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Abstract. If M is a (separable) von Neumann algebra and A is a Cartan subalgebra

of M, then M is determined by an equivalence relation and a 2-cocycle. By constructing

an equivalence subrelation, we show that for any intermediate von Neumann subalgebra N

between M and A, there exists a faithful normal conditional expectation from M onto N.

1. Introduction.

Let M be a (separable) von Neumann algebra. A Cartan subalgebra A of M is a

maximal abelian von Neumann subalgebra of M which is regular in M and the range of

a faithful normal conditional expectation from M. By [7], for each such an inclusion

AJM, there exists a discrete measured equivalence relation R on a standard Borel

space ðX ;B; mÞ such that ðAJM ÞG ðW �ðXÞJW �ðR; sÞÞ, i.e., M is the ‘‘twisted

matrix algebra’’ over R and A is the algebra of ‘‘diagonal matrices’’. Very roughly, M

is a sort of a set of matrices ðax;yÞðx;yÞ AR. Under the above isomorphism, a faithful

normal conditional expectation from M onto A is defined by the restriction of each

matrix over R to the diagonal: ðax;yÞðx;yÞ AR 7! ðax;xÞx AX . (A precise definition is in

Section 2.)

In this situation, for each subrelation S of R, we can construct an intermediate

subalgebra W �ðS; sj
S
Þ. A faithful normal conditional expectation from W �ðR; sÞ onto

W �ðS; sj
S
Þ can be defined by restricting of each matrix over R to S: ðax;yÞðx;yÞ AR 7!

ðax;yÞðx;yÞ AS. Since W �ðS; sj
S
Þ and W �ðR; sÞ have a common maximal abelian

subalgebra W �ðX Þ, by [1, Theorem 1.5.5], this is the unique conditional expectation

from W �ðR; sÞ onto W �ðS; sj
S
Þ.

Conversely, if N is an intermediate subalgebra with a (unique) faithful normal

conditional expectation from M onto N, then A is also a Cartan subalgebra of N ([10,

Remark 2.4]). So N can be expressed by W �ðS; sj
S
Þ for some subrelation S of R.

Therefore, a question arises whether every intermediate subalgebra comes from a

subrelation, i.e., whether every intermediate subalgebra is the range of a faithful normal

conditional expectation from M. In this paper, we will give an a‰rmative answer to

this question. Our main theorem in this article is the following:

Theorem 1.1 (cf. [12, Theorem 1.1]). Let M be a von Neumann algebra and A

be a Cartan subalgebra of M. If N is a von Neumann subalgebra of M such that

AJNJM, then there exists a unique faithful normal conditional expectation from M

onto N, and A is also a Cartan subalgebra of N.
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We note that Sutherland pointed out in [12, Theorem 1.1] that every such an

intermediate von Neumann subalgebra comes from an equivalence subrelation. But his

proof has a gap. So we will give a complete proof in this paper. The gap is in his

proof of the claim Mx0 VNx0 ¼ Nx0, where x0 is a cyclic and separating vector for M.

To show the claim, he did not use the property that M contains a Cartan subalgebra.

So, if his argument were valid, then the above equation would hold for any inclusions

of von Neumann algebras NJM with a cyclic and separating vector x0 for M. This

contradicts the existence of a common cyclic and separating vector for any inclusions of

properly infinite von Neumann algebras (see [3, Corollaire 2] and [4, Proposition 1.2]).

The idea to prove our theorem is to construct a subrelation S of R from an

intermediate subalgebra N. By making use of [6, Theorem 1], R is a disjoint countable

union of graphs of partial Borel transformations frngn A I . For each n A I , we define an

element of normalizing groupoid vn which is defined by a graph of rn. In this situation,

for each intermediate subalgebra N, we define a subset An of A by

An :¼ EAðNv
�
n
Þ

for each n A I . By Lemma 3.1, each An is two-sided ideal of A and determines a subset

En of DomðrnÞ. So we focus on the subrelation which is generated by a union of

graphs of rnjEn
’s and denote it by S. Since An is equal to Avnv

�
n
VNv

�
n
for each n A I

(Lemma 3.1), we obtain that W �ðS; sj
S
Þ contains N. The converse can be proved by

the same argument as in [9]. Hence we conclude that N is equal to W
�ðS; sj

S
Þ, which

ensure the existence of a unique conditional expectation from M onto N.

The organization of the paper is as follows. Section 2 contains some preliminaries.

