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Domination of unbounded operators and commutativity
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Abstract. It is proved that pointwise commuting formally normal operators
which are dominated by a single essentially normal operator are essentially normal and
essentially spectrally commuting. The question when essential normality of a polynomial
in an operator implies essential normality of that operator is solved in this way.
Furthermore, domination by essentially normal powers of formally normal operators
are studied and, as a consequence, extended versions of Nelson’s criterion for essential
spectral commutativity are proposed. Subsequent domination results ensuring joint
subnormality of systems of operators are proved. Several applications to multidimen-
sional moment problems are found.

Introduction.

The problem whether a pair of essentially selfadjoint operators which pointwise
commute may spectrally commute has had an interesting history. In the 1959 paper
Nelson constructed his famous example (it has to be mentioned that a prototype
of this can be found in [I4]) and gave sufficient conditions for the problem to be
answered affirmatively. Since then there is a long-lasting demand for finding any kind
of competitive conditions (and, if possible, to clarify the circumstances); see and
papers quoted therein. One of the possibilities is to work under the assumption of
inclusions of domains of involved operators like in [22]. Another is to maintain the
domination idea originated in [19]. In this paper we develop the domination approach
with an extensive use of the technique of bounded vectors (in fact, bounded vectors,
which is the simplest class of so called ™ -vectors, play a substantial role for most of
our presentation) and this makes our considerations as much independent of the spectral
theorem as possible. Besides its simplicity, which also means it to be easily tested, this
technique allows the operators in question to be filled up with bounded ones (cf. and
[36]). The main results of this part of the paper, Theorems and [2 are inspired by
24].

As a step further we consider more subtle domination involving powers or poly-
nomials in operators, the case not studied so far. This results in producing diverse
forms of Nelson’s theorem of polynomial type. Applying this to the multidimensional
moment problem we come in particular to a substantially simplified version of [25,
Theorem 2.7] avoiding any use of Hilbert’s Nullstellensatz by the way.

It turns out that much of the results can be carried over to essentially normal
operators as those which generalize essentially selfadjoint ones. However, though it
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may look like it, this is not doubling the problem for essentially selfadjoint operators.
This is because it may happen that

A+iB & A +1B,

for two essentially selfadjoint operators 4 and B which pointwise commute on a
common domain and which closures 4 and B spectrally commute (this means that
while 4 4 iB is normal A +iB is exclusively formally normal). The main reason for
engaging normality comes from our interest in subnormal operators, which, in turn,
goes back to mathematical physics, cf. [46]. As a consequence, we establish relevant
domination results for subnormal operators and get more applications to the complex
moment problem.

Preliminaries.

Let # be a Hilbert space (we consider complex spaces exclusively). Denote by
B(#) the €*-algebra of all bounded linear operators on # (all the operators are linear
here). For a linear operator A in # denote by Z(A4) and #(A) its domain and range,
respectively; 4* and A stand for the adjoint and the closure of A, respectively. The
graph norm of 4 is denoted by || - |, ie. |f]5 = /7 +4f|* for fe D(A). Set
9*(4) =(),_, Z(4") and

B(A)={fePD"(A):Tc>0 VYn=0,||A"f|| <ca"}, a=0.

A vector f e 27 (A) is said to be a bounded vector' of A (in short f € %(A)) if there
exists @ > 0 such that f € %#,(4). We denote by 2(A4) the set of all f e 2™(A4) such
that > 7, [|4"f |7Y" = +00. Members of 2(A) are called quasianalytic vectors of A.
It is clear that #(A4) < 2(4).

Recall that a linear subspace & of Z(A) is said to be a core of A if the graph of 4
is contained in the closure of the graph of the restriction A|, of 4 to & Here we

need the notion of core of a finite system 4 = (A4,,...,A4,) of operators in J# First,
following [15], define the graph %(A) of A as

GA) EA{(f AL, Acf)if € D(A) N ND(A)}.

A linear subspace & of Z(A;)N---NZ(A,) is said to be a core of A= (A4y,...,Ax)
if 9(Ay,...,A4x) ©9(A1lg, ..., Aclg). If & is a core of A, then ¥9(A4,...,4,) =
Y(Ai|g,-.-,Axls). The following facts can be easily verified.

PrROPOSITION 1. Let Ay,..., A, be operators in # (k> 1).

If Ai,..., A, are closable, then 4(Ay,...,A,) < 9(Ay,...,A.). If Ay,..., A, are
closed, then 4(Ai,...,Ay) is closed.

If & is a core of (Ai,...,Ax) and Z(A))N---ND(A) is a core of A; for a
fixed ie{l,...,k}, then & is a core of A;. If & <« Z2(A)N---ND(A) is a core of
(A1,...,Ay), then & is a core of (Ay,...,A).

Ithe term can be found in
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We say that two operators A and B in J# pointwise commute on a linear subspace
& of # if & « D(AB)NZ(BA) and ABf = BAf for every f € &; saying ‘“‘pointwise
commute” without “on ...” refers to & = 2(AB)NZ(BA). We state now a criterion
for pointwise commutativity of closures of operators.

PRrROPOSITION 2. If A and B are closable operators in A# which pointwise commute on
a dense linear subspace & of H#, and Z(A*B*)NZ(B*A*) is dense in H, then A and B
pointwise commute.

PrOOF. Set C = AB— BA. Then B*A* — A*B* — C*, which implies that C* is
densely defined. By the von Neumann theorem, C is closable. Since Cf =0 for f € &,
it must be Cf =0 for f e 2(C), which completes the proof. ]

An operator A in # is said to be paranormal if ||Af|]* < ||f]l - ||A%f| for all
f € 2(A4?) (cf. [16]). Paranormal operators need not be closable and the closures
of paranormal operators need not be paranormal (cf. [II]). A densely defined oper-
ator 4 in # is said to be formally normal (resp. hyponormal) if Z(A) < Z(A¥)
and [|4*f|| = ||Af|| (resp. ||A*f]| < ||Af]|) for f e 2(A). If A is formally normal and
D(A) = 2(A*), then A is called normal. We say that a closable operator is essentially
normal if its closure is normal. Formally normal (resp. hyponormal) operators are
closable and their closures are formally normal (resp. hyponormal) as well. A densely
defined operator 4 in # is said to be subnormal if there exist a Hilbert superspace #~
of # and a normal operator N in # such that A = N, i.e. Z(4) =« Z(N) and Af = Nf
for f e 2(4). Subnormal operators are hyponormal and hyponormal operators are
paranormal.

Let 2 be a dense linear subspace of # Denote by L(Z) the algebra of all
operators in # with invariant domain . The symbol I5 stands for the identity
operator on &. Denote by L#(Z) the x-algebra of all 4 € L(Z) for which there exists
A*# € L(2) such that (Af,g)> = {f,A%g) for all f,g € Z; the operator A% is unique and
the mapping A — A% is an involution in L¥(2). An operator N € L*¥(2) is formally
normal (in #) if and only if N¥N = NN¥,

We now formulate some properties of a formally normal operator which are forced
by a related normal one.

ProposiTION 3. If N is a normal operator in # and A is a formally normal operator
in A such that N < A, then N = A.

Proor. Indeed, we have Z(4) « Y(A*) =« DI(N*) = D(N) = Z(A). O

ProrosITION 4. Let A be a formally normal operator in A and let & be a dense
linear subspace of %(A) such that A|, is essentially normal. Then & is a core of A, A is

normal, 9(A") = D(A™") for n >0, 2%(A) = 2*(A*) and A pointwise commutes on

D% (A) with A*.  Moreover®, if E is the spectral measure of A, then B,(A) = B,(A*) =
R(E({z e C;|z| <a})) for a=>0, and B(A) is a core of A.

2¢f. for a prototype of this formula.



408 J. StocHEL and F. H. SZAFRANIEC

PrOOF. Since A is formally normal and 4|, 4, gives us A|, = 4,
so A is normal. Without loss of generality we can assume that A4 is closed. Since

(1) A" :J z"E(dz) and A™ :J Z"E(dz) for n >0,

c c
we get P(A") = P(A™) for n >0 (and consequently 2 (A4) = 2% (A4*)) as well as’
A*Af = AA*f for fe @™ (A). By (1), By(A*) = By(A). If f e By(A), then

1/(2n
i (] <@ ) = i 1) <
n— oo C n— oo

so <E({zeC;l|z| >a})f,f>=0 (cf. [26, page 73]), which in turn is equivalent to
feRE({zeC;|z| <a})). The converse implication is easily seen to be true. Basing
on the equality #(4) = )", #(E({z € C;|z| < n})) one can show that %(A4) is a core
of A, which completes the proof. OJ

We conclude this section with a criterion for essential normality.

THEOREM 5. Assume that N is a densely defined operator in # and & is a dense
subspace of A such that
i) E§<PIN*N)NZ(NN¥),
(i) N*N|, = NN~
(i) the operator N*N|, is essentially selfadjoint.
Then N is closable, N is a normal operator and & is a core of N.

ProOF. Since & < Z(N*) and & = #, the operator N is closable. Set
C=N*N|,. On account of (i), (ii) and (iii), C is a selfadjoint operator such that
Cc N*N and C =« NN*. Since the operators N*N and NN* are selfadjoint (cf. [47,
Theorem 5.39]), we conclude that N*N = C = NN*, which in turn implies that N is
normal (cf. [47, Proposition, page 125]) and

(2) & is a core of N*N.

To show that & is a core of N, take fe ZP(N*N). Then, by (2), there exists
{fu};2, = & such that f =lim,_ f, and N*Nf = lim,_., N*Nf,. Since

INC =P = NN = fo) f =y, mz 1,
we get lim,o Nf, = Nf. This shows that (N|,z.5) <= (N|s)~ =N. However
Z(N*N) is a core of N (cf. [47, Theorem 5.39]), so & is a core of N. n

Domination.

Domination and pointwise commutativity.
Given two operators A and B in a Hilbert space # and a linear subspace &
of 2(A)NZ(B), we say that A dominates B on & (this notion is widely used in the

3This fact does not depend on the spectral theorem, because if C is a formally normal operator and
2(C*CYNG(CC*) = H, then C*Cf = CC*f for feP(C*C)NZ(CC™).
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perturbation theory and known there as A-boundedness of B on &) if there exists
¢ > 0 such that ||Bf|| < c(||f]| + ||[Af]|) for every f e &. In this section we discuss the
influence of the domination relation on pointwise commutativity of two operators on
the set of & -vectors of the dominator. By the way, we obtain the relationship
between bounded vectors of such operators (see also [Lemma 38). We begin with a fact
of a general nature which connects the domination with the inclusion of domains of
operators in question. Its proof (based on the closed graph theorem) is left to the
reader.

PrOPOSITION 6. Assume A and B are closable operators in a Hilbert space H.

(i) If 2(A) = 2(B), then there exists ¢ >0 such that |Bf|| < c(||f|| + [|Af]) for
every f e 9(A).

(i) If 2(A) =« Z(B) and there exists ¢ > 0 such that

IBfIl < c(lAl + 471D, e 2(4),
then 7(A) = 2(B) and ||Bf || < c(|If1l + | Af ) for f e 2(A).

The following theorem opens a series of domination results. It corresponds
somehow to the commutative part of Lemma 5.2 in [19].

