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Abstract. In 1990, Gérard-Tahara introduced the Briot-Bouquet type partial
differential equation 20,u = F(t,x,u, 0 u), and they determined the structure of singular
solutions provided that the characteristic exponent p(x) satisfies p(0) ¢ {1,2,...}. In this
paper the author determines the structure of singular solutions in the case p(0) € {1,2,...}.

1. Introduction.

In this paper, we will study the following type of nonlinear singular first order
partial differential equations:

t0u = F(t,x,u, 0xu) (1.1)
where (¢,x) = (t,x1,...,x,) € C, x C%, Oxu= (O1u,...,0,u), 0,=20/0t, 0; =0/0x; for
i=1,...,n, and F(¢,x,u,v) with v = (vy,...,v,) is a function defined in a polydisk A
centered at the origin of C; x C x C, x C,/. Let us denote Ag= AN{r=0,u=0,
v = 0}.

The assumptions are as follows:

(Al) F(t,x,u,v) is holomorphic in A,
(A2) F(0,x,0,0) =0 in Ao,

oF
A3) —(0,x,0,0)=01in Ay for i=1,...,n.
ov;

DeriNiTION 1.1 ([2], [3]). If the equation (1.1) satisfies (Al), (A2) and (A3) we say
that the equation (1.1) is of Briot-Bouquet type with respect to f.

DEeriNITION 1.2 ([2], [3]). Let us define

oF
p(x> = % (O,X,0,0),

then the holomorphic function p(x) is called the characteristic exponent of the equation
(1.1).

Let us denote by
1. 2(C\{0}) the universal covering space of C\{0},
2. Sp={te #(C\{0}); [arg1| < 0},
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3. S(e(s)) ={re 2(C\{0});0 < |7] < ¢(arg?)} for some positive-valued function
&(s) defined and continuous on R,

4. Dr={xeC" x| <R for i=1,...,n},

5. C{x} the ring of germs of holomorphic functions at the origin of C”.

DEFINITION 1.3, We define the set @, of all functions u(z,x) satisfying the fol-
lowing conditions;

1. u(t,x) is holomorphic in S(g(s)) x Dg for some &(s) and R > 0,

2. there is an @ > 0 such that for any # > 0 and any compact subset K of Dpg

malé(|u(t,x)\ =0(|7]") as t— 0 in Sy.
Xe

We know some results on the equation of Briot-Bouquet type with respect to .
We concern the following result. R. Gérard and H. Tahara studied in |2] the structure
of holomorphic and singular solutions of the equation and proved the following

A
result;

THEOREM 1.4 (R. Gérard and H. Tahara). If the equation (1.1) is of Briot-Bouquet
type and p(0) ¢ N* ={1,2,3,...} then we have;

(1) (Holomorphic solutions) The equation (1.1) has a unique solution uy(t,x) holo-
morphic near the origin of C x C" satisfying u(0,x) = 0.

(2) (Singular solutions) Denote by S. the set of all 0. -solutions of (1.1).

S - {{uo(t, x)} when Re p(0) < 0,
* = Vuolt, )} U{U(9); 0 # p(x) € Cx}}  when Rep(0) > 0,

where U(p) is an O,-solution of (1.1) having an expansion of the following form:

Ulp) = w()t'+ > g, x ()7 (log ), g1 4(x) = p(x).

i>1 i+2j>k+2,j>1

In the case p(0) € N*, Yamane |7] showed that the equation has a holomolphic
solution in a region {(z,x) € C x C";|x| < ¢|t|* « 1} for some ¢ >0 and d > 0, but the
solution is not in S,.

The purpose of this paper is to determine S, in the case p(0) e N*.