We recall a decomposition for a discrete measured equivalence relation by graphs of

partial Borel transformations. We give a slight modification about the decomposition

in Lemma 2.3. In Section 3, we prove our main theorem. For each intermediate

subalgebra, we construct a subrelation which determines the subalgebra (Lemma 3.2,

Proposition 3.4). By using our main theorem, we also show some corollaries which

generalize results of Dye, Jones, Sutherland and Popa. Since each intermediate sub-

algebra is the range of a conditional expectation, we can use the same argument as the

case of von Neumann algebras being finite. For example, Corollary 3.5 shows that

for each (not necessary finite) von Neumann algebra M and Cartan subalgebra A,

there exists a Galois correspondence between the set of intermediate subalgebras of

ðAJM ÞG ðW �ðXÞJW
�ðR; sÞÞ and the set of Borel equivalence subrelations of R

on X.

Acknowledgments. The author wishes to thank Professor Yoshimichi Ueda for

suggesting the problem and helpful discussions for the previous version of the article,

and Professor Takehiko Yamanouchi for his constant encouragement and many useful

comments.

2. Preparation.

In this section, we summarize the basic facts about discrete measured equivalence

relations and von Neumann algebras which have Cartan subalgebras that we shall need

for the subsequent arguments. Further details can be found for examples in [2], [6], [7].
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We assume that all von Neumann algebras in this paper have separable preduals.

2.1. A characterization of an inclusion of a von Neumann algebra with a Cartan

subalgebra.

Let ðX ;B; mÞ be a standard Borel space and R be a discrete measured equivalence

relation on X such that m is quasi-invariant for R. We write x@ y when ðx; yÞ A R.

We denote the full group of R by ½R� and the groupoid of R by ½R��, i.e.,

½R� :¼ fj : j is a bimeasurable nonsingular transformation on X such that jðxÞ@ x

up to a m-null set:g;

½R�� :¼ fj : j is a bimeasurable nonsingular map from a measurable subset DomðjÞ

of X onto a measurable subset ImðjÞ of X such that jðxÞ@ x up to a

m-null set:g:

For each r A ½R��, we write GðrÞJR for the graph of r:

GðrÞ :¼ fðx; rðxÞÞ j x A DomðrÞg:

We denote by pl the left-hand projection on R, i.e., plðx; yÞ ¼ x for each ðx; yÞ A R.

The left counting measure n :¼ ml is defined by

mlðCÞ :¼

ð
X

jp�1
l ðxÞVCj dmðxÞ C A B�Bj

R
;

where jp�1
l ðxÞVCj is the cardinality of p�1

l ðxÞVC. In the same way, we denote by pr

the right-hand projection ðx; yÞ 7! y on R, and the right counting measure mr is defined

by

mrðCÞ :¼

ð
X

jp�1
r ðxÞVCj dmðxÞ C A B�Bj

R
:

Since pl and pr are countable-to-one and m is quasi-invariant for R, they are equivalent

s-finite measures. We denote the Radon-Nikodym derivative dml=dmr by Dm.

In general, for each n A N , we can define a s-finite measure nðnÞ on

R
ðnÞ

:¼ fðx0; x1; . . . ; xnÞ : ðx0; xiÞ A R for each ig

by the same manner as n ¼ nð1Þ on R ¼ R
ð1Þ. A 2-cocycle s on R is a Borel map from

R
ð2Þ to the one-dimensional torus T which satisfies

sðx; y; zÞsðx; z;wÞ ¼ sðx; y;wÞsðy; z;wÞ

for almost all ðx; y; z;wÞ in R
ð3Þ. If a 2-cocycle s satisfies sðx; y; zÞ ¼ 1 whenever two

of x; y; z are equal, then s is said to be a normalized 2-cocycle. For each discrete

measured equivalence relation R and a normalized 2-cocycle s on R, we define a von

Neumann algebra W �ðR; sÞ which acts on L2ðR; nÞ by the following:

Definition 2.1. (1) Let f be a Borel function on R. We call f a left finite

function if D1=2
m f is a finite function and f satisfies the following:

sup
ðx;yÞ AR

fjfz : z@ x and f ðx; zÞ0 0gj þ jfz : z@ y and f ðz; yÞ0 0gjg <y:
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(2) For each left finite function f on R, a bounded operator Lsð f Þ on L2ðR; nÞ is

defined by

ðLsð f ÞxÞðx; zÞ :¼
X

y@x

f ðx; yÞxðy; zÞsðx; y; zÞ

for any x A L2ðR; nÞ. We denote by W �ðR; sÞ the von Neumann algebra which is

generated by fLsð f Þ : f is a left finite functiong.