THEOREM 7. Let A be a formally normal operator in #, B be a densely defined
operator in A and & be a dense linear subspace of H#. Assume that
(@) &< 2A)NZ(B)ND(B*) and {Af,Bgy = {(B*f,A*g) for f,g€é,
(b) A|, is essentially normal in #,
(c) there exists ¢ >0 such that ||Bf|| < c(||f]| + |Af|]) for f€é&.
Then B is closable and
i) 2(4™) c 2(A"B)NZ(BA*™), BZ(A™") =« 2(A"™) and BA™f = A*"Bf for
n>0 and f e (A",
) 92%(A) « (A YND(B), A*D*(A) =« 27 (A) and B2 (A) =« 9" (A),
) A*Bf = BA*f for fe 2™ (A),
(i) 1BfI < eI/l + A1) for fe2(A),
) B(A) = B(B),
) the operators A, A* and B leave the spaces %,(A), a >0, and B(A) invariant,

_%(A-), B A(A) € B(%,(A)) and ABf = BAf for f e %(A).

PrROOF. B is closable because @(B*) A By (b), 4 is normal and A = A|, (cf.

[Proposition 4). This and (c) lead (via [Proposition 6)) to %(4) = Z(B) and (iv). Since
D= DU, we g ANDI) S8 D) < B, v

(3) (A" = 2(BA™), k> 0.
We now show that
(4) (Af,Bg> =<B'f,Ag), [e&,gePD(A).

Indeed, since & is a core of A, there exists a sequence {g,},-, = & such that g, — ¢
and Ag, — Ag as n — co. By (c) and formal normality of 4 we have Bg, — Bg and
A*g, — A*g as n — oo. This and (a) imply the equality (4).
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The condition (i) will be proved by induction. The case n =0 is done. Assume
(i) holds for a fixed n>0. Let f e %(A4"?). Then clearly f e 2(A4™") and conse-
quently, by virtue of the induction assumption, (4) and (3), we obtain

(A Bf, AhY = (BA™f, Ah> = LA™V B*hY = (BA* ™ Vf by, heé.

Since & is a core of A, we get A"Bf € (A*) (equivalently: f e Z(A4*"*VB)) and
BA*m N = 4B In particular Bf € Z(A*")) = (4™).

(vi) According to (ii) and [Proposition 4, #,(A) is closed and 4,(A) < %(B).
Hence, bzf the closed graph the_orem, the operator E|‘%”( nE AB,(A) — A is bounded. Set
pla) = ||B|%(A—)||. If fe%,(A4), then (ii) and (iii) lead to

|A"Bf || = [|A™"Bf || = | BA"f || < ()| 4"f || = p(a)|A"f |, n >0,

so Bf € #,(A). In consequence, B|%( ) belongs to B(%,(A)). From (iii) we get
(Al 5, A—)E*_B a,(d) :_BJ%( 4y (Al g, A—))*. Since A|, ;) is normal, the Fuglede theorem
yields AB|, i = BA|, ; (a>0), which completes the proof of (vi).

(v) comes from (vi) immediately. ]

It is worthwhile to point out that if 4 is a formally normal operator in #, B is
a densely defined operator in »# and & is a dense linear subspace of # such that
&< DB)ND(AB*)NZ(B*A) and AB*f = B*Af for f €&, then A and B satisfy the
condition (a) of MTheorem 7.

The following is a direct consequence of and [Theorem 7.

COROLLARY 8. [If A is a normal operator in #, B is a closed densely defined
operator in H and & is a dense linear subspace of H such that

1° 9(A) =« 9(B),

2° &< D(A)ND(B*) and {Af,Bgy = <{B*f,A*g) for f,g€é&,

3° & is a core of A,
then the conditions (i), (i), (iii), (iv), (v) and (vi) of hold.

LEMMA 9. Let A be formally normal and B be hyponormal, both in #, and let & be
a dense linear subspace of H# such that & < 2(A) N2 (B). Suppose that the operators A
and B satisfy conditions (b) and (c) of Theorem 7. If moreover one of the following two
conditions holds

(i) <Af,B*g) =<Bf,A*gy for f,geé,

(i) <Af Boy=<B'f,A’9) for frged,
then 9(A) < Z(B), #(A) < #B(B), the operators A, A*, B and B* leave the spaces
9" (A) and B(A) invariant, B,(A) reduces B to a bounded hyponormal operator (a > 0),
ABf = BAf and A*Bf = BA*f for f e 2 (A).

Proor. It follows from (b) and (c), as in the proof of [Theorem 7, that
%(A) = 2(B) and (because B is hyponormal)

(5) 1B*fII < 1B || < (LAl + 141 1)), f € Z(A).

Assume (i). By (5), we can apply to the triplet (4, B*,&). Hence the
operators 4, A* and B* leave the spaces Z*(A), #(A) and %,(A) invariant,
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(6) A'Bf =B Af, feD”(A)

and AB*f = B*Af for f e %(A). The latter implies that {(Af,Bg) = {(B*f,A*g) for
f,ge B(A). This, and (5) enable us to apply [Theorem 7 to the triplet
(A,B,#(A)). In consequence, #(A) = #(B), the operator B leaves 2 (A), #(A) and
#,(A) invariant, and A*Bf = BA*f for fe 2% (A). Since B(Z*(A)) = 2% (A), (6)
leads to ABf = BAf for fe%%(A). As %,(A) is invariant for B and B*, %,(A)
reduces B to a bounded hyponormal operator.

The same arguments come into force in the case (ii) (first we apply to

(A,B,&) and then to (A, B*,#(A))). The details are left to the reader. ]

It is right time to relate our results to those of [22]. Notice that some parts of
and Theorems [0 and [2 can be derived from what is in [22]. However, we
have made our proofs independent of because we want them to be consistent with
the main theme of the paper: domination. Let us mention that we can retrieve in this
way information on cores of operators in question. Another favouring circumstance
is that it is just domination what can be explicitly assumed in the case of moment
problems.

Domination and spectral commutativity.

Recall that normal operators in a Hilbert space s# are said to spectrally commute if
their spectral measures commute. We now formulate the main criterion for the spectral
commutativity of normal operators one of which dominates others. Its proof is based

on [Lemma 9.

THEOREM 10. Assume that Ay, Ay, ..., A, (x> 1) are formally normal operators in
H and &;j, 0 <i<j<k, are dense linear subspaces of A such that
1) &0 < Z(A0)NZ(A4;) and either {Ayf,A 19y =<Aif,Ay9>, f.9€ 8o, or
CAof,A4i9> = <Ajf, Agg>, f,9 € 6oy, for J— | P
(11) either @@i,j (o= @(AIA]) ﬂ@(AJAl) and AZA/f = Ainf, f € (b@lp’j, or g,'J c
D(AiA; )N D(A;A;) and A A f = A]?*Aif, febij, for 1 <i<j<k;

(i) Ao PR essentially normal for j=1,... k;
(iv) there is ¢ > O such that 4,/ < c(||f|| + [|[Aof||) for f €y and j=1,.
Then Ao, A, ..., A, are spectrally commuting normal operators. Moreover, if & = 5’07 j

for all j=1,...,x, then & is a core of any subsystem of {Ay,Ay,..., A}
PrOOF. Set #1 = $1(Ay) and #;, = %,(Ay) © B,_1(Ay) for n>2. By Propo-

sition 4 and [Lemma 9, # = 6—):;1 H#,, the closed linear space #, reduces A; to a
bounded normal operator N, € B(#,) and Ny ,N;, = N; Ny, for all n>1 and i=
0,...,x. If1<i<j<kand 4;A;f = A;A;f for f €&, then N; ,N;, = N, ,N;, for
n>1 (use Proposition 2). Likewise, if 4;4/f = A A4;f for f €&, then N;,N/, =
Nj’jnN,-’n, and consequently, by the Fuglede theorem, N;,N;, = N;,N;,. Hence, the
normal operators EI—)OC Nin, i=0,... K, spectrally commute (because spectral measures
of appropriate summands commute). Since (P~ N;, < 4, yields 4; =
@nleum so Ag,..., A, are spectrally commutlng normal operators.

Suppose that &, ; =¢& for all j=1,...,x. Take a finite sequence of integers

0O<v<---<vy <K (l<m<rx+1). Let E be the spectral measure of the system
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(/I(),/Il, e ,/IK), ie. /Ij = fCKH ZjE(dZ(),le, ...,dze) for j=0,1,... Kk (Cf ) Set
A= (_ol(z0,21,- -, 2) € C*™': |zl <n}, n>1, and define a dense linear subspace
X of A via X' =) R(E(4,)). By Lemma 9 2 = Z(Ao)N---NZ(Ax) = Z(A).
If fe2(A,)N---NP(A,,), then clearly % 3 E(4,)f — f and A, E(4,)f — A, [ as
n— oo for j=1,...,m. This implies

(7) g(AVl7' "714—Vm) - g([{vl|%‘"' '714_Vn1

)

Take he Z. Since, by (iii), & is a core of Ay, there exists a sequence {h,},—, =&
such that /i =lim,_. h, and Aoh =lim,_. Aoh,. This and (iv) imply that A4, /s =
lim, ., Ayh, for j=1,...,m. In this way we have proved that

8) G( Ay, |y s Ay |y) € G( Al A |g).

Combining (7) and (8) we get ¥(4,,,...,4,,) = % (A4, s, -, A,,|¢), which completes the
proof. ]

REMARK 11. In fact we have proved the following fact (see the second part of the
proof of and apply [Proposition 6): if Ao, A1, ..., A, are spectrally com-
muting normal operators such that 9(Ay) < Z(A;) for all i=1,...,k, and & is a core of
Ay, then & is a core of any subsystem of {Ao, Ai,...,Ax}.

The next result is a direct consequence of [Proposition 6 and [Theorem 10.

THEOREM 12. Let Ay be a normal operator in #, A,...,A. be closed formally
normal operators in K and &; ;, 0 <i<j <k, be dense linear subspaces of H. Assume
that

(i) o = D(Ao) = D(4;) and either {Aof,A;gy =<A;f,Asg>, f.g¢€ o, or
CAof, Ajg> = LA Asgd, [rg € o for j=1,. .,

(ii) either &;j < 2(A;Aj) NZD(AjA;)) and AA;f = A;jAif, feé&ij, or & ;c
DA ND(AFA) and AAf = ATAf, fe&y, for 1 <i<j<x

(ii1) &o,; is a core of Ay for j=1,... K.

Then Ay, Ay, ..., A, are spectrally commuting normal operators. Moreover, if & = &
for all j=1,...,k, then & is a core of any subsystem of {Ay, Ai1,..., A}

The particular case of [Theorem 12 for symmetric operators is stronger than
Lemma 2 of and of (which, in turn, generalizes the result of
[24]). It differs from those results by having assumed here weak commutativity instead
of pointwise one as well as by allowing varying subspaces &;; to constitute a core
exclusively for i =0 (as compared with [31]) and by having gained the core conclusion.

REMARK 13. In addition to the circumstances of Theorem 10 (and, in a sense, of
Theorem 12)) the fact that the closed support of the spectral measure E of the system
(Ao, ..., A,) of spectrally commuting normal operators is contained in the semianalytic
set ﬂ;;l %, where 7, = {(z0,...,2¢:) € C"*;|z|* < b(1 + |20]*)}, is equivalent to the
domination condition (iv) appearing therein (the smallest nonnegative constants » and
¢ are related to each other as follows: ¢ <b <2¢?). Indeed, we see that: ||4;f H2 <
b(ILAI1P + 140/ 11%), f € Z(Ap), if and only if [wa (b(1 + |20*) = |z1*)<E(d2) £, /> = 0,
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f € 9(Ay), if and only if (as EAy = AE) [ (b(1 + |2|*) = |z|)<Ed2)f, f> >0, o a
Borel subset of C*™' and f € Z(Ay), if and only if CE(C*™\Z)f,f> =0, f e Z(4p),
if and only if E(C*™'\%;)=0. Roughly speaking, guarantees essential
spectral commutativity of a finite system of (formally) normal operators in case it is
dominated by some (essentially) normal operator. Conversely, if 4;,..., 4, are spec-
trally commuting normal operators, then the operator A & AfAL + -+ A7 A, 1s self-
adjoint (because Ay = fC,<(|zl|2 + -+ |z¢|?)E(dz), where E is the spectral measure of
the system (A1, ...,A4)), the operators Ay, Ay, ..., A, spectrally commute and finally A
dominates every 4; on Z(A,), i=1,...,x (because Z(Ay) < Z(A4;)).

