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Abstract. We investigate surfaces of constant mean curvature with a nontrivial

fundamental group in a Weierstraß type representation. As an application we construct a

family of complete CMC immersions which are conformally cylinders and have umbilics.

1. Introduction.

In the last 10 years, many results on non-simply connected CMC surfaces have been

obtained:
. CMC tori have been classified [35], [1], [31], [14], [20] and explicitly constructed

in terms of theta functions [2].
. Kapouleas [22], [21] provided existence proofs for compact CMC surfaces of

genus gb 2.
. Examples of compact and non-compact CMC surfaces with a large symmetry

group in R
3 were proved to exist by Karcher [23] and Große-Brauckmann [16],

and constructed numerically in [17 ].
. Complete embedded CMC surfaces in R

3 were investigated in [27 ].

Nevertheless, the status of the investigation of CMC surfaces of nontrivial topological

type, with the exception of the case of CMC tori, is still highly unsatisfactory. First

of all, Kapouleas’ proof gives at most a hint on the visual appearance of compact

CMC surfaces of higher genus (for a discussion see [26]). Explicit construction, and

with this we mean also visualization, of his surfaces is not yet possible. All existing

pictures of (probably) compact CMC surfaces of genus gb 2 are produced using Große-

Brauckmann’s approach. Although very carefully implemented, the numerical methods

do not provide the viewer with an analytic proof that the surfaces shown are really

compact CMC surfaces. Furthermore, both Große-Brauckmann’s and Kapouleas’

approach describe only very special examples of such CMC surfaces.

Another problem with the results mentioned above is that they do not give

much information on the Hopf di¤erential, in particular on the location or number of

umbilics of the CMC surfaces constructed. For compact CMC surfaces of genus g the

number of umbilics is 4g� 4. Pinkall and Sterling’s classification of CMC tori [31]

relies heavily on the fact that CMC tori have no umbilics. Their method and also

Bobenko’s construction of these surfaces fails as soon as umbilics are introduced. On

the other side, umbilics don’t play any role in Kapouleas’ or Große-Brauckmann’s
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work. Since umbilics and the Hopf di¤erential are a fundamental concept in the

investigation of CMC surfaces, it is very interesting to note that even the following basic

question has not been answered:

Are there complete CMC surfaces with umbilics which are conformally cylinders?

ð1:1:1Þ

The situation for minimal surfaces is quite di¤erent. In this case, the Weierstraß

representation provides a unified way to represent the surfaces by meromorphic data.

Investigation of minimal surfaces of certain topological type can therefore be translated

to the problem of constructing appropriate automorphic Weierstraß data. As soon as

such data are found they can be used directly for the visualization of the surfaces.

In this paper, we use an analogue of the Weierstraß representation for CMC

surfaces, the DPW representation [11], to construct non-simply connected CMC sur-

faces in R
3. To be more precise, it is our goal to construct complete conformal CMC

immersions C : D ! R
3, D being the open unit disk or the complex plane, which are

invariant under a given Fuchsian group G HAutD, i.e. C � g ¼ C for all g A G . Such

an immersion yields a CMC surface in R
3 whose fundamental group contains G (see

[7 ]). Since the Hopf di¤erential of the surface is data used in the DPW construction,

we can fix an arbitrary quadratic di¤erential form on GnD as Hopf di¤erential, i.e., we

can e¤ectively prescribe the number and location of umbilics of the CMC surface in the

parameter domain.

The main application of the ideas presented in this paper is to construct CMC-

cylinders with umbilics. To make sure these cylinders constructed are not only CMC

immersions of C with some point deleted we show that they are complete. To make

sure they are not—after straightforward manipulations like a change of coordinates,

etc.—just cylinders, which one could just as well obtain by the classical (and particularly

beautiful) algebro-geometric method, we have inserted umbilics. Since this paper was

originally completed, its ideas have been used and generalized for CMC-cylinders [24],

[25] and CMC-trinoids [13], [32]. We are very pleased to note that the referee of this

paper sees additional motivation for this paper (‘‘the authors should spell out more

clearly that the central issue is the period closing problem, and that the present paper

makes some contribution to this’’).

Our ultimate goal is—ideally, perhaps never fully reachable—to provide a theory

that allows to produce CMC surfaces with prescribed geometric features: as theoretical

objects and as concrete pictures. Ideally, again, this should admit concrete applications,

like producing surfaces representing answers to specific questions in material sciences

or biology. Thus we are looking for a theory which admits ‘‘easily’’ concrete visu-

alizations. On the technical side this means to integrate fundamental groups (and

probably also additional symmetries) into a formalism that admits ‘‘easy’’ computer

generated visualizations. The path to this goal seems long and arduous at this point.

We are convinced that the loop group approach, originally presented in [11], has the

potential to help reach this goal. The present paper is a first step towards this goal:

we are able to identify a condition that makes sure the surfaces ‘‘close up’’. Moreover,

we show that (at least some of ) the constructed surfaces are complete, proving that, e.g.,

we are not just deleting a point from a previously known surface. Since the submission
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of this paper, progress has been made towards our overall goal in several ways: in his

dissertation [24], M. Kilian is using and extending the methods of this paper and

produces a large family of CMC-cylinders exhibiting various geometric properties. He

has also developed algorithms that lead to concrete visualizations of CMC-cylinders with

various properties (accessible at this point through www.gang.umass.edu).

In a di¤erent development, one of the authors of this paper (JD) and H. Wu have

developed, starting from the ideas contained in this paper, an algorithm to construct

CMC-trinoids with embedded ends [13]. As a matter of fact, this construction seems

to produce all CMC-trinoids with embedded ends—and seems to be able to handle

more general ‘‘end properties’’, like nodoidal behaviour, as well. It seems that more

than three ends will also be manageable by this method. An overwhelming amount

of questions concerning the relation between geometric properties of CMC-surfaces

and their ‘‘DPW-potentials’’ is still open. The authors hope that this paper will make

a useful step towards an answer of some of these questions.

The paper starts in Section 2 by recalling the basic facts for the DPW repre-

sentation of CMC surfaces. In particular, we introduce meromorphic potentials which

replace the usual Weierstraß data in the DPW method. We also summarize briefly in

Section 2.3, how intrinsic and extrinsic symmetries of a CMC immersion are expressed

in terms of meromorphic potentials [7 ], [8]. In Section 3 we translate the symmetry

condition of Section 2 to the so called holomorphic potentials of the DPW method.

This leads to conditions on the holomorphic DPW data. While Section 3 deals pri-

marily with dressing from the r-circle, Section 4 shows under which additional conditions

the same result can be obtained by dressing from the unit circle. In Section 5 we will

use dressing actions to satisfy these conditions for the special case of singly periodic

CMC immersions C : C ! R
3. We thus construct an infinite dimensional family of

conformal CMC cylinders with umbilics, thereby answering the question (1.1.1) in the

a‰rmative. Moreover, we show that a particularly natural class of such cylinders is

complete. Part of this work was completed while one of the authors (JD) visited the

Sonderforschungsbereich 288. He would like to thank Ulrich Pinkall for his interest in

this work and the Sonderforschungsbereich 288 for its hospitality. Finally we would

like to thank Ivan Sterling for helpful discussions.

2. Basic definitions.

We begin by collecting some well known results on loop groups and the dressing

action. For further reference see [6, Section 2].

2.1. For each real constant r, 0 < ra 1, let LrSLð2;CÞ
s

denote the group of

smooth maps gðlÞ from Cr, the circle of radius r, to SLð2;CÞ, which satisfy the twisting

condition

gð�lÞ ¼ sðgðlÞÞ; ð2:1:1Þ

where s : SLð2;CÞ ! SLð2;CÞ is defined by conjugation with the Pauli matrix

s3 ¼
1 0

0 �1

� �

. The Lie algebras of these groups, which we denote by Lrslð2;CÞ
s
,
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consist of maps x : Cr ! slð2;CÞ, which satisfy a similar twisting condition as the group

elements

xð�lÞ ¼ s3xðlÞs3: ð2:1:2Þ

In order to make these loop groups complex Banach Lie groups, we require that each

matrix coe‰cient, considered as a function on S1, is contained in the Wiener Algebra

A, A ¼ fqðlÞ; q ¼
P

n AZ qnl
n,

P

n AZ jqnj < yg.

For r ¼ 1 we will always omit the subscript ‘‘r’’.

Furthermore, we will use the following subgroups of LrSLð2;CÞ
s
: Let B be a

subgroup of SLð2;CÞ and L
þ
r;BSLð2;CÞ

s
be the group of maps in LrSLð2;CÞ

s
, which

can be extended to holomorphic maps on

I ðrÞ ¼ fl A C ; jlj < rg; ð2:1:3Þ

the interior of the circle Cr, and take values in B at l ¼ 0. Analogously, let

L
�
r;BSLð2;CÞ

s
be the group of maps in LrSLð2;CÞ

s
, which can be extended to the

exterior

E ðrÞ ¼ fl A CP1; jlj > rg ð2:1:4Þ

of Cr and take values in B at l ¼ y. If B ¼ fIg (based loops) we write the subscript *
instead of B, if B ¼ SLð2;CÞ we omit the subscript B entirely.

Also, by an abuse of notation, we will denote by LrSUð2Þ
s
the subgroup of maps in

LrSLð2;CÞ
s
, which can be extended holomorphically to the open annulus

AðrÞ ¼ l A C ; r < jlj <
1

r

� �

ð2:1:5Þ

and take values in SUð2Þ on the unit circle.

Corresponding to these subgroups, we analogously define Lie subalgebras of

Lrslð2;CÞ
s
.

We quote the following results from [30] and [11]:

(i) For each solvable subgroup B of SLð2;CÞ, which satisfies SUð2Þ � B ¼

SLð2;CÞ and SUð2ÞVB ¼ fIg, multiplication

LrSUð2Þ
s
� L

þ
r;BSLð2;CÞ

s
! LrSLð2;CÞ

s

is a di¤eomorphism onto. The associated splitting

g ¼ Fgþ ð2:1:6Þ

of an element g of LrSLð2;CÞ
s
such that F A LrSUð2Þ

s
and gþ A L

þ
r;BSLð2;CÞ

s
will be

called Iwasawa decomposition.

(ii) Multiplication

L
�
r;�SLð2;CÞ

s
� L

þ
r SLð2;CÞ

s
! LrSLð2;CÞ

s
ð2:1:7Þ

is a di¤eomorphism onto the open and dense subset L
�
r;�SLð2;CÞ

s
� Lþ

r SLð2;CÞ
s

of

LrSLð2;CÞ
s
, called the ‘‘big cell’’ [33]. The associated splitting

g ¼ g�gþ ð2:1:8Þ
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of an element g of the big cell, where g� A L
�
r;�SLð2;CÞ

s
and gþ A L

þ
r SLð2;CÞ

s
, will be

called Birkho¤ factorization.