The main result of this paper is;

THEOREM 1.5. If the equation (1.1) is of Briot-Bouquet type and if p(0) =N e N*
and p(x) # p(0), then

S+ ={U(9); p(x) € C{x}},
where U(p) is an O,-solution of (1.1) having an expansion of the following form:
Ulp) = ) (x)t +uf (gn(t,)+ Y wl(x)r'dy

i+ =2, |Bl<%
(Al <i+|pl-2

i+jp(x k
+ w1 o(x)") 4 > S wl ) log

i++HB =2, |Bl<oo k<i+|fly+|Al,
J=LIpI<iHj+pl-2  4+2(j-1)
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where u%(x) =0, w87110(x) = ¢(x) is an arbitrary holomorphic function and the other
coefficients ulﬂ (x), wf .x(x) are holomorphic functions determined by w87170(x) and defined
in a common disk, and

I=(h,...;L)eN", [l|=h+ -+, B=(BeN;leN",
BI= "B 1B, =D B for p=0, [BI=> (|-,

[/]=0 |l|=p [/]=2
) H Olhn g I Al I ) — (N
@ = X a = a 1 "'0" t = —_—
N o /I 5 x 1 no ¢N( ,X) p(x) — N

The following lemma will play an important role in the proof of Theorem 1.3.

At first, we define some notations. We set for / € N”, ¢ = (f;;k e N") with , =1
and f, =0 for k #/ and for pe{1,2,...,n}, e(p) = (i1,...,i,) with i, =1 and i, =0
for g # p, and define /' < /° by |I'| < |I°| and I! <[° for i=1,...,n

LEmmA 1.6. Let p(x), ¢y and @f, be as in Theorem 1.5. Then we have;
1. 6])@1% = lelzoﬂl(lp + I)QJﬂvfeﬁeHe(m for i=1,...,n,
2. topy = p(x)py + 17,

ol p(x)
3. 10,®4 = [Blp(x) D + BtV DN + D0y 1 2on<0 P75

(10 =11
PROOF.
l NG _ l NBi—1 Al+e(p) ]
1. By 0,(0,8y5/1")" = Bi(0 N /1) 0.7 P dy /1!, we have the result 1.
2. By t0ipy = (p(x)t"™) — NtV)/(p(x) — N), we have the result 2.

3. By 2, we have
B pi—1
3 aifﬁN . a)lcﬂﬁzv 6i(p(x)¢N—|—tN)
o\ =) A I '

f—ente;
Pl et
N .

Therefore we have

d <6l¢~>ﬁl Bop(x)#N + Bor ¥ g™ if /=0,
10| = = o ) ol PYPIRY. /ot B

I B ) (B + Sy S Bt (%0 > 0.
Hence we have the desired result. ]

2. Construction of formal solutions in the case p(0) = 1.
By (Gérard-Tahara), if the equation is of Briot-Bouquet type with respect
to ¢, then it is enough to consider the following equation:
Lu = tou — p(x)u = a(x)t + G2(x)(t,u, Oxu) (2.1)
where p(x) and a(x) are holomorphic functions in a neighborhood of the origin, and

the function G,(x)(¢, Xp, X1,...,X,) is a holomorphic function in a neighborhood of the
origin in C x C; x Cy, x Cyx, x --- x Cy, with the following expansion:

Go(X)(1, X0, X1, .., Xo) = D ap ()P { X} { X} { X}

pH|u|=2



620 H. YAaMAZAWA

and we may assume that the coefficients {a, ,(x)}, >, are holomorphic functions
on Dpg, for a sufficiently small Ry >0. Let 0 <R<Ry. We put 4,,(R):=
MaXyepg|dp«(X)| for p+|af >2. Then for 0 <r <R

Ap.2(R)

Y <1 SN 2 ) o] . O
R r)p+|u\f2[ XX x x X, (2.2)

pH|u|=2

is convergent in a neighborhood of the origin.
In this section, we assume p(0) =1 and p(x) #1 and we will construct formal
solutions of the equation (2.1).

/l

ProPOSITION 2.1.  If p(0) = 1 and p(x) # 1, the equation (2.1) has a family of formal
solutions of the form:

u=ul(X)p+ > Y ul(x)ref

m=2 i+|f|l=m
[fl<m-2

+wg (P> Y > w0 log el (2.3)

m=2 i+j+|fl=m  k<i+|B|y+Ipl,
j=1L[fl<m=-2 +2(j-1)

where wy | o(x) is an arbitrary holomorphic function and the other coefficients ulﬁ (x),

wlﬁ ;. x(x) are holomorphic functions determined by w87170(x) and defined in a common disk.

