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Abstract. If M is a (separable) von Neumann algebra and A4 is a Cartan subalgebra
of M, then M is determined by an equivalence relation and a 2-cocycle. By constructing
an equivalence subrelation, we show that for any intermediate von Neumann subalgebra N
between M and A, there exists a faithful normal conditional expectation from M onto N.

1. Introduction.

Let M be a (separable) von Neumann algebra. A Cartan subalgebra 4 of M is a
maximal abelian von Neumann subalgebra of M which is regular in M and the range of
a faithful normal conditional expectation from M. By [7], for each such an inclusion
A < M, there exists a discrete measured equivalence relation # on a standard Borel
space (X,B,u) such that (A = M) = (W*(X)< W*(%,0)), i.e., M is the “twisted
matrix algebra” over # and A is the algebra of ‘“diagonal matrices”. Very roughly, M
is a sort of a set of matrices (ay. y)()ﬁ nez- Under the above isomorphism, a faithful
normal conditional expectation from M onto A is defined by the restriction of each
matrix over # to the diagonal: (axy) ,jes — (dxx)ycx- (A precise definition is in
Section 2.)

In this situation, for each subrelation ¥ of #, we can construct an intermediate
subalgebra W*(¥,0|,). A faithful normal conditional expectation from W*(%,¢) onto
W*(¥,0|y) can be defined by restricting of each matrix over # to & (dxy)(x yen —
(axy)(x ey Since W*(S,ol,) and W*(#,0) have a common maximal abelian
subalgebra W*(X), by [1, Theorem 1.5.5], this is the unique conditional expectation
from W*(#,0) onto W*(¥,0|).

Conversely, if N is an intermediate subalgebra with a (unique) faithful normal
conditional expectation from M onto N, then A4 is also a Cartan subalgebra of N ([10,
Remark 2.4]). So N can be expressed by W*(¥,0|,) for some subrelation & of Z.

Therefore, a question arises whether every intermediate subalgebra comes from a
subrelation, i.e., whether every intermediate subalgebra is the range of a faithful normal
conditional expectation from M. In this paper, we will give an affirmative answer to
this question. Our main theorem in this article is the following:

THEOREM 1.1 (cf. [12, Theorem 1.1]). Let M be a von Neumann algebra and A
be a Cartan subalgebra of M. If N is a von Neumann subalgebra of M such that
A< N < M, then there exists a unique faithful normal conditional expectation from M
onto N, and A is also a Cartan subalgebra of N.
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We note that Sutherland pointed out in [12, Theorem 1.1] that every such an
intermediate von Neumann subalgebra comes from an equivalence subrelation. But his
proof has a gap. So we will give a complete proof in this paper. The gap is in his
proof of the claim M& NNE, = N&,, where &, is a cyclic and separating vector for M.
To show the claim, he did not use the property that M contains a Cartan subalgebra.
So, if his argument were valid, then the above equation would hold for any inclusions
of von Neumann algebras N < M with a cyclic and separating vector &, for M. This
contradicts the existence of a common cyclic and separating vector for any inclusions of
properly infinite von Neumann algebras (see [3, Corollaire 2] and [4, Proposition 1.2]).

The idea to prove our theorem is to construct a subrelation & of # from an
intermediate subalgebra N. By making use of [6, Theorem 1], # is a disjoint countable
union of graphs of partial Borel transformations {p,},.,;. For each n e I, we define an
element of normalizing groupoid v, which is defined by a graph of p,. In this situation,
for each intermediate subalgebra N, we define a subset A4, of A4 by

Ay = E4(Nv?)

for each neI. By[Lemma 3.1, each 4, is two-sided ideal of 4 and determines a subset
E, of Dom(p,). So we focus on the subrelation which is generated by a union of
graphs of p,[;’s and denote it by . Since 4, is equal to Av,v, N Nv, for each nel
(Cemma 3.1), we obtain that W*(¥,a|,) contains N. The converse can be proved by
the same argument as in [9]. Hence we conclude that N is equal to W*(<,al,), which
ensure the existence of a unique conditional expectation from M onto N.