2.2. Let Cl : D ! R
3, l A S1 be an associated family of (conformal) immersions

of constant mean curvature H0 0 (see [7, Section 2.5]). Define the extended frame

F ðz; lÞ : D ! LSUð2Þ
s
, l A S1, as in [11] (see also the appendix of [9]). Then Cl can

be computed from F using Sym’s formula

Cl ¼ �
1

2H

d

dt
F � F�1 þ

i

2
Fs3F

�1

� �

; l ¼ e it: ð2:2:1Þ

Furthermore, define g�ðz; lÞ : D ! L
�
r;�SLð2;CÞ

s
, l A S1, by the Birkho¤ splitting

F ðz; lÞ ¼ g�ðz; lÞgþðz; lÞ: ð2:2:2Þ

Then g� is for every fixed l A S1 a meromorphic function on D with poles in the set

SHD of points, where Fðz; lÞ is not in the ‘‘big cell’’, i.e. where the Birkho¤ splitting

(2.2.2) of Fðz; lÞ is not defined.

Remark. By [6, Lemma 2.2], g� can be analytically continued in l to CP1nf0g

for all fixed z A D, for which it is finite, but is only meromorphic in z A D and the

maximal analytic continuation of g� in l does not depend on the chosen radius

0 < ra 1. I.e., the meromorphic potential of a CMC immersion does not depend on

r. We will therefore always consider g� as a map into L
�
� SLð2;CÞ

s
¼ L

�
1;�SLð2;CÞ

s

which, if necessary, can be continued analytically to all circles Cr with 0 < ra 1.

For given meromorphic g� we can recover the extended frame F by the (r ¼ 1) Iwasawa

decomposition

g� ¼ Fg�1
þ : ð2:2:3Þ

For smoothness questions, see [9].

Next, we define the dressing action of L
þ
r SLð2;CÞ

s
, 0 < ra 1, on F, the set of

extended frames of CMC-immersions. For Fðz; lÞ A F and hþ A L
þ
r SLð2;CÞ

s
we set

hþðlÞF ðz; lÞ ¼ ðhþ:FÞðz; lÞqþðz; lÞ; ð2:2:4Þ

where the right hand side of (2.2.4) is defined by the Iwasawa decomposition in

LrSLð2;CÞ
s

of hþF , i.e. qþ : D ! L
þ
r SLð2;CÞ

s
. In addition, at l ¼ 0 the matrix

qþðz; lÞ takes values in the solvable subgroup B of SLð2;CÞ such that

BVSUð2Þ ¼ fIg: ð2:2:5Þ

It is easily proved (see e.g. [4]) that hþ:F is again in F. Therefore, Equation (2.2.4)

really defines an action on F. On the matrices g� defined by (2.2.2) the dressing is

defined by

hþðlÞg�ðz; lÞ ¼ ĝg�ðz; lÞpþðz; lÞ: ð2:2:6Þ

Here, ĝg� ¼ hþ:g� and pþ : D ! L
þ
r SLð2;CÞ

s
are defined by the Birkho¤ splitting (2.2.2)

of hþg�. Note that hþ:F ¼ ĝg�ĝgþ for some ĝgþ : D ! L
þ
r SLð2;CÞ

s
. Since g� and ĝg�

are both meromorphic in z, also pþ ¼ ĝgþqþg
�1
þ is meromorphic in z.
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The extended frames are normalized by

Fð0; lÞ ¼ I ; l A S1; ð2:2:7Þ

which implies

g�ð0; lÞ ¼ I ; l A S1: ð2:2:8Þ

Let now the meromorphic potential be defined by

xðz; lÞ ¼ g�1
� dg�; ð2:2:9Þ

then it is of the form

xðz; lÞ ¼ l�1 0 f

E= f 0

� �

dz; ð2:2:10Þ

where f is a nonvanishing meromorphic function. We will always assume ED 0, i.e.

we will exclude the case that the surface is part of a round sphere. To construct a

CMC-immersion from a given meromorphic potential of the form (2.2.10), the functions

f and E cannot be chosen arbitrarily. They have to satisfy additional conditions, given

in [9].

The matrix g� and therefore also the frame F are uniquely determined by the

meromorphic potential and the initial condition (2.2.7).

From Equation (2.2.6) it follows that x transforms under dressing with hþ A

Lþ
r SLð2;CÞs as

hþ:x ¼ pþxp
�1
þ � dpþ:p

�1
þ : ð2:2:11Þ

Note that hþ:x is again o¤-diagonal and that the product of the o¤-diagonal terms of

hþ:x is again E. Thus E dz2, the Hopf di¤erential of the CMC-immersions Cl, is

invariant under dressing, and we can write

hþ:x ¼ l�1 0 hþ: f

E=ðhþ: f Þ 0

� �

dz: ð2:2:12Þ

2.3. In [8] we gave a detailed discussion of the transformation properties of

the meromorphic potential under a symmetry of the associated CMC immersion. We

summarize here those definitions and results of [8 ] which we will use in this paper.

Definition. Let Cl : D ! R
3 be an associated family of CMC immersion. We

define the group of symmetries of Cl as the set AutCl
DHAutD of biholomorphic

automorphisms g of D under which Cl transforms like

Cl � g ¼ Tðg; lÞ �Cl; ð2:3:1Þ

where Tðg; lÞ is in the group of proper Euclidean motions in R
3. It was shown in [8,

Proposition 2.4] that AutCl
D does not depend on l, i.e. AutCl

D ¼ AutC1
D ¼ AutC D

for all l A S1.

Theorem. Let Cl : D ! R
3 be an associated family of CMC immersion and

g A AutD. Then the following statements are equivalent:
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1. g A AutC D.

2. The extended frame F : D ! LSUð2Þs transforms under g like

F ðgðzÞ; lÞ ¼ wðg; lÞF ðz; lÞkðg; zÞ; ð2:3:2Þ

where w A LSUð2Þs is unitary and k : D ! LþUð1ÞHLSLð2;CÞs is a l-

independent diagonal matrix.

3. The map g� : D ! L�SLð2;CÞ obtained by the Birkho¤ splitting F ¼ g�gþ
transforms under g like

g�ðgðzÞ; lÞ ¼ wðg; lÞg�ðz; lÞrþðg; z; lÞ; ð2:3:3Þ

with w as above and rþ : D ! LþSLð2;CÞs.

If one of the three conditions above is satisfied, then the meromorphic potential x ¼

g�1
� dg� of Cl transforms under g like

g�x ¼ x � g � g1 ¼ r�1
þ xrþ þ r�1

þ drþ; ð2:3:4Þ

with rþ as in (2.3.3). Furthermore, the Euclidean motion Tðg; lÞ is given in the

spinor representation by conjugation with wðg; lÞ A SUð2Þ and subsequent addition of

ðdwðg; l ¼ e itÞ=dtÞwðg; lÞ�1
A suð2Þ.

Remark. 1. The proof of the theorem above can be found in Sections 2.3–2.6

of [8 ].

2. As was already remarked in [8 ], comparing Equations (2.3.4) and (2.2.11)

shows that as long as x is defined at gð0Þ, on the level of the meromorphic potential

a symmetry transformation amounts to a dressing transformation with the positive

Birkho¤ splitting part of the monodromy w.

3. Invariant holomorphic potentials.

In the last section we recollected the characterization of all meromorphic poten-

tials associated with CMC immersions admitting a given group G HAutD as group

of symmetries. Unfortunately, the condition (2.3.3) is di‰cult to verify. Therefore,

in this chapter we pursue another avenue. First we simplify (2.3.3).

3.1. In [11] it was shown that to each extended frame F : D ! LSUð2Þs there

exists a map Wþ : D ! LþSLð2;CÞs such that

H ¼ FWþ : D ! LSLð2;CÞs ð3:1:1Þ

is holomorphic. The di¤erential h ¼ H�1 dH is called holomorphic potential of F. As

opposed to the meromorphic potential, it is not uniquely determined by F. Without

loss of generality we will always normalize

Hðz ¼ 0; lÞ ¼ Wþðz ¼ 0; lÞ ¼ I : ð3:1:2Þ

The connection of h with the meromorphic potential x of F is given by

h ¼ V�1
þ xVþ þ V�1

þ dVþ; ð3:1:3Þ

Construction of non-simply connected CMC surfaces via dressing 341



where Vþ ¼ gþWþ, i.e. H ¼ FWþ ¼ g�Vþ. Thus, a holomorphic potential is always

of the form

h ¼
X

y

n¼�1

lnhn dz; hn : D ! slð2;CÞ; ð3:1:4Þ

where h�1 is of the form

h�1 ¼
0 qðzÞ

EðzÞ=ðqðzÞÞ 0

� �

ð3:1:5Þ

with a holomorphic function q : D ! C .

Conversely, given a holomorphic di¤erential h of the form (3.1.4) we can define a

map F : D ! LSUð2Þs by Iwasawa splitting of the solution H of

H�1 dH ¼ h; Hðz ¼ 0; lÞ ¼ I : ð3:1:6Þ

As was shown in [11, Lemma 4.2], F is the extended frame of a CMC immersion

C : D ! R
3 which may have branchpoints over D. From [9, Theorem A.8] there

follows a simple criterion under which condition on h the point z ¼ z0 A D is a

branchpoint of the associated immersion C :

Theorem. Let h ¼
P

y

n¼�1 l
nhn dz be a holomorphic potential and let C be the

corresponding CMC immersion constructed above. Moreover, define the holomorphic

function qðzÞ by (3.1.5). Then C has a branchpoint at z ¼ z0 A D if and only if

qðz0Þ ¼ 0.

Proof. Let H be the solution of (3.1.6) and define F ¼ HW�1
þ with some

Wþ : D ! LþSLð2;CÞs. Then, as in the proof of [9, Theorem A.8], it is easy to see

that the function q is given by

qðzÞ ¼ �
1

2
HeuðzÞ=2wðzÞ2; ð3:1:7Þ

where wðzÞ is defined by W0ðzÞ ¼ Wþðz; l ¼ 0Þ ¼
wðzÞ 0

0 wðzÞ�1

� �

and �ð1=2ÞHeuðzÞ=2

is the upper right entry of the l�1-coe‰cient of a ¼ F�1 dF . In particular, w is dif-

ferentiable without zeroes on D. Since wðzÞ0 0 for all z A D, and since eu is the real

metric factor of C (see the appendix of [9]), it is clear that the metric is singular at

z0 A D if and only if qðz0Þ ¼ 0. r

3.2. We start with the following simple observations:

Lemma. Let G HAutD and let h be a holomorphic potential such that g�h ¼ h

for all g A G . Then the following holds:

1. If H is the solution of (3.1.6) then HðgðzÞ; lÞ ¼ rðg; lÞHðz; lÞ, with rðg; lÞ ¼

Hðgð0Þ; lÞ A LSLð2;CÞs for all g A G .