REMARK 2.2. By the relation [f] <m —2 in summations of the above formal
solution, we have f;, =0 for any /e N" with |l| > m.

We define the following two sets U,, and W,, for m > 1 to prove [Proposition 2.1l.

DeriNITION 2.3. We denote by U, the set of all functions u, of the following
forms:

up = u) (x)t + ug’ (x) ¢y,
un= Y ul(x)f'®} for m>2, (2.4)
i+ [Bl=m

Bl <m-2

and denote by W,, the set of all functions w,, of the following forms:
Wiy = Wg,lyo(x)tp(x%

Wiy = Z Z wfﬁk(x)t"*jp(x){log t}ch{j for m>2 (2.5)

i+j+|fl=m k<i+|Bly+Bl,
JzL[flsm=2  +2(j-1)

where u’ (x), wfﬁk(x) e C{x}.

We can rewrite the formal solution (2.3) as follows:

U= Z(um + wy) where u, € Uy, wy, € Wy,.

m>1

Let us show important relations of u,, and w,, for m > 2. By [Lemma 1.6, we have
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Opltyy = Z Op u (x)t' @ﬂ—|—z ﬁl“ (x )ti¢1ﬁ_e’+e’+"(”) ,

i+|f]=m |71=0
(fl<m—-2
OpWm = Z Z 8pwfj7k(x)t"+j/’(x){log t}kgbf

i+j+|pl=m  k<i+|fly+Ipl;
jzL[fl=m=2 +2(j-1)

+j8pp(x)wfj7k (x) 1P {log 1} <! q51ﬂ

m—1
Y+ DB, () {log ) Fpf O (2.6)
|/1=0

for p=1,...,n, and we have

Luy = > {i+ (1Bl = Dp(x) bl ()’ df + poul (x)e+ 1 af

Ty
(fl<m—2

+ Z Zﬁzo (lo p(x) ul ()] (2.7)

10]=11'<[0

Lw,, = Z Z {i+(+ |- 1)P(X)}Wf‘j,k(x)t"”p(x){log ol
iHj+|pl=m  k<i+|Blo+IBl,
JzL[fl<m=2  +2(j-1)

+ kwfj,k<x>r"+”<x>{log Y] o ff (0 (log 1} f

m—1 )

i+ip(x —e,0te
+3 ﬁlo Wl () (log 1} k@) 0T

10]=111<[0

We show two lemmas.
Lemma 24. If u, € U, and w,, € W,,, then Lu,, € U, and Lw,, € W,,.

Proor. We prove Lu,, € U,,. We will see all the exponents of each terms in (2.7)
For the second term in (2.7), we have i + 1+ |f —eo| =i+ |f| =m and [f —e] = [f] <
m— 2.

For the third term, we have i+ |f —ep +ep| =i+ |f| =m and [f —ep +ep] = [f]
Gf |0 =1), =[B]— (|I°) = 1) (f |{°] > 1 and |I!| < 1), =[B] = |I° + |I}] (if |/°| > 1 and
|I'| > 1). Therefore by /' < [° we have [ —ep +ep] < [f] <m—2. Hence we have
Lu,, € Uy,,.

We can prove Lw,, € W,, in the same way. ]

Lemma 2.5. If u,eU, and w, e W,, then the following relations hold for
i,j=1,...,n,
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1. a(x)U, < U, and a(x) Wm = W, for any holomorphic function a(x),

2. tUp, $1Un < Upyy and 'OV U, tWy,, "W, ¢y Wy © Wi,

3. Uy X Uy, Ojttyy X Ojly, Ojlhy, X Uy € Um+n,

4. Wy X Wy, 0wy X 0jWy, OiWyy X Wy € Wiy,

S50 U X Wy, Ojlyy X Wy, Uy X 0jWy, Oilly, X OWy € Wipgp.