The organization of the paper is as follows. Section 2 contains some preliminaries.
We recall a decomposition for a discrete measured equivalence relation by graphs of
partial Borel transformations. We give a slight modification about the decomposition
in [Lemma 2.3. In Section 3, we prove our main theorem. For each intermediate
subalgebra, we construct a subrelation which determines the subalgebra (Lemma 3.2,
IProposition 3.4). By using our main theorem, we also show some corollaries which
generalize results of Dye, Jones, Sutherland and Popa. Since each intermediate sub-
algebra is the range of a conditional expectation, we can use the same argument as the
case of von Neumann algebras being finite. For example, |[Corollary 3.j shows that
for each (not necessary finite) von Neumann algebra M and Cartan subalgebra A,
there exists a Galois correspondence between the set of intermediate subalgebras of
(A= M)=(W*(X)< W*(R,0)) and the set of Borel equivalence subrelations of #
on X.

ACKNOWLEDGMENTS. The author wishes to thank Professor Yoshimichi Ueda for
suggesting the problem and helpful discussions for the previous version of the article,
and Professor Takehiko Yamanouchi for his constant encouragement and many useful
comments.

2. Preparation.

In this section, we summarize the basic facts about discrete measured equivalence
relations and von Neumann algebras which have Cartan subalgebras that we shall need
for the subsequent arguments. Further details can be found for examples in [2], [6], [7].
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We assume that all von Neumann algebras in this paper have separable preduals.

2.1. A characterization of an inclusion of a von Neumann algebra with a Cartan
subalgebra.
Let (X,®B,u) be a standard Borel space and # be a discrete measured equivalence
relation on X such that u is quasi-invariant for 2. We write x ~y when (x, y) € Z.
We denote the full group of # by [#] and the groupoid of # by [4],, i.e.,

(%] == {p : ¢ is a bimeasurable nonsingular transformation on X such that ¢(x) ~ x
up to a w-null set.},

(%], = {9 : ¢ is a bimeasurable nonsingular map from a measurable subset Dom(gp)
of X onto a measurable subset Im(p) of X such that ¢(x) ~x up to a
wu-null set.}.

For each p e [Z],, we write I'(p) < # for the graph of p:

I(p) = {(x,p(x)) | x € Dom(p)}.

We denote by 7; the left-hand projection on £, i.e., m;(x, y) = x for each (x, y) € Z.
The left counting measure v := y; is defined by

%

w(C)i= | I N Cldux) CeBx B,

where |7;1(x) N C| is the cardinality of #;!(x)N C. In the same way, we denote by 7,
the right-hand projection (x, y) — y on £, and the right counting measure g, is defined
by

u1,(C) = J Iz ()N Cldu(x) CeB x B,
X

Since 7; and 7, are countable-to-one and u is quasi-invariant for %, they are equivalent
o-finite measures. We denote the Radon-Nikodym derivative dyu;/du, by D,.
In general, for each n e N, we can define a o-finite measure v on

A" = {(x0,X1,...,Xn) : (x0,X;) € # for each i}

by the same manner as v =) on 2 = 2!). A 2-cocycle ¢ on £ is a Borel map from
22 to the one-dimensional torus 7 which satisfies

o(x,y,z)a(x,z,w) = a(x, y,w)a(y,z,w)

for almost all (x, y,z,w) in 23, If a 2-cocycle o satisfies a(x, y,z) = 1 whenever two
of x,y,z are equal, then ¢ is said to be a normalized 2-cocycle. For each discrete
measured equivalence relation # and a normalized 2-cocycle ¢ on #, we define a von
Neumann algebra W*(%,c) which acts on L*(%,v) by the following:

DerFiNiTION 2.1. (1) Let f be a Borel function on #. We call f a left finite
function if D;/ 2f is a finite function and f satisfies the following:

sup {{z:z~x and f(x,z) #0} +|{z:z~y and f(z,y) # 0}|} < o0.
(x.y)e#
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(2) For each left finite function f on %, a bounded operator L°(f) on L*(%,v) is
defined by

