. Let Qd denote the graph in the plane

ftek�2pi=d A C j 0a ta 1; k ¼ 1; 2; . . . ; dg:

A radial is a piecewise smooth map r : Qd ! S2 � Pf such that

f �1ðrð0ÞÞ ¼ frðek�2pi=dÞ j k ¼ 1; 2; . . . ; dg:

We say rð0Þ is the base point of r and a point of rðek�2pi=dÞ is a radial point of r. The

arc lk : ½0; 1� C t 7! rðtek�2pi=dÞ A S2 � Pf is called the k-th spoke of r.

For two arcs a; b : ½0; 1� ! X with að1Þ ¼ bð0Þ, we define the arc aþ b : ½0; 1� ! X

such that ðaþ bÞðtÞ ¼ að2tÞ if 0a t < 1=2 and ðaþ bÞðtÞ ¼ bð2t� 1Þ if 1=2a ta 1. If

að1Þ ¼ bð1Þ, we set a� b ¼ aþ ð�bÞ, where ð�bÞðtÞ ¼ bð1� tÞ.

Definition 3.3. Suppose r is a radial with base point x, radial points xk and

spokes lk. Let g : ½0; 1� ! S2 be an arc joining the base point x and y A S2 � Pa
f such

that gð0Þ ¼ x, gðtÞ A S2 � Pf ð0 < t < 1Þ, gð1Þ ¼ y. We define an arc okðgÞ by the lift

of g by f (i.e. f � okðgÞ ¼ g) which is an arc joining xk and y 0, where y 0 is a point of

f �1ðyÞ.

Let ~UUð f ; xÞ be the set

~UUð f ; xÞ ¼ g : ½0; 1� ! S2

�
�
�
�
�
�
�
�

g is continuous;

gð0Þ ¼ x;

gðtÞ A S2 � Pf ð0 < t < 1Þ;

gð1Þ A S2 � Pa
f

8

>
>
<

>
>
:

9

>
>
=

>
>
;

:

Then Lk : g 7! lk þ okðgÞ is a map of ~UUð f ; xÞ to itself. We say Lk is the lift of f �1 with

respect to r. Let r : ~UUð f ; xÞ ! S2 � Pa
f be the natural projection rðgÞ ¼ gð1Þ.

Theorem 3.4. Let J be a Julia set of f. Then there exists a continuous surjective

map p : Sd ! J such that

Sd ���!
s

Sd

p

?
?
?
y

?
?
?
y
p

J ���!
f

J

commutes.

Proof. Take a base point x and a radial r with spokes li. For a1a2 � � � ak A Wk,

we define la1a2���ak ¼ La1ðla2���ak Þ inductively. Then la1a2���ak is an arc joining x and a point

of f �kðxÞ. Let xa1a2���ak ¼ rðla1a2���ak Þ.

Let g A ~UUð f ; xÞ. For a1a2 � � � ak A W , we define gq ¼ g and ga1a2���ak ¼ La1ðga2���ak Þ.

Let ya1a2���ak ¼ rðga1a2���ak Þ. For a ¼ a1a2 � � � A Sd , the limit xa ¼ limk!y ya1a2���ak exists

by the expandingness of f . Indeed,

dðya1a2���ak ; ya1a2���akakþ1
Þ < ClkðM þ ð1þ lÞjgjÞ;

where M ¼ maxjlij. Note that xa is independent of g.
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Now we define a map p : Sd ! S2 by a 7! xa. The expandingness of f yields

continuity of p. If we take gð1Þ A J, then each xa A J. Thus the image of p is included

in J. Conversely, take a point a A J. Choose gð1Þ as a cluster point of f f kðaÞ j k > 0g.

Then for any e > 0 and K > 0, there exist k > K and a1a2 � � � ak A Wk such that the

distance between ya1a2���ak and a is less than e. Therefore a belongs to pðSdÞ, and so p

is surjective.

For a ¼ a1a2 � � � A Sd , we denote by la the limit of the arcs la1a2���ak . Then la is an

arc between x and pðaÞ. It is easy to see that La1ðlsðaÞÞ ¼ la. This implies the com-

mutativity of the diagram. r

Definition 3.5. We call p the coding map of J with respect to r.

In the above proof, we have seen the following.

Corollary 3.6. An expanding postcritically finite branched covering f has the

unique Julia set, which is characterized as

Jf ¼ 7
y

n¼1

6
y

k¼n

f �kðyÞ;

where y is an arbitrary point in S2 � Pa
f .

Set Pe
f ¼ fx A Pa

f j f �kðxÞHPa
f for any k > 0g. For y A S2 � Pe

f , the Julia set

coincides with the cluster set of 6y

k¼0
f �kðyÞ:

Corollary 3.7. P r
f ¼ Pf V Jf and Pa

f ¼ Pf V ðS2 � Jf Þ:

Corollary 3.8. The following are equivalent.

(1) x A Jf .

(2) For any neighborhood U of x, S2 � Pe
f H6y

k¼1
f kðUÞ.

(3) For any neighborhood U of x, there exists n > 0 such that Jf H f nðUÞ.

Proof. The equivalence between (1) and (2) is a consequence of Corollary 3.6.

(1) implies (3) because any open set U HSd satisfies the property snðUÞ ¼ Sd for some

n > 0. r

Definition 3.9. Two radials r; r 0 are said to be homotopic if there exists a

homotopy h : Qd � I ! S2 � Pf such that hð� ; 0Þ ¼ r; hð� ; 1Þ ¼ r 0 and hð� ; tÞ is a radial

for 0a ta 1.