Proor. This is verified by the relations [2.6). ]

Let us show that u,, and w,, are determined inductively on m > 1. By substituting

> =1 (tm +wy) into [2.1), we have
(1= () + () = al), 28)

and for m > 2

Lu,, = Z x)t! H Unng 1, H H Ojthm (2.9)

P =2 ho= Jj=1 hj=1
Pl |=m
%0 n %
— P .
me - § ap7oc(x)t H (umo,ho + Wmo,/lo) H H 8](”’”/,/1]- + Wm/,hj)
p+|0€‘ 22 h():] ]:1 hjil
p+|mu|=m
oo n %
— P .
E : ap,d(x)t H Umy, ho H H a]umj‘h/ﬁ (2.10)
p+lo| =2 ho=1 Jj=1 hj=1
pFmy|=m
n .
where |my,| = > m;(e;) and m;(o;) =m; +---+m;, for i=0,1,... n

We take any holomorphic function ¢(x) e C{x} and put w87170(x) = ¢(x), and by
(2.8), we put u(x) =0 and u’(x) = a(x).

For m > 2, let us show that u, and w,, are determined by induction. By
2.5, the right side of [2.9] belongs to U,, and the right side of (2.10) belongs to W,,.
Further by m; ;, > 1, we have m;,;, <m for hj=1,...,0; and j=0,...,n. Then for
m > 2, we compare with the coefficients of ¢’ @ﬁ and t”’/’ H{logt} @ﬁ respectively for

and (2.10), then put
{i + (1Bl = Dp(x)}ul' (x)
J0_y1 x ene,
B W+ S S (o) a G D) o ()

|10=10<11<]0 )

= 17 (s} r< ptag < 1l () i) (2.11)

and

{i+ i+ 1Bl = Dp(x)ywl () + (ke + w4 (x)

» a”’ en—en
+(By + WS (%) Z ST (Bo+1) i ()) Wl (x)

[10=10<'<I0

))l !
= g,'[j,-yk({ap., a}25p+\a| <m> {”l// (x)}i'+|/3’\<m7 {Wﬁ,jgkf (X>}i’+j'+\ﬁ/|<m)- (2.12)
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We define an order for the multi indices (7, ) and (i, j, k, f) to show that ulﬁ (x) and
wlﬂ ;x(x) are determined by (2.11) and (2.12).
DerINITION 2.6.  The relation (i', ") < (i,f) is defined by the following orders;
L "+ |p|<i+ Bl
2. If i’ +|p'| =i+ |p|, then i’ < i.
3. Ifi'"+|p'|=i+|B| and i’ =i, then |B'|, < |Blo-
A I+ =i+ |l i =i, |B'lo = Blos--- 1Bl = IBl;> then |B'|; < Bl
The relation (i, j',k',B") < (i, j,k,B) is defined by the following orders;
i)+ B <i4j+ 1Bl
If i'+j + || =i+j+ |, then i’ <i.
If i' +j' +|p'|=i+j+|B| and i’ =i, then j' <.
Ifi'+j + || =i+j+|pl, i’ =i and j' =, then |B'|, < |Blo-
I '+ + | =i+j+ B, i'=i, j'=j, |Blo=1Blo,---+1B'l, = IBl;> then
B 1 < 1Bl
6. If (i/,j,8") = (i,j,B), then k' > k.
For m >2, we have i+ (|| — )p(x) #0 and i+ (j+ || — )p(x) #0 by p(0) = 1.
Therefore all the coefficients ul[’) (x) and wa «(x) are determined in the order of Def-
inition 2.6. Hence we obtain [Proposition 2.1l.

AR

3. Convergence of the formal solutions in the case p(0) = 1.
In this section, we show that the formal solution (2.3) converges in (.

PROPOSITION 3.1.  Let y satisfy 0 <y <1 and let A be sufficiently large. Then for
any sufficiently small r > 0 we have the following result;

For any 0 > 0 there is an ¢ > 0 such that the formal solution (2.3) converges in the
following region:

{(1,x) € C, x C";|n(1, 2)1] < &, |n(t, 2)*t"V| < &, |n(t, )1'] < e,t€ Sy and x € D,},
where n(t,A) = max{|(log?)/4|,1}.