(L7(£)O)(x,2) =D f(x, »)E(p,2)alx, y,2)
y~X
for any ¢e L*(#,v). We denote by W*(%,0) the von Neumann algebra which is
generated by {L°(f): f is a left finite function}.
By [7], for each element 7 in W*(%,0), there exists a square integrable function fr
on # such that

(TE)(x,2) = Y fr(x »)E(y,2)a(x, »,2)
y~X
for any ¢ e L?(#,v). We denote T by L°(fr). For each L°(f), L°(g) € W*(Z,0), we
have L7(f)" = L°(f*) and L°(f)L°(g) = L°(f *g), where f* and f*g are square
integrable functions on % which are defined by

f*(x,z) = D;l(x,z)f(z,x),
(f*g)(xa Z) = Zf(xa y)g(y,Z)O'(X, y,Z).

y~X

For each a € L™ (X, u), we regard it as a function on the diagonal D of # and write

L(a) for L%(a), ie.,
L(a)é(x,y) = a(x)&(x, p).

The von Neumann algebra which is generated by {L(a):ae L*(X,u)} is denoted by
W*(X). Itis easy to see that the map L°(f) — L(f]|p) is a faithful normal conditional
expectation from W*(%,0) onto W*(X).

We recall that a subalgebra 4 of a von Neumann algebra M is called a Cartan
subalgebra of M if A satisfies the following:

(i) A is maximal abelian in M,

(i) A is regular in M, i.e., the normalizer

Nu(A) :={ue M :u is unitary and uAdu™ = A}

generates M,
(i) there exists a (unique) faithful normal conditional expectation E, from M
onto 4.

It is known that W*(X) is a Cartan subalgebra of W*(#,0). Indeed, by the proof
of [7, Proposition 2.9], for each u in W*(%,0), u is in the normalizer of W*(X) if and
only if u is of the form L%(a(g, p)), with a measurable function g on X of absolute value
one and p € [#], where a(g,p) is defined by the following:

a(g, p)(x, y) == D, (x, ¥)g(X)xr(, 1 (x, »).
(In general, y; stands for the characteristic function of a subset £.) So the normalizer
of W*(X) in W*(%,0) generates W*(Z,0).
Conversely, Feldman and Moore also show that each inclusion of a von Neumann
algebra and a Cartan subalgebra arises from an equivalence relation and a 2-cocycle
on it.
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THEOREM 2.2 (|7, Theorem 1]). For each inclusion of a von Neumann algebra M and
a Cartan subalgebra A of M, there exists a standard Borel space (X,B, ) and a discrete
measured equivalence relation # on X with a normalized 2-cocycle o such that (A = M) is
isomorphic to (W*(X) < W*(%,0)).

2.2. A decomposition of an equivalence relation by graphs of partial transformations.

In this subsection, we fix an inclusion of a von Neumann algebra M and a Cartan
subalgebra A of M with the faithful normal conditional expectation E4 from M onto
A. By [Theorem 2.2, we assume that (4 = M) is isomorphic to (W*(X) < W*(%,0))
for some discrete measured equivalence relation # on (X,3B,x) and a normalized
2-cocycle o.

The following lemma may be a folklore, but we contain its proof for readers’
convenience.

LEmMA 2.3.  Let # be a measured equivalence relation on (X,B,u). There exists a
subset {p,},c; of [#],, where I :={neZ :|n| <m} for some me NU{oo} such that
=id, p, ! = p_, for each ne I and R is a disjoint union of {I'(p,)},.; up to null sets.

nel

PrOOF. By [6, Theorem 1], there exists a countable group G of Borel automor-
phisms of X such that

R=R; ={(x,9x) : xe X,g € G}.
Since G is countable, there exists /€ NU{oo} such that J:={ne Z:|n| <I} and
G={g,:neJ}, go=id, g_,=g,' for each neJ.