Suppose r 0 is another radial with base point x 0, radial points x 0
k and spokes

l 0k. Let h : Qd � ½0; 1� ! S2 � Pf be a homotopy between r and r 0, and let L 0
k be

the lift with respect to r 0. By a we denote the arc aðtÞ ¼ hð0; tÞ. Then rðLkðaÞÞ ¼ x 0
k,

and LkðaÞ � l 0k � a is trivial in S2 � Pf . We define the map T : ~UUð f ; x 0Þ ! ~UUð f ; xÞ by

TðgÞ ¼ aþ g. Then TðL 0
kðgÞÞ and LkðTðgÞÞ are homotopic in S2 � Pf with the end-

points fixed.

Let p 0 denote the coding map with respect to r 0. Since TðL 0
a1
� L 0

a2
� � � � � L 0

ak
ðgÞÞ

and La1 � La2 � � � � � Lak ðTðgÞÞ are homotopic in S2 � Pf with the endpoints fixed,

Corollary 3.10. If r and r 0 are homotopic, then p ¼ p 0.
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3.2. Topological properties of Julia sets.

In this subsection, we show several propositions on the topological properties of

Julia sets and Fatou sets.

Definition 3.11. We say S2 � Jf is the Fatou set of f . A connected component

of the Fatou set is called a Fatou component. For y in the Fatou set, we denote

by A0ðyÞ the Fatou component containing y. Then it is easily seen that f : A0ðyÞ !

A0ð f ðyÞÞ is a branched covering.

Lemma 3.12. Let y A S2 � Jf , and let x1; x2; . . . be a sequence which converges to

y. Let k1; k2; . . . be an unbounded sequence of positive integers. Then a cluster point of

f f kiðxiÞ j i ¼ 1; 2; . . .g is contained in Pa
f . In particular, a cluster point of f f kðyÞ j k ¼

1; 2; . . .g is contained in Pa
f .

Proof. Suppose f f kiðxiÞ j i ¼ 1; 2; . . .g has a cluster point x in S2 � Pa
f . Then y

lies in 7y

n¼1
6y

k¼n
f �kðxÞ, and hence y A Jf by Corollary 3.6. r

Immediately,

Proposition 3.13. A Fatou component W is eventually preperiodic, that is,

f mðWÞ ¼ f mþnðWÞ for some mb 0, nb 1.

Corollary 3.14. The Fatou set S2 � Jf is characterized as

S2 � Jf ¼ fa A S2 j f f kðaÞg converge to some critical cycleg:

In particular, a Fatou component contains a backward image of a critical periodic

point.

Corollary 3.15. Let p be a critical periodic point of period n. Then

limk!y f knðxÞ ¼ p for any x A A0ðpÞ.

Proof. It su‰ces to show that A0ðpÞ has no other critical periodic point.

Otherwise, take another periodic point b A A0ðpÞ. Let g be a path in A0ðpÞ between a

and b. Then there exists z A g which belongs to the boundary of fx j limk!y f knðxÞ ¼

pg. Since z must lie in Jf , we have a contradiction. r

Proposition 3.16. The Julia set Jf has an interior point if and only if it is the entire

sphere.

Proof. Let U be an open set of S2 included in Jf . Then Jf ¼ 6y

k¼1
f kðUÞ ¼ S2

by Corollary 3.8. r

Proposition 3.17. Let W be a Fatou component. Then W is simply connected and

#ðW V6y

k¼0
f �kðPf ÞÞ ¼ 1. Consequently, the Julia set is connected.

Proof. There exist kb 0, nb 1 such that f kðWÞ ¼ f kþnðWÞ. Let p be the

periodic point of period n in f kðWÞ. Take a disc DHA0ðpÞ such that DVPf ¼ fpg.

Then each connected component of f �kðDÞ is simply connected and contains only one

point of f �kðpÞ.

Let g be a closed curve in W � f �kðpÞ. The image f kþjnðgÞ is included in D

for some large j. By deforming g continuously in W � f �kðpÞ, we can assume

gV f �k�jnðpÞ ¼ q, and then f kþjnðgÞHD� fpg. If f kþjnðgÞ is 0-homotopic in
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D� fpg, then g is also 0-homotopic in W � f �kðpÞ. If f kþjnðgÞ is non-trivial in

D� fpg, then g is homotopic in W � f �k�jnðpÞ to a connected component l of

f �k�jnðqDÞ. As mentioned above, l bounds a connected component D 0 H f �k�jnðDÞ

that contains only one point of f �k�jnðpÞ. Thus we have proved that a simple

closed curve in W � f �kðpÞ is either 0-homotopic in W � f �kðpÞ or bounds a disc

D 0 such that D 0 HW and #ðD 0 V f �kðpÞÞ ¼ 1. Therefore W is simply connected, and

#ðW V f �kðpÞÞ ¼ 1.

Suppose that there exist distinct points a; b A W V6y

m¼1
f �mðPf Þ. Then f kðaÞ and

f kðbÞ are periodic points in Pf for some k. Since a Fatou component contains at most

one periodic points (Corollary 3.15), we have f kðaÞ ¼ f kðbÞ. That is a contradiction to

the fact just proved. r

Proposition 3.18. There exists m > 0 such that #p�1ðpÞ < m for p A Jf . In par-

ticular, p�1ðpÞ consists of periodic sequences if p is periodic.

Proof. Let p be a point in Jf . Then fla j a A p�1ðpÞg can be divided into finite

classes B1ðpÞ;B2ðpÞ; . . . ;BtðpÞðpÞ, each consisting of elements mutually homotopic in

S2 � Pf the endpoints fixed leaving. Indeed, suppose there exist infinite arcs la1 ; la2 ; . . .

which are not mutually homotopic with the endpoints fixed. We can assume that fakg

converges to some a. Then la is not an arc with finite length, and this is a contra-

diction. Moreover, it is similarly proved that there exists T such that tðyÞ < T for any

y A Jf .