2. The map r : G ! LSLð2;CÞs is a group homomorphism, i.e.

rðg2 � g1; lÞ ¼ rðg2; lÞrðg1; lÞ: ð3:2:1Þ
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3. If H ¼ FWþ, F A LSUð2Þs, Wþ A LþSLð2;CÞs, and r ¼ w A LSUð2Þs, then for

all g A G

F ðgðzÞ; lÞ ¼ wðg; lÞF ðg; lÞkðg; zÞ; ð3:2:2Þ

where kðg; zÞ is unitary and diagonal (and independent of l).

4. If r ¼ w A LSUð2Þs, then for the immersion ClðzÞ associated with F ¼ F ðz; lÞ

and all g A G we have

ClðgðzÞÞ ¼ wðg; lÞClðzÞwðg; lÞ
�1 �

1

2H

qwðg; l ¼ e itÞ

qt
� wðg; lÞ�1

: ð3:2:3Þ

Proof. The first two parts are clear. The third and fourth part follow from the

uniqueness of the Iwasawa splitting and Sym’s formula (2.2.1). r

Thus, we see that for g A AutD every automorphic meromorphic potential h ¼ g�h with

unitary monodromy r ¼ Hðgð0Þ; lÞ A LSUð2Þs gives a CMC immersion C such that

g A AutC D. Indeed, the following theorem shows that a large class of symmetric CMC

immersions can be obtained in this way.

Theorem. Let M ¼ GnD be a noncompact Riemann surface with Fuchsian group

G . Then every CMC immersion C : D ! R
3 with G HAutC D is induced by a holo-

morphic potential h satisfying

g�h ¼ h for all g A G : ð3:2:4Þ

Proof. The proof follows [11, Appendix]. We want to find a Vþ : D !

LþSLð2;CÞs such that H ¼ FVþ is holomorphic and satisfies

HðgðzÞ; lÞ ¼ wðg; lÞHðz; lÞ: ð3:2:5Þ

First we note that by (2.3.3)

g�ðgðzÞ; lÞ ¼ wðg; lÞg�ðz; lÞwþðz; lÞ

for some meromorphic wþ : D ! LþSLð2;CÞs. By [11, Lemma 4.5] there exists uþ :

D ! LþSLð2;CÞs such that

~HH ¼ g�uþ : D ! LSLð2;CÞs

is holomorphic. Hence,

~HH � g ¼ ðg� � gÞðuþ � gÞ ¼ wðgÞg�wþðuþ � gÞ

¼ wðgÞ ~HHu�1
þ wþðuþ � gÞ; ð3:2:6Þ

where pþ ¼ u�1
þ wþðuþ � gÞ is holomorphic. From [8, Theorem 2.3] we know that w

satisfies

wðg2 � g1; lÞ ¼Gwðg2; lÞwðg1; lÞ: ð3:2:7Þ

From this we see (also compare with [8, 2.5]) that pþ satisfies the cocycle identity

pþðg2g1; zÞ ¼Gpþðg1; zÞpþðg2; g1ðzÞÞ: ð3:2:8Þ
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In other words, for each l, pþð� ; lÞ
�1 is a (group)cocycle in Z1ðU;SLð2;OÞ=GIÞ

(notation as in [15]), where U ¼ ðUgÞg AG , Ug ¼ D, is a covering of M and O denotes

the sheaf of holomorphic functions on D.

Thus, by [15, Korollar 30.5], the cocycle pþð� ; lÞ
�1 splits, i.e. for each l there exists

a holomorphic map aðlÞ : D ! SLð2;CÞ=GI such that

pþðg; z; lÞ ¼Gaðz; lÞa�1ðgðzÞ; lÞ: ð3:2:9Þ

If we split a ¼ aþa� according to Birkho¤, then (3.2.9) implies a� � g ¼ a� and

aþ � g ¼ p�1
þ aþ. Therefore,

pþðg; z; lÞ ¼Gaþðz; lÞa
�1
þ ðgðzÞ; lÞ; ð3:2:10Þ

i.e., pþ splits in LþðSLð2;CÞ=GIÞs.

(More directly one can apply [Bungart [3]; Theorem 8.1])

By defining

Hðz; lÞ ¼ ~HHðz; lÞaþðz; lÞ ð3:2:11Þ

we get a G-automorphic LðSLð2;CÞ=GIÞs-valued holomorphic map H on D with

automorphy factors wðgÞ,

HðgðzÞ; lÞ ¼ wðgÞHðz; lÞ: ð3:2:12Þ

For the corresponding holomorphic potential h : D ! Lslð2;CÞs we then get

ðh � gÞg 0 ¼ h: ð3:2:13Þ

r

3.3. While h behaves well under G , the meromorphic potential x associated with

the CMC immersion in question is o¤-diagonal and does only contain one power of

l. The latter property is very restrictive and does in general prohibit x to satisfy (3.2.4),

but we can obtain the former for h in the sense of the following.

Proposition. Let h be as in Theorem 4.1. Then there exists a diagonal gauge

k ¼ kðz; lÞ A LSUð2Þs such that

~hh ¼ k�1hk þ k�1 dk ð3:3:1Þ

is o¤-diagonal. In this case we have

g�~hh ¼ k�1
~hhk; ð3:3:2Þ

where k ¼ kðg; lÞ is diagonal and satisfies

kðgðzÞ; lÞ ¼ kðg; lÞkðz; lÞ: ð3:3:3Þ

Proof. From (3.3.1) it follows that we need to have

diagðhÞ þ k�1 dk ¼ 0; ð3:3:4Þ

where we also want kðz ¼ 0; lÞ ¼ I . This di¤erential equation with initial condition has

a unique solution. Moreover, since g�ðdiagðhÞÞ ¼ diagðhÞ, (3.3.3) follows. From this

(3.3.2) is straightforward. r

Remark. In Section 5 we will exhibit a class of interesting examples for which h

is o¤-diagonal (i.e. k1 I ).
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3.4. We have seen in Section 2.3 that the crucial condition for g A AutD to be

a symmetry for a CMC immersion is that wðg; lÞ ¼ F ðgðzÞ; lÞF ðz; lÞ�1 is unitary and

z-independent. If the holomorphic potential h for a CMC immersion satisfies g�h ¼ h

for all g A G then

HðgðzÞ; lÞ ¼ rðg; lÞHðz; lÞ; ð3:4:1Þ

where r is z-independent but not necessarily unitary. Moreover, if Hðz; lÞ depends

analytically on l A C
�, all coe‰cients of r are analytic for l A C

�. In view of results

for CMC tori [12, 3] we accept h for which r turns into a unitary matrix after dressing

with some hþ.

3.5. Assume hþ defines a dressing from the r-circle then hþ:r is of the form

ðhþ:rÞðg; lÞ ¼ hþðlÞrðg; lÞhþðlÞ
�1
; ð3:5:1Þ

where g A G , jlj ¼ r. Moreover, if for some hþ A Lþ
r SLð2;CÞs, hþ:r ¼ w is unitary on

S1, then the eigenvalues tþðlÞ, t�ðlÞ of r are unimodular for all l A S1. In other

words, traceðrÞ is real and satisfies

4� traceðrðlÞÞ2b 0; for all l A S1
: ð3:5:2Þ

We will show in the Theorem below that under certain assumptions the converse

statement also holds true. In preparation of this we consider the eigenvalues of the

monodromy matrix r in more detail. Let tþ; t� denote the eigenvalues of the mono-

dromy matrix r ¼
a b

c d

� �

. Then

tG ¼ uG iv; ð3:5:3Þ

where

u ¼
1

2
traceðrÞ ¼

1

2
ðaþ dÞ; v ¼G

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� ðtraceðrÞÞ2
q

; ð3:5:4Þ

By assumption, we have that v is real on S1 and

det r ¼ tþt� ¼ u2 þ v2 ¼ 1: ð3:5:5Þ

Since r is analytic in l A C
�

traceðrÞ; u; and v2 are even holomorphic functions of l A C
�
: ð3:5:6Þ

Theorem. Let g A AutD and h be a holomorphic potential, which is holomorphic

for l A C
� and which satisfies g�h ¼ h. Let furthermore H be defined as in (3.1.6) and

set rðlÞ ¼ HðgðzÞ; lÞHðz; lÞ�1 ¼ Hðgð0Þ; lÞ. Assume further that rðlÞ is semisimple for

all l A S1. Then the following are equivalent:

1) There exists some 0 < ra 1 and hþ A Lþ
r SLð2;CÞs, such that w ¼ hþrh

�1
þ A

LrSUð2Þs.

2) There exists some 0 < ra 1 and hþ A Lþ
r SLð2;CÞs, such that the symmetry

group AutCðDÞ of the surface C obtained from h by dressing with hþ contains g.
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3) The eigenvalues of rðlÞ are unimodular for all l A S1.

4) The trace of r is real and satisfies 4� ðtraceðrðlÞÞÞ2b 0 for all l A S1.

If neither of b, c, nor v vanish identically, then the assumption that r is semisimple on S1

can be omitted.

Proof. We have already seen that 1) ) 3) ) 4) and 1) , 2) follows from

Theorem 2.3. It therefore su‰ces to show 4) ) 1).

Note that the assumptions imply that rðlÞ is holomorphic for all l A C
� and that

(3.5.6) holds. It is also easy to see that a function v can be defined via the binomial

series as a function on S1 which is in the algebra of functions considered in this paper

and satisfies equation (3.5.5). However, we want to show that such a function v is

actually holomorphic in S
�, an open, connected, and dense subset of C

�: Since by

assumption the holomorphic function v2 is real and nonnegative on S1, it cannot have

zeroes of odd order on S1. Thus

v2 ¼
Y

m

j¼1

ðl� ljÞ
2kj

 !

s ð3:5:7Þ

where l1; . . . ; lm are all the roots of v2 on S1. Clearly, s is analytic on C
�, whence

s A A. By construction, s does not vanish on S1. Therefore, in the algebra A we

have the decomposition

s ¼ c0s�l
rsþ ð3:5:8Þ

where sþ is holomorphic inside the unit disc and does not vanish there, while s� is

holomorphic outside the unit disc, including l ¼ y, and does not vanish there. More-

over, sþ ¼ 1þ ls1 þ � � � and s� ¼ 1þ ls�1 � � � and c0 A C . Thus v2 can be written

v2 ¼ s1s2; s1 ¼ c0l
r
Y

m

j¼1

ðl� ljÞ
2kj
; s2 ¼ s�sþ: ð3:5:9Þ

We evaluate the condition that v2 is real on S1:

v2 ¼ c0l
�r
Y

m

j¼1

ðl�1 � l�1
j Þ2kj � s�sþ ¼ c0l

�rl�T2kj
Y

m

j¼1

l
�2kj
j

Y

m

j¼1

ðl� ljÞ
2kj s�sþ

¼ c0l
r
Y

m

j¼1

ðl� ljÞ
2kj s�sþ ¼ v2:

Comparing the last two products we obtain equivalently

r ¼ �
X

m

j¼1

kj; s� ¼ sþ; c0 ¼ c0
Y

m

j¼1

l
2kj
j : ð3:5:10Þ

Altogether, (3.5.9) and (3.5.10) describe equivalently that v2 is real on S1 and does

not change the sign there. Finally, using in addition that v2 is even in l we see

r is even: ð3:5:11Þ
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It is well-known (and easy to see) that sþ and s� can be written in the form sþ ¼
exp hþ, s� ¼ exp h� with hþ; h� A A. Therefore, ~ssþ ¼ expð1=2Þhþ and ~ss� ¼ expð1=2Þh�
are roots of sþ and s� respectively. Due to (3.5.10) a root of s1 is given by

~ss1 ¼
ffiffiffiffiffi

c0
p

l r=2
Y

m

j¼1

ðl� ljÞkj : ð3:5:12Þ

This shows altogether

v ¼ ~ss1~ss2 A A is holomorphic on S
� ð3:5:13Þ

where S
� is a connected, open and dense subset of C

� containing an open neigh-

bourhood of S1. Moreover, of every circle parallel to the unit circle, S � contains all

but finitely many points. One can obtain such an S
� as follows: for every root of sþ

(which lies necessarily outside of the unit disk) one removes the geodesic segment

between the root and the point at infinity from the Riemann sphere, and for every root

of s� (which sits necessarily inside of the unit disk) one removes the geodesic segment

from the root to 0 from the Riemann sphere. Note that actually S
� is invariant under

reflection in S1.