REMARK 14. The conditions (i) and (ii) of [Theorem 10 are apparently necessary for
the operators Ay, Ai,...,A, to be spectrally commuting. Indeed, the spaces & ; =
D(Ag) ND(4;) and &, ; = D(A:i4;) N D(A;A;) (resp. & ;= D(AiA])ND(A]Ay)), i, =1
being fixed, are the largest spaces satisfying conditions (i) and (ii) (use the spectral
measure of the system (Ay,..., A,) mimicking a part of the proof of MTheorem 10). It
turns out that none of the remaining conditions (iii) and (iv) of can be
omitted without spoiling its conclusion. Let us discuss the case x =2 in detail.

In two pointwise commuting symmetric operators Ay, 4; € L(%), acting in a
Hilbert space #, whose closures Ay, A; are selfadjoint but not spectrally commuting are
constructed. Thus the operators 4y, 4; satisfy all the assumptions of (with
60,1 = Z) except for (iv). As is shown in [42, Section 16|, the pair (Ay, 4;) does not
extend to any pair of spectrally commuting selfadjoint operators even in a larger Hilbert
space.

Let A€ L¥(Z) be a formally normal operator, which is not subnormal (cf. [T0],
[30]; it is possible to choose 4 to be *-cyclic, see [33]). Set 4; = A for i =0,1. Then
the formally normal operators Ay and A; satisfy all the assumptions of
except (iii). In this particular case there is no pair of spectrally commuting normal
operators (even in a larger Hilbert space) which extends (Ao, ;). Another possibility
for this is to consider Ag = A and A; = (1/2)(A4 + A#); the conclusion is as before,
however now A4; is symmetric. Below we present a more advanced example.

ExampPLE 15. By [33, Proposition 7.3] there exist pointwise commuting symmetric
operators A,Be L(Z), acting in a Hilbert space #, such that
(A1) the pair (4,B) does not extend to any pair of spectrally commuting self-
adjoint operators in a larger Hilbert space,
(A2) B(B— A%)=0.
Set A9 = A®> and A; = B. Then AgA; = A1 Ay and, according to (A2), we have

11 /17 = CAof A f> < Nl Aof | A1l fe2,

which implies that ||4;f] < || 4of|| < ||f]l +||4of|| for fe 2. This means that
the operators Ay, A; satisfy all the assumptions of (with &1 = Z) except
for (iii). Indeed, suppose contrary to our claim that 4% = A, is essentially self-
adjoint. Then, by Theorem 24, 4 and B are spectrally commuting selfadjoint operators,
which contradicts (Al). Notice however that the pair (Ao, 4;) extends to a pair of
spectrally commuting selfadjoint operators in a larger Hilbert space; this is because
A1(A1 — Ap) =0 (cf. [9, Theorem 3]; see also [33, Proposition 5.3]).
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Domination in higher powers.

Polynomially essentially normal operators.

In this section we try to answer the following question: when does (essential)
normality of a complex polynomial in an operator imply essential normality of the
operator in question? Notice that a very special case of below (namely
saying that if 4 is a closed symmetric operator and A2 is selfadjoint, then A is itself
selfadjoint) has been used in the proof of [21, Theorem 2].

The symbol C[Xj,...,X,| stands as usual for the ring of all polynomials in x
commuting formal variables Xi,..., X, with complex coefficients; in the case k =1 we
write simply C[X]. For pe C[X], we define p* e C[X] via p*(z) = p(2), z e C.

THEOREM 16. If A is a formally normal operator in H such that p(A) is normal
for some polynomial p € C|X] of degree n > 1, then for every q € C[X]| with degq < n,

the operator q(A) is essentially normal, 2 (A) is a core of q(A), q(A) = q(A) and
q(A)" = q*(A*). Moreover, the operator A" is normal.

Proor. First we prove that 4 is normal. Using an induction argument one can
show that 2% (p(4)) = 2(A*) for every k> 1, so 2% (p(4)) = 2*(A) (this is true

for any linear operator A). By [Proposition 4, the linear space &1 = Z*(A) is a core
of 49 £ p(4). Since Z(p(A)) = Z(A), the triplet (4o, A1, &.1), where A; L A, satisfies
all the assumptions of [Theorem 12 Hence A is normal.

Take a polynomial ¢ € C[X] with degg <n. Since p(4) = p(A4) (use
3), we see that p(A4) and q(A4) are spectrally commuting normal operators such that
Z(p(A)) = Z(q(A)). Applying Remark 11 to the triplet (4o, 4], &.1) with 4] £ g(A),

we conclude that 2% (A4) is a core of q(4). Thus g(A4) = q(A4)|g=4) = q(A4) = q(4),

which means that the operator ¢(4) = ¢(A4) is normal and 2% (A4) is a core of ¢(4).

Since ¢*(A4*) = q(A)" = (q(A))" = q(A)" and all these operators are normal,
3 gives us g(A4)" = g*(A4").

In view of the previous part of the proof, it suffices to show that if B is a closable
operator in # such that B is paranormal and p(B) is closed, then B" is closed (this is
a more general result than we need). Suppose that sequences {fi},—, = Z(B") and
{B"f.},—, are convergent to vectors f and g, respectively. Since the graph norm of B”"
is equivalent to the norm (> 7, IBI(-)||))"/* (cf. [41, Proposition 6]), the sequence
{p(B)fi},—, is convergent. Thus, by the closedness of p(B), f e Z(p(B))=2(B").
However the operator B" is closed as the nth power of the paranormal operator B
(cf. [41, Proposition 6]). Hence g = B"f = B"f, which shows that B" is closed. The

proof is complete. ]

Even for bounded operators is false if A itself is not (formally)
normal: take the rank one operator 4 = e ® f with e, f € # such that <{e, f> =1 and
le|| IL£]l # 1; then A is not normal though 4> — A4 = 0.

Lemma 17. If A is a formally normal operator in H# such that p(A) is essentially
normal, p(A) is closed and Z(A™) = Z(p(A)*) for some polynomial p € C[X] of degree
n>1, then for every qe€ C[X]| with degq < n, the operator q(A) is essentially normal,

D(A™) is a core of q(A), q(A) = q(A) and q(A)* = q*(A").
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Proor. Notice first that according to p(A4) < p(A4), we have

2(p(d)) = 2(4") = 2(p(A)") = Z(p(4)") = 2(p(4)),

so p(A) = p(A) and consequently p(A) is normal. By [Theorem 16, the operator A is
normal as well. Let g e C[X] be a polynomial of degg <n. Since A & p(A4) and
A4, L q(A) are spectrally commuting normal operators such that Z(p(4)) = Z(q(A)),
we can apply Remark 11 to the triplet (Ao, A1, 6o,1) with &p, £ 2(A™). We conclude

that Z(A4") is a core of ¢(A). Now we can follow arguments used in the middle part of

the proof of [Theorem 16. ]

Let us recall that formally normal operators need not be subnormal (cf. [10], [30],
[33]). We show now that the property of being essentially normal is inherited by roots,
at least within the class of subnormal and formally normal operators.

ProrosiTioN 18. If A is a subnormal and formally normal operator in A such
that p(A) is essentially normal for some polynomial p € C[X| of degree n > 1, then the
conclusion of Lemma 17 holds true.

PrROOF. Suppose that p(X) =", p;X’/ with p, #0. By [35, Proposition 5.3]
(see also for the case of symmetric operators) p(A4) is closed. Let N be a normal
extension of A. Then clearly 4/ = N/. Moreover, if f € Z(A"), then

Sop(A)hy =" pf ARy =Y p<f N7y = < > ﬁ,-N*ff,h>, he (4",
j=0 j=0 j=0

so feZ(p(A)”). Applying completes the proof. ]

In the case of symmetric operators (which always have selfadjoint extensions
possibly in larger Hilbert spaces; cf. [1, §111 Theorem 1] and [40, Proposition 1])
IProposition 18§ simplifies to

COROLLARY 19. If A is a symmetric operator in A such that p(A) is essentially
selfadjoint for some polynomial p € R[X| of degree n > 1, then for every q € R[X]| with
degg < n, the operator q(A) is essentially selfadjoint, Z(A") is a core of q(A) and
q(A4) = q(4).

Notice that essential selfadjointness of A4 follows from that of p(A4) (p e R[X])
via the following simple arguments: since degp > 1, there exists £ € C\R such that
p(&) e C\R (because otherwise p(C) < R which, by analyticity of p, implies p =
constant, a contradiction) and, in consequence, p(¢)e C\R; hence N (A* —¢&)
N (p(A)" = p(&)) ={0} and N(A4* — &) = N (p(A)" — p(&)) = {0}, which means that
the defect indices of A4 are both equal to 0. However, this simple argument is not
applicable in the context of [Proposition 18§|.

Corollary 19 says in particular that if 4" is selfadjoint then so are all the powers
A, A% ..., A" ", For A cyclic this can be get directly from the #?-model of the
symmetric operator A, the fact which has been overlooked in [7], Theorem 1, where
the so called index of determinacy of a determinate positive measure on R is con-
sidered.
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COROLLARY 20. Let A be a formally normal operator in # such that A" is
essentially normal for some n> 1. If either A(Z(A)) = D(A) or A" is formally normal,
then the conclusion of Lemma 17 holds true.

ProOF. Suppose that A(Z(A)) <« Z(A). Then, by part (iii) of [41, Proposition
6], the operator AogA” dominates A; T4 on 60,1 g9(/1). Since {Aof,A{g) =
LA™ g> = AL f, Ayg) for all f,ge &, implies that 4 is normal.

Assume now that A" is formally normal. By part (iv) of [41, Proposition 6], the

operator A" is closed, so A" = A". This and imply that 4" = A" and
consequently that A” is normal. It follows from [Theorem 16 that A is normal.

In both cases we can apply |[Proposition 18, which completes the proof. ]

COROLLARY 21. If 9 is a dense linear subspace of # and A € L(2) is formally
normal, then the following conditions are equivalent for every n > 1

i

A" is essentially normal,

)
(i) A’ is essentially normal for every i=1,...,n,
(iii) A is essentially normal and % is a core of every A', i=1,...,n,
(iv) A is essentially normal and & is a core of A".

ProOOF. The implications (i) = (ii) and (i) = (iii) are true due to while
(ii) = (i) and (iii) = (iv) are trivial. If (iv) holds, then A" is normal and, in conse-
quence, A" = (A"|,)” = A", so A" is normal, which gives us (i). O

Domination in powers.

The two theorems which follow extend applicability of to the case
when either some power of the dominator is essentially normal or the dominator itself,
still being essentially normal, is a power of some formally normal operator. First we
prove

LEmMMA 22. Let & be a dense linear subspace of #, Ay, Ai,...,A.€ L(2) be
pointwise commuting operators and ¢ > 0 be such that

@) 4ifl < (S + [ 4of1l) for feZ and i=1,... K.
Then for every pe C[Xy, Xi,...,X,|, there exists c, >0 such that

: de j

@) Np(do, A1, ..., 4 fIl < ¢ 357 143 S || Jor fe 2.
If Ay is paranormal, then for every n > 0 and for every polynomial p with deg p < n there
exists dy, , > 0 such that

(i) [p(do, A, ..., A S < dup(| 11| + 45 1) for [ e 2.

