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Abstract. We examine plane waves of the elastic reduced wave equation in the

half-space, and by linear combinations of them we construct the solution coinciding with

any plane wave on the boundary. In the (dual) variable in the normal direction to the

boundary, we apply the complex analysis to the inverse matrix of the elastic symbol.

1. Introduction.

Plane wave solutions of reduced wave equations play an important role in a variety

of problems, e.g., in the representation of spectral families (cf. Dermenjian and Guillot

[1], etc.), and in inverse problems (cf. Nakamura and Uhlmann [4], Wang [6], etc.). In

this paper we consider plane wave solutions for the following general reduced wave

equation in the half-space R
n
þ ¼ fx ¼ ðx1; . . . ; xnÞ ¼ ðx 0; xnÞ; xn > 0g:

s2I þ
X

n

i; j¼1

aijqxiqxj

 !

uðxÞ ¼ 0 in R
n
þ;ð1:1Þ

where s is an arbitrary positive (fixed) parameter. We wish to construct plane wave

solutions of (1.1) which satisfy the Dirichlet condition on fxn ¼ 0g.

We assume that the coe‰cients aij ði; j ¼ 1; . . . ; nÞ are constant real n� n-matrices

satisfying

(A.1) aij ¼
taji, i; j ¼ 1; 2; . . . ; n,

(A.2) LðxÞ1
Pn

i; j¼1 aijxixj is positive definite for any x ¼ tðx1; . . . ; xnÞ A R
nnf0g.

Thus all the eigenvalues of LðxÞ are positive. We assume further that

(A.3) the multiplicity of each eigenvalue of LðxÞ is independent of x (for x0 0Þ.

In view of (A.3) we can denote the eigenvalues of LðxÞ by ljðxÞ ð j ¼ 1; . . . ; d;

0 < l1ðxÞ < � � � < ldðxÞÞ.

The most frequently encountered example of a wave equation satisfying (A.1),

(A.2) and (A.3) is the system of equations of isotropic elasticity. For that reason we

will refer to (1.1) as an ‘‘elastic’’ wave equation.
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In the case of the whole space, R
n, the plane waves are of the form

e ishxv; where ljðhÞ ¼ 1 and v A Ker½I � LðhÞ�

for some eigenvalue lj. In the half-space one needs to add other waves to e ishxv so

that the sum satisfies the Dirichlet boundary condition. One can think of these added

waves as reflections of the original plane wave by the boundary.

Our purpose is to construct the reflected waves. Namely, we construct bounded

solutions satisfying the equation (1.1) and

ujxn¼0 ¼ e ish
0x 0

v on R
n�1

;ð1:2Þ

where v is any given vector in C
n. Taking a root ~zz of the equation (in z)

detðI � Lðh 0
; zÞÞ ¼ 0ð1:3Þ

and a vector ~vv belonging to Ker½I � Lðh 0; ~zzÞ�, we can always make a solution of the form

e isðh
0x 0þ~zzxnÞ~vv, but this will only satisfy (1.2) when ~vv ¼ v. Thus to construct nontrivial

reflected plane wave solutions we will need to use linear combinations of waves arising

from the roots of (1.3), and it will be essential to determine the span of the corre-

sponding ~vv’s.

We make the following assumption on the eigenvalues fljg:

(A.4) Every slowness surface Sj ¼ fx : ljðxÞ ¼ 1g is strictly convex, and its Gaus-

sian curvature does not vanish.

Let us note that if ~zz is a real root of (1.3), then llðh
0; ~zzÞ ¼ 1 for some l. We say that

h 0 is non-glancing if for each eigenvalue lj

qxnljðh
0
; zÞ0 0 when z is real and ljðh

0
; zÞ ¼ 1:

If h 0 is non-glancing, then (A.4) implies that there are either no solutions of ljðxÞ ¼ 1

on the line x ¼ ðh 0; zÞ, z A R, or exactly two solutions corresponding to opposite signs

for qxnlj. Obviously, the non-real roots of (1.3) are complex conjugates of each other.