Note that s : p�1ðpÞ ! p�1ð f ðpÞÞ is bijective if p is not a critical point, and

d 0-to-one if p is a critical point of degree d 0. Since p A Jf , there exists c > 0 such

that sk
: p�1ðpÞ ! p�1ð f kðpÞÞ is at most c-to-one for any k > 0. Suppose sk

: p�1ðpÞ !

p�1ð f kðpÞÞ is d 0-to-one. If a; b A p�1ð f kðpÞÞ and if la; lb are homotopic, then by the

homotopy lifting property, wa A p�1ðpÞ ðw A WkÞ if and only if wb A p�1ðpÞ. Since

tð f kðpÞÞ < T , we have #fw A Wk jSðwÞV p�1ðpÞ0qg < d 0Ta cT . That is true for

any k > 0, and hence #p�1ðpÞ < cT . r

For a periodic p A Jf , it is not necessarily true that the periods of sequences in

p�1ðpÞ are the same as the period of p. Indeed,

Example 3.19. Consider a polynomial f ðzÞ ¼ z3 � 3z. The critical set Cf ¼

f�1; 1;yg and the postcritical set Pf ¼ f�2; 2;yg. The dynamics on Cf UPf is �1 !

2 ! 2; 1 ! �2 ! �2;y ! y. Take a radial as in Figure 1. Then pð1Þ ¼ pð23Þ ¼

pð32Þ ¼ �2.

3.3. Self-similar sets.

We can consider the Julia set as a quotient space of self-similar set, that is, there

exists a self-similar set K and surjection r : K ! Jf . We use ‘self-similar sets’ in Hut-

chinson’s sense as follows.

Fact 3.20. Let X be a complete metric space and f1; f2 � � � fd be contractions on X

(i.e. the Lipschitz constants of fi’s are less than one). Then there uniquely exists a non-

empty compact set K such that K ¼ 6
i
fiðKÞ, which is called a self-similar set ([3], [2]).

Moreover, there exists a continuous surjective map w : Sd ! K such that w � si ¼ fi � w

for i.
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For g; g 0 A ~UUð f ; xÞ, we say g@ g 0 if they are homotopic in S2 � Pf with the end-

points fixed. Let Uð f ; xÞ ¼ ~UUð f ; xÞ=@. Then the projection r�
: Uð f ; xÞ ! S2 � Pa

f is

naturally defined. Besides the mapping Lk : ~UUð f ; xÞ ! ~UUð f ; xÞ induces a well-defined

mapping L�
k : Uð f ; xÞ ! Uð f ; xÞ. For ½g� and ½g 0� in Uð f ; xÞ, let

Dð½g�; ½g 0�Þ ¼ inffjlj : l is homotopic to �gþ g 0 in S2 � Pf with the endpoints fixedg:

The space Uð f ; xÞ is a complete metric space in the distance Dð� ; �Þ. Then L�
k is a

contraction, and by Fact 3.20 there exists a self-similar set KHUð f ; xÞ and a surjection

w : Sd ! K. It is evident that Jf ¼ r�ðKÞ and p ¼ r� � w.

4. Equivalence Relations on the symbolic dynamics.

In this section we treat the equivalence relations on the symbolic dynamics defined

by the coding maps. In 4.1 we show that the equivalence relation is determined by

the homotopical condition. Using that, we prove that if f and g are combinatorially

equivalent, then they are topologically conjugate on the Julia sets. In 4.2 the con-

jugacy is extended on neighborhoods of Julia sets. This is a generalization of [4]

Corollary 6.5.

4.1. Conjugacies on Julia sets.

Theorem 4.1. Let f be an expanding postcritically finite branched covering. Let

r be a radial with base point x and p : Sd ! Jf be the coding map with respect to r.

Then for a ¼ a1a2 � � � ; b ¼ b1b2 � � � A Sd ,

pðaÞ ¼ pðbÞ

if and only if there exist curves ak; bk A ~UUð f ; xÞ ðk ¼ 0; 1; 2; . . .Þ such that akð0Þ ¼

bkð0Þ ¼ x, akð1Þ ¼ bkð1Þ B Pf , Lakþ1
ðakþ1Þð1Þ ¼ Lbkþ1

ðbkþ1Þð1Þ, jakj; jbkj < B < y and

ak � bk is homotopic to Lakþ1
ðakþ1Þ � Lbkþ1

ðbkþ1Þ in S2 � Pf with x fixed ðk ¼ 0; 1; 2; . . .Þ.

Proof. We use the notation of Theorem 3.4.

Suppose pðaÞ ¼ pðbÞ. If f kðxaÞ ¼ f kðxbÞ is not contained in Pf for any kb 0,

then ak ¼ lskðaÞ, bk ¼ lskðbÞ satisfy the above condition. In the case where f mðxaÞ ¼

f mðxbÞ is contained in Pf for some mb 0, setting bk ¼ x (a constant map), we can take

ak in a neighborhood of gk ¼ lskðaÞ � lskðbÞ. Indeed, there exists e1 such that for any

curve g in e1-neighborhood of gk, we can take g 0 near gk which is homotopic to g in

S2 � Pf satisfying j jg 0j � jgkj j < e.

Conversely, suppose the existence of arcs ak; bk satisfying the condition. Let a 0
k ¼

La1 � La2 � � � � � Lak ðakÞ and b 0
k ¼ Lb1 � Lb2 � � � � � Lbk ðbkÞ. Then a 0

kð1Þ ¼ b 0
kð1Þ and a 0

k ¼

la1a2���ak þ ~aak, b 0
k ¼ lb1b2���bk þ

~bbk, where ~aak (or ~bbk) is one component of f �kðakÞ (or

f �kðbkÞ). Therefore the distance between xa1a2���ak and xb1b2���bk is less than 2lkB. Thus

pðaÞ ¼ pðbÞ. r

Definition 4.2. Let f and g be postcritically finite branched coverings. We say f

and g are equivalent, f @ g, if there exist two orientation-preserving homeomorphisms

f1; f2 : S
2 ! S2 such that fiðPf Þ ¼ Pg, i ¼ 1; 2, f1 and f2 are isotopic relative to Pf ,

and
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S2
���!

f
S2

f1

?
?
?
y

?
?
?
y
f2

S2
���!

g
S2

commutes.