For each neJ, we define a Borel subset E, by the following:

X, n=0,
E, = {{xeX: (x)) ¢ U"}lnH n>0,
{xeX: (x)) ¢ Uj n+l g_n(E_n), n < 0.

Now, we may assume that X is a Borel subset of [0,1]. Let us denote by “<” the
usual order on [0,1]. For each n e J, we define a Borel subset F, of E,NE_, by the
following:

B {{x eE,NE_,:gy(x)=g_u(x) and x < g,(x)}, 0,
" {xe E,NE_:gy(x) =g_n(x) and x> g,(x)} = g_n(F_,), n<O.

By the definition of {F, < E,},.,, we obtain that # is a disjoint union of
{I(9gnlg\r,) tnes up to a v-null set. We set [:={neJ:pu(E,\F,) >0} and p,:=
gnlg\F, for each nel. Since p,(E,\F,) =E_,\F_, up to a wp-null set, we have
p_,=p,! foreach nel and # = U, c; T (p,) up to null sets. By relabeling 7, we get

the conclusion. ]

The set of partial isometries v of M which satisfy v*v, vv* € A and vAv* = Avv™ 1s
denoted by %.4,(A4) and called the normalizing groupoid of 4 in M.

Let the notations be as in [Lemma 2.3. For each nel, p, determines a partial
isometry v, of M by v, := L%(a(1,p;')). It is easy to see that v, belongs to ¥.A3,(A).
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Suppose L?(f) is in M. For each nel, we set L(f,) = E4(L°(f)v})v,. A direct
computation shows that f xa(l,p,) satisfies

(21) (f * a(l,pn))(x, x) = Z f(xv y)D;1/2<y7X)XF(/);I)(y7x)

y~x

= XDom(pn)(x>f(x7pn(x))D;1/2(xapn<x>)
for almost all xe X. So f, is determined by

Sl y), if (x,p) e I'(p,),
0, otherwise

(22) S5 3) = Grp ) ) = {

for almost all (x, y) € Z. Let &, be a characteristic function of the diagonal. It is well-
known that &, is a cyclic and separating vector for M. In fact, L?(f)&) = f for each
L°(f)e M. So we have the following results.

LEMMA 2.4.  Let the notations be as above. Then, for each L°(f) e M and p € 4],
E (L°(f)L(a(1,p))L?(a(1,p71)) is equal to L?(xrpf)- In particular, for each
T € M, the following equation holds up to a v-null set:

Té) = Z E4(Tv,)v,&.

nel

3. Proof of main theorem.

In the discussion that follows, we fix a von Neumann algebra M and a
Cartan subalgebra 4 of M. By [Theorem 2.2, we suppose that (4 = M) = (W*(X) =
W*(%,0)) with a characteristic function of the diagonal &, on #. By [Lemma 2.3, there
exists a subset {p,},.; of [#], with I ={ne Z:|n| <m} for some me NU{c0o} such
that py =id, p_, = p,' for each nel and 2=\, _,I'(p,) (disjoint union) up to null
sets. For each nel, we set v, := L7(a(l,p,!)) € N (A).

Suppose that N is a von Neumann subalgebra of M which contains 4. We first
show the next lemma which will be crucial in our argument.

Lemma 3.1.  For each ne I, E4(Nv}) is equal to Av,v N\ Nv'. Moreover, this is a
two-sided ideal of A.

ProOOF. Since v, belongs to ¥.44(A), Av,v,; N Nv; is a two-sided ideal of 4. So it
suffices to prove that E,(Nv;) = Nv,. For each T e N, we have

E4(Tv?) e conv{uTv u* : u is unitary in A} "¢
= conv{uTv}v,v u* : u is unitary in A} "*

= conv{uTv}u*v,v’ : u is unitary in 4}~>¢ (since v,v’ € A)
< conv{Sv’ : S is in N} ¢ (since v u*v, e N)

= Nv, (since v,v, € N).