Therefore, the roots fz j
Gðh

0Þgj¼1;...;d 0 of (1.3) can be labelled in the following way if h 0

is non-glancing:

(i) z
j
Gðh

0Þ ð j ¼ 1; . . . ; kÞ are real and satisfy

ljðh
0
; z

j
Gðh

0ÞÞ ¼ 1 and Gqxnljðh
0
; z

j
Gðh

0ÞÞ > 0;ð1:4Þ

(ii) z
j
Gðh

0Þ ð j ¼ k þ 1; . . . ; d 0Þ are non-real and satisfy

GIm z
j
Gðh

0Þ > 0:

Furthermore, the multiplicities of the real roots fz j
Gðh

0Þgj¼1;...;k coincide with those of

the eigenvalues ljðh
0; z

j
Gðh

0ÞÞ (cf. Lemma 2.1 of Soga [5]).

The multiplicities of the non-real roots fz j
Gðh

0Þgj¼kþ1;...;d 0 can exceed the dimension

of the corresponding kernel of I � Lðh 0; zGðh
0ÞÞ, and this implies that the required solu-

tion may not be obtained by linear combination of the functions e isðh
0x 0þz

j
þðh

0ÞxnÞv j with

v j chosen in Ker½I � Lðh 0; z
j
þðh

0ÞÞ�. Hence, for the non-real roots we employ solutions

of another type:ð
cþ

e isðh
0x 0þzxnÞz jðI � Lðh 0

; zÞÞ�1
dz ~vv; ð~vv A C

n
; j ¼ 0; 1Þ;ð1:5Þ
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where cþ is a path surrounding only the roots fz j
þðh

0Þgj¼kþ1;...;d 0 in the complex domain.

Let us note that ðI � Lðh 0
; zÞÞ�1 may have poles only at fz j

Gðh
0Þgj¼1;...;d 0 , and that (1.5)

is sum of the functions of the form x l
ne

isðh 0x 0þz
j
þðh

0ÞxnÞ~vv ð j ¼ k þ 1; . . . ; d 0Þ not necessarily

satisfying ~vv A Ker½I � Lðh 0
; z

j
þðh

0ÞÞ�. If one includes these solutions of the form (1.5),

then the boundary value problem for s2I � Lð�iqxÞ can be solved for all boundary data

of the form e ish
0x 0
v, v A C

n. Our objective here is to give a short proof of this result,

i.e. to prove

Theorem 1.1. Let (A.1), . . . , (A.4) be satisfied and let h 0 be non-glancing. Then,

linear combinations of the solutions e isðh
0x 0þz

j
þðh

0ÞxnÞv j for j ¼ 1; . . . ; k and the solutions in

(1.5) span the set of functions e ish
0x 0
v for all v A C

n on the boundary R
n�1.

Let us note that dependency of the solution (1.5) in the variable h 0 is Cy smooth in a

neighborhood of any fixed h 0.

In §2 we discuss an equivalent formulation of Theorem 1.1 and related results.

Then we prove the reformulated version in §3. The proofs are based on considering

the matrix ðI � Lðh 0
; zÞÞ�1 as a meromorphic function in the variable z. One can use

residue calculations to show that the boundary data have the linear span given in the

theorem.

In Soga [5] Theorem 1.1 was proven in the case that the poles of ðI � Lðh 0
; zÞÞ�1

are simple. In this paper, however, the proof is fairly di¤erent. The present methods

are similar to those used by Kostyuchenko and Shakalikov’s [3] for operator pencils.

We modify their general theory for use in the restricted (matrix-valued) case. There

are also similarities in the constructions here to those used in the construction of

Poisson operators for elliptic boundary problems.

In Kawashita and Soga [2] we have announced the main result (Theorem 1.1)

together with outline of the proof. In the present paper we give a precise description

of the proof, and add more improved arguments. (i.e., Proposition 2.4, Lemma 3.1,

Remarks 3.2 and 3.3, etc.)

2. Discussion of the main theorem.

In this section we assume that (A.1), . . . , (A.4) in §1 are satisfied, and explain the

main results. For the roots z
j
þðh

0Þ ð j ¼ 1; . . . ; d 0Þ of (1.3), we have the following solu-

tions of the equation (1.1):

e isðh
0x 0þz

j
þðh

0ÞxnÞv j
; v j

A Ker½I � Lðh 0
; z

j
þðh

0ÞÞ�; j ¼ 1; . . . ; d 0
:ð2:1Þ

If every dimKer½I � Lðh 0
; z

j
þðh

0ÞÞ� equals the multiplicity of z
j
þðh

0Þ as a root of (1.3)

ð j ¼ 1; . . . ; d 0Þ, we see that the solutions of the form (2.1) span the set of all the solu-

tions. In general, however, for the non-real root ~zz of the equation (1.3) we have only

dimKer½I � Lðh 0
; ~zzÞ�amultiplicity of ~zz:ð2:2Þ

For proof of this, see Remark 2.4 in Soga [5]. Thus in the general case we need to

suspect that the set of the solutions is expanded only by the functions of the form (2.1).