In this section, we put wf()?()(x) = ulﬁ(x) and Wfovk(x) =0 for k> 1 in the formal
solution (2.3). Then the formal solution (2.3) is as follows:

u= Wg?o,o(x>¢1 + Wg,l,o(x)lp(x)

i+jp(x k
Y S deetel. G
m=2 i+j+|fl=m k<i+|flo+Ipl;
Bl<m-2  42(j-1)

Let us define the following set V;, for ((3.1).

/l

DeriniTION 3.2, We denote by V;, the set of all the functions v,, of the following
forms:

v = W'y o(X)¢1 + W87170(x)lp(x)7
Uy = Z Z Wfﬁk(x)liﬁp(x){log l‘}k@{} for m > 2. (3.2)

i+j+1Bl=m k<i+|Bl,+|pl,
[fl<m—2 +2(j-1)
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We define the following estimate for the function wv,,.

DEerINITION 3.3.  For the function (3.2), we define

[1vg%0.0ll, 0||
lvilly, .. = llorll, e == +lwo, 10l

w1, 2¢
lowlleri= > Y e form=2, (3.3)

i+j+pl=m k <i+|lo+h
[Bl<m—-2 +2(j—1)

for ¢ >0 and 4 > 0, where
)l = maxpwl, ()| and B =D (1l + 1By
' l1|=0
We will make use of

Lemma 3.4.  For a holomorphic function f(x) on Dg,, we have

o
ovf 37]‘ for 0 < R < Ry.
102/ 1 T [vairs
Proor. By Cauchy’s integral formula, we have the desired result. O]

Lemma 3.5.  If a holomorphic function f(x) on Dpg satisfies

C
||f|!r_(R 7 for 0<r<R
then we have
jol, < SPED - p o cr R =
i V_W or r < K, r1=1,...,n.

For the proof, see Hérmander ([5], lemma 5.1.3).
Let us show the following estimate for the function Luv,,.

Lemma 3.6. Let 0 < R < Ry. Then there exists a positive constant o such that for
m> 2, if v, €V, we have

for 0<r<R

r e, A

a
1Lvmlly,c.; = 5 ml[vml]
2

for sufficiently small ¢ >0 and sufficiently large 4 > 0.

PrOOF. Let us give an estimate the second, the third and the fourth term in the
right side of the second relation in (2.7) respectively.

For the second term, since k < i+ |B|, + |B]; +2(j — 1) <2m by i +j + |B| = m we
have

!, 1245 om
T, := Z Z kl’jc<—ﬁ> < 7|’Umur.,c,2'

i+j+|l=m k<it|Blo+Ipl;
[Bl<m—2 +2(j-1)
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For the fourth term, we have

_ 701 k
] Bo  N0E " pwl A

To= 3 D DD o s

i+j+|pl=m k<i+|ply+Ipl; |1°]=1 I'</°
[Bl<m=2  +2(j-1)

B k
> ) § aad ||a "l w7 il 2
Bro — B (3.4)
i+j+|Bl=m k<i+|Blo+IBl, |1°=1 I'<I® !
Bl<m=2  +2(j-1)

By [Lemma 3.4, we have

- -1 ’
TRImT ||8 /)||R < ¢ cnllpllg, { Ro—R
Z (l() ll)l - Z RO — R “ HR() — R — R RO —R—c¢ (35)

<o 1</o

IA

for sufficiently small ¢ > 0. Therefore by (3.4) and (3.5) we have

k
ljk”j“

m—1
T4 < k(c) Z Z Z P —m— B

i+j+|Bl=m k<i+|Blo+|Bl, |1°=1
[fl<m-2 +2(j—1)

where x(c) := (en/(Ro — R))((Ro — R)/(Ro — R — ¢))"[|pll, -
For the third term, we have

Iwl; el A% lwl; el A%

Tyi= ) Y. bo—gas = DL >, bl —
i+j+|Bl=m k<i+|p|y+|pl, i+j+|Bl=m k<i+|lo+|pl
[fl<m=2 +2(j-1) [fl<m—2 +2(j—-1)