By [7], for each element T in W �ðR; sÞ, there exists a square integrable function fT
on R such that

ðTxÞðx; zÞ ¼
X

y@x

fTðx; yÞxðy; zÞsðx; y; zÞ

for any x A L2ðR; nÞ. We denote T by Lsð fT Þ. For each Lsð f Þ, LsðgÞ A W �ðR; sÞ, we

have Lsð f Þ� ¼ Lsð f �Þ and Lsð f ÞLsðgÞ ¼ Lsð f � gÞ, where f � and f � g are square

integrable functions on R which are defined by

f �ðx; zÞ :¼ D�1
m ðx; zÞ f ðz; xÞ;

ð f � gÞðx; zÞ :¼
X

y@x

f ðx; yÞgðy; zÞsðx; y; zÞ:

For each a A LyðX ; mÞ, we regard it as a function on the diagonal D of R and write

LðaÞ for LsðaÞ, i.e.,

LðaÞxðx; yÞ :¼ aðxÞxðx; yÞ:

The von Neumann algebra which is generated by fLðaÞ : a A LyðX ; mÞg is denoted by

W �ðXÞ. It is easy to see that the map Lsð f Þ 7! Lð f jDÞ is a faithful normal conditional

expectation from W �ðR; sÞ onto W �ðXÞ.

We recall that a subalgebra A of a von Neumann algebra M is called a Cartan

subalgebra of M if A satisfies the following:

(i) A is maximal abelian in M,

(ii) A is regular in M, i.e., the normalizer

NMðAÞ :¼ fu A M : u is unitary and uAu� ¼ Ag

generates M,

(iii) there exists a (unique) faithful normal conditional expectation EA from M

onto A.

It is known that W �ðX Þ is a Cartan subalgebra of W �ðR; sÞ. Indeed, by the proof

of [7, Proposition 2.9], for each u in W �ðR; sÞ, u is in the normalizer of W �ðXÞ if and

only if u is of the form Lsðaðg; rÞÞ, with a measurable function g on X of absolute value

one and r A ½R�, where aðg; rÞ is defined by the following:

aðg; rÞðx; yÞ :¼ D�1=2
m ðx; yÞgðxÞwGðr�1Þðx; yÞ:

(In general, wE stands for the characteristic function of a subset E.) So the normalizer

of W �ðXÞ in W �ðR; sÞ generates W �ðR; sÞ.

Conversely, Feldman and Moore also show that each inclusion of a von Neumann

algebra and a Cartan subalgebra arises from an equivalence relation and a 2-cocycle

on it.
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Theorem 2.2 ([7, Theorem 1]). For each inclusion of a von Neumann algebra M and

a Cartan subalgebra A of M, there exists a standard Borel space ðX ;B; mÞ and a discrete

measured equivalence relation R on X with a normalized 2-cocycle s such that ðAJM Þ is

isomorphic to ðW �ðXÞJW �ðR; sÞÞ.

2.2. A decomposition of an equivalence relation by graphs of partial transformations.

In this subsection, we fix an inclusion of a von Neumann algebra M and a Cartan

subalgebra A of M with the faithful normal conditional expectation EA from M onto

A. By Theorem 2.2, we assume that ðAJM Þ is isomorphic to ðW �ðX ÞJW �ðR; sÞÞ

for some discrete measured equivalence relation R on ðX ;B; mÞ and a normalized

2-cocycle s.

The following lemma may be a folklore, but we contain its proof for readers’

convenience.

Lemma 2.3. Let R be a measured equivalence relation on ðX ;B; mÞ. There exists a

subset frngn A I of ½R��, where I :¼ fn A Z : jnj < mg for some m A N U fyg such that

r0 ¼ id, r�1
n ¼ r�n for each n A I and R is a disjoint union of fGðrnÞgn A I up to null sets.

Proof. By [6, Theorem 1], there exists a countable group G of Borel automor-

phisms of X such that

R ¼ RG :¼ fðx; gxÞ : x A X ; g A Gg:

Since G is countable, there exists l A N U fyg such that J :¼ fn A Z : jnj < lg and

G ¼ fgn : n A Jg; g0 ¼ id; g�n ¼ g�1
n for each n A J:

For each n A J, we define a Borel subset En by the following:

En :¼

X ; n ¼ 0;

fx A X : ðx; gnðxÞÞ B6
n�1

j¼�nþ1
GðgjÞg; n > 0;

fx A X : ðx; gnðxÞÞ B6
�n�1

j¼nþ1
GðgjÞg ¼ g�nðE�nÞ; n < 0:

8

>

>

<

>

>

:

Now, we may assume that X is a Borel subset of ½0; 1�. Let us denote by ‘‘<’’ the

usual order on ½0; 1�. For each n A J, we define a Borel subset Fn of En VE�n by the

following:

Fn :¼
fx A En VE�n : gnðxÞ ¼ g�nðxÞ and x < gnðxÞg; nf 0;

fx A En VE�n : gnðxÞ ¼ g�nðxÞ and x > gnðxÞg ¼ g�nðF�nÞ; n < 0:

�

By the definition of fFnJEngn A J , we obtain that R is a disjoint union of

fGðgnjEnnFn
Þgn A J up to a n-null set. We set I :¼ fn A J : mðEnnFnÞ > 0g and rn :¼

gnjEnnFn
for each n A I . Since rnðEnnFnÞ ¼ E�nnF�n up to a m-null set, we have

r�n ¼ r�1
n for each n A I and R ¼6

n A I
GðrnÞ up to null sets. By relabeling I, we get

the conclusion. r

The set of partial isometries v of M which satisfy v�v, vv� A A and vAv� ¼ Avv� is

denoted by GNMðAÞ and called the normalizing groupoid of A in M.

Let the notations be as in Lemma 2.3. For each n A I , rn determines a partial

isometry vn of M by vn :¼ Lsðað1; r�1
n ÞÞ. It is easy to see that vn belongs to GNMðAÞ.

A construction of equivalence subrelations 717



Suppose Lsð f Þ is in M. For each n A I , we set Lsð fnÞ :¼ EAðL
sð f Þv�n Þvn. A direct

computation shows that f � að1; rnÞ satisfies

ð f � að1; rnÞÞðx; xÞ ¼
X

y@ x

f ðx; yÞD�1=2
m ðy; xÞwGðr�1

n Þðy; xÞð2:1Þ

¼ wDomðrnÞ
ðxÞ f ðx; rnðxÞÞD

1=2
m ðx; rnðxÞÞ

for almost all x A X . So fn is determined by

fnðx; yÞ ¼ ðwGðrnÞ f Þðx; yÞ ¼
f ðx; yÞ; if ðx; yÞ A GðrnÞ;

0; otherwise

�

ð2:2Þ

for almost all ðx; yÞ A R. Let x0 be a characteristic function of the diagonal. It is well-

known that x0 is a cyclic and separating vector for M. In fact, Lsð f Þx0 ¼ f for each

Lsð f Þ A M. So we have the following results.

Lemma 2.4. Let the notations be as above. Then, for each Lsð f Þ A M and r A ½R��,

EAðL
sð f ÞLsðað1; rÞÞÞLsðað1; r�1ÞÞ is equal to LsðwGðrÞ f Þ. In particular, for each

T A M, the following equation holds up to a n-null set:

Tx0 ¼
X

n A I

EAðTv
�
n Þvnx0:

3. Proof of main theorem.

In the discussion that follows, we fix a von Neumann algebra M and a

Cartan subalgebra A of M. By Theorem 2.2, we suppose that ðAJM ÞG ðW �ðX ÞJ
W �ðR; sÞÞ with a characteristic function of the diagonal x0 on R. By Lemma 2.3, there

exists a subset frngn A I of ½R�� with I ¼ fn A Z : jnj < mg for some m A N U fyg such

that r0 ¼ id, r�n ¼ r�1
n for each n A I and R ¼ 6

n A I
GðrnÞ (disjoint union) up to null

sets. For each n A I , we set vn :¼ Lsðað1; r�1
n ÞÞ A GNMðAÞ.

Suppose that N is a von Neumann subalgebra of M which contains A. We first

show the next lemma which will be crucial in our argument.

Lemma 3.1. For each n A I , EAðNv�n Þ is equal to Avnv
�
n VNv�n . Moreover, this is a

two-sided ideal of A.

Proof. Since vn belongs to GNMðAÞ, Avnv
�
n VNv�n is a two-sided ideal of A. So it

su‰ces to prove that EAðNv�n ÞJNv�n . For each T A N, we have

EAðTv
�
n Þ A convfuTv�nu

�
: u is unitary in Ag�stg

¼ convfuTv�nvnv
�
nu

�
: u is unitary in Ag�stg

¼ convfuTv�nu
�vnv

�
n : u is unitary in Ag�stg ðsince vnv

�
n A AÞ

J convfSv�n : S is in Ng�stg ðsince v�nu
�vn A NÞ

¼ Nv�n ðsince v�nvn A NÞ:

So we get the conclusion. r
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Now we construct a Borel subrelation of R associated to N as follows. For each

n A I , we set

An :¼ EAðNv�n Þð¼ Avnv
�
n VNv�n Þ:

By Lemma 3.1, there exists a projection en in A such that en e vnv
�
n and Aen ¼ An. For

each en, we obtain a Borel subset En of DomðrnÞ such that en ¼ LðwEn
Þ and E�n ¼

rnðEnÞ. We define a subset S0 of R by the following:

S0 :¼ 6
n A I

GðrnjEn
Þ:

Moreover, we define S as a subset of R which is constructed by GðrnjEn
Þ’s, i.e.,

S :¼ hS0i ¼ 6
kf1

6
l1;...; lk A I

Fl1;...; lk ;

where

Fl1;...; lk :¼ Gðrlkrlk�1
� � � rl1 jEl1

Vr�1
l1
ðEl2

ÞV���Vr�1
l1
���r�1

lk�1
ðElk

ÞÞ:

Lemma 3.2. The subset S defined above is a Borel equivalence subrelation of R.

Proof. Since rl A ½R�� and El is a Borel subset of X for each l A I , S is a Borel

subset of R. So it su‰ces to prove that S is an equivalence relation.

Since r0 ¼ id and E0 ¼ X up to a m-null set, S contains the diagonal D. If

ðx; yÞ A S, then there exist l1; . . . ; lk A I such that ðx; yÞ A Fl1;...; lk . So we conclude that

ðy; xÞ is in F�lk ;...;�l1JS. Finally, if ðy; zÞ is also in S, then ðy; zÞ A Fm1;...;mj
for some

m1; . . . ;mj A I and we get ðx; zÞ A Fl1;...; lk ;m1;...;mj
JS. Therefore we complete the proof.

r

Lemma 3.3. The above subrelation S coincides with S0 up to a n-null set, i.e.,

nðSnS0Þ ¼ 0.

Proof. If nðSnS0Þ > 0, then there exist l1; . . . ; lk A I such that

nðFl1;...; lknS0Þ > 0:

We set F :¼ Fl1;...; lknS0 and define measurable functions f fig
k
i¼1 on R and w A GNMðAÞ

by the following:

fi :¼ að1; r�1
li
jrli ���rl1 ðpl ðFÞÞ

Þ ¼ D1=2
m wGðrli jrli�1

���rl1
ðpl ðFÞÞ

Þ;

w :¼ Lsð f1 � � � � � fkÞ:

It is easy to see that suppð f1 � � � � � fkÞ ¼ F and EAðwv
�
nenÞ ¼ 0 for each n A I . Indeed,

a direct computation and (2.1) show that v�nen ¼ Lsðað1; rnjEn
ÞÞ and ð f1 � � � � � fk �

að1; rnjEn
ÞÞðx; xÞ ¼ 0 for almost all x A X .

On the other hand, since Lsð fiÞ A AelivliJN for each i ¼ 1; . . . ; k, we get w A N.

In particular, by Lemma 3.1, EAðwv
�
n Þen ¼ EAðwv

�
n Þ for each n A I . So EAðwv

�
n Þ ¼ 0

for each n A I . By Lemma 2.4, we obtain w ¼ 0, i.e., nðFÞ ¼ 0, a contradiction. Thus

nðSnS0Þ ¼ 0. r

By this lemma, we obtain mðplðGðrnÞV ðSnS0ÞÞÞ ¼ 0 for each n A I . So we can

replace En by En U plðGðrnÞV ðSnS0ÞÞ and get SV6
n A I

GðrnÞ ¼ S0.
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Proposition 3.4. The von Neumann subalgebra W �ðS; sj
S
Þ of M is equal to N.

Proof. We set L :¼ W �ðS; sj
S
Þ.

We first show that LJN. For this, it su‰ces to prove that NLðAÞJN. If

u A NLðAÞ, then there exists r A ½S� such that u ¼ Lsðaðg; rÞÞ for some g A LyðX Þ.

For each n A I VN , we define un A M by the following:

un :¼
X

n�1

k¼�nþ1

EAðuv
�
kÞvk:

Since fGðrkÞgk A I are mutually disjoint up to n-null sets, we have

Gðr�1ÞVGðrkÞJGðrkjEk
Þ

up to a n-null set for each k A N. In particular, a Borel subset Fk :¼ plðGðr�1ÞVGðrkÞÞ

is contained in Ek up to a m-null set. By (2.2) and Lemma 3.1, we get

EAðuv
�
kÞvk ¼ LsðaðwFk

g; rÞÞ A Aekvk ¼ Avk VNv�kvkJN

for each k A I . Hence un also belongs to N for each n A I . Moreover, since fFkgk A I
are mutually disjoint up to m-null sets, we have

un ¼
X

n�1

k¼�nþ1

LsðaðwFk
g; rÞÞ ¼ Lðw6n�1

k¼�nþ1Fk
Þu:

This shows that kunke kuk ¼ 1. On the other hand, by Lemma 2.4, unx0 converges to

ux0. Thus un strongly converges to u, i.e., for each x A L2ðRÞ, unx converges to ux.