Moreover, the dependency in the variable h 0 is not necessarily Cy smooth (for the non-

real roots). And so we employ solutions of another type for the non-real roots.
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Let cþ be a closed path in C surrounding only the non-real roots fz j
þðh

0Þgj¼kþ1;...;d 0 ,

and put

Q
j
þðxn; h

0Þ ¼ ð2piÞ�1

ð
cþ

e iszxnz j�1ðI � Lðh 0
; zÞÞ�1

dz; j ¼ 1; 2:ð2:3Þ

Note that the integral in (2.3) is the form encountered in construction of the Poisson

operators for elliptic operators. For any v A C
n the function e ish

0x 0
Q

j
þðxn; h

0Þv is clearly

an exponentially decreasing solution of (1.1). If one evaluates the integral in (2.3) by

residues, one can verify that e ish
0x 0
Q

j
þðxn; h

0Þv is linear combination of the functions of

the form xl
ne

isðh 0x 0þz
j
þðh

0ÞxnÞv ð j ¼ k þ 1; . . . ; d 0Þ (but each of them may not satisfy (1.1)).

We remark that dependency of Q j
þðxn; h

0Þ in h
0 is Cy smooth (in a neighborhood of any

fixed h
0).

We employ the following class of the solutions:

Eþ ¼ fe isðh
0x 0þz

j
þðh

0ÞxnÞv j : v j
A Ker½I � Lðh 0

; z
j
þðh

0ÞÞ�; j ¼ 1; . . . ; kg

U fe ish
0x 0

Q
j
þðxn; h

0Þv : v A C
n
; j ¼ 1; 2g:

Then, linear combinations of the solutions in Eþ span the boundary data, and we

reformulate Theorem 1.1 as

Theorem 2.1. Let h
0 be non-glancing. Then we have

Xk

j¼1

Ker½I � Lðh 0
; z

j
þðh

0ÞÞ� þ
X2

j¼1

Q
j
þð0; h

0ÞC n ¼ C
n
;

i.e., the linear span of Eþ restricted to fxn ¼ 0g contains e ish
0x 0
v for all v A C

n.

If the poles surrounded by cþ (i.e. fz j
þðh

0Þgj¼kþ1;...;d 0 ) are all simple, then the

solution e ish
0x 0
Q

j
þðxn; h

0Þv is represented by a sum of the solutions of the form (2.1).

Namely, we have

Proposition 2.2. We assume that h
0 is non-glancing. Let ~zz be a root of (1.3)

and let ~cc be a small circle surrounding ~zz. If ~zz is the simple pole of ðI � Lðh 0
; zÞÞ�1, we

have

ðiÞ Ker½I � Lðh 0
; ~zzÞ� ¼

ð
~cc

z jðI � Lðh 0
; zÞÞ�1

dz C n
; j ¼ 0; 1;

ðiiÞ
1

2pi

ð
~cc

e iszxnz jðI � Lðh 0
; zÞÞ�1

dz v ¼ e is~zzxn~zz j Res z¼~zzðI � Lðh 0
; zÞÞ�1

v; j ¼ 0; 1:

For proof of (i) of this proposition, see the proof of Lemma 2.5 in Soga [5]. (ii)

of the proposition is obvious from the definition of the residue. From Proposition 2.2

it follows that Theorem 2.1 has the corollary.
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Corollary 2.3. Let h 0 be non-glancing, and assume that the poles of

ðI � Lðh 0
; zÞÞ�1

at fz j
þðh

0Þgj¼kþ1;...;d 0 are simple. Then the linear span of the following

solutions restricted to the boundary fxn ¼ 0g contains e ish
0x 0
v for all v A C

n:

fe isðh
0x 0þz

j
þðh

0ÞxnÞv j; v j
A Ker½I � Lðh 0

; z
j
þðh

0ÞÞ�; j ¼ 1; . . . ; d 0g:

Furthermore, we can obtain an information on when the poles of ðI � Lðh 0
; zÞÞ�1

will be simple:

Proposition 2.4. Let h 0 be non-glancing, and let ~zz be a root of (1.3). Then ~zz is

a simple pole of ðI � Lðh 0
; zÞÞ�1

if and only if the equality holds in (2.2). Furthermore,

this equality is always satisfied when ~zz is real.