So we get the conclusion. O
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Now we construct a Borel subrelation of # associated to N as follows. For each
nel, we set
A, = E4(Nv;)(= Av,v; N Nv)).
By Lemma 3.1, there exists a projection e, in A4 such that e, < v,v) and Ae, = A,. For

each e,, we obtain a Borel subset E, of Dom(p,) such that e, = L(yy ) and E_, =
po(Ey). We define a subset ¥ of # by the following:

o= U I'(plg,)-

nel

Moreover, we define ¥ as a subset of # which is constructed by I'(p,[z )’s, i.e.,

S = <y0>: U U Fll ..... s

kéll] ..... lkel

where

LemMA 3.2. The subset & defined above is a Borel equivalence subrelation of X.

PrOOE. Since p; € [#], and E; is a Borel subset of X for each /€1, & is a Borel
subset of #. So it suffices to prove that % is an equivalence relation.

Since p, =1d and Ey =X up to a w-null set, & contains the diagonal D. If
(x,y) € &, then there exist /..., [, € I such that (x,y) e Fj, ;. So we conclude that

(y,x)isin Fy ;< &. Finally, if (y,z) is also in %, then (y,z) € Fy,...», for some
mi,...,m; el and we get (x,z) € Fy,__ j.my,..m; S . Therefore we complete the proof.
O]

LemMA 3.3. The above subrelation & coincides with %y up to a v-null set, i.e.,
v(P\S) = 0.

Proor. If v(#\¥) > 0, then there exist /j,...,l; € I such that

-----

by the following:
L 1 _ nl/2
Jir=a(l,p, |P/,."'P11 (m(F))) = D,/ Xr(

Pilpy,_ oy ()

wi=Lo(fi x- - * fi).

It is easy to see that supp(f; *---* fx) = F and E4(wv)e,) =0 for each neI. Indeed,
a direct computation and show that vye, = L7(a(1,p,|g,)) and (fi*---* fi*
a(l,p,|g ))(x,x) =0 for almost all xe X.

On the other hand, since L?(f;) € Ae;v, = N for each i=1,...,k, we get we N.
In particular, by Lemma 3.1, E4(wv])e, = E4(wv)) for each nel. So E4(wv)) =0
for each n e I. By [Lemma 2.4, we obtain w =0, i.e., v(F) =0, a contradiction. Thus
v(S\S) =0. [

By this lemma, we obtain u(m;(I'(p,) N (¥ \S))) =0 for each nel. So we can
replace E, by E,Um/(I'(p,) N (S\F)) and get SN ) _, T'(p,) = S.

nel
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PROPOSITION 3.4.  The von Neumann subalgebra W*(¥,a|,) of M is equal to N.

Proor. We set L:= W*(¥,al|,).

We first show that L =< N. For this, it suffices to prove that A47(4) = N. If
ue N (A), then there exists p e [¥] such that u= L%(a(g,p)) for some ge L*(X).
For each ne INN, we define u, € M by the following:

n—1

Uy = Z E(uv;)vy.

k=—n+1

Since {I'(p;)}i.; are mutually disjoint up to v-null sets, we have

r(p™)Nr(pe) € I'prlp,)

up to a v-null set for each k € N. In particular, a Borel subset F := m;(I'(p~') N I'(p,))
is contained in Ej up to a u-null set. By [2.2) and [Lemma 3.1, we get

E 4 (uvy)vp = L (a(yr.g,p)) € Aexvy = Avp N Nvjop = N

for each k€. Hence u, also belongs to N for each neI. Moreover, since {Fi}, .,
are mutually disjoint up to w-null sets, we have

n—1

Uy = k—zn+1 LJ(“(%FM;P)) = L<XU::H1Fk)u'
This shows that ||u,|| < |ju|| = 1. On the other hand, by [Cemma 2.4, u,&, converges to
uéy. Thus u, strongly converges to u, i.e., for each & eLz(@), u,& converges to ul.
Indeed, for each ¢ > 0, since &, is a cyclic vector for M’ there exists 7’/ € M’ such that
|T'é — &|| < e/3. By[Lemma 2.4, there exists ny € N such that || T'u,&y — T'uéy|| < /3
for each n > ny. So we have