And in view of (3.5.6) we have in addition

v is even or odd in l: ð3:5:14Þ
Let us consider first the case, where the function b � c � v vanishes identically on S

�.
If b ¼ 0, then d ¼ a on S1 and this function has absolute value 1 there. If a ¼ a, then

c ¼ 0, since r is assumed to be semisimple and the claim is obvious. If a0 a, then we

choose 0 < ra 1, so that a� a0 0 on Cr. Now the matrix

Y ¼ 1 0

c=ða� aÞ 1

� �

ð3:5:15Þ

is contained in LrSLð2;CÞs and satisfies r ¼ YDY�1 with D ¼ diagða; a�1Þ.
Iwasawa splitting on the circle Cr gives Y�1 ¼ Uhþ, with hþ A Lþ

r SLð2;CÞs and

U A LrSUð2Þs, whence

h�1
þ whþ ¼ r; ð3:5:16Þ

with

w ¼ U�1DU A LrSUð2Þs; ð3:5:17Þ

proving the statement in the first case.

Assume next c ¼ 0. In this case one can argue as above and the claim follows.

Finally, assume v ¼ 0. In this case tþ ¼ t� ¼G1 and r ¼ tþI , since r is semi-

simple. Again, the claim is trivial in this case.

Assume now b � c � v does not vanish identically.

We choose 0 < ra 1 such that the holomorphic function b � c � v has no zeroes

on the circle Cr. Note that this implies u� iv� a0 0 on the circle Cr. Otherwise

t�ðl0Þ ¼ aðl0Þ or tauþðl0Þ ¼ aðl0Þ for some jl0j ¼ r. The characteristic equation

ða� tÞðd � tÞ � bc ¼ 0 then yields a contradiction, since we have chosen r so that

bc0 0 on the circle of radius r.
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1. Assume first that v is even. If we set

Y ¼ ðuþ iv� dÞ=ð2ivÞ b=ðu� iv� aÞ
c=ð2ivÞ 1

� �

ð3:5:18Þ

then Y A LrSLð2;CÞs and a direct computation shows that Y satisfies

r ¼ YDY�1; ð3:5:19Þ

where, by (3.5.5)–(3.5.13),

D ¼ uþ iv 0

0 u� iv

� �

A LrSUð2Þs: ð3:5:20Þ

Iwasawa splitting at the circle Cr gives Y�1 ¼ Uhþ, with hþ A Lþ
r SLð2;CÞs and

U A LrSUð2Þs, whence

h�1
þ whþ ¼ r; ð3:5:21Þ

with

w ¼ U�1DU A LrSUð2Þs; ð3:5:22Þ

proving the statement in the first case.

2. Assume now that v is an odd holomorphic function of l. The function

f 2ðlÞ ¼ ibðlÞvðlÞ is even and holomorphic on S
� without zeroes on Cr. It

follows that f ¼
ffiffiffiffiffiffi

ibv
p

is a holomorphic function of l on S
��, which is either

even or odd. The open dense subset S
��
HS

� of C
� can be defined similar

to the set S
�. However, S

�� does contain an open neighbourhood of Cr,

but may not contain S1, since some of the cuts may start on S1. If f is even

we set

Y ¼ i

f

0 b

iv u� a

� �

: ð3:5:23Þ

If f is odd we set

Y ¼ 1

f

b 0

u� a iv

� �

: ð3:5:24Þ

In both cases Y A LrSLð2;CÞs and

r ¼ YVY�1; ð3:5:25Þ

where, by (3.5.5)–(3.5.13),

V ¼ u iv

iv u

� �

A LrSUð2Þs: ð3:5:26Þ

Iwasawa splitting at the circle Cr gives Y�1 ¼ Uhþ, with hþ A Lþ
r SLð2;CÞs and

U A LrSUð2Þs. Then,

h�1
þ whþ ¼ r; ð3:5:27Þ
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with

w ¼ U�1VU A LrSUð2Þs; ð3:5:28Þ

proving the statement in the case of odd v. r

Corollary 1. Under the assumptions of the Theorem and with the notation used

in its proof, the matrices D and V are holomorphic in S
� and Y is meromorphic on S

��.

Moreover, hþ and U are meromorphic on some open dense subset of C
�.

Proof. First note that the coe‰cients of r and the function u are holomorphic in

C
�. Moreover, v is holomorphic in S

� by (3.5.13). Since f is holomorphic in S
��—

for a definition see the proof above—, Y is meromorphic on S
�� in all cases and does

not have any singularities on the circle jlj ¼ r. Since detY ¼ 1, the same holds for

Y�1. Consider next the Iwasawa decomposition of Y�1, Y�1 ¼ Uhþ. Since hþ is

holomorphic for 0 < jlj < r, we see that U has a meromorphic extension to S
��
V

f0 < jlj < rg. Since U is holomorphic for r < jlj < r�1, we derive that U has a

meromorphic extension to S
��
V f0 < jlj < r�1g, and it is nonsingular on S1. The

unitarity condition for U finally implies that U is meromorphic on an open dense

subset of C
�. As a consequence, also hþ is meromorphic on some open dense subset

of C
�. r

Corollary 2. We retain the assumptions of Corollary 1 and consider w as defined

in the proof of Theorem 3.5. Then w;U ;V and D have meromorphic extensions to some

open dense subset of C
� and are holomorphic in a neighbourhood of S1.

Proof. From Corollary 1 above we know that w and U are meromorphic in some

open dense subset of C
� and that V and D are holomorphic in S

�. In particular, V

and D are holomorphic on a neighbourhood of S1. Since U ; w A LrSUð2Þs, the last

claim follows. r

3.6. In the last section we gave a necessary and su‰cient condition for the trace

of the monodromy matrix r A LSLð2;CÞs of an invariant holomorphic potential h

to produce an associated family of CMC immersions Cl with invariant metric after

dressing. For the immersion Cl to factor through M ¼ GnD we need additional con-

ditions.

Theorem. We retain the assumptions of Theorem 3.5. Then for any hþ A

LrSLð2;CÞs, 0 < ra 1, such that w ¼ hþrh
�1
þ A LrSUð2Þs and any l0 A S1 the following

are equivalent:

1. The surface Cl0
factors through g, i.e. Cl0

� g ¼ Cl0
.

2. wðl0Þ ¼GI and
dw

dl

�

�

�

�

l¼l0

¼ 0.

3. traceðrÞ2 � 4 has a zero of at least fourth order at l ¼ l0.

If the matrix Y as used in the proof of Theorem 3.5 is nonsingular at l ¼ 1, then 2. is

equivalent with

4. rðl0Þ ¼GI and
dr

dl

�

�

�

�

l¼l0

¼ 0.
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Proof. 1. ) 2.: The assumption implies for l ¼ l0 : w � cðzÞ � w
�1 þ ðd=dtÞw �

w�1 ¼ cðzÞ for all z. Then both, the z-derivative of c and the z-derivative of c

commute with wðl0Þ and wðl0Þ ¼GI follows. But then we also obtain ðd=dtÞw ¼ 0

at l ¼ l0. 2. ) 1.: Clear from the formula above. 2. , 3.: Using (3.5.16), (3.5.21)

and (3.5.27) we have
w ¼ U�1 � B �U ð3:6:1Þ

with U and B A fD;Vg holomorphic in an open neighbourhood of S1. Hence

wðl0Þ ¼GI , Bðl0Þ ¼GI : ð3:6:2Þ

We recall that w and r have the same eigenvalue functions. Therefore, the last

statement is equivalent with

4vðl0Þ
2 ¼ 4ð1� uðl0Þ

2Þ ¼ 4� ðtraceðrðl0ÞÞÞ
2 ¼ 0: ð3:6:3Þ

Let . . . 0 denote di¤erentiation with respect to l. Then under the assumption (3.6.2) we

obtain by di¤erentiating (3.6.1):

w 0ðl0Þ ¼ Uðl0ÞB
0ðl0ÞUðl0Þ

�1: ð3:6:4Þ

From the form of B we conclude that Bðl0Þ ¼GI and B 0ðl0Þ ¼ 0 imply that v has a

zero of at least second order at l0. This in turn shows that v2 ¼ 4� ðtraceðrÞÞ2 has a

zero of at least fourth order at l0. Conversely, if v2 has a zero of at least fourth order

at l0, then v and v 0 vanish at l0 and uðl0Þ
2 ¼ 1� vðl0Þ

2 ¼ 1, proving Bðl0Þ ¼GI and

B 0ðl0Þ ¼ 0: This shows 2. , 3. r

4. Dressing from S1 and symmetries.

4.1. We would like to construct complete CMC-immersions of cylinders. In

Theorem 5.3 we will show that dressing (¼1-dressing) preserves completeness. Therefore

we would like to obtain a result similar to Theorem 3.5 for the case r ¼ 1. It is easy

to verify that in Theorem 3.5 the implications 1) , 2) ) 3) ) 4) are true for any fixed

0 < ra 1. The conclusion 4) ) 1) seems to require additional assumptions if one

insists on r ¼ 1.