Theorem 2.1 and Proposition 2.4 are proved in the next §.

3. Proofs and remarks.

Corollary 2.3 was proven in Soga [5]. In this section, however, we prove it (and

Theorem 2.1) in a di¤erent way. The present proof uses methods similar to the ones in

Kostyuchenko and Shkalikov [3]. Kostyuchenko and Shkalikov deal with more general

cases, i.e., operator pencils. We adapt their methods to our matrix case, and obtain

precise properties for our use. Throughout this section we assume that (A.1), . . . , (A.4)

are satisfied and that h 0 is non-glancing.

Let ðv;wÞ ¼
Pn

i¼1 viwi, and for v A C
n put

F l
v ðzÞ ¼ ðz l�1ðI � Lðh 0

; zÞÞ�1
v; vÞ; l ¼ 1; 2:ð3:1Þ

Then F l
v ðzÞ becomes a meromorphic function and may have poles only at

fz j
Gðh

0Þ;ygj¼1;...;d 0 :

But, the presence or absence of these poles depends on v (cf. Remark 3.3).

If the root ~zz of (1.3) is real (i.e., lmðh
0
; ~zzÞ ¼ 1 for some m), we can find a precise

form of ðI � Lðh 0
; zÞÞ�1 near ~zz:

Lemma 3.1. Let ~zz be a real number satisfying lmðh
0
; ~zzÞ ¼ 1 for some m ð1ama kÞ.

Then on a complex neighborhood U of ~zz the eigenvalue lmðh
0
; zÞ of Lðh 0

; zÞ can be

extended analytically from the real axis (i.e., z ¼ lmðh
0
; zÞ is the root of the equation

detðzI � Lðh 0
; zÞÞ ¼ 0 with the same multiplicity am as lmðh

0
; ~zzÞ). The projection Pmðx

0
; zÞ

to the generalized eigenspace of lmðx
0
; zÞ can also be extended analytically from the real

axis on U, and we have

ðI � Lðh 0
; zÞÞ�1 ¼

1

1� lmðh 0
; zÞ

Pmðh
0
; zÞ þMðzÞ;ð3:2Þ

where MðzÞ is a matrix-valued function analytic on U.

Proof of Lemma 3.1. Since Lðh 0
; zÞ is a real symmetric matrix for real z, we have

Lðh 0
; zÞPjðh

0
; zÞ ¼ ljðh

0
; zÞPjðh

0
; zÞ; I ¼

Xd

j¼1

Pjðh
0
; zÞ:
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This yields that

ðI � Lðh 0
; zÞÞ�1 ¼

Xd
j¼1

ð1� ljðh
0
; zÞÞ�1

Pjðh
0
; zÞ for real z near ~zzð3:3Þ

since we have ðI � Lðh 0; zÞÞ
Pd

j¼1ð1� ljðh
0; zÞÞ�1

Pjðh
0; zÞ ¼ I for real z ð0~zzÞ near ~zz.

For small d > 0, we set

Pmðh
0
; zÞ ¼

1

2pi

ð
jz�1j¼d

ðzI � Lðh 0
; zÞÞ�1

dz:

If d is chosen so that detðzI � Lðh 0; ~zzÞÞ has its only zero in jz� 1ja d at z ¼ 1, Pmðh
0; zÞ

is analytic in a small neighborhood of z ¼ ~zz, and is the projection to the generalized

eigenspace of the eigenvalues in jz� 1j < d. We set

lðzÞ ¼ a�1
m

ð
jz�1j¼d

z
d

dz
logðdetðzI � Lðh 0

; zÞÞÞ dz:

Then, obviously lðzÞ is analytic near ~zz, and is equal to the eigenvalue lmðh
0; zÞ for real

z near ~zz. Therefore, the function

MðzÞ ¼ ðI � Lðh 0
; zÞÞ�1 �

1

1� lðzÞ
Pmðh

0
; zÞ

is meromorphic in a neighborhood of ~zz, and is bounded on the real axis near ~zz (by

(3.3)), which implies that MðzÞ has no pole in neighborhood of ~zz. Hence, we obtain