Indeed, for each e > 0, since x0 is a cyclic vector for M 0, there exists T 0 A M 0 such that

kT 0x0 � xk < e=3. By Lemma 2.4, there exists n0 A N such that kT 0unx0 � T 0ux0k < e=3

for each n > n0. So we have

kunx� uxke kunx� unT
0x0k þ kunT

0x0 � uT 0x0k þ kuT 0x0 � uxk

e kunk kx� T 0x0k þ kT 0unx0 � T 0ux0k þ kuk kT 0x0 � xk

e kx� Tx0k þ kT 0unx0 � T 0ux0k þ kT 0x0 � xk

< e;

for each n > n0. This shows that unx converges to ux, and u belongs to N.

Conversely, if Lsð f Þ A NnL, then we get nðsuppð f ÞV ðRnSÞÞ > 0 and

n suppð f ÞV 6
n A I

GðrnjDomðrnÞnEn
Þ

 !

¼ n suppð f ÞV ðRnSÞV 6
n A I

GðrnÞ

 !

> 0:

So there exists n A I such that nðsuppð f ÞVGðrnjDomðrnÞnEn
ÞÞ > 0. On the other hand,

EAðL
sð f Þv�n Þ is of the form LðhÞ for some h A LyðXÞ. By (2.1), suppðhÞ is equal

to plðsuppð f ÞVGðrnÞÞ. Since mðplðsuppð f ÞVGðrnjDomðrnÞnEn
ÞÞÞ > 0, we obtain LðhÞ �

ð1� enÞ0 0, i.e., EAðL
sð f Þv�n Þ B Aen ¼ EAðNv�n Þ. So we get Lsð f Þ B N, a contradiction.

Hence we have proved the proposition. r
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Remark. By using the above argument, we can show the following: for each

T A GNMðAÞ,

T ¼
X

n A I

EAðTv
�
n Þvn

in the sense of the strong operator topology.

We are now in a position to prove our main theorem.

Proof of Theorem 1.1. By Theorem 2.2 and Proposition 3.4, we obtain a discrete

measured equivalence relation R on a standard Borel space ðX ;B; mÞ, a Borel sub-

relation S of R and a normalized 2-cocycle s on R such that

ðAJNJM ÞG ðW �ðXÞJW �ðS; sj
S
ÞJW �ðR; sÞÞ:

So A is also a Cartan subalgebra of N and a conditional expectation EN from M onto N

is defined by the following:

ENðL
sð f ÞÞ :¼ Lsð f j

S
Þ:

By [1, Theorem 1.5.5], this is the unique faithful normal conditional expectation from M

onto N. Therefore we complete the proof. r

We conclude this paper with some results which follow from the main theorem.

First, we characterize intermediate von Neumann subalgebras between an inclusion

of a von Neumann algebra and a Cartan subalgebra. Many properties concerning a

measure preserving full groups are proved by Nakamura, Dye, Takeda, Choda and so

on. Our corollary extends one of their results to general full groups.

Corollary 3.5 (cf. [5, Proposition 6.1]). Suppose M is a von Neumann algebra

with a Cartan subalgebra A of M such that M ¼ W �ðR; sÞ and A ¼ W �ðXÞ, where R is

an equivalence relation on ðX ;B; mÞ with a 2-cocycle s. Then there exists a bijective

correspondence between the set of Borel subrelations S of R on ðX ;B; mÞ and the set of

von Neumann subalgebras N of M which contain A:

N 7! SN :¼ 6
n A I

GðrnjEn
Þ

* +

;ð3:1Þ

S 7! W �ðS; sj
S
Þ;ð3:2Þ

where frngn A I J ½R�� and fEngn A I JB are defined by the process described at the

beginning of this section.

Proof. By Theorem 1.1, for each such an N, we get a Borel subrelation SN of R

such that N ¼ W �ðSN ; sjSN
Þ. So the above correspondence is bijective. r

Remark. (1) Suppose R is a discrete measured equivalence relation on ðX ;B; mÞ.

There exists a countable group action G on X so that R ¼ RG. In this situation, the

above Galois correspondence is between the set of full subgroups of ½G� and the set of

intermediate subalgebras.