Proor. (i) Set Z, ={0,1,2,...}. It suffices to show that

|

©) lA%f 1l < e > N 43f1ls feZaeZH,

Jj=0
where A" = A} - A% and |u|=ao+ - +a for o= (xg,...,0)€Z". The
proof is by induction on n = |x|. Assume (9) holds for a fixed n>0. If xeZ jﬁ“
and |¢| =n+1, then there exists i€ {0,...,x} such that o; > 1. Set o = (ay,...,

o1, 0 — 1,01, ... o) € ZXTL Since |of| = n, (a) yields
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n+1

14%f || = | 4™ || < el A% || + |4 Aof 1) < 28e, Y |43 f1l, [ €2,

j=0

where ¢ = max{l,c}. This completes the proof of (9) and, in consequence, of (1)

(if) Since Ay is paranormal, one can deduce from part (iii) of [Proposition € in
[41] that there exists b, > 0 such that Y 7 || 4] Il < ba(1£]] + 11 42£1) for every f €.
This and (i) complete the proof. O

THEOREM 23. Let & be a dense linear subspace of A and Ay, Ai,..., A, € L(D)
be formally normal operators (k > 1) satisfying conditions (i), (i) and (iv) of Theorem
10 with & =2, 0 <i<j <. If the operator A_g is normal for some n > 1, then the

operators Ay, Ay, ..., A, pointwise commute, and for any choice pi,...,ps of complex
polynomials in k+ 1 variables with degp; <n, the operators p\(Ao,A1,...,Ax),...,
ps(Ao, A1, ..., Ax) are normal, they spectrally commute and 9 is a core of the system

(pl(A(),Al,...,AK>,...,pS(A(),Al,...,AK>>.

Proor. It follows from [Corollary 21 and [Theorem 10 that Ay, Ay, ..., A,
are spectrally commuting normal operators. This in turn implies that the operators
Ay, Ay, ..., A, pointwise commute. Let E be the spectral measure of the system
(Ao, A1, ..., Ay). Since pi(Ao,Ar,...,Ac) © [cen pidE, we infer from part (i) of
that the operators Af, pi(do, A1,...,Ax), ..., ps(Ao, A1, ..., A,) are formally
normal and that they satisfy all the assumptions of with & ; =92, 0 <
i <j<s. This completes the proof. ]

THEOREM 24. Let & be a dense linear subspace of #, Ay, Ai,...,A.€L(Z) be
formally normal operators and n be a positive integer (k> 1). Assume that
(1) A,Aj = AjAl fOV all 0 <i <j <K,
(i1) A is essentially normal,
(iii) there is ¢ > 0 such that ||A;f|| < c(|f)| + |45 f]) for f€Z and j=1,... K

Then Ay, Ay, ..., A, are spectrally commuting normal operators, and & is a core* of any
subsystem of {Ao, A1, ..., A.}.

ProOOF. We proceed as in the proof of Theorem 10l to conclude that A4, ..., A, are
spectrally commuting normal operators, A/ is normal and the space %,(A4}) reduces
every Ai,...,A, to a bounded normal operator for all @ > 0. By [Corollary 21, the
operator AO is normal and A = All, so 9" (Al) = 2”(Ao). Using either [41, Lemma

8] or one can prove that
(10) Ban(Ao) = Ba(AL) = Bu(AY), a =0,

and consequently that %(A4g) = #(A}). Therefore, by (i) and Propositions 2 and 4,
we have AgA;f = A;Aof for f e B(A]) and i =1,...,k. This and (10) imply that for
every i =1,...,x, the space %,(A}) reduces operators A, and A; to pointwise com-
muting bounded normal operators. Applying the argument (via orthogonal sums) from

—~

“In fact, a small modification of the proof of Theorem 24 leads to more, in particular to: & is a core of
any subsystem of {Ao,..., Ay, A,..., Ac}.
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the first part of the proof of [Theorem 10, we conclude that 4, spectrally commutes with
every A;.

Let E be the spectral measure of the system (Ao, A;,...,4,). Let Z =
U~ #2(E(4,)) and 0 <v; <--- <, <x be as in the proof of [Theorem 10. Like
there, we show that (7) holds true. Take he . Since 2 = Z(A}) = 2(A}), there
exists a sequence {hi}iﬁl c 9 such that h=1lim;_, h; and /Ighzlimi_,oo Agh;. It
follows from part (iii) of [41, Proposition 6] and our assumption (iii) that /Iéh:
lim;_ o Aghi and /Iv,h =1lim; ., A, h; forall j=1,...,nand /=1,...,m. In this way
we have proved that (8) holds true with & = 2. Combining inclusions (7) and (8)
completes the proof. ]

In connection with we have to point out that in general two bounded
normal operators A; and A4y may not spectrally commute though A; spectrally com-
mutes with some nth power of 4y, n > 2 (e.g. consider a normal nth root Ay of the
identity operator). This means that we can not replace in the condition
(i) by a weaker one: AJA; = A;A} for every j=1,...,k and A4;4; = A;A; for all 1 <
I <j< K.

In view of [Corollary 19, it is possible to formulate more general versions of
Theorems and 24 for symmetric operators weakening a little bit the assumption on
domains of operators in question (mainly that about a common invariant domain).
The details are left to the reader.

Nelson’s type criterion for spectral commutativity.

Mheorem 10 leads to a useful criterion for spectral commutativity of normal
operators. It generalizes among other things the commutative part of in
[19] (see also Corollary 9.2 therein) to the context of formally normal operators.
What has to be pointed out is the role played by bounded vectors in the background
so as to make the arguments we have used in our proof to work as smoothly as
possible. We want to take the opportunity here to indicate that contains a result
which is much like Nelson’s (with a simpler proof). Though it is also somehow in
flavour of our considerations the main difference is in the fact that existence and some
behaviour of bounded vectors is in made as an explicit assumption.

THEOREM 25. Let Ay, ..., A, be formally normal operators in # and & be a dense
linear subspace of #. Suppose that
(1) & c2(4:4;)) ND(AjA;) and AiA;f = A;Aif, f€6, for 1 <i<j<k,
(i) & <= D(A;A;) and <A Aif,A;9> = <A S, AjAig), f,g€&, for i,j=1,... K,
(i) (A{A1+---+ AL Ay)|, is essentially selfadjoint.
Then Ai,...,A. are spectrally commuting normal operators and & is a core of any
subsystem of {Ay,..., A}

PrOOF. According to (ii) and (iii) the operator Ay g AfAr + -+ AL A, 1S sym-
metric and Ay|, is essentially selfadjoint. Notice that

1
14,1l = <A A, 1, 157 < o f, 157 < Ao f 1PN < 5 U1+ 140 /1)

for all fe& and 1 <j <wx. It follows from (ii) that for every j=1,...,x
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CAof, 419y =Y KAFAf Ajgy =D (AIf, AT Aigy = (AT, Aog), f,g€é.
i=1 i=1

Applying completes the proof. O

REMARK 26. is still true if condition (ii) is replaced by
(ii") & <= 2(4:4]) NZ(A?) and AiAjf = AJAif, fed, foralli,je{l,... ,k} such
that i # j.
Indeed, by formal normality of A; we have {A;f,Aigy = <A/ f,Ag) for f,ge€ Z(A4;).
This and & = 2(42) imply that & = G(A;A;) and {AFAf, Aigy = {Aif, Aidig) =
(Aff,AfAigy for f,ge &. On the other hand, conditions (i) and (ii’) lead to

CAFAif, Ajg> = KAif , Aid;gy = Aif , AjAigy = KAJAif , Aig) = CAiA[ S, Aig)
:<A]*f7A1*Alg>a f,geé’,l;«é]

This shows that condition (i) of is satisfied.
Conditions (i) and (ii) of are also satisfied if the operators A;, 4;, A} A;,
i,j=1,...,k, pointwise commute on a dense linear subspace & of #.

The next result (except its part concerning cores) is often referred to as Nelson's

criterion [19].

COROLLARY 27. Let Ay,..., A, be symmetric operators in H and & be a dense
linear subspace of #. Suppose that

(1) & c 2(A4;A4;) and A;A;f = AjAif, f€&, for all i,j=1,...,K;

(i) (A% +---+ A2)|, is essentially selfadjoint in H.
Then Ay, ..., A, are spectrally commuting selfadjoint operators and & is a core of any
subsystem of {Ay,..., A.}.

REMARK 28. It turns out that the two-operator version of Nelson’s criterion is
stronger (at least a priori) than its general form (assuming a little bit more about the
domains of operators in question). Namely, if the symmetric operators Aj,..., A4,
(k > 2) satisfy conditions (i) and (ii) of and, moreover, {A}f,A?g) =
(A?f,A7g) for all f,ge & and i,j=1,...,x, then the operators (47 + A7)|;, 1 < p <
g <k, are essentially selfadjoint®>. Indeed, we can apply to symmetric
operators Ay &= A2+ -+ A2 and A, £ A} + A7 (with &, = &) because

1AL/ = JR (2 + x2)XE(dr, ... dxo) [ f

K

< | G a0 S = [Aof P T es,

>The same conclusion is valid if symmetric operators A, ..., A, satisfy condition (ii) of with
éc ﬂ,.'fj:l D(A;A)) such that {A7f, A}gy = A} [, A7g> = {AiA;f, 4;4;9) for all f,ge& and i,j=1,...,x.
Indeed, is to be applied because

lofI? =D <A £, 471> = D Il fIIP = I fIP, feé.

i1 ij=1
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where E is the spectral measure of the system (Aj,...,4,) (such a measure exists due
to [Corollary 27). The same arguments can be used to show that any subsystem of

(Ai,...,A,) satisfies the condition (ii) of [Corollary 27

In view of Remark 28, the authors have decided to include a direct proof of
Nelson’s criterion for spectral commutativity of two symmetric operators based on the
spectral theorem for a normal operator. Below we write Re4 = (1/2)(4 + A*) and
ImA = (1/(21))(4 — A") for a densely defined operator 4 in # such that Z(A4) < Z(A4").

PrROOF OF COROLLARY 27 FOR x =2. By (i), N L Ay +idy is densely defined,
&< D((A) —idy) (A1 +142)) =« D(N*N), & = D((A) +143)(A; —i42)) =« Z(NN*) and
N*N|g = NN*|; = (4} + 43)|,. Hence, according to (ii) and [Theorem 3, N is closable,
& is a core of N and N is normal. The latter implies that S; L ReN and S, L Im N
are spectrally commuting selfadjoint operators and N = S; +1iS, (cf. [47, Theorem
7.32]).

Take fe Z(N). Since & is a core of N, there exists {f,} -, =& such that
lim,—.. fy = f and lim,_., Nf, = Nf. It follows from (i) that |[N*h||* = |Nh|* for
he &, so the sequence {N*f,} -, is convergent. Thus f € Z(N*) and lim,_., N*f, =
N*f. Since A; —id, = N*, we conclude that the sequence 4, f, = (1/2)(Nf, + N*f,),
n>1, converges to ReNf. Hence f e Z(A;) and A;f =ReNf. This implies that
S < A;. Likewise S> = A,. By maximality of S; and S,, we get S; = 4; and
S, = A,, which means that 4; and A, are spectrally commuting selfadjoint operators
such that N = 4, +i4,.