Lemma 3.1 if we can verify

lðzÞ is the only eigenvalue of Lðh 0
; zÞ with multiplicity amð3:4Þ

in a neighborhood of 1:

For this consider

spðzÞ ¼

ð
jz�1j¼d

zp
d

dz
logðdetðzI � Lðh 0

; zÞÞÞ dz; p ¼ 1; 2; . . . :

Then spðzÞ is analytic in a neighborhood U of ~zz, and equal to amlðzÞ
p ð¼amlmðh

0; zÞpÞ

on the real axis near ~zz. Therefore, from analyticity we have

spðzÞ ¼ amlðzÞ
p on U :ð3:5Þ

Inside of the circle jz� 1j ¼ d there are am roots of detðzI � Lðh 0; zÞÞ counted by mul-

tiplicity when z is near ~zz. Denote them by zjðzÞ ð j ¼ 1; . . . ; amÞ. Then we have

spðzÞ ¼
Pam

j¼1 zjðzÞ
p. Therefore, using (3.5) and noting that logð1� mÞ ¼

P
y

p¼1 p
�1mp

when jmj is small enough, we obtain

log
Yam
j¼1

ð1� mzjðzÞÞ ¼
Xam
j¼1

logð1� mzjðzÞÞ ¼
Xam
j¼1

Xy
p¼1

z
p
j ðzÞ

mp

p

¼
Xy
p¼1

spðzÞ
mp

p
¼

Xy
p¼1

amlðzÞ
p m

p

p
¼ am logð1� mlðzÞÞ:
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Hence, it follows that
Q am

j¼1ð1� mzjðzÞÞ ¼ ð1� mlðzÞÞam , which holds for all m from the

analyticity in m. Thus, putting m ¼ z�1, we have

Yam
j¼1

ðz� zjðzÞÞ ¼ ðz� lðzÞÞam

when z is near ~zz. This means that (3.4) is correct. Thus Lemma 3.1 is proved. r

Remark 3.2. If h 0 is non-glancing, we can rewrite (3.2) as

ðI � Lðh 0
; zÞÞ�1 ¼ �

fqxnlmðh
0; ~zzÞg�1

z� ~zz
Pmðh

0
; ~zzÞ þ RðzÞ;

for a function RðzÞ analytic near ~zz, since qxnlmðh
0; ~zzÞ0 0.

This remark gives the precise form of ðI � Lðh 0; zÞÞ�1 at the real pole, and shows that

Proposition 2.4 for real ~zz is correct. We will not require such detailed information

about the complex poles.

Let us note that orthogonality of v to Ker½I � Lðh 0; tÞ� is related with analyticity

of F l
v at t:

Remark 3.3. Assume that ðI � Lðh 0; zÞÞ�1 has a simple pole at t A

fz j
Gðh

0Þgj¼1;...;d 0 . Then, F l
v ðzÞ ðl ¼ 1; 2Þ becomes analytic at t if v is orthogonal to

Ker½I � Lðh 0; tÞ�.

Let us check this Remark briefly. By the alternative theorem, we have w A C
n

such that

v ¼ tðI � Lðh 0; tÞÞw:

Since tLðh 0; zÞ ¼ Lðh 0; zÞ, there exists a function RðzÞ analytic near t such that

v ¼ ðI � Lðh 0
; zÞÞwþ ðz� tÞRðzÞw:

Hence we have

F l
v ðzÞ ¼ z l�1ðw; vÞ þ ðz l�1ðz� tÞðI � Lðh 0

; zÞÞ�1
RðzÞw; vÞ:

Noting that ðz� tÞðI � Lðh 0; zÞÞ�1 is analytic near t, we obtain the remark.

Proof of Theorem 2.1. Let v A C
n be orthogonal to

Xk
j¼1

Ker½I � Lðh 0
; z

j
þðh

0ÞÞ� þ
X2

j¼1

Q
j
þð0; h

0ÞC n
;

and insert this v into F l
v ðzÞ in (3.1). To prove Theorem 2.1 we have only to show that

v ¼ 0. By calculation of the residue at z ¼ y, for large r > 0 we have

1

2pi

ð
jzj¼r

z l�1ðI � Lðh 0
; zÞÞ�1

dz ¼
1

2pi

ð
jzj¼r�1

z1�lðz2I � Lðzh 0
; 1ÞÞ�1

dzð3:6Þ

¼ 0 ðwhen l ¼ 1Þ; ¼ �a�1
nn ðwhen l ¼ 2Þ;
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where ann is the matrix from (1.1). Since there are the poles fz j
Gðh

0Þgj¼1;...;d 0 inside of

a large circle jzj ¼ r, by (3.6) we have

X

d 0

j¼1

1

2pi

ð

c
j
þUc

j
�

z l�1ðI � Lðh 0
; zÞÞ�1

dz ¼ ð1� lÞa�1
nn ðl ¼ 1; 2Þ;ð3:7Þ

where c
j
G is a small circle surrounding z

j
Gðh

0Þ.

