Singular solutions of the Briot-Bouquet type partial differential equations

By Hiroshi Yamazawa

(Received Jun. 18, 2001) (Revised Dec. 13, 2001)

Abstract. In 1990, Gérard-Tahara [2] introduced the Briot-Bouquet type partial differential equation $t\partial_t u = F(t, x, u, \partial_x u)$, and they determined the structure of singular solutions provided that the characteristic exponent $\rho(x)$ satisfies $\rho(0) \notin \{1, 2, ...\}$. In this paper the author determines the structure of singular solutions in the case $\rho(0) \in \{1, 2, ...\}$.

1. Introduction.

In this paper, we will study the following type of nonlinear singular first order partial differential equations:

$$t\partial_t u = F(t, x, u, \partial_x u) \tag{1.1}$$

where $(t,x)=(t,x_1,\ldots,x_n)\in C_t\times C_x^n$, $\partial_x u=(\partial_1 u,\ldots,\partial_n u)$, $\partial_t=\partial/\partial t$, $\partial_i=\partial/\partial x_i$ for $i=1,\ldots,n$, and F(t,x,u,v) with $v=(v_1,\ldots,v_n)$ is a function defined in a polydisk \triangle centered at the origin of $C_t\times C_x^n\times C_u\times C_v^n$. Let us denote $\triangle_0=\triangle\cap\{t=0,u=0,v=0\}$.

The assumptions are as follows:

- (A1) F(t, x, u, v) is holomorphic in \triangle ,
- (A2) F(0, x, 0, 0) = 0 in \triangle_0 ,

(A3)
$$\frac{\partial F}{\partial v_i}(0, x, 0, 0) = 0$$
 in \triangle_0 for $i = 1, \dots, n$.

DEFINITION 1.1 ([2], [3]). If the equation (1.1) satisfies (A1), (A2) and (A3) we say that the equation (1.1) is of Briot-Bouquet type with respect to t.

DEFINITION 1.2 ([2], [3]). Let us define

$$\rho(x) = \frac{\partial F}{\partial u}(0, x, 0, 0),$$

then the holomorphic function $\rho(x)$ is called the characteristic exponent of the equation (1.1).

Let us denote by

- 1. $\mathcal{R}(C\setminus\{0\})$ the universal covering space of $C\setminus\{0\}$,
- 2. $S_{\theta} = \{t \in \mathcal{R}(\mathbf{C} \setminus \{0\}); |\arg t| < \theta\},$

²⁰⁰⁰ Mathematics Subject Classification. Primary 35A20; Secondary 35C10.

Key Words and Phrases. singular solution, characteristic exponent, the Briot-Bouquet type partial differential equations.

- 3. $S(\varepsilon(s)) = \{t \in \mathcal{R}(\mathbb{C} \setminus \{0\}); 0 < |t| < \varepsilon(\arg t)\}$ for some positive-valued function $\varepsilon(s)$ defined and continuous on \mathbb{R} ,
- 4. $D_R = \{x \in \mathbb{C}^n; |x_i| < R \text{ for } i = 1, \dots, n\},\$
- 5. $C\{x\}$ the ring of germs of holomorphic functions at the origin of C^n .

DEFINITION 1.3. We define the set $\tilde{\mathcal{O}}_+$ of all functions u(t,x) satisfying the following conditions;

- 1. u(t,x) is holomorphic in $S(\varepsilon(s)) \times D_R$ for some $\varepsilon(s)$ and R > 0,
- 2. there is an a > 0 such that for any $\theta > 0$ and any compact subset K of D_R

$$\max_{x \in K} |u(t, x)| = O(|t|^a) \quad \text{as } t \to 0 \text{ in } S_{\theta}.$$

We know some results on the equation (1.1) of Briot-Bouquet type with respect to t. We concern the following result. R. Gérard and H. Tahara studied in [2] the structure of holomorphic and singular solutions of the equation (1.1) and proved the following result;

THEOREM 1.4 (R. Gérard and H. Tahara). If the equation (1.1) is of Briot-Bouquet type and $\rho(0) \notin N^* = \{1, 2, 3, ...\}$ then we have;

- (1) (Holomorphic solutions) The equation (1.1) has a unique solution $u_0(t,x)$ holomorphic near the origin of $\mathbb{C} \times \mathbb{C}^n$ satisfying $u_0(0,x) \equiv 0$.
 - (2) (Singular solutions) Denote by S_+ the set of all $\tilde{\mathcal{O}}_+$ -solutions of (1.1).