Theorem. Let g A AutD and h be a holomorphic potential, which is holomorphic

for l A C
� and which satisfies g � h ¼ h. Furthermore, let H be defined as in (3.1.6)

and set rðlÞ ¼ HðgðzÞ; lÞHðz; lÞ�1 ¼ Hðgð0Þ; lÞ. Assume that rðlÞ satisfies the follow-

ing conditions for every l A S1:

rðlÞ is semisimple ð4:1:1Þ

traceðrðlÞÞ is real ð4:1:2Þ

4� ðtraceðrðlÞÞÞ2b 0 ð4:1:3Þ

For every root l0 A S1 of v2 ¼ 1�
1

2
traceðrðlÞÞ

� �2

; the matrix

1�
1

2
traceðrðlÞÞ

� �2
 !�1=2

ðrðlÞ � rðl0ÞÞ has all coe‰cients in A: ð4:1:4Þ

Then there exists some hþ A LþSLð2;CÞs such that w ¼ hþrh
�1
þ A LSUð2Þs.
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Remark. Note that in this Theorem, stronger than in Theorem 3.5, hþ is defined

on the circle with radius 1.

Proof. The main objective of the proof is to show that the matrices Y used in

the proof of Theorem 3.5 are still in LSLð2;CÞs under the conditions listed above.

We say that rðlÞ and ~rrðlÞ are equivalent if there exist finitely many matrices

h1; . . . ; hN of the form h�ðlÞ ¼
1 t�l

0 1

� �

or h�ðlÞ ¼
1 0

t�l 1

� �

such that ~rrðlÞ ¼

h1ðlÞ � � � hNðlÞrðlÞhNðlÞ
�1 � � � h1ðlÞ

�1. Clearly, (4.1.1), (4.1.2) and (4.1.3) are invariant

under conjugation with any matrix in LSLð2;CÞs. Moreover, since v2, and therefore

v (3.5.4), is independent of conjugation, also the condition (4.1.4) is independent of

conjugation. In view of 1) and h� A LþSLð2;CÞs for all choices of h� considered, it

su‰ces to prove the claim for any ~rr equivalent with r.

First we consider the case where in the notation of the proof of Theorem 3.5

we have v ¼ 0, i.e., u ¼ e ¼G1. Since r is semisimple this implies rðlÞ ¼ eI . But then

r is already unitary and our claim holds trivially. Therefore, from now on we will

assume v0 0.

For our argument it will be convenient to have the following two transformation

formulas available

1 tl

0 1

� �

a b

c d

� �

1 �tl

0 1

� �

¼
aþ tlc b� ðtlÞ2cþ ðtlÞðd � aÞ

c d � tlc

 !

; ð4:1:5Þ

1 0

sl 1

� �

a b

c d

� �

1 0

�sl 1

� �

¼
a� slb b

c� ðslÞ2bþ ðslÞða� dÞ d þ slb

� �

: ð4:1:6Þ

Using the notation of the proof of Theorem 3.5 we assume that l0 is a root of v. Then

uðl0Þ ¼ e ¼G1, whence tG ¼ e. Since rðl0Þ is semisimple, rðl0Þ ¼ eI . This implies

aðl0Þ ¼ dðl0Þ ¼ e and bðl0Þ ¼ cðl0Þ ¼ 0. Since rðlÞ is analytic in l we can write

aðlÞ ¼ eþ ðl� l0Þ
a
~aa; dðlÞ ¼ eþ ðl� l0Þ

d ~dd

bðlÞ ¼ ðl� l0Þ
b~bb; cðlÞ ¼ ðl� l0Þ

g
~cc

ð4:1:7Þ

where a; b; g; d are positive integers and ~aa; ~dd; ~bb; ~cc are either non-zero at l0 or identically

zero as functions of l.

The condition det rðlÞ ¼ 1 is equivalent with

eðl� l0Þ
d ~ddðlÞ þ eðl� l0Þ

a
~aaðlÞ þ ðl� l0Þ

aþd
~aaðlÞ ~ddðlÞ ¼ ðl� l0Þ

bþg~bbðlÞ~ccðlÞ: ð4:1:8Þ

We will distinguish the following cases:

1:b ¼ 0; 2:c ¼ 0; 3:a ¼ e; 4:d ¼ e; 5:~aa; ~bb; ~cc; ~dd0 0: ð4:1:9Þ

Let us consider the case (1). Here (4.1.8) reduces to

eðl� l0Þ
d ~ddðlÞ þ eðl� l0Þ

a
~aaðlÞ þ ðl� l0Þ

aþd
~aaðlÞ ~ddðlÞ ¼ 0: ð4:1:10Þ

If in addition ~aa ¼ 0, then also ~dd ¼ 0. Therefore, r is of the form rðlÞ ¼
e 0

cðlÞ e

� �

.
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This implies u ¼ e and v ¼ 0, a contradiction. Similarly ~dd ¼ 0 is impossible. But now

~aa0 0, ~dd0 0 implies a; d < aþ d, whence ~aa ¼ 0 or ~dd ¼ 0, showing that the case (1) does

not occur. Similarly one sees that the case (2) does not occur. Let us assume from

now on b0 0 and c0 0. If ~aa ¼ 0, then (4.1.8) reduces to

eðl� l0Þ
d ~ddðlÞ ¼ ðl� l0Þ

bþg~bbðlÞ~ccðlÞ: ð4:1:11Þ

Similarly, if ~dd ¼ 0, then (4.1.8) reduces to

eðl� l0Þ
a
~aaðlÞ ¼ ðl� l0Þ

bþg~bbðlÞ~ccðlÞ: ð4:1:12Þ

In particular, in both cases, ~aa ¼ ~dd ¼ 0 is impossible.

Our goal is to show that hþrh
�1
þ ¼ w is unitary for all l A S1 if we choose

hþ A LþSLð2;CÞs properly. For this purpose we can replace r by any LþSLð2;CÞs-

conjugate of r. We know b0 0 and c0 0. We want to obtain w.r.g. b ¼ g0 0. If

g < b, then we use (4.1.5) and see that the right upper coe‰cient is of the form

�t2l20ðl� l0Þ
g
~ccþ tl0fðl� l0Þ

d ~dd � ðl� l0Þ
a
~aag

þ ðl� l0Þ
b~bbþ higher order in ðl� l0Þ: ð4:1:13Þ

Therefore, the new coe‰cient ‘‘b’’ in the matrix ~rr ¼ hþ rh�1
þ has order ~bba g, where t

can be chosen arbitrary in an open and dense set in C (more precisely in C or in

C nfpt:g).

If b < g then the analogous argument using (4.1.6) shows ~gga b.

Iterating this procedure if necessary we thus can assume

0 < b ¼ g and the value of b ¼ g cannot be decreased by transformations

of the form ð4:1:5Þ or ð4:1:6Þ: ð4:1:14Þ

From (4.1.7) we obtain that d � a can be written in the form

d � a ¼ ðl� l0Þ
s
~qqðlÞ; where s ¼ minða; dÞ if a0 d and sb a ¼ d otherwise: ð4:1:15Þ

Since b ¼ g is minimal, an additional application of (4.1.5) shows

sb b ¼ g and a; da b ¼ g: ð4:1:16Þ

Since b ¼ g > 0, ~aa ¼ 0 now yields a contradiction in view of (4.1.10). Similarly,
~dd ¼ 0 is impossible. Therefore only case (5) above needs to be considered. Assume

a ¼ minfa; dg and 0 < a < b ¼ g. Then we write a ¼ eþ ðl� l0Þ
aða0 þ �aaðlÞÞ and d ¼

eþ ðl� l0Þ
dðd0 þ �ddðlÞÞ. Then (4.1.8) yields a0 ¼ 0, if a0 d, a contradiction, and

a0 þ d0 ¼ 0 if a ¼ d. Since sb b ¼ g we also have a0 � d0 ¼ 0. Therefore, a0 ¼ d0 ¼

0, a contradiction. The analogous argument in the case d ¼ minfa; dg yields the same

result. As a consequence we obtain

a ¼ d ¼ b ¼ g: ð4:1:17Þ

Now (4.1.8) implies ~aaðlÞ þ ~ddðlÞ ¼ ðl� l0Þ
r
~rrðlÞ, where rb 2a. Therefore u ¼ eþ

ð1=2Þðl� l0Þ
r
~pp and 1� u2 ¼ eðl� l0Þ

r
~ppðlÞ þ higher order. Since 1� u2 has an ana-

lytic square root (3.5.12), r is even and v ¼ ðl� l0Þ
r=2

p̂pðlÞ, where r=2b a. Assumption

(4.1.4) now implies r=2 ¼ a.
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This enables us now to prove our claim.

1. Assume that v is an even function of l. Consider the matrix Y given in

(3.5.15). We need to show that ðuþ iv� dÞ=ð2ivÞ, b=ðu� iv� aÞ and c=ð2ivÞ

are in A and that the first of these functions is even in l while the last two are

odd in l. This last statement is obvious. To prove the first one we note

that u� d ¼ ð1=2Þða� dÞ ¼ ð1=2Þðl� l0Þ
að~aaðlÞ � ~ddðlÞÞ has degreeb a at l0,

while v has degree a. Similarly one sees that c=ð2ivÞ has degree 0 at l0. We

claim that we can assume that u� iv� a ¼ ð1=2Þðd � aÞ � iv has degree a at

l0. From (4.1.5) we see that we can replace the ðl� l0Þ
a-coe‰cient in a

by a0 þ tl0c0 and in d by d0 � tl0c0. Therefore, ð1=2Þðd � aÞ has ðl� lÞa-

coe‰cient ð1=2Þðd0 � a0 � 2tl0c0Þ and can be assumed to be di¤erent from

iv0. As a consequence, all coe‰cients of Y are defined at l0 and analytic in l.

2. If v is odd, then we consider the matrices given in (3.5.20) and (3.5.21). We

need to show that b=f , v=f and ðu� aÞ=f , f 2 ¼ ibv, are in A and are even or

odd as required. The latter statement is easily verified. For the first we note

that f 2 has degree 2a at l0, whence f has degree a at l0, making b=f and v=f

defined at l0 and analytic in l. Since also u� a ¼ ð1=2Þðd � aÞ has degree a at

l0, Y is defined at l0 and analytic in l.

It is easy to verify that the arguments above can be carried out simul-

taneously at all the finitely many roots of v on S1, whence

Y A LSLð2;CÞs; D A LSUð2Þs:

From this point on we continue as in the proof of Theorem 3.5. r

4.2. From [9, Theorem A8] we see that the coe‰cients of h cannot all be odd

functions of z. But it is possible that these coe‰cients are all even in z.

Theorem. Let h be a holomorphic potential of the form h ¼
0 Aðz; lÞ

Bðz; lÞ 0

� �

satisfying j0 � h ¼ �h where j0ðzÞ ¼ �z. Then j0 � h ¼ RhR�1, where R ¼ is3, and

we have Hð�z; lÞ ¼ RHðz; lÞR�1. If g A AutD is a translation, g:z ¼ zþ q and sat-

isfies g�h ¼ h, then Hðg:z; lÞ ¼ rðlÞHðz; lÞ. Moreover, rðlÞ�1 ¼ RrðlÞR�1, Fð�z; lÞ ¼

RFðz; lÞR�1 and cð�z; lÞ ¼ Rcðz; lÞR�1, where the last expression describes a rotation

around the e3-axis in R
3 by the angle p.