Let cþ (resp. c�) be a closed path in C surrounding only the non-real roots

fz j
þðh

0Þgj¼kþ1;...;d 0 (resp. fz j
�ðh

0Þgj¼kþ1;...;d 0 ), and put

~QQ l
G ¼

1

2pi

ð

cG

z l�1ðI � Lðh 0
; zÞÞ�1

dz ðl ¼ 1; 2Þ:

Note that ~QQ l
þ ¼ Q l

þð0; h
0Þ. From the equality tðI � Lðh 0; zÞÞ�1 ¼ ðI � Lðh 0; zÞÞ�1 we see

that

t ~QQ l
� ¼ ~QQ l

þ:ð3:8Þ

Since v is orthogonal to each Ker½I � Lðh 0; z
j
þðh

0ÞÞ� ð¼Pjðh
0; z

j
þðh

0ÞÞC nÞ for j ¼ 1; . . . ; k,

Lemma 3.1 (Remark 3.2 and Remark 3.3) implies that fz j
þðh

0Þgj¼1;...;k are not the poles

of F l
v ðzÞ ðl ¼ 1; 2Þ. Therefore, using (3.8) and the hypothesis that v is orthogonal to

Q l
þð0; h

0ÞC n ðl ¼ 1; 2Þ, for large r > 0 we have

1

2pi

ð

jzj¼r

F l
v ðzÞ dz ¼

X

k

j¼1

1

2pi

ð

c
j
�

z l�1ðI � Lðh 0
; zÞÞ�1

dz v; v

� �

þ ð ~QQ l
þv; vÞ þ ðv; ~QQ l

þvÞ

¼ �
X

k

j¼1

fqxnljðh
0
; z j

�ðh
0ÞÞg�1

z j
�ðh

0Þ l�1ðPjðh
0
; z j

�ðh
0ÞÞv; vÞ ðl ¼ 1; 2Þ:

It follows from (3.7) that ð2piÞ�1 Ð

jzj¼r
F l
v ðzÞ dz ¼ ð1� lÞða�1

nn v; vÞ ðl ¼ 1; 2Þ for large

r > 0. Hence we have

ð3:9Þ

�
X

k

j¼1

fqxnljðh
0
; z j

�ðh
0ÞÞg�1

z j
�ðh

0Þ l�1ðPjðh
0
; z j

�ðh
0ÞÞv; vÞ ¼ ð1� lÞða�1

nn v; vÞ ðl ¼ 1; 2Þ:

Since qxnljðh
0; z j

�ðh
0ÞÞ < 0 for all j ¼ 1; . . . ; k, we have ðPjðh

0; z j
�ðh

0ÞÞv; vÞ ¼ 0

ð j ¼ 1; . . . ; kÞ from (3.9) with l ¼ 1. Therefore, by (3.9) with l ¼ 2, we have

ða�1
nn v; vÞ ¼ 0. It follows from (A.2) that ann is positive definite, and hence v ¼ 0,

which proves Theorem 2.1. r

Proof of Proposition 2.4. We have seen that the statement for the real ~zz is

correct. Let us verify the former part of the proposition. For functions GðzÞ we

denote q j
zGðzÞ by Gð jÞðzÞ, and put

AðzÞ ¼ I � Lðh 0
; zÞ; ~AAðzÞ ¼ cof ½I � Lðh 0

; zÞ�:

If the multiplicity of the root ~zz (of (1.3)) equals 1, then one see that AðzÞ has a simple

pole at ~zz immediately from
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AðzÞ�1 ¼
1

detAðzÞ
~AAðzÞ:ð3:10Þ

Therefore, we assume that the multiplicity of the root ~zz (denoted by a) is not smaller

than 2 (i.e., 2a a).