lon — ul| < [Jun — uaT " Eoll + unT'Eg — uT S| + [[uT'Eo — ul|
< Nl 1€ = T"Soll + 1T wno — T ol + [Jull 1 T7Eo — £
S NE =Tl + 1T unlo — T'uol| + |1 T"E — <]
<e,

for each n > ny. This shows that u,& converges to ué, and u belongs to N.
Conversely, if L7(f)e N\L, then we get v(supp(f) N (#\¥)) >0 and

v<supp(f>m U F(pnlnom(pn)\gn)> = V<supp(f)ﬂ @\s)n U F(pn)> > 0.

nel nel

So there exists nel such that v(supp(/) NI (p,lpom(y,\E,)) > 0. On the other hand,
E (L°(f)v}) is of the form L(h) for some he L*(X). By (2.1), supp(h) is equal

to w(supp(f) N I'(p,)). Since a(m(supp(f) N T (Pylpom(pyz,)) > 0, e obtain L(h)-
(I —e,) #0,1e., E4(L°(f)v;) ¢ Ae, = E4(Nv;;). So we get L?(f) ¢ N, a contradiction.
Hence we have proved the proposition. ]
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REMARK. By using the above argument, we can show the following: for each
TebGNy(A),

T = ZEA(Tv;)vn

nel

in the sense of the strong operator topology.
We are now in a position to prove our main theorem.

PROOF OF THEOREM 1.1. By and [Proposition 3.4, we obtain a discrete
measured equivalence relation # on a standard Borel space (X,3B,u), a Borel sub-
relation ¥ of # and a normalized 2-cocycle ¢ on % such that

(AN M) (W (X)s W' (¥, 0ly) = W (2X,0)).

So A is also a Cartan subalgebra of N and a conditional expectation Ey from M onto N
is defined by the following:

En(L?(f)) = L°(fls)-

By [1, Theorem 1.5.5], this is the unique faithful normal conditional expectation from M
onto N. Therefore we complete the proof. ]

We conclude this paper with some results which follow from the main theorem.

First, we characterize intermediate von Neumann subalgebras between an inclusion
of a von Neumann algebra and a Cartan subalgebra. Many properties concerning a
measure preserving full groups are proved by Nakamura, Dye, Takeda, Choda and so
on. Our corollary extends one of their results to general full groups.

COROLLARY 3.5 (cf. [5, Proposition 6.1]). Suppose M is a von Neumann algebra
with a Cartan subalgebra A of M such that M = W*(R,0) and A = W*(X), where R is
an equivalence relation on (X,B,u) with a 2-cocycle o. Then there exists a bijective
correspondence between the set of Borel subrelations & of # on (X,B,u) and the set of
von Neumann subalgebras N of M which contain A:

(3.1) N Sy = <U1F(pn E,l)>7
(32) S W*(yv 0'|.V>7

where {p,},c; S %], and {E,},.; =B are defined by the process described at the
beginning of this section.

Proor. By Theorem 1.1, for each such an N, we get a Borel subrelation %y of %
such that N = W*(%y,0|y ). So the above correspondence is bijective. O

REMARK. (1) Suppose Z is a discrete measured equivalence relation on (X, 3B, u).
There exists a countable group action G on X so that # = #Z;. In this situation, the
above Galois correspondence is between the set of full subgroups of [G] and the set of
intermediate subalgebras.

(2) To construct an equivalence subrelation for a subalgebra, we use only the sub-
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algebra and the original equivalence relation, i.e., our construction which is determined
by does not use the arguments given in [7, Section 3].

The second corollary is concerned with the regularity. Some interesting results on
maximal abelian s-subalgebras of finite von Neumann algebras were shown by Dye,
Dixmer, Jones and Popa. Dye and Jones-Popa proved that the regularity is hereditary
in the setting of a finite von Neumann algebra with a maximal abelian *-subalgebra.
We generalize this result to a general von Neumann algebra with a maximal abelian -
subalgebra which is the range of a conditional expectation.