Proof. The relation RhR�1 ¼ �h is obvious for R ¼ is3. But then R�1j0 � hR ¼

h, and R�1Hð�z; lÞR ¼ LHðzÞ follows. Evaluating this relation at z ¼ 0 yields L ¼ I .

If g A AutD satisfies g�h ¼ h, then Hðg:z; lÞ ¼ rðlÞHðq; lÞ. Using that g is a translation

we see rðlÞ ¼ Hðq; lÞ, whence rðlÞ�1 ¼ Hð�q; lÞ ¼ RrðlÞR�1. Moreover, since R is

unitary and independent of l, the remaining statements follow by a straightforward

argument. r

Proposition. Let h be a holomorphic potential of the form h ¼
0 Aðz; lÞ

Bðz; lÞ 0

� �

satisfying j0 � h ¼ �h. Let ~hh ¼ hþhh
�1
þ , hþ A LSLð2;CÞs, be a potential obtained from h

by dressing. Then j0 � ~hh ¼ �~hh and ~HHð�z; lÞ ¼ ~RR ~HHðz; lÞ ~RR�1, where d ~HH ¼ ~HH~hh, ~HHð0; lÞ ¼
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I , and ~RR ¼ hþRh�1
þ . If g is as in the Theorem above, then ~HHðg:z; lÞ ¼ ~rrðlÞ ~HHðz; lÞ and

~rrðlÞ�1 ¼ ~RR~rrðlÞ ~RR�1 where ~rrðlÞ ¼ hþðlÞrðlÞhþðlÞ
�1.

Proof. Clearly, j0 � ~hh ¼ j0 � ðhþhh
�1
þ Þ ¼ hþð j0 � hÞh

�1
þ ¼ �hþhh

�1
þ ¼ �~hh. More-

over, ~HHðz; lÞ ¼ hþHðz; lÞh�1
þ satisfies d ~HH ¼ hþðdHÞh�1

þ ¼ hþHhh�1
þ ¼ ~HH~hh

and ~HHðz ¼ 0; lÞ ¼ I . Moreover, ~HHð�z; lÞ ¼ hþHð�z; lÞh�1
þ ¼ hþRHðz; lÞR�1h�1

þ ¼
~RR ~HHðz; lÞ ~RR�1. Finally, ~HHðg:z; lÞ ¼ hþHðg:z; lÞh�1

þ ¼ hþrHh�1
þ ¼ ~rr ~HH and ~rrðlÞ�1 ¼

hþrðlÞ
�1
h�1
þ ¼ hþRrðlÞR

�1h�1
þ ¼ ~RR~rrðlÞ ~RR�1. r

Remark. The Proposition is an immediate consequence of the Theorem. How-

ever, since ~RR is no longer unitary, the last statements of the Theorem above are in

general no longer valid for ~FF and ~cc.

5. Examples.

Next, we want to exhibit concrete examples of invariant potentials, for which the

assumptions of Theorem 3.5 or Theorem 4.1 and Theorem 3.6 are satisfied.

5.1. To this end we consider holomorphic potentials of the form

h0 ¼
0 f ðzÞ

gðzÞ 0

� �

w dz; w ¼ cosðtÞ ¼
1

2
ðl�1 þ lÞ; ð5:1:1Þ

with entire functions f and g which are periodic and real on the real axis, i.e.

f ðzÞ ¼ f ðzÞ; gðzÞ ¼ gðzÞ ð5:1:2Þ

and

f ðzþ LÞ ¼ f ðzÞ; gðzþ LÞ ¼ gðzÞ; L A R
þ
: ð5:1:3Þ

In other words, we consider the group G ¼ LZHAutC acting as a group of trans-

lations on the complex plane.

Theorem. Let h0 be defined as above.

1) If

ðL

0

f ðzÞ dz �

ðL

0

gðzÞ dz < 0 ð5:1:4Þ

then there exists hþ A Lþ
r SLð2;CÞs, 0 < ra 1, such that for Cl defined by

dressing h0 with hþ we have G HAutCl
C . Furthermore, for l ¼Gi we have

CGiðzþ LnÞ ¼ CGiðzÞ þ nV ; ð5:1:5Þ

for some V A R
3 and all n A Z.

2) If

ðL

0

f ðzÞ dz �

ðL

0

gðzÞ dz ¼ 0 ð5:1:6Þ

and
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ðL

0

f ðzÞ

ð z

0

gðz 0Þ

ð z 0

0

f ðz 00Þ

ð z 00

0

gðz 000Þ dz 000 � � � dz

þ

ðL

0

gðzÞ

ð z

0

f ðz 0Þ

ð z 0

0

gðz 00Þ

ð z 00

0

f ðz 000Þ dz 000 � � � dz < 0 ð5:1:7Þ

then there exists hþ A Lþ
r SLð2;CÞs, 0 < ra 1, such that for Cl defined by

dressing h0 with hþ we have G HAutCl
C . Furthermore, for l ¼Gi we have

CGiðzþ LnÞ ¼ CGiðzÞ; ð5:1:8Þ

for all n A Z.

Proof. Since G is generated by g : z ! zþ L, we restrict our attention to g.

By (5.1.2) we know that H defined by (3.1.6) has real entries for z A R and l A S1.

Thus, the monodromy rðlÞ ¼ HðL; lÞ and its trace are real valued for all l A S1.

Obviously, h0 and r are entire functions of w ¼ ð1=2Þðlþ l�1Þ. Since the trace of r

is even in l it depends only on w2. Therefore, we may expand traceðrÞ into a power

series with respect to w2. Since h0ðw ¼ 0Þ1 0, we have Hðz;w ¼ 0Þ1 I , whence

traceðrÞðw ¼ 0Þ ¼ 2. The expansion therefore looks like

traceðrÞ ¼ 2þ a1w
2 þ a2w

4 þ � � � : ð5:1:9Þ

A simple calculation gives that a1 is the left hand side of (5.1.4) and (5.1.6), and that

a2 is the left hand side of (5.1.7). Thus, if we restrict traceðrÞðwÞ to the real axis in

the w-plane, then in an interval I around w ¼ 0 we have 4� traceðrÞðwÞ2b 0, i.e. the

eigenvalues are unimodular for w A I . If we define the Riemann surface C
0 by

ðm 0Þ2 ¼ traceðrðwÞÞ2 � 4; w A C ; ð5:1:10Þ

then the eigenvalues of rðwÞ combine to a holomorphic function t 0 on C
0. The function

f ðwÞ ¼ t 0ðwÞt 0ðwÞ � 1 is holomorphic on C
0 and vanishes over I . Thus, f ðwÞ1 0 on

C
0. In particular, this implies that the eigenvalues of rðwÞ are unimodular for all

w A ½�1; 1�, i.e. for all l A S1.

Therefore, in both parts of the theorem, the conditions of part 3) of Theorem 3.5

are satisfied for our h0. Thus, there exists 0 < ra 1 and hþ A Lþ
r SLð2;CÞs, such that

the surfaces Cl obtained by dressing h0 with hþ contain G in their symmetry group

AutCl
C , if we can show that neither b; c nor v vanish identically.

But by assumption a1 0 0 or a2 0 0, whence v0 0 in both cases. To see that

neither b nor c vanish identically we consider the expansion

HðL;wÞ ¼ I þ w

ðL

0

h0ðzÞ dzþ w2

ðL

0

h0ðzÞ

ð z

0

h0ðz
0Þ dz 0dzþ � � � : ð5:1:11Þ

In the first case the coe‰cient at w yields what we want. In the second case we assume

w.l.g. that
Ð L

0 ðzÞ dz ¼ 0 holds. Then rewriting the first summand by iterated integra-

tions by part we obtain for the leftside of (5.1.7) the expression

ðL

0

gðzÞ

ð z

0

f ðz 0Þ dz 0dz

� �2

þ

ðL

0

gðzÞ dz �

ðL

0

f ðz 0Þ

ð z 0

0

gðz 00Þ

ð z 00

0

f ðz 000Þ dz 000dz 00dz 0: ð5:1:12Þ
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Since this needs to be negative by assumption, the second summand does not vanish.

But this shows that both, b and c do not vanish identically. Therefore Theorem 3.5 is

applicable.

Since in addition rðw ¼ 0Þ ¼ rðl ¼GiÞ ¼ I we have that wðGiÞ ¼

hþðGiÞrðGiÞh�1
þ ðGiÞ ¼ I . Sym’s formula (2.2.1) then gives (5.1.5) with V ¼

�ð1=ð2HÞÞðdwðl ¼ e itÞ=dtÞjl¼GiwðGiÞ�1. This proves the first part.

For the second part, by Theorem 3.6, it only remains to prove that T ¼

traceðrÞ2 � 4 has a zero of at least fourth order at l ¼Gi. An elementary calculation

shows that the first nonvanishing derivative of T with respect to l at l ¼Gi coincides

with the first nonvanishing derivative of T with respect to w at w ¼ 0. However, by the

power series expansion (5.1.9) it is clear that T has a zero of fourth order at w ¼ 0,

which finishes the proof. r

5.2. To construct examples we first note that there are infinite dimensional

families of periodic real functions f and g such that either (5.1.4) or (5.1.6) is sat-

isfied. To avoid branched immersions we restrict our attention to f ¼ A ¼ const: with

A A Rnf0g. Then condition (5.1.6) reduces to

a1 ¼

ðL

0

gðzÞ dz ¼ 0 ð5:2:1Þ

and (5.1.7) reduces to

a2 ¼

ðL

0

ð z

0

gðz 0Þ

ð z 0

0

ð z 00

0

gðz 000Þ dz 000 � � � dzþ

ðL

0

gðzÞ

ð z

0

ð z 0

0

gðz 00Þ

ð z 00

0

dz 000 � � � dz < 0: ð5:2:2Þ

In fact, if we set f ¼ A, g ¼ B cosð2pz=LÞ, A;B A Rnf0g, then a simple calculation gives

a1 ¼ 0, a2 ¼ �ð1=2ÞðABLÞ2 < 0. The conditions of Theorem 5.1, part 2), are therefore

satisfied for all constants A;B. Since f has no zeroes in C each holomorphic potential

in the dressing orbit of h0 generates an unbranched immersion under the construction

of [11]. By Theorem 5.1 there exists a holomorphic potential h in the r-dressing orbit

of h0 such that the associated CMC immersion Ci factors through the group G ¼ LZ.