(2) To construct an equivalence subrelation for a subalgebra, we use only the sub-
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algebra and the original equivalence relation, i.e., our construction which is determined

by (3.1) does not use the arguments given in [7, Section 3].

The second corollary is concerned with the regularity. Some interesting results on

maximal abelian *-subalgebras of finite von Neumann algebras were shown by Dye,

Dixmer, Jones and Popa. Dye and Jones-Popa proved that the regularity is hereditary

in the setting of a finite von Neumann algebra with a maximal abelian *-subalgebra.

We generalize this result to a general von Neumann algebra with a maximal abelian *-

subalgebra which is the range of a conditional expectation.

Corollary 3.6 (cf. [5, Lemma 6.1] and [10, Corollary 2.3]). If A is a maximal

abelian *-subalgebra of M with the faithful normal conditional expectation from M onto

A, then the regularity of A in M is hereditary, i.e., if A is regular in M, then, for each von

Neumann subalgebra N between M and A, A is also regular in N.

Proof. By Theorem 1.1, if A is a Cartan subalgebra of M, then A is also a Cartan

subalgebra of N. r

By making use of our main theorem, we shall prove two corollaries about an

inclusion of factors with a common Cartan subalgebra. For this, we recall the basic

facts about an inclusion of ergodic equivalence relations with choice functions. For the

details about these matters, refer to [7] and [8].

Let R be a discrete measured equivalence relation on a standard measure space

ðX ;B; mÞ and s be a normalized 2-cocycle on R. The following results are well-

known:

(1) A von Neumann algebra W �ðR; sÞ is a factor if and only if R is ergodic, i.e.,

for any ½R� invariant Borel subset E of X, E satisfies mðEÞ ¼ 0 or mðXnEÞ ¼ 0

([7, Proposition 2.9]).

(2) The Murray-von Neumann algebraic type of W �ðR; sÞ coincides with that of

R.

For each inclusion of an ergodic discrete measured equivalence relations SJR on

ðX ;B; mÞ, by [8], we get choice functions fcigi A I for SJR, i.e., fcigi A I satisfy the

following:

(i) Each ci is a Borel function on X and ðx;ciðxÞÞ A R up to a m-null set,

(ii) there exists 0 A I such that c0 is the identity,

(iii) if ðx; yÞ A R, then there exists a unique i A I such that ðx;ciðyÞÞ A S up to a

n-null set.

The cardinality of I does not depend upon the choice of fcigi A I . This constant is

said to be the index of S in R. By [8, Lemma 1.3], if the types of S and R are equal,

there exist choice functions fcigi A I for SJR such that each ci is bijective (i.e.,

ci A ½R�).

Corollary 3.7 (cf. [12, Corollary 1.3]). Let M be a (separable) factor and A be a

Cartan subalgebra of M. If N is a subfactor of M which contains A, then the Jones

index of N in M is in N or y.

Proof. By Theorem 1.1, there exist an inclusion of ergodic equivalence relations

SJR on ðX ;B; mÞ and a normalized 2-cocycle s on R such that
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ðAJNJM ÞG ðW �ðXÞJW �ðS; sj
S
ÞJW �ðR; sÞÞ:

By the same argument as in the case where s is trivial, we conclude that the Jones

index of N in M coincides with the index of S in R. Hence the index is in N U fyg.

r

Finally, we will prove the following corollary. We note that Popa proved it for

type II1 factors that do not necessarily have separable preduals. So, in the case where

factors have separable preduals, our corollary is a generalization of his result to general

factors.

Corollary 3.8 (cf. [11, Theorem 2.3]). Let M be a (separable) factor and A be a

Cartan subalgebra of M. If N is a subfactor of M such that N contains A and the

Murray-von Neumann algebraic type of N coincides with that of M, then for each faithful

normal state o on A, there exists a subset fuigi A I of NMðAÞ containing 1 such that

Xl

i A I

Nuix ¼ Mx in L2ðM;o � EAÞ;

where x is the implementing vector of o � EA.

Proof. By Theorem 1.1, ðNJM ÞG ðW �ðS; sj
S
ÞJW �ðR; sÞÞ for a pair of

ergodic discrete measured equivalence relations SJR and a 2-cocycle s. Since the

type of W �ðR; sÞ is equal to that of R, we obtain that the types of S and R are equal.