If fe2(A4))NP(A;) =2(N) and {f,}°, =& are as in the previous paragraph,
th_en (f,/Ilf, A:zf) = linl_nﬂoo(fn,z_i]fm/{zf,;). Hence_ g(/Il,/Iz_) c g(/Ing@,/Iﬂg), /Il =
(Ailgm) = (Ailg)” =41 and A4y = (42],5) < (42]s) = Az, which completes the
proof. []

Nelson’s criteria of polynomial type.
In the context of [Theorem 23 and [Corollary 27 (also referring to [25]) the fol-

lowing question seems to be natural (for simplicity we formulate it only for symmetric

operators): does essential selfadjointness of ¢(4y,...,A,), where ¢ is a polynomial with
degg>1 and 4,,...,4, € L(2) are pointwise commuting symmetric operators, imply
selfadjointness and spectral commutativity of A;,...,4,? In general, the answer to our

question can be easily made negative. Indeed, if S e L(Z) is a symmetric operator
which is not essentially selfadjoint and ¢(X7,X>) = X7 — X3, then ¢(S,S) =0. On the
other hand, if ¢ is a polynomial with 1 < degg <2 and (A4;, 4;) is a (cyclic) pair of
pointwise commuting symmetric operators such that ¢(4;, 4>) = 0, then (4, A>) always
extends to a pair of spectrally commuting selfadjoint operators possible in a larger
Hilbert space (cf. [33], [9]). However, if degg > 3, even that property, which can be
treated as a poor substitute for an affirmative answer to our question, does not hold
(cf. [33]). However, the answer to our question is in the affirmative if ¢(Xj,..., X)) =

X2+ -+ X?2; this is due to [Corollary 27. Below we propose some other possible
solutions.

PRrROPOSITION 29. Let ny,...,n, be positive integers, & be a dense linear subspace of
a Hilbert space A and Ai,...,A. e L*(2) be such that
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(1) A,’Aj = AjAl' and Al'AJ# = A]#A,' fOV all 1 <i S] <K,

(i) A"A" 4+ AT Al is essentially selfadjoint.
Then for all py,...,pse ClXy,..., X with degp; Sminle nj, & is a core of the
system (p1(A,A%),..., ps(4,A%)), and p\(A,A%),... ps(A,A") are spectrally commut-
ing normal operators; here A = (Ai,...,A.) and A% = (Af,...,47).

K

PrOOF. By (i), 41,A4f,..., 4., A? are pointwise commuting formally normal
operators. Set n=min{n,...,n.}. We show that Ay< AMAT A AT A
dominates every 4; on 2, i=1,...,x. Indeed, if h € & is a normalized vector, then

y [45, formula the sequence 4 1% is monotically increasing, so
by [45, formula (4)] th Aln|"y 1l
|A4:h| < HAI{z,-hHl/nf — <A;<’11Al{’lih7h>l/(2”i) < {Aoh, hy'/(2m)
< [ Aoh|| ) < 1+ || Aok, i=1,...

because 1< 1+1¢" for all real numbers >0 and r>1. Thus |4 f| <|f|+
|Aof|| for feZ and i=1,...,x. By [Theorem 10, A,...,A, are spectrally com-
muting normal operators. Let E be the spectral measure of the system (Aj,..., 4,).
Since there exists d >0 such that |pi(z1,...,220)|> <d(1+|z1]*" + -+ + |z2|*) for
(z1,...,22c) € C* and i=1,... s, we obtain

1pi(A, A%) 1] = J iz, DPEWLD £

CIC
= CJ (L4 |21 4+ |2 ™) <E(dz) £, f
CK'

= c(If1I? + <Aof, £3) <21 + 140 f1?), feDii=1,....s,

where ¢ =2(x+ 1)d. This means that 4, dominates every operator p;(4,4") on
9. Applying to (Ao, p1(4,4%),..., ps(A4,A")) completes the proof. [

Assuming subnormality of operators in question we can strengthen [Proposition 29
as follows

ProposITION 30. Let qi,...,qx € C|X] be polynomials with degq; > 1, & be a dense
linear subspace of # and Ai,..., A, e L*(2) be subnormal operators. If

(1) AiA; = AjA; and AiAJ# = AJ#Ai for all 1 <i<j<k,

(1) qi(4) q(A1) + -+ qe(Ax) g (Ax) is essentially selfadjoint,
then for all py,...,pse C[Xi,..., X with degp; gminle degq;, Z is a core of the

system (p1(A,A%), ..., p(A,A™)), and p\(A,A"), ..., ps(A, A") are spectrally commuting
normal operators; here A = (Ay,...,A,) and A* = (A%,... 4%).

K

PrROOF. Set Ay = q1(A41) q1(A1) + -+ qe(A4:) qe(A,) and n; =deggq;. Since
there exists o > 0 such that |z|* < a(l +|g;(z)|?) for ze C and i=1,...,«x, one can
show, using the spectral measure of a normal extension of A;, that ||4;f]* <
a(Lf1I* + llgi(A4:)f]|?) for fe % and i=1,...,x. This implies that

14117 < a1 f 11 + <Aof /) < 2 fI1° + 40 f17), feZii=1,... .
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By [Theorem 10, Ai,...,A, are spectrally commuting normal operators. Let E be
the spectral measure of the system (Aj,...,A,). Since there exists f > 0 such that
127* < B(1 +|gi(2)|*) for ze C and i=1,...,x, we see, as in the proof of Proposi-

tion 29, that for some y > 0 the following inequalities hold

P AN = | | piz 2 PCE@S

7| 0+ aE)P + o+ e DKER

= (1A 17 + <Aof 1) <2171 + 140 f11P), feZ,i=1,....s
This and complete the proof. O

Since symmetric operators are subnormal, [Proposition 30, when formulated for
symmetric operators, simplifies to:

CoroLLARY 31. If qi,...,qc € RIX] are polynomials with degq; >1 and
Ay, ..., Ay € L(D) are pointwise commuting symmetric operators such that the operator
(]1(A1)2 4+ 4 qK(AK)2 is essentially selfadjoint, then for all pi,...,ps€ R[Xi,..., X]
with deg p; < min’_, degq;, Z is a core of (pi(A),...,ps(A)), and pi(A),..., ps(A) are
spectrally commuting selfadjoint operators.

The idea used in the proofs of Propositions and enables us to build up
more Nelson’s criteria of polynomial type. Here we formulate a sample of what can be
done in this matter for symmetric operators. Notice that [Proposition 32| below includes
essentially new criteria.

PROPOSITION 32. Let Agl), ... ,A,(ﬁ),...,Ag’c),...,A,g’,f) € L(2) be pointwise commut-
ing symmetric operators such that the operator
1), (1 .
(e (A7) 4 g A 4T A7) 4 g0 (A))

(1) (1) (r) ()

is essentially selfadjoint, where ri,....1,q) ... qn s---,4q; +---:qn, € R[X] are poly-
nomials of degree at least 1. Then Agl),...,Aﬁ),...,Agk),...,A%f) are spectrally com-
muting selfadjoint operators, and & is a core of any subsystem of (Agl),...,A,(fl),...,

AP, AD)

All this for subnormal operators.

Subnormality from domination.
Given a finite system A4 = (4;,...,4,) of operators in #, we define Z(4) =
2(A1)N---NZ(A,) and

9°(A) = ({2(B1- - By);n>=1,B;=Ay,..., A for i=1,...,n}.

A linear subspace & of Z(A) is said to be invariant for A if A;6 < & for every
i=1,...,k. The set 2 (A) is the largest linear subspace of Z(A) which is invariant
for A. We write A* = (A{,...,A}), provided all 4; are densely defined.
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Let & be a linear subspace of Z(A4). A is said to satisfy the Halmos-Bram-Ito
condition with respect to & (in short: HBI(&)) if & is invariant for A, 4,4;|, = A;A4i|,
for all i,j=1,...,x and®

(11) Z (A*f3, A’f,> > 0 for every finite multisequence {ﬁ“}ani &,
o,feZy

where A* = A" --- A% for ae Z.

We say that a system A4 = (4;,...,4,) of operators in # is subnormal if
9(A) = # and there exists a Hilbert space # > # and a system N = (Ny,...,Ny)
of spectrally commuting normal operators in % such that 4, < N; for i=1,... Kk
(in short: N is a normal extension of A). It is clear that if A4 is subnormal, then
(Ay,...,A,) is subnormal as well. A normal extension NV of A4 is said to be minimal of
cyclic type if there exists a linear subspace & of # which is an invariant core for every
A;, i=1,...,x, and such that the linear span’ Zy[&] of Uaez§ N**(&) is a core for
every N;, i =1,...,k (one may take & as *(4,,...,A,)). Like in the single operator
case (cf. [38, Section 7]), any two normal extensions N’ and N” of A acting in Hilbert
spaces 4~ and ", respectively, which are minimal of cyclic type are # -unitarily
equivalent, i.e. there exists a unitary operator U : #' — #" such that U|, = I, and
UN!=N/U for i=1,...,k. It is worth while to note that there exist subnormal
operators having no minimal normal extension of cyclic type (cf. Example 1 and
Theorem 3 in [38], and [44]).

The only relation between systems of operators satisfying the Halmos-Bram-Ito
condition and those which are subnormal available at this stage is the following

PrROPOSITION 33. If A = (Ay,...,Ay) is a subnormal system of operators in H, then
A satisfies HBI(2™ (A)).

It follows from |Proposition 33 that if N = (Nj,...,N,) is a normal extension of a
subnormal system A4 = (A4i,...,A4,), then 2% (A) is invariant for N, N;N;f = N;N,f,
A% =N° for i,j=1,...,x, ae Z and f e Z"(A).

Even in the case of a single operator, as is pretty well known (cf. [10], [30], [33]),
the converse to [Proposition 33 does not hold. However, we have

ProposiTiON 34, Suppose & is a dense linear subspace of H. A system
A= (Ay,...,4,) € L(&)" satisfies HBI(&) if and only if there exists a Hilbert space
A, a dense linear subspace F of A and a system N = (Ny,...,N.) e L*(F)* such
that # = A, A; = N;, NiN; = N;N; and NiNi# = Ni#N" for all i,j=1,...,k. If this
happens, then F can be chosen so that it coincides with the linear span of the set

({N**(&);0€ Z¥}, where N* = (Nf¥,....NF).

THEOREM 35. Let & be a dense linear subspace of #. Suppose Ay, Ai,...,Ax €
L(&) (k= 1) fulfil the following three conditions

®Under some circumstances (e.g. for bounded operators) the commutativity of 4 can be inferred from the
positivity condition (11), cf. [34]

"Using arguments based on the spectral measure of N one can easily show (like in the proof of
that 2°(N) = 2*(Ny,...,N}); this justifies the definition of Zn[&].
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(1) A; satisfies HBI(&) and AgA; = A; Ay for i=1,... Kk,

(1) | 4:if]| < c(If]] + | 4of) for feé& and i=1,... Kk, with some ¢ > 0,

(i) Ao is essentially normal.
Then spaces 9 (Ay) and %B(Ay) are invariant for (Ay,...,A,) and (Af,...,A%). If,
moreover, the system (Ai,...,A,) satisfies HBI(#(Ay)), then (Ao, Ay, ..., A) is sub-
normal, it has a minimal normal extension of cyclic type and & (as well as B(Ay)) is a

core of the system (Ao, Ay,...,Ay).