COROLLARY 3.6 (cf. [S, Lemma 6.1] and [10, Corollary 2.3]). If 4 is a maximal
abelian s-subalgebra of M with the faithful normal conditional expectation from M onto
A, then the regularity of A in M is hereditary, i.e., if A is regular in M, then, for each von
Neumann subalgebra N between M and A, A is also regular in N.

Proor. By [Theorem 1.1, if 4 is a Cartan subalgebra of M, then 4 is also a Cartan
subalgebra of N. ]

By making use of our main theorem, we shall prove two corollaries about an
inclusion of factors with a common Cartan subalgebra. For this, we recall the basic
facts about an inclusion of ergodic equivalence relations with choice functions. For the
details about these matters, refer to and [8].
Let # be a discrete measured equivalence relation on a standard measure space
(X,8B,1) and o be a normalized 2-cocycle on #. The following results are well-
known:
(1) A von Neumann algebra W*(%,0) is a factor if and only if # is ergodic, i.e.,
for any [#] invariant Borel subset E of X, E satisfies u(E) =0 or u(X\E) =0
(7, Proposition 2.9]).

(2) The Murray-von Neumann algebraic type of W*(%,a) coincides with that of
R.

For each inclusion of an ergodic discrete measured equivalence relations . < #Z on
(X,B,u), by [8], we get choice functions {y;},., for & = %, ie., {y,},., satisfy the
following:

(i) Each y; is a Borel function on X and (x,y;(x)) € Z up to a u-null set,

(i) there exists 0 € I such that v, is the identity,

(iii) if (x, y) € #, then there exists a unique i € I such that (x,y,(y)) e ¥ up to a

v-null set.

The cardinality of I does not depend upon the choice of {y;};.;. This constant is
said to be the index of ¥ in #. By [8, Lemma 1.3], if the types of . and # are equal,
there exist choice functions {y;},_., for ¥ = # such that each y; is bijective (i.e.,

Y, € [7]).

COROLLARY 3.7 (cf. [12, Corollary 1.3]). Let M be a (separable) factor and A be a
Cartan subalgebra of M. If N is a subfactor of M which contains A, then the Jones
index of N in M is in N or oo.

iel

Proor. By [Theorem .1, there exist an inclusion of ergodic equivalence relations
S =R on (X,B,1) and a normalized 2-cocycle ¢ on # such that
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(AN M) (W (X)<s W' (¥, 0ly) = W (2X,0)).

By the same argument as in the case where o is trivial, we conclude that the Jones
index of N in M coincides with the index of . in #. Hence the index is in NU{o0}.
(]

Finally, we will prove the following corollary. We note that Popa proved it for
type II; factors that do not necessarily have separable preduals. So, in the case where
factors have separable preduals, our corollary is a generalization of his result to general
factors.

CoroLLARY 3.8 (cf. [11, Theorem 2.3]). Let M be a (separable) factor and A be a
Cartan subalgebra of M. If N is a subfactor of M such that N contains A and the
Murray-von Neumann algebraic type of N coincides with that of M, then for each faithful
normal state w on A, there exists a subset {u;},.; of Ny(A) containing 1 such that

&)
> Nuig=ME in LA(M,wo Ey),

iel
where & is the implementing vector of wo E4.