Lemma 4.3. Suppose f and g are postcritically finite branched coverings. Let f1; f2
be homeomorphisms such that fiðPf Þ ¼ Pg, i ¼ 1; 2 and f2 � f ¼ g � f1. If H : S2 � I !

S2 is an isotopy such that Hð� ; 0Þ ¼ f2 and HðPf ; tÞ ¼ Pg for t A I , then there exist an

isotopy h : S2 � I ! S2 such that hð� ; 0Þ ¼ f1, hðPf ; tÞ ¼ Pg for t A I , and Hð f ðxÞ; tÞ ¼

gðhðx; tÞÞ for t A I .

Proof. By applying the covering homotopy theorem to the covering g : S2 �

g�1ðPgÞ ! S2 � Pg and the isotopy H � ð f � idÞ : ðS2 � f �1ðPf ÞÞ � I ! S2 � Pg, we

obtain a homotopy h : ðS2 � f �1ðPf ÞÞ � I ! S2 � g�1ðPgÞ such that H � ð f � idÞ ¼ g � h

and hð� ; 0Þ ¼ f1. Since for every t A T , hð� ; tÞ is a homeomorphism and is extended on

S2, we obtain the required isotopy. r

Theorem 4.4. Suppose that f and g are expanding and they are equivalent to each

other. Then there exists a homeomorphism w : Jf ! Jg such that w � f ¼ g � w.

Proof. Since f and g are equivalent, there exist homeomorphisms f1; f2 :

ðS2
;Pf Þ ! ðS2

;PgÞ such that f2 � f ¼ g � f1 and there exists an isotopy h : S2 � I !

S2 with hð� ; 0Þ ¼ f2, hð� ; 1Þ ¼ f1 and hðPf ; tÞ ¼ Pg. Set h0 ¼ h. By Lemma 4.3, we

have an isotopy h1 : S
2 � I ! S2 such that h0 � ð f � idÞ ¼ g � h1, h1ð� ; 0Þ ¼ f1 and

h1ðPf ; tÞ ¼ Pg. Inductively we have isotopies hk : S2 � I ! S2 ðk ¼ 1; 2; . . .Þ such that

S2 � I ���!
f k�id

S2 � I

hk

?
?
?
y

?
?
?
y
h

S2
���!

gk
S2

commutes and hkð� ; 1Þ ¼ hkþ1ð� ; 0Þ. Write sk ¼ hkð� ; 1Þ. Note that sk�1 � f ¼ g � sk.

Take points x A S2 � Pf and x 0 A S2 � Pg such that f2ðxÞ ¼ x 0. We define Fk :

~UUð f ; xÞ ! ~UUðg; x 0Þ by F0ðgÞ ¼ f2 � g and Fkþ1ðgÞ ¼ h0ðx; �Þ þ h1ðx; �Þ þ � � � þ hkðx; �Þ þ

sk � g for k ¼ 0; 1; . . .

Let r be a radial for f with base point x. We denote by xi the radial point of r

and by li the spoke of r. Let x 0
i ¼ f1ðxiÞ. Then g�1ðx 0Þ ¼ fx 0

i j i ¼ 1; 2; . . . ; dg. Thus

we can define a radial r 0 for g with spokes l 0i ¼ F1ðliÞ. We denote by L 0
i :

~UU 0 ! ~UU 0 the

lift of g�1 with respect to r 0. We can easily see that

Fk � LiðgÞ @

homotopic
L 0
i �Fk�1ðgÞ:ð1Þ

Let a; b A ~UUð f ; xÞ be arcs with common endpoints. Then it is clear that FkðaÞ�

FkðbÞ, kb 0 are homotopic to one another in S2 � Pg with x 0 fixed.

Let p : Sd ! Jf be the coding map with respect to r and p 0
: Sd ! Jg be the coding
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map with respect to r 0. Suppose pðaÞ ¼ pðbÞ. Let ak and bk, k ¼ 0; 1; . . . be curves

satisfying the condition in Theorem 4.1. Let a 0
k ¼ FkðakÞ, b

0
k ¼ FkðbkÞ. From (1), we

see that a 0
k � b 0

k is homotopic to L 0
akþ1

ða 0
kþ1Þ � L 0

bkþ1
ðb 0

kþ1Þ. Thus the curves a 0
k; b

0
k

satisfy the condition of Theorem 4.1. Therefore p 0ðaÞ ¼ p 0ðbÞ. Consequently, the

equivalence relations derived by p and p 0 are identical. Hence we have a homeomor-

phism between Jf and Jg. r

Remark 4.5. The homeomorphism between Jf and Jg is independent of the choice

of r, and depends on the isotopy class of f1; f2 and the homotopy class of the isotopy

h. Indeed, let

Sf ;x ¼ ffxkgk>0 j a convergent sequence such that f kðxkÞ ¼ xg:

Then af : fxkgk>0 7! lim xk is a surjection onto Jf . We set bðfxkgÞ ¼ fsk�1ðxkÞg. In

Theorem 4.4, we have proved that b : Sf ;x ! Sg;x 0 and ag � b � a
�1
f : Jf ! Jg are well-

defined. The mapping b depends on sk, and is independent of r. r

4.2. Conjugacies on neighborhoods of Julia sets.

Lemma 4.6. Suppose that f and g are expanding and they are equivalent to each

other. Let ðp1; p2; . . . ; pnÞ be a critical cycle of f, and ðp 0
1; p

0
2; . . . ; p

0
nÞ the corresponding

critical cycle of g. Then there exists a neighborhood W of Jf such that the conjugacy w in

Theorem 4.4 is extended on Jf U ðW V6n

j¼1
A0ðpjÞÞ.