ProOF. By |Proposition 34| for every i = 1,...,x, there exists a Hilbert space .#;,
a dense linear subspace #; of #; and N,-eL#(%) such that # < #;, A, = N; and
N:N# = N¥N;. 1t follows from [46, Fact D] that

P(A;)) = 2(A]) and PiN[|, < 4],
where P; is the orthogonal projection of #; onto . This in turn implies that
1471 = IPNESI < INFAN = INif 1l = | 4if Nl S € 6,

so the operator A4; 1s hyponormal. Since AoA4; = 4;49, we get {Aof,A’g) =
CAif, Agy for f,ge&. By [Lemma 9, the spaces 2% (Ap) and %(A,) are invariant

for Ag,..., Ay, A},..., A%, and
(12) AAf = BALS, fed™(A), i=0,....K,
(13) B(Ao) = B(A4;), i=1,... K

Assume now that (Ai,...,A,) satisfies HBI(#(A4p)). Let us define a new system
A= (Al g4y Axly i) € L(#B(4o))".  Then, by [12], we have

Z CAPA® - A%y 5, AVAD - APsf,
m,n>0
a,feZ’

= Y A4 g APAT oy = Y (A5, A79.> > 0,

m,n>0 wpeZ’

aw,feZ’
for any finite sequence {/fn,o},20,4c2x = B(Ao) With gg = 3=, A5"fup € #(Ao). Thus
the system (Ao,...,A,) satisfies HBI(%#(A)). By [Proposition 34 there exists a Hilbert
space ./, a dense linear subspace & of .# and a system M = (M, ..., M,) e L*(2)""!
such that # < .4, A; wiy © Mi, MiM; = M;M; and MM} = M?M; for all i,j=
0,...,x, and Z is the linear span of the set | J{M™(%(A4p));oe Z"'}. Since, due to
(13), #(Ao) = B(M;) for i =0,...,x, we infer from [37, Proposition 2| that & = %(M;)
for i=0,...,x and consequently, by [37, Theorem 2], the system (My,...,M,) is a

normal extension of (/Io|_,,2( FRIEEE ,/IK|_,,3( A—U)) which is minimal of cyclic type®. Below we
show that %(A) is a core for every 4;, i =0,...,x, so we will get that (Mo, ..., M,) is
a normal extension of (Ay,...,A,), which is minimal of cyclic type.

8We can also apply a particular case of [37, Theorem 10] (see also [36, Theorem 2] for the case of a single
operator) to conclude that the system (Ag| Bdo) Ay #( A_o)) is subnormal. It was mentioned in [37, Remark
8] that a system like this has a minimal normal extension of cyclic type (under a different name).
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It follows from [Proposition @ that Z(Ao) =()_,%(4;). Take f € Z(Ao).
Since #(Ay) (resp. &) is a core of Ay, there exists a sequence {f,}—, = %(A)

(resp. {fu}i—; = &) such that f, — f and Ao(f,) — Ao(f) as n — oo. By
6, Ai(fy) — A;(f) as n— oo for every j=0,...,x. Thus we have proved that

g(z‘Io,...,z‘IK) Cg("i0|g(,4_0)a"'aliklﬂ(jo)) and g(/Io,...,/IK) Cg(Ao,...,AK) which
means that %(A4y) and & are cores of the system (Ao, ..., A4,). We have also proved

that 4; < /L-|¢%( gy for i=0,....x (because evidently & = 9(Ap)). This completes the
proof. []

Notice that under the assumptions of the space # reduces the operator
Mg to Ay, where (My,...,M,) is the normal extension of the system (Ao,...,A,)
appearing in the proof of [Theorem 33. This follows from [39, Corollary 1].

COROLLARY 36. Suppose the operators Ay, Ai,...,A. € L(&) (k= 1) fulfil condi-
tions (1), (ii) and (iii) of Theorem 35. If the system (Ai,...,Ay) is subnormal, then the
system (Ao, A1, ..., Ax) is subnormal, it has a minimal normal extension of cyclic type
and & (as well as B(Ay)) is a core of the system (Ag, A1,...,Ay).

Proor. It follows from that %(Ay) is invariant for (Ay,...,A4,).

Since the system (4),...,4) is subnormal, so is (41|, z .-, Axly.z,))- By Propo-
sition 33, the system (Ai,...,A4,) satisfies HBI(#(A4,)). Applying [Theorem 33 com-
pletes the proof. O

COROLLARY 37. Suppose the operators Ay, Ay,..., A, € L(&) (k > 1) fulfil condi-
tions (i) and (ii) of Theorem 35. If the system (Ai,...,Ay) satisfies HBI(&) and A{ is
essentially normal for every n > 1, then the system (Ay, A1, ..., Ay) is subnormal, it has a

minimal normal extension of cyclic type and & (as well as B(Ay)) is a core of the system
(Ao, Ay, ..., Ay).

PrOOF. Set A = (Ay,...,A4,), A= (Ay,...,A,). By we have

(14) & is a core of every A, m=>1.
It follows from that the space #(dAg) is invariant for A4; and A,

1 <j<k. This and the fact that 4;4; = A;A4; for all i,j > 1 enables us to apply
Proposition 2; what we get is 4;4,f = A;A4;f for fe %(A4y) and 1 <i,j<«.

Fix m>1 and take a finite sequence {f,;o€ Z%, |a| <m} < #(A4o). By (14),
for every such o there exists a sequence {fy.},_, =& such that f,,— f, and
Alfyn — Al'fy as n— o0. Since Ay is paranormal, one can deduce from part (i) of
[Lemma 22 that A”f, , — APf, as n — oo for fe Z* with |f| <m. This and the fact
that 4 satisfies HBI(&) lead to

Z </Lf/b/1/”f“> = lim Z <Aaf/)’7n,Aﬁfa,n> >0,
w,peZy e a,feZl
[o], [B] <m |of, |8 <m

so A satisfies HBI(%(4,)). Applying completes the proof. O
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Domination and quasianalyticity.

The result which follows is simple in essence and relates quasianalytic vectors of
two pointwise commuting operators one of which dominates the other. It has its origin
in Section 2 of [19].

LemMA 38. Suppose & is a dense linear subspace of a Hilbert space # and
A,Be L(Z) are pointwise commuting operators such that

(15) IBfI| < c(llf Il + [[471), fe2,
for some ¢ > 0. Then for every n >0

n

(16) THE Z(J )uAf'fu, fea.

J=0

Consequently, if A is paranormal, then %,(A) < PB.114)(B) for every a >0, #(A) = A(B)
and 2(A) = 2(B).

ProorF. We prove by induction on n. The case n =1 is just [15). If
holds for a fixed n > 1, then implies that

Bl < ey (1 )igary < <Z( )R Z( )l rAf“fH)

J=0 j=0

(||f||+z[() (" )]IIAffHJrHA”“fH)

n+1
_ n+lz+:( >|A]f|| fE@,

which completes the proof of [16).
Suppose A4 is paranormal. Take f e 2 with ||f|=1. Then, by formula (4) of
[45], the sequence {||4"f|"/"}?, is monotically increasing. This and give us

(a7 HB”fIISC”<1+§n:(7> (la’r1| ) ) (1+Z( )|IA”f||””)’>
=1

=14 [|4"f)™)", n=1,fe.

If a>0 and f € %,(A), then part (b) of Lemma 8 in [41] and the monotonicity of
the sequence {[A"f||'"}%, lead to |[4"f||"/" < a for n> 1. This and (17) imply that
|B"f]| < c¢"(1+4a)" for n > 0. Thus f € #.(14a)(B). In case f e 2(A4), we can assume
that ||4%f ||1 /&> 1 for some k > 1 (because otherwise f € #,(A4)). By the monotonicity
of {||A"f||1/"}n ., we have [4"f||Y">1 for n>k, so (17) yields |B"f|"" <
2¢||A"f||Y" for n>k. Hence f e 2(B). Removing the normalization condition
|fIl =1 does not spoil the conclusion. ]
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Presence of quasianalytic vectors allows us to make an immediate use of
38 so as to get a result which can be considered as a kind of complement to the main
subject of the paper.

PROPOSITION 39. Let A = (Ag, Ay,...,Ac) € L(&)"™ (kx> 1). Suppose that
(i) A satisfies HBI(&),
(i) | 4:f Nl < c(If]l + [[Aof) for fe& and i=1,... Kk, with some ¢ >0,
(i) the linear span of the set of all quasianalytic vectors of Ay is equal to &.
Then A is a subnormal system which has a minimal normal extension of cyclic type, and
& is a core of the system (Ay,Ay,...,A,).

Proor. It follows from (i) that Ay is hyponormal and hence A, is paranormal
(cf. the proof of Theorem 33). By (ii) and Lemma 38, 2(A4y) < 2(4;) for every
i=1,...,x. Applying [37, Theorem 10|, we get subnormality of 4. That 4 has a
minimal normal extension of cyclic type can be proved in the same way as in The-
orem 35. Repeating the last part of the proof of shows that & is a core of
the system (Ao, Ai,...,A,). O

The assumption (iii) of |[Proposition 39 can not be omitted, cf. Example 15. Also
(i) can not be omitted when x > 1. Indeed, consider 4y = I and any pair (S,7) of
pointwise commuting symmetric operators which does not extends to a pair of spectrally
commuting selfadjoint operators (Nelson’s example). Set 4; =S +1i7. Then the pair
(Ao, A;) of double pointwise commuting formally normal operators is not subnormal,
though it satisfies the assumptions (i) and (iii) of [Proposition 39. The case x =1 is
more delicate, because according to [20, Theorem 10] any cyclic pair of pointwise
commuting symmetric operators which satisfies the assumption (iii) of [Proposition 39 is
subnormal.

Subnormality of algebraic operators.

Let & be a dense linear subspace of a Hilbert space #. According to the Nelson
criterion, if A4;, 4, € L(2) are pointwise commuting symmetric operators such that
A} + A3 is essentially selfadjoint, then A; and A4, are spectrally commuting selfadjoint
operators; the essential selfadjointness of A7 + A3 is equivalent to® Z(e+ A + A3) =
A for some ¢ >0 (or equivalently: for every ¢ > 0). In particular this occurs when
H(e+ A} + A3) = @ for some ¢ > 0. The question is what happens in the limit case
e¢=0. The answer has been given in [42, Corollary 42]: we lose essential spectral
commutativity still preserving subnormality, i.e. the possibility of extending the pair
(A1, A2) to other one composed of spectrally commuting selfadjoint operators acting in a
larger Hilbert space. Let us discuss this question under an additional assumption that
the pair (A4;, 4;) is cyclic with a cyclic vector e € Z, i.e. Z is equal to the linear span of
the set {A"A}e;m,n > 0}. Then, as is easily seen (see the proof of Lemma 46 in [42]),
H(e+ A2+ A3) = 2 if and only if there exists a polynomial r e R[Xj, X3] such that
(6 + A7 + A3)r(A1,A2) = Iz. On the other hand #(A} + A3) = Z if and only if there
exists r € R[X1, X3] such that (47 + 43)r(A4,,A4;) = I;. Summarizing, if the polynomial

because the operator A? + A3 is positive.
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(e + X + X3)r(X1, X,) — 1 annihilates the pair (4, 4;) for some ¢ > 0 (no cyclicity is
required now), then (A, A,) is at least subnormal.