In other words, h describes a CMC surface which is a topological cylinder. In each

fundamental domain of G there are precisely two zeroes of g. Thus, the surface Ci has

two umbilics, located at Ci ðGL=4Þ. Altogether this proves

Theorem. Let A;B A Rnf0g and h0 ¼ W
0 A

B cosð2pz=LÞ 0

� �

dz, w ¼

ð1=2Þðlþ l�1Þ. Then (5.1.6) and (5.1.7) are satisfied. Hence there exists some 0 <

ra 1 and some hþ A Lþ
r SLð2;CÞs such that for cl defined by dressing h0 with hþ we

have G ¼ LZHAutcl
C . Moreover, cGi is a CMC-immersion of the cylinder C=G with

umbilics at z ¼ L=4 and z ¼ 3L=4.

Remark. 1. We would like to point out that the associated family of the CMC-

immersion c0ðz; lÞ, associated with h0 has according to Theorem 4.2 the additional

symmetry

c0ð�z; lÞ ¼ Rp
3 ðc0ðz; lÞÞ; ð5:2:3Þ
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where Rp

3 is the rotation around the e3-axis in R
3 by the angle p. In the spinor

representation it corresponds to conjugation with R ¼ diagði;�iÞ.

2. Since the condition (5.2.1) is satisfied for all linear combinations of sinð2pnz=LÞ

and cosð2pnz=LÞ, n A N , we can perturb cosð2pz=LÞ inside an infinite dimensional space

of real periodic functions such that both conditions (5.2.1) and (5.2.2) are satisfied.

This construction therefore proves the existence of an infinite dimensional family of

CMC cylinders with umbilics.

3. Since the original submission of this paper, Martin Kilian [24] has found many

more CMC-cylinders with umbilics along the lines of the example above (see also [25]).

5.3. In section 5.5 we will sharpen 5.2 and prove the completeness of the con-

structed surfaces. To this end we start with the following result which is interesting in

its own right:

Theorem. Let C : D ! R
3, D being the complex plane or the open unit disk,

be a complete CMC immersion. Then all surfaces in the same r ¼ 1-dressing orbit are

complete.

Proof. Let F : D ! LSUð2Þ
s
be the extended frame for the immersion C . By

(2.2.4), for each hþ A L
þSLð2;CÞ

s
the extended frame ~FF for the dressed surface is given

by

~FF ¼ hþFpþ; ð5:3:1Þ

where pþ is a map from D into L
þSLð2;CÞ

s
such that wðzÞ, the upper left entry of the

l
0-coe‰cient of pþðz; lÞ, is a positive real number. It follows that

~FF�1 d ~FF ¼ p�1
þ dpþ þ p�1

þ F�1 dFpþ: ð5:3:2Þ

Comparing the l
�1-coe‰cient of both sides of (5.3.2) and using [8, Equation (A.6.4)] we

get

w ¼ eðu�~uuÞ=4; ð5:3:3Þ

where eu and e~uu are the conformal metric factors for the original and the dressed

surface, respectively. To prove the theorem it now su‰ces to show that ju� ~uuj is

uniformly bounded or, by (5.3.3), that w and w�1 are uniformly bounded.

Let CðD;Lþglð2;CÞÞ denote the space of continuous maps from D into

L
þglð2;CÞ. For each M A L

þglð2;CÞ let jMj be the supremum over l A S1 of the

operator norm of MðlÞ. For v A CðD;Lþglð2;CÞÞ define kvk as the supremum over

D of all jvðzÞj. This obviously defines a norm on CðD;Lþglð2;CÞÞ. Furthermore,

kFk ¼ 1 for each extended frame F, since F takes unitary values for all z A D and all

l A S1. Thus, by (5.3.1), we obtain kpþk ¼ jh�1
þ j ¼ q < y. In particular, each matrix

entry of pþ is bounded by q for all l A S1 and all z A D. Furthermore, since pþ can be

extended holomorphically to the interior of the unit circle, the maximum principle

implies that the entries w and w�1 of pþðz; l ¼ 0Þ are also bounded by q for all z A D,

which finishes the proof. r

Remark. Note that this result is restricted to the dressing action on the unit

circle. The proof above does not hold for r < 1 since the extended frames then do not

take unitary values for l A Cr.
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To prove the existence of complete surfaces among our examples above it will therefore

be our strategy to show that there exists a periodic potential h0 such that

1. the construction of Section 5.1 can be done for h0 by dressing on the unit circle,

2. h0 produces a complete CMC surface.

Theorem 5.3 then proves the completeness of the CMC cylinder which is obtained by

the construction in Section 5.1.

5.4. In section 4.1 we have seen that under additional assumptions on h0 the

dressing matrix hþ can be chosen on the unit circle. We will follow here a similar

procedure to show

Theorem. There exists some e0 > 0 such that for all A;B A R, 0 < jABj < e0,

the holomorphic potential h0 ¼ w
0 A

B cosð2pz=LÞ 0

� �

dz, w ¼ ð1=2Þðlþ l�1Þ, satisfies the

conditions (4.1.1), (4.1.2) and (4.1.3). In addition for every A and every such B there

exists some hþ A LþSLð2;CÞs such that the CMC-immersions cl, l A S1, obtained from

h0 by dressing with hþ satisfy

G ¼ LZHAutcl
C :

Moreover, cGi is a CMC-immersion of the cylinder C=G and has umbilics at z ¼ L=4 and

z ¼ 3L=4.

Proof. In 5.2 it was shown that the assumptions (5.1.6) and (5.1.7) of Theorem

5.1 are satisfied. As in the proof of Theorem 5.1 we see that (4.1.2) and (4.1.3)

hold. Next we want to show that rðlÞ is semisimple for every l A S1. First we note

that the identity rðlÞ�1 ¼ RrðlÞR�1, proven in Theorem 4.2, implies that r is of the

form r ¼ a b

c a

� �

, where a2 � bc ¼ 1. As in 3.5 we denote the eigenvalues of r by

tG ¼ uG iv, u ¼ a and v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

. If vðlÞ0 0, then rðlÞ is semisimple. If v ¼ 0 and

l¼ l0, then aðl0Þ ¼ e, e ¼G1. This implies bc¼ 0, whence bðl0Þ ¼ 0 or cðl0Þ ¼ 0. It is

easy to see now that rðlÞ is semisimple if and only if b and c both vanish at l ¼ l0 or

both are di¤erent from 0. Let H ¼
�

âa b̂b

ĉc d̂d

�

satisfy H 0 ¼ Hh, Hðz ¼ 0; lÞ ¼ I . Then

b̂b 00 ¼ w2AB cosð2pz=LÞb̂b, b̂b 0 ¼wAâa, d̂d 0 ¼wAĉc and d̂d 00 ¼ w2AB cosð2pz=LÞd̂d, where b̂bð0;wÞ
¼ 0; b̂b 0ð0;wÞ ¼ wA, d̂dð0;wÞ ¼ 1 and d̂d 0ð0;wÞ ¼ 0. Moreover, Theorem 4.2 shows that

âa and d̂d are even in z and l and b̂b and ĉc are odd in z and l. Consider the dif-

ferential equation y 00 ¼ t2d cosð2pz=LÞy, yð0; tÞ ¼ 0, y 0ð0; tÞ ¼ A, where d ¼ signðABÞ.
Then b̂bðz;wÞ ¼ wyðz;

ffiffiffiffiffiffiffi

AB
p

wÞ. The function yðL; tÞ has only finitely many zeroes in

the interval jtj < jABj. Therefore also bðlÞ ¼ b̂bðL;wÞ has only finitely many roots in

the interval jwj < 1. If jABj is so small that yðL; tÞ has no zeroes in jtj < jABj, except
possibly at t ¼ 0, then b only vanishes for w ¼ 0, i.e., for l ¼Gi. Similarly, d 0ðlÞ ¼
�dd 0ðL;

ffiffiffiffiffiffiffiffiffiffi

jABj
p

wÞ will only vanish for w ¼ 0, if �dd 00 ¼ t2d cosð2pz=LÞ �dd, �ddð0; tÞ ¼ 1, �dd 0ð0; tÞ ¼
0 and jABj is su‰ciently small. This shows that for such a choice of AB the functions

b and c vanish on S1 only at Gi. This shows that rðlÞ is semisimple for all l A S1.

As in the proof of Theorem 4.1 we need to show that r can be diagonalized with

a matrix Y that has coe‰cients in A. To this end we develop âa, b̂b and ĉc into
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power series of w ¼ ð1=2Þðlþ l�1Þ near w ¼ 0. The discussion in section 5.2 shows

âa ¼ ð1=2Þ traces ¼ 1� ð1=2ÞðABLÞ2w2 þ � � � : From the di¤erential equation H 0 ¼ Hh

we obtain directly b̂b ¼ wzAþ � � � and ĉc ¼ w3c3 þ � � � : Using these expansions it is

easy to verify that the coe‰cients of all the matrices Y occurring in 3.5 are in A

and functions of w. Now one argues as before to see that there exists some hþ A

LþSLð2;CÞs such that hþrh
�1
þ is unitary. That cGi descends to C=G follows as in the

proof of Theorem 5.1. r

5.5. The goal of this section is to prove

Theorem. Let h0 and e0 be as in Theorem 5.4 and assume 0 < jABj < e0. Then the

surface associated with h0 is complete.

Proof. We can assume L ¼ p. From the proof of Theorem 5.4 we know that

there exists some Y ðwÞ A LSLð2;CÞs such that

YðwÞrðwÞY ðwÞ�1 ¼ diagðe in; e�inÞ: ð5:5:1Þ

Set ĤHðz;wÞ ¼ Y ðwÞHðz;wÞ ¼

�

âa b̂b

ĉc d̂d

�

. Then ĤH 0 ¼ ĤHh0, whence d̂d and b̂b satisfy the

Mathieu di¤erential equation

y 00 ¼ w2ABðcos zÞy: ð5:5:2Þ

For âa and ĉc we have

âa ¼
1

w
b̂b 0; ĉc ¼

1

w
d̂d 0: ð5:5:3Þ

Moreover, (5.5.1) implies

b̂bðzþ pÞ ¼ e inb̂bðzÞ; d̂dðzþ pÞ ¼ e�ind̂dðzÞ ð5:5:4Þ

i.e., b̂b and d̂d are Floquet solutions to (5.5.2). From [29, 2.21 Satz 1] we obtain another

set of Floquet solutions to (5.5.2), menðzÞ and me�nðzÞ. It is clear that all functions

depend on w. We will indicate the dependence on w only where this is essential. We

also note that in [29] always

h ¼

ffiffiffiffiffiffiffi

AB

2

r

w ð5:5:5Þ

is used.

Since Floquet solutions are uniquely determined up to z-independent factors, we

obtain

d̂d ¼ sðwÞme�n; b̂b ¼ rðwÞmen: ð5:5:6Þ

We will need to know how d̂d and b̂b behave for Im z ! �y. For convenience we agree

to use only w > 0 when discussing asymptotic behavior.