Proor. By [Theorem 1.1, (NS M) = (W*(¥,0]l,) < W*(%#,0)) for a pair of
ergodic discrete measured equivalence relations ¥ < # and a 2-cocycle g. Since the
type of W*(#,0) is equal to that of #, we obtain that the types of ¥ and # are equal.
So we get bijective choice functions {y;},., for ¥ < #. For each iel, we set
w; == L%(a(1,¥,)) € N (A4). Since {I'(Y;")},.; are mutually disjoint and # is gen-
erated by % and {I'(y;")},.; up to null sets, we conclude M¢ = 32, Nu;é.  Indeed, if

iel

i # j, then, for any p e [¥],, we have
(a(1,9)" = a(1, p) xa(l,4;)) = > 2 (5 Ve (s Dty (%)
E~x
=Xr(p (‘ﬁj(x)a i (x))
=0 (since (¥;(x),¥;(x)) ¢ &)
for almost all xe X. Thus Nv;{ L Nv;l. Therefore we complete the proof. ]
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Added in Proof. After this paper was accepted for publication professor K. Saito
informed the author that P. S. Muhly, K. Saito and B. Solel had treated the same
problem in [MSS], and also informed that their paper has a gap in the proof of [MSS,
Theorem 2.5]. In the theorem, they claimed that for each o-weakly closed linear
subspace N of M which is a bimodule over a Cartan subalgebra 4 of M (the subspace N
is not necessarily a subalgebra), N comes from a Borel subset of an equivalence relation.
The author is grateful to them for informing the above and also for calling his attention
to [F], and [MS].

To prove the theorem, they defined a bimodule .o7(F (&), G(&)) over A for each
¢ e L*(#), and proved that the bimodule is equal to {T € M : T¢ € Né}, and N coin-
cides with () cerxan (F(&),G(¢)). In this situation, they claimed that the intersection
coincides with that taken over any countable dense subset {,},., of L*(%), ie.,

(%) (N A(F(&),G(Q) = () A (F(&), G(&n)-

Eel*(%) nzl
But this claim was mentioned without proof in [MSS]. Moreover, the following two
arguments tell us that the verification of the claim seems nontrivial. This is the gap
which we mentioned above.

We first note that the property that the subset {&,},~; is dense in L?(#) does not
reflect that of the family of bimodules {.</(F(&,), G(£,))},, over A. Very roughly, the
map & — o (F(&), G(¢)) is “not continuous”. For example, for each ¢ e L2(#) which
satisfies .o/ (F(&),G(&)) # M, set n, := (1/n)¢ for each n = 1. Then it is trivial that
each .«/(F(n,),G(n,)) is equal to /(F(&),G(E)). But we have

o (F( lim 7,), G( lim n,)) = o/(F(0),G(0)) = M,
which is not equal to oZ(F (&), G(¢E)).

Secondly, since .7 (F(¢), G(&)) is equal to {T e M : Té e NE} as mentioned above,
(x) is equivalent to the following:

(\ {TeM:TéeNEy= (\{TeM:T¢, eNE,}.

EeLX(R) nzl

But they did not use the property that N is a bimodule over A. So if their arguments
were valid, then the following equation would hold for any von Neumann algebra N
acting on a separable Hilbert space H and any countable dense subset {¢,},-; of H:

() (\{TeB(H): T¢e N&} = (\{T e B(H): TS, € N&, }.

teH n=1
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But the above equation does not hold in general. Indeed, suppose that N is not equal
to B(H), and that N has a cyclic and separating vector 7,. Then, by [3, Corollaire 2],
there exists a subset of cyclic vectors {7,},., for N which is dense in H. Since H is
separable, we may choose a sequence {4,},>,; S 4 such that {5, },., is dense in H. So
we have - -

N{T eB(H):Tn, eNn, } = (\{T e€B(H): Ty, € H} = B(H).

nx1 nx1
On the other hand, since N has a separating vector, by [LS, Theorem 3.7], the left-hand
side of (f) is equal to N. So this provides a counterexample to ().

We last note that if the equivalence relation £ is hyperfinite, i.e., M = W*(%,0) is

a hyperfinite von Neumann algebra, then [MSS, Theorem 2.5] is true. Indeed, P. S.
Mubhly and B. Solel proved it in [MS, Theorem 3.10], and I. Fulman gave a proof to a
more general setting ([F, Theorem 15.18]). Although our arguments are valid for any
intermediate subalgebra, it seems difficult to apply them to bimodules of a (not necessary
hyperfinite) von Neumann algebra.
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