Therefore, since ¢f, + x(c) Z|T°|_:llﬁl° < (¢/3)m by the conditions x(0) =0 and
i+j+|f] =m =2 for sufficiently small ¢ >0 and some ¢ >0 we have

2m
T +T5+ T4 < <7+%m) omll, ¢

Further we have [|i+ (j+ |f] —1)p(x)| =om by the condition p(0)=1 and
i+j+|B| =m=>2. Therefore we have

2m o
[L0ullcs > (== S lonll

Hence for sufficiently small ¢ > 0 and sufficiently large 4 > 0, we obtain the desired
result. O
Let us estimate the function J;v,,.
DEeriNITION 3.7. For the function v,, € V,, we define
D= XXl gy of
i+j+|Bl=m k <i+|Blo+|Bl,
B<m-2  42(j-1)

for p=1,...,n



626 H. YAMAZAWA

Lemma 3.8. If v, €V, then for i=1,...,n, we have
3m—2
||alvm|l ¢, A = ”D var ¢, A + C()j.l’l’l”l)erC) vaHr,c.,/l for 0 <r <R (36)
Proor. We have
m—1
Y L Dp < Y (1+1)p=2IBl +[B] < 3m—2. (3.7)

1[>0 =

We put ¢o = max;—;,__,{||0ip||g}, and by the relations [2.6), (3.7) and j < m we obtain
the desired estimate. ]

Therefore by the relations [2.9], (2.10) and Lemma 3.8, we have the following
lemma.

LemMA 3.9. Ifu=73", - vn is a formal solution of the equation (2.1) constructed in
Section 2, we have the following inequality for v, (m > 2):

%o
HLUm”rc) Z ||aP7OﬁHr H ||Um0,hOHr,c,i

pH|a| =2 hp=1
p+|m,|=m
L 3m; h — 2
X H H { ||Divm,-,/,,- ||r,c,/l + Coimhhi“l)mwi ||r,c,/l + 1761 ||Uml-./1,- Ir,c,/l}'
i=1 h=1

Let us define a majorant equation to show that the formal solution converges.
We take A; so that

16,0/l oHR
HW(()),LOHR < 4,

Haiwgoo.oHR 0
—————+[[0iwg 1 ollr < 41
fori=1,...,n.

Then we consider the following equation:

o 1 A u(R)  pou d 3.\
EY—EAltl—i—R—_ Z WIIY H €Y‘|—C0/1Y+EY . (38)
po>2 i=1

The equation (3.8) has a unique holomorphic solution Y = Y(#;) with Y(0) =0

t (Y,#1) =(0,0) by implicit function theorem. By an easy calculation, the solution
Y = Y (1) has the following form:

. C
Y = Z Yt with Y, :#

m>1 (R—V

where Y =C;y =4, and C,, >0 for m > 1.
Then we have;
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LemMA 3.10. For m > 1, we have

mlvmll, o, < Ym for 0<r<R (3.9)

[1Divmlly e < €Ym for 0 <r <R, (3.10)
for i=1,....n.

PrROOF. By A4; = Y; and the definition of A4;, (3.9) and (3.10) hold for m = 1.

By induction on m, let us show that (3.9) and (3.10) hold for m >2. By sub-
stituting the solution Y =3} _, Y,,¢[" into the equation (3.8), we have the following
relation:

oo

o 1 A, 4(R)
Y= —L || Y
2 R—r Z (R . r>p+|oc\72 hH 0, hg

pt|a| =2 0=1
pimy|=m

n o 3
<111 {e Yons, + 02 ¥, + le._,”} (3.11)

i=1 1‘1,‘21
for m > 2. Therefore if we assume that (3.9) and (3.10) hold for m; ;, < m, by (3.11),
[Lemma 3.6 and [Lemma 3.9 we obtain

g

2

mllvmll, ., < (R=71)7 Y.