Proof. For simplicity, we consider the case n ¼ 1. Let p be a critical fixed point

of f , and p 0 the corresponding critical fixed point of g. Suppose f : A0ðpÞ ! A0ðpÞ is

of degree d 0. Take a small open disc DHA0ðpÞ containing p such that DH f �1ðDÞ.

Let D0 be the components of f �1ðDÞ including D. Set B0 ¼ D0 �D and g0 ¼ qD,

g1 ¼ qD0.

Fix a point x A g0. Take a point y1 A f �1ðxÞV g1 and an orientation-preserving

homeomorphism z0 : T ! g0 such that z0ð0Þ ¼ x, where T ¼ R=Z. Then there exists

a homeomorphism z1 : T ! g1 such that z1ð0Þ ¼ y1, f � z1ðtÞ ¼ z0ðd
0tÞ. Set gk ¼

ð f jA0ðpÞÞ
�1ðgk�1Þ inductively. Take a path c0 HB0 between x and y1. We inductively

define ck ¼ ð f jA0ðpÞÞ
�1ðck�1Þ that joins yk�1 and yk. Then there exists a homeomor-

phism zk : T ! gk such that zkð0Þ ¼ yk; f � zkðtÞ ¼ zk�1ðd
0tÞ. By the expandingness of

f , the sequence fzk : T ! S2g uniformly converges to a continuous map z : T ! S2 as

k ! y. Indeed, take a homeomorphism x : T � I ! B0 such that xð� ; iÞ ¼ zi, i ¼ 0; 1

and xð0; �Þ ¼ c0. Let

M ¼ sup
t AT

inffjcj : c is homotopic to xðt; �Þ with the endpoints fixedg:

Then we see dðzkðtÞ; zkþ1ðtÞÞaClkM. Note that the image of z is equal to the

boundary of A0ðpÞ.

Similarly, we take a small open disc D 0 HA0ðp
0Þ containing p 0 such that D 0 H

g�1ðD 0Þ. Let f1; f2 be as in Theorem 4.4. Since f2ðg0Þ and g 00 are homotopic, they

are ambient isotopic (see [11] p. 11). From Lemma 4.3, changing f2 by an isotopy if

necessary, we can assume that f2ðg0Þ ¼ g 00. Set x 0 ¼ f2ðxÞ and y 0
1 ¼ f1ðy1Þ. We then

define B 0
0; g

0
k; y

0
k and z 0k similarly, and finally obtain a continuous map z 0 : T ! qA0ðp

0Þ.
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By a method similar to Theorem 4.4, we can show that zðtÞ ¼ zðt 0Þ , z 0ðtÞ ¼ z 0ðt 0Þ

for t; t 0 A T. Therefore we have a homeomorphism w 0
: qA0ðpÞ ! qA0ðp

0Þ such that

w 0 � z ¼ z 0. Let sk be the homeomorphisms in Theorem 4.4. Since skðgkþ1Þ ¼ g 0kþ1, the

homeomorphism w 0 is the restriction of w in Theorem 4.4.

The conjugacy w 0 is extended as follows. Take an orientation-preserving homeo-

morphism w 0
: B0 ! B 0

0 such that w 0jg0 ¼ z 00 � z
�1
0 and w 0jg1 ¼ z 01 � z

�1
1 . Set Bk ¼

ð f jA0ðpÞÞ
�1ðBk�1Þ, B

0
k ¼ ðg jA0ðpÞÞ

�1ðB 0
k�1Þ inductively. Then the homeomorphism w 0

is uniquely extended from 6y

k¼0
Bk onto 6y

k¼0
B 0
k so that w 0 � f ¼ g � w 0. From the

expandingness of f ; g, it follows that w 0 is continuous on qA0ðpÞ. r

Theorem 4.7. Suppose that f and g are expanding and they are equivalent to each

other. Then f and g are topologically conjugate on neighborhoods of the Julia sets, that

is, there exist neighborhoods W ;W 0 of Jf ; Jg and a homeomorphism w : W ! W 0 such

that f �1ðWÞHW ; g�1ðW 0ÞHW 0 and w � f ¼ g � w on f �1ðWÞ.

Proof. If Pa
f ¼ Pa

g ¼ q, then the theorem is proved in Theorem 4.4. Suppose

that Pe
f ¼ fx A Pf j6

y

k¼0
f �kðxÞHPf g is equal to Pa

f . Then the Fatou set has only

finitely many connected components, say U1;U2; . . . ;Um. Since Jf ¼ 6m

k¼1
qUk, the the-

orem is a consequence of Lemma 4.6.

If Pa
f � Pe

f 0q, then the cluster set of 6y

k¼0
f �kðPa

f Þ is equal to the Julia set. Let

sk be as in Theorem 4.4. Note that sk�1 j f
�kðPf Þ : f

�kðPf Þ ! g�kðPgÞ is bijective and

sk�1 j f
�kðPf Þ ¼ sk j f

�kðPf Þ. In view of Remark 4.5, we have a homeomorphism s :

6y

k¼0
f �kðPa

f Þ ! 6y

k¼0
g�kðPa

g Þ such that s j f �kðPf Þ ¼ sk�1 j f
�kðPf Þ.

By Theorem 4.4, we have a homeomorphism w : Jf ! Jg such that w � f ¼ g � w.

Let N be a small neighborhood of Pa
f such that NH f �1ðNÞ. By Lemma 4.6, the

homeomorphism w is extended on S2 �N so that w ¼ s on 6y

k¼0
f �kðPa

f Þ �N and

w � f ¼ g � w on S2 �N. Since s is a homeomorphism, so is w. r

5. Branch groups.

In this section we define groups from the homotopical condition of f and the

radial r. We prove that the groups describe the equivalence relation, and restate

Theorem 4.1.

Definition 5.1. Let A be a subset of the fundamental group pðS2 � Pf ; xÞ. We

say A ¼ faigi is bounded if there exist a family of closed curves faigi and B > 0 such

that ai is a representative of ai with jaij < B.