$$S_{+} = \begin{cases} \{u_0(t,x)\} & \text{when } \operatorname{Re} \rho(0) \leq 0, \\ \{u_0(t,x)\} \cup \{U(\varphi); 0 \neq \varphi(x) \in \mathbf{C}\{x\}\} & \text{when } \operatorname{Re} \rho(0) > 0, \end{cases}$$

where $U(\varphi)$ is an $\tilde{\mathcal{O}}_+$ -solution of (1.1) having an expansion of the following form:

$$U(\varphi) = \sum_{i \ge 1} u_i(x)t^i + \sum_{i+2j \ge k+2, j \ge 1} \varphi_{i,j,k}(x)t^{i+j\rho(x)}(\log t)^k, \quad \varphi_{0,1,0}(x) = \varphi(x).$$

In the case $\rho(0) \in \mathbb{N}^*$, Yamane [7] showed that the equation (1.1) has a holomolphic solution in a region $\{(t,x) \in \mathbb{C} \times \mathbb{C}^n; |x| < c|t|^d \ll 1\}$ for some c > 0 and d > 0, but the solution is not in S_+ .

The purpose of this paper is to determine S_+ in the case $\rho(0) \in \mathbb{N}^*$.

The main result of this paper is;

THEOREM 1.5. If the equation (1.1) is of Briot-Bouquet type and if $\rho(0) = N \in \mathbb{N}^*$ and $\rho(x) \not\equiv \rho(0)$, then

$$S_+ = \{ U(\varphi); \varphi(x) \in \mathbb{C}\{x\} \},$$

where $U(\varphi)$ is an $\tilde{\mathcal{O}}_+$ -solution of (1.1) having an expansion of the following form:

$$\begin{split} U(\varphi) &= u_1^0(x)t + u_0^{e_0}(x)\phi_N(t,x) + \sum_{\substack{i+|\beta| \geq 2, |\beta| < \infty \\ [\beta] \leq i+|\beta| - 2}} u_i^\beta(x)t^i \varPhi_N^\beta \\ &+ w_{0,1,0}^0(x)t^{\rho(x)} + \sum_{\substack{i+j+|\beta| \geq 2, |\beta| < \infty \\ j \geq 1, [\beta] \leq i+j+|\beta| - 2}} \sum_{\substack{k \leq i+|\beta|_0+|\beta|_1 \\ +2(j-1)}} w_{i,j,k}^\beta(x)t^{i+j\rho(x)} \{\log t\}^k \varPhi_N^\beta, \end{split}$$

where $u_N^0(x) \equiv 0$, $w_{0,1,0}^0(x) = \varphi(x)$ is an arbitrary holomorphic function and the other coefficients $u_i^{\beta}(x)$, $w_{i,j,k}^{\beta}(x)$ are holomorphic functions determined by $w_{0,1,0}^0(x)$ and defined in a common disk, and

$$l = (l_1, \dots, l_n) \in \mathbf{N}^n, \quad |l| = l_1 + \dots + l_n, \quad \beta = (\beta_l \in \mathbf{N}; l \in \mathbf{N}^n),$$
$$|\beta| = \sum_{|l| \ge 0} \beta_l, \quad |\beta|_p = \sum_{|l| = p} \beta_l \text{ for } p \ge 0, \quad [\beta] = \sum_{|l| \ge 2} (|l| - 1)\beta_l,$$
$$\Phi_N^\beta = \prod_{|l| \ge 0} \left(\frac{\partial_x^l \phi_N}{l!}\right)^{\beta_l}, \quad \partial_x^l = \partial_1^{l_1} \cdots \partial_n^{l_n}, \quad \phi_N(t, x) = \frac{t^{\rho(x)} - t^N}{\rho(x) - N}.$$

The following lemma will play an important role in the proof of Theorem 1.5.

At first, we define some notations. We set for $l \in \mathbb{N}^n$, $e_l = (\beta_k; k \in \mathbb{N}^n)$ with $\beta_l = 1$ and $\beta_k = 0$ for $k \neq l$ and for $p \in \{1, 2, ..., n\}$, $e(p) = (i_1, ..., i_n)$ with $i_p = 1$ and $i_q = 0$ for $q \neq p$, and define $l^1 < l^0$ by $|l^1| < |l^0|$ and $l_i^1 \leq l_i^0$ for i = 1, ..., n.