In terms of the Bessel functions Jn of level n [34, Chapter III] we obtain
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d̂dðzÞ ¼ sðwÞ
v2ðwÞ

J�nð2wa0 cos zÞ 1þO
1

cos z

� �� �

ð5:5:7Þ

b̂bðzÞ ¼ rðwÞ
v1ðwÞ

Jnð2wa0 cos zÞ 1þO
1

cos z

� �� �

ð5:5:8Þ

where a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

AB=2
p

and vjðwÞ are the coe‰cients in [28, 2.65.21].

For a proof we note that [28, 2.65.21] states menðzÞ ¼ ð1=ðv1ðwÞÞÞMnðizÞ and

me�nðzÞ ¼ ð1=ðv2ðwÞÞÞM�nðizÞ, where the functions MGn ¼ M
ð1Þ
Gn

have been defined in

[28, 2.41] and satisfy

MGnðtÞ ¼ JGnð2wa0 cosh tÞ 1þO
1

cos t

� �� �

ð5:5:9Þ

for Re t > 0. Moreover, (see also [28, 2.42.18]).

M 0
Gn
ðtÞ ¼ 2wa0 sinh t � J 0

Gn
ð2wa0 cosh tÞ 1þO

1

cosh t

� �� �

: ð5:5:10Þ

From these two equations it is clear that we need to know the behavior of JGnðsÞ and

J 0
G
ðsÞ for s ¼ 2wa0 coshðizÞ when Im z ! �y. It will turn out that it su‰ces to restrict

to 0 < Re z < p, whence we need to investigate Im s ! þy, jarg sj < p.

For this range of s we can apply [34, 7.21] and obtain

JnðsÞ ¼
2

ps

� �1=2

cos s� np

2
� p

4

� �

ð1þ SÞ � sin s� np

2
� p

4

� �

T

� �

ð5:5:11Þ

where S ¼ Oð1=sÞ, T ¼ Oð1=sÞ.
The formula for J�nðsÞ follows from (5.5.11) by the substitution n ! �n. Dif-

ferentiating (5.5.11) yields, via product rule, three terms. Di¤erentiating s�1=2 yields

�ð1=2Þs�1=2 � s�1. Di¤erentiating 1þ S and T produces expressions of the same type.

So altogether we obtain

J 0
n
ðsÞ ¼ 2

ps

� �1=2

� cos s� np

2
� p

4

� �

� ~SS � sin s� np

2
� p

4

� �

ð1þ ~TTÞ
� �

; ð5:5:12Þ

where ~SS; ~TT are of type Oð1=sÞ. Again, the expression for J 0
�n

follows by substitution

n ! �n.

We consider JnðsÞ more closely. Note that we have Im s ! þy and

actually s ¼ 2a0w cosh iz ¼ 2a0w cos z. The leading term in (5.5.11) therefore is

ð2=ðpsÞÞ1=2e�iðs�np=2�p=4Þ and we obtain

JnðsÞ ¼
2

ps

� �1=2 1

2
e�iðs�np=2�p=4ÞC ð5:5:13Þ

where

C ¼ ð1þ e2iðs�np=2�p=4ÞÞð1þ SÞ þ ð1� e2iðs�np=2�p=4ÞÞT :

Substituting s ¼ 2a0w cos z we thus obtain for J�n, when writing s ¼ a0we
þizð1þ e�2izÞ

J�nð2a0w cos zÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa0w
p e�iðz=2þ2a0w cos zÞe iðnp=2þp=4Þ � ð1þ e�2izÞ�1=2 � ~CC; ð5:5:14Þ
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where ~CC is obtained from C by substitution for s. Altogether these expressions show

that for Im z ! �y we have ð1þ e�2izÞ�1=2 ~CCðzÞ ! 1.

We point out that the two exponential factors occurring in (5.5.14) both exist for

every z A C . The choices of the coe‰cients A and B of h0 ensure that n is real. The

second factor therefore is in S1. The first factor will be split according to l-behavior:

�i
z

2
þ 2a0w cos z

� �

¼ ð�2ia0wRe cos zþ a0ðl
�1 � lÞ Im cos zÞ

þ �
iz

2
þ 2a0l Im cos z

� �

: ð5:5:15Þ

Let A0 denote the first bracket and B0 the second. Then eA0 A S1 and eB0 A Aþ.

We set

U0 ¼ diagðeA0 � e�iðnp=2�p=4Þ; e�A0e iðnp=2�p=4ÞÞ ð5:5:16Þ

D0 ¼ diagðeB0 ; e�B0Þ: ð5:5:17Þ

Then the (22)-entry of ~HH ¼ U0ĤHD0 is of the form ~dd, where ~ddðz; zÞ tends to 1 as

Im z ! �y. Moreover, since Jnð2a0w cos zÞ and Jnð2a0w cos zÞ only di¤er for large

Im z < 0 in the unitary factor e�ðGnp=2�p=4Þ, which is taken care of by U0, also the (12)-

entry ~bb of ~HH has a simple behavior: it stays bounded as Im z ! �y. As a conse-

quence, U0YHD0 ¼ ~HH has a second column that stays bounded as Im z ! �y. But

then also HD0 has a second column that stays bounded as Im z ! �y. This implies

that with H ¼ FVþ we see that the second column of VþD0F
�1ðHD0Þ stays bounded

as Im z ! �y. In particular, the l0-term in VþD0 stays bounded as

Im z ! �y. Setting Vþ ¼ V0 þ lV1 þ � � � ; V0 ¼ ðb; b�1Þ we obtain jb�1e iz=2ja e1,

where e1 > 0 is some constant. Since je iz=2j ¼ e�y=2 this yields

e�1
1 � e�y=2

a jbj: ð5:5:18Þ

Comparing the two sides of the Maurer-Cartan di¤erential

H�1H 0 ¼ V�1
þ F�1qzFVþ þ V�1

þ qzVþ

we obtain

eu=2 ¼ e2jbj
2; ð5:5:19Þ

where eu is the conformal factor for the CMC-surface M associated with h0 and e2 some

positive constant. This implies with some constant 0 < e3

e3e
�2y
a eu for Im z ! �y: ð5:5:20Þ

This proves that every curve tending on M towards �iy has infinite length in the

induced metric. To verify that the same holds when approaching þiy one can carry

out a similar analysis or one simply notices that M has a reflection property: Hðz;wÞ ¼

Hðz;wÞ, whence F ðz; z; l�1Þ ¼ Fðz; z; lÞ and for l ¼Gi also c�iðzÞ ¼ �ciðzÞ since

cl�1ðzÞ ¼ qtF ðz; z; l
�1Þ � F ðz; z; l�1Þ�1þ F ðz; z; l�1Þ � ði=2Þs3 � Fðz; z; l

�1Þ�1¼�qtF ðz; z; lÞ �

F ðz; z; lÞ�1 � Fðz; z; lÞði=2Þs3Fðz; z; lÞ
�1 ¼ �clðzÞ. r
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Corollary. The CMC-cylinders constructed from the potentials h0 ¼

w
0 0

B cosð2pz=LÞ 0

� �

dz, 0 < jABj < e0, are complete and have umbilics.

5.6. For a number of reasons it is very desirable to visualize surfaces of constant

mean curvature. The most basic goal certainly is to be able to draw a large variety of

surfaces of constant mean curvature. For this purpose the method of [11] is very

convenient, since, at least theoretically, it permits to produce all surfaces of constant

mean curvature. Unfortunately, while being theoretically straightforward, the imple-

mentation on computers is not immediate. The first visualization program, written by

Lerner and Sterling [28], was fairly slow. Nevertheless, they proved that the procedure

could be implemented on a computer, contradicting conventional wisdom at that time.

A short time later, in response to the work of Lerner and Sterling, Pinkall and Gunn

improved the numerical algorithm considerably. This made it possible to draw rea-

sonably large pieces of surfaces of constant mean curvature with a reasonable number of

umbilics at a reasonable distance from each other in very short time.

For a few specific surfaces the e¤ect of dressing and the change of the location of

umbilics was visualized via videos by the Sonderforschungsbereich 288 at the TU-Berlin.

In the long run, however, it is clearly important to be able to produce surfaces with

a given fundamental group. While some steps in this direction have been done [6], [7 ],

[8], the incorporation of fundamental groups into the procedure of [11] is still in its

beginnings.

A preliminary draft of this article, originally finished in the fall of 1997, produced

the first cylinders of constant mean curvature with umbilics. Based on this draft and

the subsequently expanded, originally submitted version of this paper, Martin Kilian

wrote a dissertation [24], where he produced cylinders of constant mean curvature from

potentials which are skewhermitian along the unit circle, whence the unitarity of the

monodromy matrices is automatic (also see [25]). Unfortunately, Kilian’s beautiful

trick only worked for very special cases. However, the techniques developed in the

previous sections of this paper turned out to be applicable to a larger class of surfaces.

Restricting to non-compact surfaces one can start, due to Theorem 3.2, from some

invariant potential h satisfying g�h ¼ h for all g A G ¼ p1ðMÞ. This implies for the

‘‘holomorphic extended frame’’ H, defined by dH ¼ Hh, Hðz0; lÞ ¼ I , the equation

Hðg:z; lÞ ¼ rðg; lÞ �Hðz; lÞ for g A G, z A D, l A S1. If r is unitary for all g A G and all

l A S1, then one obtains for the extended frame F associated to H, H ¼ F � Vþ, the

equation Fðg:z; lÞ ¼ rðg; lÞ � F ðz; lÞ � kðzÞ and the Sym-Bobenko formula implies formula

(3.2.3) for the immersion c derived from F. So it only remains to satisfy the closing

conditions stated in Theorem 3.6, which in many concrete cases is not an overly di‰cult

task. The crucial problem is that it is fairly di‰cult to choose h so that r is unitary for

all g A G . An instance where this problem has been solved successfully is the work of

Kilian [24]. A more general situation occurs, if r is not unitary, but can be represented

in the form r ¼ hþ � ru � h
�1
þ with hþ A Lþ

r Slð2;CÞs and ru A LrSUð2Þs. In this case,

after dressing with h�1
þ , one obtains unitary monodromy, and the comments above

apply. This way one can produce surfaces with fundamental group G from G-invariant

potentials after some dressing. The dressing trick, developed in this article, has been
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carried out successfully in chapter 5 of this paper for the construction of cylinders of

constant mean curvature, initiating the study [24]. In [13] the same approach is used

for the construction of trinoids and more generally N-noids. Based on the dressing idea

outlined above and a special representation of the holomorphic extended frame [13],

Schmitt has developed a numerical algorithm which produces pictures of cylinders,

trinoids and N-noids [25], [32], www.gang.umass.edu. The fact that these pictures

actually do represent surfaces of the indicated topological type has not been shown in

[25], or [32]. In some cases, however, this follows from [24] or from this paper. We

would expect that the other cases will follow from [13].

It should be noted also that by completely di¤erent methods (almost) embedded

trinoids and planar N-noids have been investigated (see e.g. [18], [19], and the references

listed there). Also some pictures have been produced following this approach.
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