We define e : pðS2 � Pf ; xÞ � f1; 2; . . . ; dg ! f1; 2; . . . ; dg by j ¼ eða; iÞ if LiðaÞð1Þ ¼

xj for a A a A pðS2 � Pf ; xÞ. For given a A pðS2 � Pf ; xÞ,

eða; �Þ : f1; 2; . . . ; dg ! f1; 2; . . . ; dg

is a permutation, and

eða; �Þ � eðb; �Þ ¼ eðba; �Þ; eða�1
; �Þ ¼ eða; �Þ�1

:ð2Þ

We define a map ~LLi : pðS
2 � Pf ; xÞ ! pðS2 � Pf ; xÞ as ~LLiðaÞ ¼ LiðaÞ � leða; iÞ. Then
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~LLiðabÞ ¼ ~LLiðaÞ~LLeða; iÞðbÞ; ~LLiða
�1Þ ¼ ~LLeða; iÞðaÞ

�1
:ð3Þ

We write ~LLa1 � ~LLa2 � � � � ~LLak ¼ ~LLa1a2���ak .

Proposition 5.2. Let f be an expanding postcritically finite branched covering.

Let r be a radial with base point x and f : Sd ! Jf be the coding map with respect

to r. For a ¼ a1a2 � � � ; b ¼ b1b2 � � � A Sd ,

fðaÞ ¼ fðbÞ

if and only if there exist a bounded sequence fakgk¼0;1;2;... of pðS2 � Pf ; xÞ such that

bkþ1 ¼ eðakþ1; akþ1Þ and ~LLakþ1
ðakþ1Þ ¼ ak.

Proof. If faig satisfies the above condition, then some family of curves faig con-

sisting of representatives of ai’s and a family fbig with biðtÞ ¼ x satisfy the condition in

Theorem 4.1. Conversely, if faig and fbig satisfy the condition in Theorem 4.1, then

f½ai � bi�gH pðS2 � Pf ; xÞ satisfies the above condition. r

We introduce groups, called branch groups, by which we can describe the equiv-

alence relation on Sd . For a set X, we denote by LðX Þ the set of bijections X ! X .

Then LðX Þ is a group with the product hh 0 ¼ h 0 � h. Let GðXÞ ¼ pðS2 � Pf ; xÞ
X �

LðXÞ. We consider a product on GðX Þ as follows. We denote by p1; p2 the pro-

jections of GðXÞ to the first entry and the second entry respectively. For g; g 0 A

GðXÞ, we define the product by p1ðgg
0ÞðaÞ ¼ p1ðgÞðaÞp1ðg

0Þðp2ðgÞðaÞÞ for a A X and

p2ðgg
0Þ ¼ p2ðgÞp2ðg

0Þ. The unity 1 A GðXÞ is defined by p1ð1ÞðaÞ ¼ 1 A pðS2 � Pf ; xÞ

and p2ð1Þ ¼ id. The inverse g�1 is defined by p1ðg
�1ÞðaÞ ¼ p1ðgÞðp2ðgÞ

�1ðaÞÞ�1 and

p2ðg
�1Þ ¼ p2ðgÞ

�1. By easy calculation,

Proposition 5.3. GðXÞ is a group.

Remark that p2 is a homomorphism but p1 is not a homomorphism.

We write GðX Þ ¼ Gk (or GðX Þ ¼ Gy) for X ¼ Wk (or X ¼ Sd ). Since W0 ¼ fqg,

LðW0Þ has only one element. Thus we can identify G0 and pðS2 � Pf ; xÞ.

For k ¼ 1; 2; . . . (or k � 1 ¼ k ¼ y), we define a map Fk : Gk�1 ! Gk as follows.

For a A G0, we set g ¼ ðt; hÞ A G1 by tðiÞ ¼ ~LLiðaÞ for i A W1 ¼ f1; 2; . . . ; dg and h ¼

eða; �Þ. By (2) and (3), F1 : a 7! g is a homomorphism. For g ¼ ðt; hÞ A Gk�1, we set

g 0 ¼ ðt 0; h 0Þ A Gk by t 0ðaÞ ¼ ~LLa1ðtðsðaÞÞÞ and h 0ðaÞ ¼ seðtðsðaÞÞ;a1ÞhðsðaÞÞ for a ¼ a1 � � � in

Wk (or in Sd ). By a straight calculation, we see that Fk : g 7! g 0 is a homomorphism.

We call Fk the induced homomorphism of f .

Remark 5.4. Branch groups and induced homomorphisms are described by means

of universal coverings. See [5] for detail.

Definition 5.5. We say g ¼ ðt; hÞ A Gy is bounded if there exists ðtk; hkÞ A Gy

for k ¼ 1; 2; . . . such that Fyðt1; h1Þ ¼ ðt; hÞ, Fyðtk; hkÞ ¼ ðtk�1; hk�1Þ and 6y

k¼1
tkðSdÞU

6y

k¼1
~ttkðSdÞ is bounded, where F k

yðt; hÞ ¼ ð~ttk; ~hhkÞ. Then BoundðGyÞ ¼ fg j boundedg

is an Fy-invariant subgroup.

Theorem 5.6. Under the situation of Proposition 5.2, we have fðaÞ ¼ fðbÞ if and

only if there exists ðt; hÞ A BoundðGyÞ such that hðaÞ ¼ b.
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Proof. Suppose that ðt; hÞ A Gy is bounded. Let ðtk; hkÞ A Gy be as in the defi-

nition. Let a ¼ a1a2 � � � A Sd and hðaÞ ¼ b ¼ b1b2 � � � : Set ak ¼ tkðs
kðaÞÞ, k ¼ 0; 1; . . .

Then ~LLak ðakÞ ¼ ak�1 and eðak; akÞ ¼ bk. Thus the condition of Proposition 5.2 is

satisfied.