The essence of [25], for the 2-dimensional Hamburger moment problem say,
is in considering a polynomial p = (1 + X7 + X3)X3 — 1 (see also [Theorem 43). The
advantage is taken from the fact that the algebraic set induced by p is unbounded
in variables X7 and X, but it is bounded with respect to the additional variable Xj.
Illustrating our “e tends to 0 programme of the preceding paragraph let us replace in
p the first 1 by 0 so as to get (X?+ X7)X; — 1. Then the algebraic set induced by
the latter polynomial is unbounded in each variable which makes things much more
complicated. Therefore allowing unbounded algebraic sets extends applicability of the
“partially bounded” approach of [25]. However, unlike to [25], this focuses on solving
the moment problem itself leaving its determinacy apart. In what follows we work out
this in detail. Though we deal here with systems of symmetric operators, the reader can
easily formulate versions for systems of doubly pointwise commuting formally normal
operators.

PROPOSITION 40. Let & be a dense linear subspace of # and Ay, A>,Be L(Z) be
pointwise commuting symmetric operators. If q€ C[X1,X3] is such that

(18) (A1 +142)q(A1, A2) B = Ig,

then the triplet (A, A, B) extends to a triplet (S1,S2,T) of spectrally commuting
selfadjoint operators in a Hilbert space A > H#. In particular, this is the case when
(A% + A3)r(Ay, A2)B = Iy for some re R[X1, Xa].

Proor. It follows from (18) that #(A4; +14,) =2, so by [42, Corollary 42]
there exists a Hilbert space # o> # and a pair (S;,S;) of spectrally commuting
selfadjoint operators in #  such that 4; = S; for i =1,2. Denote by E the spectral
measure of the pair (S),S,), i.e. S; = [p>x;E(dx|,dx;) for i=1,2. The closed linear
span ./ of the set {E(c)(h);h e #, o is a Borel subset of R*} reduces E, # c ./ and
the pair (S1] ,,S2| ,) is composed of spectrally commuting selfadjoint operators in .#
such that 4; < S;| , for i=1,2. One can show that .# is the smallest closed linear
subspace of " which reduces the operators S; and S,, and which contains #. Thus we
can assume, without loss of generality, that 2" is minimal in a sense that #" = .# (this is
so-called minimality of spectral type, see [38]).

Set N = [p2(x1 +ix2)E(dx;,dx,) and C = ¢(4,,4>2)B. By (18) we have

(19) Cl'=4,+id, = S, +iS, = N.
Since N (N*) = AN (N)=2(E({(0,0)})), we deduce from that
2 =CY2)=N(Z) < #N) < H ON(N)=RER\{(0,0)})).

This implies that the closed linear space #° © /' (N) contains # and reduces the
operators S; and S,. As # is minimal, it must be E({(0,0)})=0. By we
have

7 = q(A41,42)(2) = %(JR

ade) <o o (| adaE) = 0.l (o))
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which, in turn, implies that the closed linear space # © A'([,> gdE) contains # and
reduces the operators S; and S,. Hence, by minimality of 2", E(g~'({0})) =0. We

can now infer from [I8), and equalities £({(0,0)}) = E(¢~'({0})) = 0 that
-1
B= (A +ids) "q(A1, 4" ch(J qu) - J odE,
R? R?

where ¢(x1,x2) = ((x; +ix2)g(x1,x2))"'. One can check that the selfadjoint operator
T = [p2RepdE extends B, which completes the proof of the first part of the con-
clusion. To get the other one set ¢(Xj,X2) = (X; —iXa)r(X1, X3). O

PropoSITION 41. Suppose that A,...,A.,Be L(Z) are pointwise commuting
symmetric operators such that

(20) Iy + (]1(1611)2 + 4 qK(AIC>2)r(A17 o A)B =14

for some re R[Xy,...,X,] and qi,...,q. € R[X]| with degq; > 1. Then there exists a
selfadjoint extension T of B acting in H# such that Ay, ..., A, T are spectrally commuting
selfadjoint operators. If r =1, then T = B is bounded, and % is a core of the system

(Ay,..., A, B).

PRrOOF. By [20), %2(Is + qi(A1)* + -+ + q(A,)*) = 2, so the positive operator
ql(Al)2 —|—~--+q,((AK)2 is essentially selfadjoint. It follows from that

Ay, ..., A, are spectrally commuting selfadjoint operators, and & is a core of the
system (Aj,...,A,.). If E is the spectral measure of the system (Ai,...,A4,), then

E(r~1({0})) = 0 (see the proof of [Proposition 40). Thus the operator

1
T —
JRK (1+ QI<XI)2 + - +qK(xK)2)r(x17 Cee X

E(dxy,...,dx,)

is a required selfadjoint extension of B. In case r=1, T = Be B(#) and con-
sequently & is a core of (Ay,...,A,, B). O

Below we present some other sufficient conditions for subnormality; this of course
does not exhaust all the possibilities in this matter (see [Proposition 32). We recall, by
the way, that a surjective operator 4 € L(Z) which satisfies HBI(Z) is automatically
subnormal (cf. [42, Theorem 39]).

REMARK 42. Modifying proofs of Propositions and 41 one can show that:
1° 1If a system 4 = (A4;,...,4,) € L(2)" is subnormal and every A4; is bijective,

then the system (A7!,...,4_') is subnormal as well; moreover, if (Ny,...,N,) is a
normal extension of 4 which is minimal of spectral type, then 4°(N;) = {0} for every
j=1,...,x, and (N;!,...,N-') is a normal extension of (47',...,A;!) which is

minimal of spectral type (minimality of this kind is implicitly defined in the first
paragraph of the proof of [Proposition 40)).

2° If a system (Ay,...,A4,) € L(2)" is subnormal, B € L(2Z) is an operator which
pointwise commutes with every A;, i=1,...,x, and p(4;,...,A4,)B =15 for some p €
C[Xi,...,X,], then the system (A4y,..., Ay, B) is subnormal.
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3° 1If Ay, A2, By, ..., B, € L(Z) are pointwise commuting symmetric operators such
that (A12 + A%)Fo(Al,Az)Bo = I@ and V,-(Al,Az,B(), PN ,Bi_l)Bi = I@ for i= 1, NN (X
where r; € R[X},...,X>4;], then (A1, A2, Bo,...,B,) extends to a system of spectrally
commuting selfadjoint operators in a larger Hilbert space.

4° If Ay,...,Ax,Bo,...,B, € L(2) are pointwise commuting symmetric oper-
ators satisfying conditions (Iy + ql(Al)2 4+ qK(AK)z)ro(Al, ooy Ax)By =15 and
ri(Ai, ..., A, Bo,...,Bi.1)Bi=15 for i=1,...,n, where r;eR[X,...,X;] and
qi,---,qx € R[X] are polynomials of degg; > 1, then (A4;,..., A4, Bo,...,B,) extends to
a system of spectrally commuting selfadjoint operators in .

5 If q1,...,qc1,..., /€ R[X] are polynomials with degg;,degr; > 1, and

Ay, ..., A, B, ..., B, € L(Z) are pointwise commuting symmetric operators such that
Iy + @1 (41)* + -+ qe(4)*) (11 (B)* + -+ 14(B,)?) = Iy, then 4,..., 4., B,...,B,
are spectrally commuting selfadjoint operators, By,..., B, are bounded and Z is a core

of (41,...,A4,,By,...,B,) (use also [Corollary 19). And so on.

Moment problems.

Semialgebraic sets.
Let us begin with recalling some indispensable definitions. A x-sequence y =
{vs}sezr = R is said to be positive definite if

o,feZy

for every x-sequence {/.},.z« = C which has a finite number of nonzero entries; y is
said to be a Hamburger moment k-sequence if there exists a positive Borel measure ¢ on
R" (called a representing measure of y) such that

(1) p=| P du), ez

with the usual multi-index notation: x*=x{"---x%. It is well known that a

Hamburger moment multi-sequence is automatically positive definite, but not conversely
(et. [51. [6]. [28), [13]. [33)).

We say that a Hamburger moment x-sequence y of the form is ultra-
determinate if the set C[X),...,X,] is dense in Z>(R*, (1 + ||x||*) du(x)), where ||x||* =
x? +---+x2.  An ultradeterminate Hamburger moment multi-sequence is determinate,
i.e. it has a unique representing measure (cf. [15]), but not conversely (cf. [32]). Recall
(cf. [43], [15], [42]) that a x-sequence y is positive definite if and only if there exists a
Hilbert space #, a dense linear subspace & of #, a vector fye 2 and a system
S=(S1,...,8¢) € L(2)" such that

Si,...,S, are pointwise commuting symmetric operators,
S is fo-cyclic, ie. Z is the linear span of the set {S"fp;xe Z'},
9, = (S%fo, o) for every ae Z¥.
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If (#',2',f;,8") is another choice, then there exists a unique unitary isomorphism
U: A# — A" such that U(2)=92', Ufy=f; and Ud;h = A/Uh for all he I and
i=1,...,k. The x-sequence y is a Hamburger moment x-sequence if and only if §
extends to a system of spectrally commuting selfadjoint operators in a larger Hilbert
space; moreover, y is an ultradeterminate Hamburger moment x-sequence if and only
if 2 is a core of (Ay,...,A,), and Aj,..., A, are spectrally commuting selfadjoint
operators (cf. [15]).

The main question in the multidimensional moment problem is to find additional
conditions under which positive definiteness ensure the solution of the Hamburger
moment problem. The results which follow offer such conditions. The first of them
is related to [20, Theorem 10] where is shown that every positive definite 2-sequence,
which satisfies the Carleman condition with respect to the first “variable”, is always a
Hamburger moment 2-sequence (hence the part of the conclusion of [Proposition 43
which deal with the solution of 2-dimensional Hamburger moment problem holds true
without assuming (ii)). This is no longer true for positive definite 3-sequences (take
any positive definite 2-sequence {y; j}zojzo which is not a Hamburger moment one and
consider the 3-sequence {y; 4}, 1=0)-

Here and subsequently, e; stands for the sequence (0,...,0,1,0,...,0) of length x
with the digit 1 on the jth position, j=1,..., k.

PROPOSITION 43. Let y = {y,},cz+ = R be a r-sequence (i >2) such that
(1) y is positive definite,
(i) there exists a number a > 0 such that for every i =2, ... K, the k-sequence
{a(yoc + ya+261) - ya+2€,}feri is pOSiliUé deﬁnile,
(iil) S0y o, = +00.
Then y is an ultradeterminate Hamburger moment k-sequence having a representing
measure with closed support in the set (\)_,{xe R*;x? <a(l +x3)}.

Proor. It follows from (i) that there exists a quadruplet (#, 2, fy,S) which
satisfies conditions (22), (23) and (24). It is a simple matter to verify that operators
Ay, ..., A1, where A; = S;,, satisfy conditions (i), (i) and (iv) of Theorem 10. By
our assumption (iii), fo € 2(A4p), so (cf. [37, Proposition 2]) & is equal to the linear span
of 2(Ay). Hence Ay is essentially selfadjoint (cf. [20]). By Mheorem 10, Sy, ..., S, are
spectrally commuting selfadjoint operators, and & is a core of the system (Si,..., S,).
This implies that y is an ultradeterminate Hamburger moment x-sequence with a rep-
resenting measure u(-) = <E(-)fo, fo>, where E is the spectral measure of (Si,...,S,).
The localization of the closed support of u follows from that of E (see Remark 13).

]

According to the discussion preceding [Proposition 43, we know that condition (ii)
can not be omitted in |[Proposition 43 for x > 3. Likewise, condition (iii) can not be
removed therein as is shown in the following

ExAMPLE 44. Let A, Be L(Z) be pointwise commuting symmetric operators as in
Example 15. We can assume, without loss of generality, that the pair (4, B) is fy-cyclic
(cf. [33, Proposition 7.3]). Define a triplet S = (S1,S,,8;) by S} = 42, S> =4 and
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S3 = B. Then S is fy-cyclic and S| dominates both S, and S3 on &, however S is not
subnormal (cf. Example 15). The 3-sequence y defined by (24) with x = 3 is positive
definite, it satisfies condition (ii) of [Proposition 43, however it is not a Hamburger
moment 3-sequence.