Firstly, let the equality hold in (2.2). Then the number of linearly independent

column vectors in the matrix Að~zzÞ equals n� a. From this fact we see that

~AAðiÞð~zzÞ ¼ 0; i ¼ 0; . . . ; a� 2;ð3:11Þ

as is shown in the proof of Lemma 2.3 in Soga [5]. Di¤erentiating AðzÞ ~AAðzÞ ¼

ðdetAðzÞÞI a-times and putting z ¼ ~zz, by (3.11) we have

aAð1Þð~zzÞ ~AAða�1Þð~zzÞ þ Að~zzÞ ~AAðaÞð~zzÞ ¼ ðqa
z detAÞð~zzÞI :

If ~AAða�1Þð~zzÞ ¼ 0, then it follows from detAð~zzÞ det ~AAðaÞð~zzÞ ¼ fðqa
z detAÞð~zzÞg

n
0 0, which

is not consistent with ðdetAÞð~zzÞ ¼ 0. Therefore we obtain

~AAða�1Þð~zzÞ0 0:ð3:12Þ

(3.10), (3.11) and (3.12) mean that ~zz is a simple pole of AðzÞ�1.

Next, let AðzÞ�1 be simple at ~zz. Then we see from (3.10) that (3.11) and (3.12)

must hold for the multiplicity a of the root ~zz. Hence, we can rewrite (3.10) in the

following form:

AðzÞ�1 ¼
a

z� ~zz
~AAða�1Þð~zzÞ þ BðzÞ;

where a is a non-zero constant and BðzÞ is a matrix-valued function analytic at ~zz.

Taking constant matrices R and S such that R�1 ~AAða�1Þð~zzÞS�1 becomes a diagonal matrix

D with elements equal to 1 or 0, we have AðzÞ�1 ¼ aðz� ~zzÞ�1
RDS þ BðzÞ. This yields

that

detAðzÞ�1 ¼ ðz� ~zzÞ�b
f ðzÞ;

where b ¼ rank ~AAða�1Þð~zzÞ and f ðzÞ is a function analytic at ~zz. The above equality

implies that detAðzÞ ¼ fdetAðzÞ�1g�1 has ~zz as a zero point of order ab, and therefore

aa b. Hence, a is not greater than dimKer½Að~zzÞ� since we have

~AAða�1Þð~zzÞC n ¼ Ker½Að~zzÞ�

by the same methods as in the proof of Lemma 2.5 in Soga [5]. Let us note that the

methods in Soga [5] can be applied if (3.11) holds. Thus the equality must hold in

(2.2). r

References

[ 1 ] Y. Dermenjian and J. Guillot, Scattering elastic waves in a perturbed isotropic half space with a free

boundary, The limiting absorption principle, Math. Methods Appl. Sci., 10 (1988), 87–124.

[ 2 ] M. Kawashita and H. Soga, Properties of elastic symbols and construction of solutions of the Dirichlet

problem, Commun. Korean Math. Soc., 16 (2001), 399–404.

[ 3 ] A. G. Kostyuchenko and A. AP. Shkalikov, Self-adjoint quadratic operator pencils and elliptic

problems, Funct. Anal. Appl., 17 (1983), 109–128.

Complex analysis of elastic symbols 403



[ 4 ] G. Nakamura and G. Uhlmann, Global uniqueness for an inverse boundary problem arising in

elasticity, Invent. Math., 118 (1994), 457–474.

[ 5 ] H. Soga, Asymptotic solutions of the elastic wave equation in the case of total reflection, Comm.

Partial Di¤erential Equations, 26 (2001), 2249–2266.

[ 6 ] J. N. Wang, Inverse backscattering for the elastic wave equation, Comm. Partial Di¤erential

Equations, 25 (2000), 507–540.

Mishio Kawashita

Department of Mathematics

Hiroshima University

Higashi-Hiroshima, 739-8526

Japan

E-mail: kawasita@math.sci.hiroshima-u.ac.jp

James Ralston

Department of Mathematics

UCLA

Los Angeles, CA 90095

USA

E-mail: ralston@math.ucla.edu

Hideo Soga

Faculty of Education

Ibaraki University

Mito, Ibaraki, 310-8512

Japan

E-mail: soga@mx.ibaraki.ac.jp

M. Kawashita, J. Ralston and H. Soga404


	1. Introduction.
	THEOREM 1.1. ...

	2. Discussion of the main ...
	THEOREM 2. ...

	3. Proofs and remarks.
	References