Suppose fðaÞ ¼ fðbÞ ¼ y. By Proposition 5.2, we obtain a bounded subset fakg.

In the case that a and b are not eventually periodic, we define ðt; hÞ as follows:

tðswðs
jðaÞÞÞ ¼ ~LLwðajÞ for w A Wk;

tðswðs
jðbÞÞÞ ¼ ~LLwðajÞ

�1 for w A Wk;

tðcÞ ¼ 1 otherwise,

8

>

<

>

:

hðswðs
jðaÞÞÞ ¼ shk; jðwÞðs

jðbÞÞ for w A Wk;

hðswðs
jðbÞÞÞ ¼ sh�1

k; j
ðwÞðs

jðaÞÞ for w A Wk,

hðcÞ ¼ c otherwise,

8

<

:

where we denote ðtk; j; hk; jÞ ¼ Fk�1 � Fk�2 � � � � � F0ðajÞ. Then tðSdÞ is bounded and

Fyðt; hÞ ¼ ðt; hÞ.

In the case that a and b are periodic, we define ðtn; hnÞ as follows:

tnðswðs
jðaÞÞÞ ¼ ~LLwðajÞ for na j � ka nþm� 1;w A Wk;

tnðswðs
jðbÞÞÞ ¼ ~LLwðajÞ

�1 for na j � ka nþm� 1;w A Wk;

(if sNðaÞ0 b for any N)

tnðcÞ ¼ 1 otherwise,

8

>

>

>

<

>

>

>

:

hnðswðs
jðaÞÞÞ ¼ shk; jðwÞðs

jðbÞÞ for na j � ka nþm� 1;w A Wk;

hnðswðs
jðbÞÞÞ ¼ shk; jðwÞðs

jðbÞÞ for na j � ka nþm� 1;w A Wk;

(if sNðaÞ0 b for any N)

hnðcÞ ¼ c otherwise,

8

>

>

>

<

>

>

>

:

where m is the minimum of the periods of a and b, we denote ðtk; j; hk; jÞ ¼

Fk�1 � Fk�2 � � � � � F0ðajÞ. Then Fyðtn; hnÞ ¼ ðtn�1; hn�1Þ and ðt0; h0Þ is bounded.

If sqðaÞ and sqðbÞ are periodic for some integer q > 0, then we construct a bounded

element F
q
yðt0; h0Þ from the periodic case above. r

Example 5.7. Let us consider the polynomial f ðzÞ ¼ z2 � 2. The critical set Cf ¼

f0;yg and the postcritical set Pf ¼ f�2; 2g. The dynamics on Cf UPf is y 7! y;

0 7! �2 7! 2 7! 2. Take two radials r and r 0 as Figures 2.1 and 2.2, and generators

A;B of pðS2 � Pf ; xÞ as Figure 2.3.

In the case of r, see that fðaÞ ¼ fðbÞ ða0 bÞ if and only if fa; bg ¼ fswð121Þ;

swð221Þg for some w A W . We obtain

~LL1ðAÞ ¼ A; ~LL2ðAÞ ¼ B; ~LL1ðBÞ ¼ ~LL2ðBÞ ¼ 1

and

eðA; 1Þ ¼ 1; eðA; 2Þ ¼ 2; eðB; 1Þ ¼ 2; eðB; 2Þ ¼ 1:

Define g ¼ ðt; hÞ A Gy by tð1Þ ¼ A, tð21Þ ¼ B and tðaÞ ¼ 1 otherwise, and hðswð221ÞÞ ¼

swð121Þ, hðswð121ÞÞ ¼ swð221Þ and hðaÞ ¼ a otherwise. Then FyðgÞ ¼ g, and g is

bounded.
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In the case of r 0,

p�1ð2Þ ¼ f1; 2g;

~LL1ðAÞ ¼ A; ~LL2ðAÞ ¼ B; ~LL1ðBÞ ¼ A�1B�1; ~LL2ðBÞ ¼ BA

and

eðA; 1Þ ¼ 1; eðA; 2Þ ¼ 2; eðB; 1Þ ¼ 2; eðB; 2Þ ¼ 1:

Define gn ¼ ðtn; hnÞ A Gy, n ¼ 0; 1; . . . by tnðsw1Þ ¼ ~LLwðA
nþk�1B�1Þ, tnðsw2Þ ¼

~LLwðBA
�n�kþ1Þ ðw A WkÞ and tnðaÞ ¼ 1 otherwise, and hnðswð1ÞÞ ¼ sw 0ð2Þ, hnðswð2ÞÞ ¼

swð1Þ ðw A WkÞ and hnðaÞ ¼ a otherwise, where w 0 is the word given by replacing

1’s with 2’s and 2’s with 1’s in w. Then Fyðgnþ1Þ ¼ gn, and g0 is bounded. Now

we show that there exists no bounded g ¼ ðt; hÞ such that F m
y
ðgÞ ¼ g for some m > 0

and hð1Þ ¼ 2. Suppose there exists such a g ¼ ðt; hÞ. Then ~LLm
1 ðtð1ÞÞ ¼ tð1Þ and

eð~LLkðtð1ÞÞ; 1Þ ¼ 2 ðk ¼ 0; 1; . . .Þ. For X ¼ An0Bp1An1 � � �BnkAnkBpkþ1 A pðS2 � Pf ; xÞ (ni;

pi 0 0 for i ¼ 1; 2; . . . ; k), we set lðXÞ ¼ k. Note that ~LL1ðA
nB2pÞ ¼ An, ~LL1ðA

nB2pþ1Þ ¼

An�1B�1, ~LL2ðA
nB2pÞ ¼ Bn, ~LL2ðA

nB2pþ1Þ ¼ Bnþ1A. It is easily seen that 4lð~LL2
1ðX ÞÞ�

1a lðXÞ. Consequently, lðtð1ÞÞ ¼ 0, so that we have tð1Þ ¼ An. Since eðAn; �Þ ¼ id,

that is a contradiction. Therefore any g does not satisfy F m
y
ðgÞ ¼ g and hð1Þ ¼ 2.