So we get bijective choice functions fcigi A I for SJR. For each i A I , we set

ui :¼ Lsðað1;ciÞÞ A NMðAÞ. Since fGðc�1
i Þgi A I are mutually disjoint and R is gen-

erated by S and fGðc�1
i Þgi A I up to null sets, we conclude Mx ¼

Pl
i A I Nuix. Indeed, if

i0 j, then, for any r A ½S��, we have

ðað1;cjÞ
� � að1; rÞ � að1;ciÞÞðx; xÞ ¼

X

y; z@x

wGðcjÞ
ðx; yÞwGðr�1Þðy; zÞwGðc�1

i Þðz; xÞ

¼ wGðr�1ÞðcjðxÞ;ciðxÞÞ

¼ 0 ðsince ðcjðxÞ;ciðxÞÞ B SÞ

for almost all x A X . Thus Nvix ? Nvjx. Therefore we complete the proof. r
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Added in Proof. After this paper was accepted for publication professor K. Saito

informed the author that P. S. Muhly, K. Saito and B. Solel had treated the same

problem in [MSS], and also informed that their paper has a gap in the proof of [MSS,

Theorem 2.5]. In the theorem, they claimed that for each s-weakly closed linear

subspace N of M which is a bimodule over a Cartan subalgebra A of M (the subspace N

is not necessarily a subalgebra), N comes from a Borel subset of an equivalence relation.

The author is grateful to them for informing the above and also for calling his attention

to [F ], [MSS] and [MS].

To prove the theorem, they defined a bimodule AðFðxÞ;GðxÞÞ over A for each

x A L
2ðRÞ, and proved that the bimodule is equal to fT A M : Tx A Nxg, and N coin-

cides with 7
x AL2ðRÞ AðF ðxÞ;GðxÞÞ. In this situation, they claimed that the intersection

coincides with that taken over any countable dense subset fxngnf1 of L
2ðRÞ, i.e.,

7
x AL2ðRÞ

AðFðxÞ;GðxÞÞ ¼ 7
nf1

AðF ðxnÞ;GðxnÞÞ:ð�Þ

But this claim was mentioned without proof in [MSS]. Moreover, the following two

arguments tell us that the verification of the claim seems nontrivial. This is the gap

which we mentioned above.

We first note that the property that the subset fxngnf1 is dense in L
2ðRÞ does not

reflect that of the family of bimodules fAðFðxnÞ;GðxnÞÞgnf1 over A. Very roughly, the

map x ! AðFðxÞ;GðxÞÞ is ‘‘not continuous’’. For example, for each x A L
2ðRÞ which

satisfies AðFðxÞ;GðxÞÞ0M, set hn :¼ ð1=nÞx for each nf 1. Then it is trivial that

each AðFðhnÞ;GðhnÞÞ is equal to AðFðxÞ;GðxÞÞ. But we have

A F lim
n!y

hn

� �

;G lim
n!y

hn

� �� �

¼ AðF ð0Þ;Gð0ÞÞ ¼ M;

which is not equal to AðFðxÞ;GðxÞÞ.

Secondly, since AðFðxÞ;GðxÞÞ is equal to fT A M : Tx A Nxg as mentioned above,

ð�Þ is equivalent to the following:

7
x AL2ðRÞ

fT A M : Tx A Nxg ¼ 7
nf1

fT A M : Txn A Nxng:

But they did not use the property that N is a bimodule over A. So if their arguments

were valid, then the following equation would hold for any von Neumann algebra N

acting on a separable Hilbert space H and any countable dense subset fxngnf1 of H:

7
x AH

fT A BðHÞ : Tx A Nxg ¼ 7
nf1

fT A BðHÞ : Txn A Nxng:ðyÞ
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But the above equation does not hold in general. Indeed, suppose that N is not equal

to BðHÞ, and that N has a cyclic and separating vector h0. Then, by [3, Corollaire 2],

there exists a subset of cyclic vectors fhlgl AL for N which is dense in H. Since H is

separable, we may choose a sequence flngnf1JL such that fhlngnf1 is dense in H. So

we have

7
nf1

fT A BðHÞ : Thln A Nhlng ¼ 7
nf1

fT A BðHÞ : Thln A Hg ¼ BðHÞ:

On the other hand, since N has a separating vector, by [LS, Theorem 3.7], the left-hand

side of ðyÞ is equal to N. So this provides a counterexample to ðyÞ.

We last note that if the equivalence relation R is hyperfinite, i.e., M ¼ W �ðR; sÞ is

a hyperfinite von Neumann algebra, then [MSS, Theorem 2.5] is true. Indeed, P. S.

Muhly and B. Solel proved it in [MS, Theorem 3.10], and I. Fulman gave a proof to a

more general setting ([F, Theorem 15.18]). Although our arguments are valid for any

intermediate subalgebra, it seems di‰cult to apply them to bimodules of a (not necessary

hyperfinite) von Neumann algebra.
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