1 Q

Therefore we have
mlvmll, . ; < (R=1)Yy < Y. (3.12)

The relation [(3.12) is rewrited as follows:

> IIWf, el A C,,
m Z /C</7> = (R . )mfZ : (313)
i+ Bl=m k <i+|lo+|Bl, 4

fl<m—-2 +2(j—-1)

By (3.13) and [Lemma 3.3, we have

< (m — l)eC,ln
T (R—r)""

for i=1,...,n and 0 <r < R < 1. Therefore we have
% =eY,,.
(R—71)
Hence (3.9) and (3.10) hold for m > 2. ]

m Dy

1Divmll,. .1 <

Let us show that the formal solution converges by using (3.9) in
3.10. We rewrite as follows:

u:ugt)(x)¢l+W8’170(x>tp(x)
B k k
Ny 3 e ()

m=2 i+j+|fl=m k<i+|B|y+Ipl,
[fl<m—2 +2(j—-1)
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where
ph — I1 ( J1]+1 5;&) ‘ (3.14)
1|>0
Firstly let us estimate (3.14). For ||¢,]|z, we have the following lemma.
Lemma 3.11.  For any y with 0 <y <1, there is an R > 0 such that
Il = O7) as 10 in S,
holds for any 0 > 0.

ProOF. We put
t/)o(x)Jroc _

Po(x)
with 4+ =1 and py(x) = p(x) —1. Then we can take R > 0 with

¢ =1

1poll g < o
by po(0) =0. Therefore we have
tpo(x)+a —

< [log |7 Wolx 0 as t— 0 in S,
Po(X)

R

for any 6 > 0. Hence we have the desired result. ]

By [Cemma 3.11, there exists a positive constant ¢; such that

Ipillr < cilt]” in Sp. (3.15)
By Cemma 3.4 and (3.15), for |/| >0 we have
Ne
I 4
1011l < (R )Il\ 1z < WMV for 0 <r<R. (3.16)

Therefore, we have

Bi
1, < H(df“ (RC >|w> = (=) @@=l @)

|/|=0

for 0 < R < Ry in Sy.

Let us estimate 7 ((logr)/2)* ¥/

We put #(t,4) = max{|(log?)/4|,1}, ¢; =max{c/(R—r),1} and c3=c;(R—7r).
Since we have [fl<m—-2<m=i+j+|f,

By <20pl + (Al < i+j+3IB]

and
k<i+|Bly+ Bl +2(—1) <i+|B]+ 2/

we obtain



Singular solutions of the Briot-Bouquet PDEs 629

< {Jean(t, i1} {llean (e, 2)° "), Y | (e2) ean(r, )i [}V

{iHIP(x) (lof [) g,/f

in Sy. For any sufficiently small ¢ > 0, there exists a sufficiently small 6 > 0 such that
for any €Sy with 0 < |7 <J we have

r

lean(t, )1 < &, lean(t, )" D], <&, |(c2) esn(t, A)E] <,
and we obtain

<™.

r

[Hip() <1°g t) %
A

Then by [Lemma 3.10, we have

ull, < D Ve (3.18)

m>1

for sufficiently small |¢] in Sy. Hence the formal solution converges for x € D, and
sufficiently small |¢z] in S. O

4. Completion of the proof of Theorem 1.5 in the case p(0) = 1.

In this section, let us complete the proof of in the case p(0) = 1.
We know the following theorem.

THEOREM 4.1. If u(t,x) e O, (i=1,2) are solutions of (2.1), we have;
1. For any a < p(0) =1, we have t*(u; —uy) € O,.
2. If t7™°(u; —wy) € O, for some b= p(0) =1, we have ui(t,x) = uy(t,x) in 0.

For the proof, see Gérard and Tahara ([2], Theorem 3).
By the discussions in sections 2, 3 and 4, we already know the following results:
(C1) If p(0) =1 and p(x) # 1, for any ¢(x) € C{x}, the equation has an @, -
solution U(p)(¢,x) having an expansion of the form

Ulp) = wly o)y + w1 o)’ + 3 3 wb(x)rie!

m=2 it |fiem
[fl<m—2

+Y ). > wfj7k(x)ti+j”(x){logt}kcbf (4.1)

m=2  itj+|fl=m  k<i+|Blo+|Bl,
i=L[fl<m=2  42(j-1)

with w87170(x) = ¢(x), where all the coefficients ulﬁ (x), wl./f ;.x(x) are holomorphic in a
common disk centered at the origin of C.. If we take ¢(x) =0, then the solution

U(0)(¢,x) has the expansion

UO)(t,x) =ul(x)p+ > > ul(x)rdf. (4.2)
m=2 it|fl=m
Bm-2

(C2) If p(0) =1 and p(x) # 1, and if a solution u(t,x) € O, of the equation
is expressed in the form
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(%) — u () (1,%) — p(x) ") € Oy

then the coefficient u(’(x) is uniquely determined by the equation [I.1J,
independent of ¢(x).