6. Branched coverings not equivalent to rational maps.

In this section, we give an example of expanding branched coverings which is not

equivalent to any rational map. We then explain that under certain conditions, an

expanding branched covering is always equivalent to some rational map.

Let S be a 2� 2 integer matrix with determinant bigger than one. Recall that the

quotient space R
2=@ is considered as S2, where we set x@ y if x� y A Z

2 or xþ y A Z
2.

Note that the projection p : R
2 ! S2 is a branched covering, and Sx@Sy if x@ y.

Define F : R
2 ! R

2 by FðxÞ ¼ Sxþ b, where b is a 1=2-lattice point (i.e. 2b A Z
2).

Thus we have an orientation-preserving branched covering f : S2 ! S2 of degree

detS such that f � p ¼ p � F . If x A F�1ðð1=2ÞZ 2Þ � ð1=2ÞZ 2, then degxðp � FÞ ¼ 2

(the local degree of p � F at x) and degxðpÞ ¼ 1, so degpðxÞð f Þ ¼ 2. If x A ð1=2ÞZ 2, then

degxðp � FÞ ¼ 2 and degxðpÞ ¼ 2, so degpðxÞð f Þ ¼ 1. Thus Cf ¼ pðF�1ðð1=2ÞZ 2Þ�

ð1=2ÞZ 2Þ and Pf ¼ pðð1=2ÞZ 2Þ ¼ fpð0; 0Þ; pð0; 1=2Þ; pð1=2; 0Þ; pð1=2; 1=2Þg. Define a

metric on S2 � Pf by kvk ¼ kdp�1ðvÞk for v A TxðS
2Þ; x A S2 � Pf . Then we see that f

is expanding if S has two eigenvalues with moduli bigger than one. By the Thurston

theory ([1], Proposition 9.7), we know that f is equivalent to a rational map if and

only if the two eigenvalues of S are complex conjugate or the same integer. Therefore,

for example, if S ¼
2 0

0 3

� �

then f is expanding and not equivalent to a rational

map. In the case detS ¼ 2; 3; 4, if f is expanding, then it is equivalent to a rational

map.

As mentioned above, Thurston gives a topological condition for a postcritically

finite branched covering to be equivalent to a rational map [1]. Suppose that f is a

postcritically finite branched covering with hyperbolic orbifold. If we find a Thurston

obstruction for f , then we know that f is not equivalent to a rational map. A
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Levy cycle we define below is a special case of Thurston obstructions. In general, a

Levy cycle implies that f is not equivalent to a rational map, and the nonexistence of

Levy cycles does not imply the equivalence (for example, see [12]). However, under

certain condition, for example, the degree-two case and the topological polynomial case,

any Thurston obstruction includes a Levy cycle ([9], [13]). Thus, in these cases, if there

exists no Levy cycle, then f is equivalent to a rational map. Since an expanding

branched covering has no Levy cycle, an expanding branched covering is equivalent to a

rational map.

Definition 6.1. Let f be a postcritically finite branched covering. A closed curve

g in S2 � Pf is called peripheral if one of discs bounded by g contains at most one point

of Pf .

Definition 6.2. A collection of disjoint simple closed curves fg1; g2; . . . ; gng in

S2 � Pf is called a Levy cycle if each gi is not peripheral and there exists a component

g 0i�1 H f �1ðgiÞ homotopic to gi�1 in S2 � Pf and f : g 0i�1 ! gi is of degree one for i ¼

1; 2; . . . ; n, where gn ¼ g0.

Proposition 6.3. Suppose f be an expanding postcritically finite branched covering.

Then there is no curve g such that for each k, there exists a component gk H f �kðgÞ

satisfying that f k
: gk ! g is one-to-one and minfj~ggj : ~gg is homotopic to gkg > 0. In par-

ticular, there is no Levy cycle.

Proof. Assume that there exists such a curve g. We can assume that g has the

length. Then jgkjaClkjgj and this is a contradiction. r

Definition 6.4. A postcritically finite branched covering f : S2 ! S2 is a topo-

logical polynomial if f �1ðaÞ ¼ fag for some a A Pf .

The following fact is known ([9], [13]).

Fact 6.5. Let f be a postcritically finite branched covering with hyperbolic

orbifold which is either of degree two or a topological polynomial. If there exists no

Levy cycle, then f is equivalent to a rational map.

The following fact is proved in [4] Theorem 5.15.

Fact 6.6. Let f be a postcritically finite branched covering with hyperbolic

orbifold. Suppose that there exists a topological graph LHS2 which satisfies

the following: (1) LH f �1ðLÞ, (2) f : L ! L is a homeomorphism, and (3) There

exist continuous maps F1;F2; . . . ;Fd : S2 � f �nðLÞ ! S2 for some nb 0 such that

f � Fi ¼ id. If there exists no Levy cycle, then f is equivalent to a rational

map.

Corollary 6.7. Let f be a postcritically finite branched covering with hyperbolic

orbifold which either is of degree two, is a topological polynomial, or satisfies the condition

in Fact 6.6. If f is expanding, then f is topologically conjugate to a rational map on

neighborhoods of their Julia sets.

Proof. This is clear by Facts 6.5, 6.6, and Theorem 4.7. r
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Figure 1. A radial r for f ðzÞ ¼ z3 � 3z. The codes

of �2 are 1; 23; 32.

Figure 2.2. A radial r 0 for f ðzÞ ¼ z2 � 2.

Figure 2.1. A radial r for f ðzÞ ¼ z2 � 2.

Figure 2.3. The closed curves A;B generate the

fundamental group pðS2 � Pf ; xÞ.
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