The result which follows is a substantially simplified version of [25, Theorem 2.7]
while [Proposition 30| provides an alternative tool for proving it. Due to our approach it
becomes independent of Hilbert’s Nullstellensatz.

THEOREM 45. Let y ={p,},czr (0o >0) be a r-sequence of real numbers and
let pi(x) =) cc, aiexS with a;: € R "and Jic ZT finite for all i=1,...,m. Set n=
max{1,deg pi,...,deg piu}. Then y is a Hamburger moment K-sequence wzlh a repre-
senting measure on the set P ﬂ “1([0,+00)) if and only if there exists a positive
definite (x + 1)-sequence 0 = {0y, p) }(% peztxz. Such that

(i) 7, =00 for all ae Z,
(i) Opp) = Owprt) + 2 =1 Ot pr1) Jor all (a,f) e Z x Z,,
(i) the (ic + 1)-sequence {} . ; aicd(ié p) (o p)e z5xz, IS positive definite for every
i=1,...,m
The k-sequence y has a uniquely determined representing measure on the set X if and only
if the (1 + 1)-sequence 0 is unique.

A SKETCH OF THE PROOF. If y has a representing measure x on X, then the (x + 1)-
sequence 0 defined by

xO{

+x12”+...+x’%n>ﬂ

(25) S = | ; dulx), (P eZsxZ,,

is positive definite and it satisfies conditions (i), (ii) and (iii).

Conversely, if ¢ is a positive definite (x + 1)-sequence, then there exists a Hilbert
space #, a dense linear subspace & of #, a vector fy e 2 and pointwise commuting
symmetric operators Si,...,Sy, T € L(Z) such that (with S = (Sy,...,Sy))

(26) 9 is the linear span of the set {S*T’fy; (x,8) e Z" x Z.},
(27) Swp) = <S*TPfo, fo), (B eZi x Z,.
Using (26) and [27), one can deduce from (ii) that

(28) Iy =g+ S{"+ -+ ST
This implies that #(ly + S +---+S*)=92 is dense in #, so the operator
S+ ...+ S is essentially selfad]omt By m (with ¢;(X) = X™), the

operators Si,...,S., pi(S),..., pu(S) are selfadjoint and spectrally commuting. Con-
dition (iii) implies that every p;(S) is positive. This in turn implies that the closed
support of the spectral measure E of the system (Si,...,S,) is contained in X (because
[pidE = p;(S) = 0). One can infer from and that & satisfies with u(-) =
{E(")fo, foy. Hence, by (i), u is a representing measure of .

The uniqueness assertion goes in the standard way (cf. [15]) provided one defines
S as the system of the multiplications by coordinates and 7' as the multiplication by
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(1+x +---+x2)"" considered as operators in # = £?(u) with the common dense
domain & = the linear span of rational functions x*(1+x¥ + .-+ x>’ oeZ .,
peZ,; fo(x)=1 is the cyclic vector of (S,7) (however still no Nullstellensatz

needed). ]

Algebraic sets of type A.

Let p € R[X},..., X,] be a polynomial with coefficients {a,},.,~. We say that the
real algebraic set p~1(0) is of type A (cf. [33], [42]), if each positive+ definite x-sequence
Y= {Vutue zr of real numbers which satisfies the following equality

(A) Z Ay dpyysp =0
w,feZ’

is a Hamburger moment x-sequence. Notice that condition (A) is equivalent to

(A") ST,y =0, peZt.

K
aeZl

A Hamburger moment x-sequence p satisfies condition (A) if and only if the closed
support of every (equivalently: at least one) representing measure of y is contained in
p~1(0) (cf. [33, Proposition 2.1]). According to there are real algebraic sets which
are not of type A. Recall that a x-sequence y is positive definite and it satisfies con-
dition (A) if and only if there exists a quadruplet (2, fy,S) fulfilling conditions
(22), (23), (24) and the equality p(S) =0 (cf. [42]). In consequence, the algebraic set
p~1(0) is of type A if and only if for every quadruplet (#, 2, fo,S) fulfilling (22), (23)
and p(S) =0, the system § extends to a system (77i,...,7,) of spectrally commuting
selfadjoint operators acting in a larger Hilbert space. The above discussion enables us
to present some new algebraic sets of type A (other examples can be produced with help
of Remark 42).

PROPOSITION 46. The set p~'(0) is of type A provided p is of the form:
1° p= X%+ XH)r(X1,X2)Xs — 1, where r e R[X1, Xa),
22 p=(4+qaX)*+- +q(X)r(X1, ..., X ) Xes1 — 1, where qi,. .., q, € R[X]
are polynomials with degq; > 1 and re R[X,, ..., X].
If r=1 in 2°, then every positive definite (k + 1)-sequence y satisfying condition (A) is
an ultradeterminate Hamburger moment (x + 1)-sequence.

Proor. Part 1° can be deduced from [Proposition 40| while part 2° from Prop-
osition 41 (see also the proof of [Theorem 43). O

The complex moment problem.
A multi-sequence ¢ = {¢sp}, gczx = C is said to be x-positive definite if

S S gy 20
wpeZl o p'eZk

for every multi-sequence {44}, oz« = C which has a finite number of nonzero
entries; ¢ is said to be a complex moment multi-sequence if there exists a positive Borel
measure x4 on C” (called a representing measure of c¢) such that
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(29) Cup :j 22 du(z), e ZE,
CK

where Z = (Z},...,Z,). Complex moment multi-sequences are x*-positive definite,
but not conversely (cf. [6, Theorem 6.3.5], [33]). We say that a complex moment
multi-sequence ¢ of the form 1S ultradeterminate if the set #,. of all functions
p:C" — C of the form ¢(z) =p(z,z) with pe C[X],..., Xy is dense in the space
L2C*, (1 + ||21?) du(z)), where ||z]|* = |z1|* + -+ |z]* (cf. [15]). An ultradeter-
minate complex moment multi-sequence is determinate, but not conversely. Let us
mention here that there is a natural correspondence between x-dimensional complex
moment problem and 2x-dimensional Hamburger moment problem (the case x = 1 has
been made explicit in [42, Section 20]; see also [37]).

PROPOSITION 47. Let ¢ ={cyp}, pczx = C (2 2) be such that
(1) ¢ is x-positive definite,
(i) there is a>0 such that for all i=2 ...,k and for all finite sequences
{Aatuezr © €, Xy pezrlalCop+ Corer pre)) = Corenpreldatp 2 0,
(i) 322 nelre = +o0.
Then c is an ultradeterminate complex moment multi-sequence.

ProOF. By (i), there exists a Hilbert space #, a dense linear subspace & of #,
a vector foe 2 and a system N = (Ny,...,N,) e L¥(2)" such that N;N; = N;N; and
NN = NFN; for all i,je{l,....x}, c,p= (N0, NPfo> for all o,fe Z¥ and 7 is
linearly spanned by the set {N*N%fy:0,f e Z "} (cf. [43]). Denote by & the linear span
of the set {V"fp;a € Z'} and by A; the restriction of N; to &, i=1,...,x. One can
deduce from (i) (or from the inclusion 4 < N) that the system A = (A4, ..., 4,) satisfies
HBI(&). Condition (ii) implies that A; dominates every A; on &. Since fye 2(4,),
we see that & is equal to the linear span of 2(A;) (cf. [37, Proposition 2]). Hence,
by [Proposition 39, ¢ is a complex moment multi-sequence with a representing measure
u. To prove its ultradeterminacy we proceed as follows. One can infer from
38 that foe (), 2(4:), so

o0

(30) SO — oo, i=1, K
n=1
We show that the Carleman condition implies the ultradeterminacy of ¢ (the
assumption (ii) is needless for this).
First, we prove that 2, is dense in #?(pdu) for every pe %*(u) such that
p >0 ae. [g. Indeed, applying the Schwarz inequality to the complex moment multi-
sequence p, 5 = [cx 22/ p(z) du(z) (a,f € Z) we obtain

1/2
A 2 1/2
Prei,ne; = JC"' |Zi| np(z) d,Lt(Z) = c2n/el-,2ne,- (JC" pZ d:u) , n= 1.

Hence there exists M > 0 such that )~ ﬁ,}et,/,%") >M> 7, c;nle{ (;Zi, =+oo for all i =
1,...,x (the last series is divergent due to (c), page 32 in [37]). Now the density of
2. in £*(pdu) follows from [37, Corollary 6].

Applying the above to p(z) =1+ HZHZ completes the proof. ]
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REMARK 48. Under the assumption [30), we can prove more, namely that 2, is
dense in #7(u) for every p > 1. Indeed, one can deduce from that the Hamburger
moment 2x-sequence {y,},. z2 defined by

Py = J (Rezy)™ -+ (Reze)*(Imzy)™ " - (Imz,)™ du(z), oeZ?,
c*

satisfies the Carleman condition )~ , y;e{ @) — 4o for all i = I,...,2x. By Theorem

3 in [4] and part b) of Theorem, §11 in [15], the set C[X, ..., X»,] is dense in Z7(R*, p)
for every p > 1, which completes the argument. We get in this way a stronger result
than that in section 2 of labeled as 5°.

Comments.

The content of last three sections can be adapted to the operator Hamburger
and operator complex multi-dimensional moment problems as well as to algebraic sets
of operator type A, where multi-sequences of numbers have to be replaced by multi-
sequences of sesquilinear forms over an arbitrary linear space (the only exception is the
ultradeterminacy in the conclusion of [Proposition 47, which needs a separate interest).
For more details we refer the reader to [42].

There is a simple way of producing new algebraic sets of (operator-) type A from a
given one. Namely, by [42, Proposition 60], the set of all polynomials p € R[ X1, ..., X;]
for which p~1(0) is of (operator-) type A is invariant under the action @+ po & of
the group of all polynomial automorphisms @ of R". For instance for xk = 3 we can
consider products of polynomial automorphisms of R® of the form

X1, X2,x3) = (x1 — fi(x2,X3), X2, X3),
X1, X2, X3

(

= (x1, %2 — f2(x1,x3), X3),

X1,%2,%3) > (X1, X2, X3 — f3(x1, X2)),
(

( )
( )
( )
(31, %2,X3) = (x1 — g(x3), X2 — h(x3), x3),

where f1, f>, /3 € R[X1,X3] and ¢g,h, ... € R[X]|. For more information on generators of
the group of all polynomial automorphisms of R?, see [27].

Similar phenomenon occurs for subnormal systems. We exemplify this in the
context of symmetric operators. Let @ = (¢,,...,¢,) be a polynomial automorphism
of R, peR[X1,...,X,] and S = (S1,...,S:) € L(Z)" be a system of pointwise com-
muting operators. If § is annihilated by p, i.e. p(S) =0, and S extends to a sys-
tem T = (T),...,T,) of spectrally commuting selfadjoint operators acting in a Hilbert
space A o #, then the system @(S) L (9,(S),...,9.(S)) is annihilated by the poly-
nomial po @', and &(S) extends to the selfadjoint system [p. @ dE &l (Jpe 01 dE, ...,
Jzx 9. dE), where E is the spectral measure of T (the reverse implication, written in an
appropriate way, is true as well). Moreover, T is minimal of spectral type if and only
if s0 is [p« @ dE (minimality of spectral type is implicitly defined in the first paragraph
of the proof of [Proposition 40)).
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