LEMMA 1.6. Let $\rho(x)$, ϕ_N and Φ_N^{β} be as in Theorem 1.5. Then we have;

1.
$$\partial_p \Phi_N^{\beta} = \sum_{|l| \ge 0} \beta_l(l_p + 1) \Phi_N^{\beta - e_l + e_{l+e(p)}}$$
 for $i = 1, \dots, n$,

2.
$$t\partial_t \phi_N = \rho(x)\phi_N + t^N$$
,

3.
$$t\partial_t \Phi_N^{\beta} = |\beta| \rho(x) \Phi_N^{\beta} + \beta_0 t^N \Phi_N^{\beta - e_0} + \sum_{|l^0| \ge 1} \sum_{l^1 < l^0} \beta_{l^0} \frac{\partial_x^{l^0 - l^1} \rho(x)}{(l^0 - l^1)!} \Phi_N^{\beta - e_{l^0} + e_{l^1}}.$$

PROOF.

- 1. By $\partial_p(\partial_x^l\phi_N/l!)^{\beta_l} = \beta_l(\partial_x^l\phi_N/l!)^{\beta_l-1}\partial_x^{l+e(p)}\phi_N/l!$, we have the result 1. 2. By $t\partial_t\phi_N = (\rho(x)t^{\rho(x)} Nt^N)/(\rho(x) N)$, we have the result 2.
- By 2, we have

$$t\partial_t \left(\frac{\partial_x^l \phi_N}{l!} \right)^{\beta_l} = \beta_l \left(\frac{\partial_x^l \phi_N}{l!} \right)^{\beta_l - 1} \frac{\partial_x^l (\rho(x) \phi_N + t^N)}{l!}.$$

Therefore we have

$$t \partial_t \left(\frac{\partial_x^l \phi_N}{l!}\right)^{\beta_l} = \begin{cases} \beta_0 \rho(x) \phi_N^{\beta_0} + \beta_0 t^N \phi_N^{\beta_0 - 1} & \text{if } l = 0, \\ \beta_l \rho(x) \left(\frac{\partial_x^l \phi_N}{l!}\right)^{\beta_l} + \sum_{0 \leq l^1 < l} \beta_l \frac{\partial_x^{l-l^1} \rho(x)}{(l-l^1)!} \frac{\partial_x^{l^1} \phi_N}{l^1!} \left(\frac{\partial_x^l \phi_N}{l!}\right)^{\beta_l - 1} & \text{if } |l| > 0. \end{cases}$$

Hence we have the desired result.

Construction of formal solutions in the case $\rho(0) = 1$.

By [2] (Gérard-Tahara), if the equation (1.1) is of Briot-Bouquet type with respect to t, then it is enough to consider the following equation:

$$Lu = t\partial_t u - \rho(x)u = a(x)t + G_2(x)(t, u, \partial_x u)$$
(2.1)

where $\rho(x)$ and a(x) are holomorphic functions in a neighborhood of the origin, and the function $G_2(x)(t, X_0, X_1, \dots, X_n)$ is a holomorphic function in a neighborhood of the origin in $C_x^n \times C_t \times C_{X_0} \times C_{X_1} \times \cdots \times C_{X_n}$ with the following expansion:

$$G_2(x)(t, X_0, X_1, \dots, X_n) = \sum_{p+|\alpha| \ge 2} a_{p,\alpha}(x) t^p \{X_0\}^{\alpha_0} \{X_1\}^{\alpha_1} \cdots \{X_n\}^{\alpha_n}$$

and we may assume that the coefficients $\{a_{p,\alpha}(x)\}_{p+|\alpha|\geq 2}$ are holomorphic functions on D_{R_0} for a sufficiently small $R_0>0$. Let $0< R< R_0$. We put $A_{p,\alpha}(R):=\max_{x\in D_R}|a_{p,\alpha}(x)|$ for $p+|\alpha|\geq 2$. Then for 0< r< R

$$\sum_{p+|\alpha|>2} \frac{A_{p,\alpha}(R)}{(R-r)^{p+|\alpha|-2}} t^p X_0^{\alpha_0} X_1^{\alpha_1} \times \dots \times X_n^{\alpha_n}$$
 (2.2)

is convergent in a neighborhood of the origin.

In this section, we assume $\rho(0) = 1$ and $\rho(x) \not\equiv 1$ and we will construct formal solutions of the equation (2.1).