Moreover, by (C2) and we can easily see that U(gp) in is uniquely
determined by ¢(x). If p(0) =1 and p(x) £ 1, by (Cl) we have

and they are

S+ > {U(p); p(x) € C{x}}. (4.3)
Hence it is sufficient to prove the following proposition to complete the proof of the
main theorem.

PropPOSITION 4.2.  Assume (Al), (A2) and (A3). If p(0) =1 and p(x) # 1, and if
u(t,x) e Sy, then we can find a ¢p(x) e C{x} such that u(t,x) = U(p)(t,x) holds in 0O..

The proof of this proposition is almost the same as that of Proposition 2 in Gérard and
Tahara [1]; so we may omit the details.

By (4.3) and |Proposition 4.2] we obtain the main theorem 1.5 in the case p(0) =1
and p(x) # 1.

5. Proof of Theorem 1.5 in the case p(0) = N.

In Section 2, 3 and 4, we have proved [Theorem 1.3 in the case p(0) = 1. In this
section, we will prove in the case p(0) =N >2 and p(x) # N.
We set

N—1
u(t,x) =Y ui(x)r'+ 1V w(z, x), (5.1)
i=1

where u;(x) € C{x} (1 <i< N —1) and w(t,x) e 0,.

Then by an easy calculation we see

LemMma 5.1.  If the function (5.1) is a solution of the equation (2.1), the functions
up(x),...,un—1(x) are uniquely determined and w(t,x) satisfies an equation of the fol-
lowing form:

(0, — p(x) + N — D)w = ta(t,x) + tAo(t,X)w + 1 Y _ A;(t,x);w
i=1

n

Y O g e [[em . (52)
|

ol >2 i=1

where

a(t,3) = 5 (Ga() (1. w0, o) + 1a(x) — (12, — p(x) o)

with wo = SN ui(x)t' and
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1 0G, )

Ai(t,x) = [ X ( )(t, wo, Oxwy), i=0,1,...,n,
1 "G

Ay(t,%) = an (x) (2, wo, Oxwo), o = 2.

Since the equation satisfies the conditions (Al), (A2), (A3) and the charac-
teristic exponent p¥(x) = p(x) — N + 1 satisfies p”V(0) = 1, we can apply the results in
sections 2, 3 and 4.

Further, by the form of all the nonlinear parts of the equation [5.2], we see that the
formal solution constructed in Section 2 has the following form:

W_”éveo< )¢N1+W010( x)t’ ")

S WYY gl
i>2

m>=2  i+|f|l=m
(8 <m—2,18= 1

> ST W NGB ) fog ik | (5.3)

m=2 itj+|fl=m  k<i+|B|y+|pl;
J=Lflem—2  +2(j-1)

B 0, ¢N 1 ") —
where @y | = [[j;-0 and Pn 1 :W. Therefore we have
N-1 _
w="> u(xX)t' +ug" " (x)py + Wo 1, 0( X))
i~
+ )ti+N—1 + Z Z ufv’ﬁ(x)tiéf,
i=2 m=2  i+|f|=m
(Bl<m=2,|p|=1

DI > w0 {log 1} k. (5.4)

mz2 itj+|pl=m  k<i+|Blo+Ipl,
J=L[fl<m=2  +2(j-1)

We put

N

u; (x) — uiyy—1(x) for i >2, uM’

Y (x) =l (x) for || > 1,

Wik (x) > wl(x) for any (i, .k, B),

and we have u%(x) =0 by the form of the solution (5.3) and the above relations.
Hence this completes the proof of Theorem 1.3. O
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