PROPOSITION 2.1. If $\rho(0) = 1$ and $\rho(x) \not\equiv 1$, the equation (2.1) has a family of formal solutions of the form:

$$u = u_0^{e_0}(x)\phi_1 + \sum_{m \ge 2} \sum_{\substack{i+|\beta|=m\\ |\beta| \le m-2}} u_i^{\beta}(x)t^i \Phi_1^{\beta}$$

$$+ w_{0,1,0}^0(x)t^{\rho(x)} + \sum_{m \ge 2} \sum_{\substack{i+j+|\beta|=m\\ j \ge 1, |\beta| \le m-2}} \sum_{\substack{k \le i+|\beta|_0+|\beta|_1\\ +2(j-1)}} w_{i,j,k}^{\beta}(x)t^{i+j\rho(x)} \{\log t\}^k \Phi_1^{\beta}$$
(2.3)

where $w_{0,1,0}^0(x)$ is an arbitrary holomorphic function and the other coefficients $u_i^\beta(x)$, $w_{i,j,k}^\beta(x)$ are holomorphic functions determined by $w_{0,1,0}^0(x)$ and defined in a common disk.

Remark 2.2. By the relation $[\beta] \le m-2$ in summations of the above formal solution, we have $\beta_l = 0$ for any $l \in \mathbb{N}^n$ with $|l| \ge m$.

We define the following two sets U_m and W_m for $m \ge 1$ to prove Proposition 2.1.

DEFINITION 2.3. We denote by U_m the set of all functions u_m of the following forms:

$$u_{1} = u_{1}^{0}(x)t + u_{0}^{e_{0}}(x)\phi_{1},$$

$$u_{m} = \sum_{\substack{i+|\beta|=m\\ [\beta] \leq m-2}} u_{i}^{\beta}(x)t^{i}\Phi_{1}^{\beta} \quad \text{for } m \geq 2,$$
(2.4)

and denote by W_m the set of all functions w_m of the following forms:

$$w_{1} = w_{0,1,0}^{0}(x)t^{\rho(x)},$$

$$w_{m} = \sum_{\substack{i+j+|\beta|=m\\j\geq 1, [\beta]\leq m-2}} \sum_{\substack{k\leq i+|\beta|_{0}+|\beta|_{1}\\+2(j-1)}} w_{i,j,k}^{\beta}(x)t^{i+j\rho(x)} \{\log t\}^{k} \boldsymbol{\Phi}_{1}^{\beta} \quad \text{for } m\geq 2$$
(2.5)

where $u_i^{\beta}(x)$, $w_{i,j,k}^{\beta}(x) \in \mathbb{C}\{x\}$.

We can rewrite the formal solution (2.3) as follows:

$$u = \sum_{m>1} (u_m + w_m)$$
 where $u_m \in U_m, w_m \in W_m$.

Let us show important relations of u_m and w_m for $m \ge 2$. By Lemma 1.6, we have

$$\hat{\partial}_{p}u_{m} = \sum_{\substack{i+|\beta|=m\\ |\beta| \leq m-2}} \left\{ \hat{\partial}_{p}u_{i}^{\beta}(x)t^{i}\boldsymbol{\Phi}_{1}^{\beta} + \sum_{|l|=0}^{m-1} (l_{p}+1)\beta_{l}u_{i}^{\beta}(x)t^{i}\boldsymbol{\Phi}_{1}^{\beta-e_{l}+e_{l+e(p)}} \right\},
\hat{\partial}_{p}w_{m} = \sum_{\substack{i+j+|\beta|=m\\ j\geq 1, [\beta] \leq m-2}} \sum_{\substack{k\leq i+|\beta|_{0}+|\beta|_{1}\\ +2(j-1)}} \left\{ \hat{\partial}_{p}w_{i,j,k}^{\beta}(x)t^{i+j\rho(x)} \{\log t\}^{k}\boldsymbol{\Phi}_{1}^{\beta} \right.
+ j\hat{\partial}_{p}\rho(x)w_{i,j,k}^{\beta}(x)t^{i+j\rho(x)} \{\log t\}^{k+1}\boldsymbol{\Phi}_{1}^{\beta}
+ \sum_{|l|=0}^{m-1} (l_{p}+1)\beta_{l}w_{i,j,k}^{\beta}(x)t^{i+j\rho(x)} \{\log t\}^{k}\boldsymbol{\Phi}_{1}^{\beta-e_{l}+e_{l+e(p)}} \right\}$$
(2.6)

for p = 1, ..., n, and we have

$$Lu_{m} = \sum_{\substack{i+|\beta|=m\\ |\beta| \le m-2}} \left\{ \{i + (|\beta|-1)\rho(x)\} u_{i}^{\beta}(x) t^{i} \boldsymbol{\Phi}_{1}^{\beta} + \beta_{0} u_{i}^{\beta}(x) t^{i+1} \boldsymbol{\Phi}_{1}^{\beta-e_{0}} \right.$$

$$\left. + \sum_{|I^{0}|=1}^{m-1} \sum_{l^{1} < l^{0}} \beta_{l^{0}} \frac{\hat{\mathcal{C}}_{x}^{l^{0}-l^{1}} \rho(x)}{(l^{0}-l^{1})!} u_{i}^{\beta}(x) t^{i} \boldsymbol{\Phi}_{1}^{\beta-e_{l^{0}}+e_{l^{1}}} \right\}, \qquad (2.7)$$

$$Lw_{m} = \sum_{\substack{i+j+|\beta|=m\\ j \ge 1, |\beta| \le m-2}} \sum_{\substack{k \le i+|\beta|_{0}+|\beta|_{1}\\ +2(j-1)}} \left\{ \{i + (j+|\beta|-1)\rho(x)\} w_{i,j,k}^{\beta}(x) t^{i+j\rho(x)} \{\log t\}^{k} \boldsymbol{\Phi}_{1}^{\beta} \right.$$

$$\left. + kw_{i,j,k}^{\beta}(x) t^{i+j\rho(x)} \{\log t\}^{k-1} \boldsymbol{\Phi}_{1}^{\beta} + \beta_{0} w_{i,j,k}^{\beta}(x) t^{i+j\rho(x)+1} \{\log t\}^{k} \boldsymbol{\Phi}_{1}^{\beta-e_{0}} \right.$$

$$\left. + \sum_{|I^{0}|=1}^{m-1} \sum_{l^{1} < l^{0}} \beta_{l^{0}} \frac{\hat{\mathcal{C}}_{x}^{l^{0}-l^{1}} \rho(x)}{(l^{0}-l^{1})!} w_{i,j,k}^{\beta}(x) t^{i+j\rho(x)} \{\log t\}^{k} \boldsymbol{\Phi}_{1}^{\beta-e_{l^{0}}+e_{l^{1}}} \right\}.$$

We show two lemmas.

LEMMA 2.4. If $u_m \in U_m$ and $w_m \in W_m$, then $Lu_m \in U_m$ and $Lw_m \in W_m$.

PROOF. We prove $Lu_m \in U_m$. We will see all the exponents of each terms in (2.7). For the second term in (2.7), we have $i + 1 + |\beta - e_0| = i + |\beta| = m$ and $[\beta - e_0] = [\beta] \le m - 2$.

For the third term, we have $i+|\beta-e_{l^0}+e_{l^1}|=i+|\beta|=m$ and $[\beta-e_{l^0}+e_{l^1}]=[\beta]$ (if $|l^0|=1$), $=[\beta]-(|l^0|-1)$ (if $|l^0|>1$ and $|l^1|\leq 1$), $=[\beta]-|l^0|+|l^1|$ (if $|l^0|>1$ and $|l^1|>1$). Therefore by $l^1< l^0$, we have $[\beta-e_{l^0}+e_{l^1}]\leq [\beta]\leq m-2$. Hence we have $Lu_m\in U_m$.

We can prove $Lw_m \in W_m$ in the same way.

LEMMA 2.5. If $u_m \in U_m$ and $w_m \in W_m$, then the following relations hold for i, j = 1, ..., n,

- 1. $a(x)U_m \subset U_m$ and $a(x)W_m \subset W_m$ for any holomorphic function a(x),
- 2. tU_m , $\phi_1 U_m \subset U_{m+1}$ and $t^{\rho(x)} U_m$, tW_m , $t^{\rho(x)} W_m$, $\phi_1 W_m \subset W_{m+1}$,
- 3. $u_m \times u_n$, $\partial_i u_m \times \partial_j u_n$, $\partial_i u_m \times u_n \in U_{m+n}$,
- 4. $w_m \times w_n$, $\partial_i w_m \times \partial_j w_n$, $\partial_i w_m \times w_n \in W_{m+n}$,
- 5. $u_m \times w_n$, $\partial_i u_m \times w_n$, $u_m \times \partial_j w_n$, $\partial_i u_m \times \partial_j w_n \in W_{m+n}$.

PROOF. This is verified by the relations (2.6).

Let us show that u_m and w_m are determined inductively on $m \ge 1$. By substituting $\sum_{m\ge 1} (u_m + w_m)$ into (2.1), we have

$$(1 - \rho(x))u_1^0(x) + u_0^{e_0}(x) = a(x), \tag{2.8}$$

and for $m \ge 2$

$$Lu_{m} = \sum_{\substack{p+|\alpha| \ge 2\\ p+|m_{n}|=m}} a_{p,\alpha}(x)t^{p} \prod_{h_{0}=1}^{\alpha_{0}} u_{m_{0,h_{0}}} \prod_{j=1}^{n} \prod_{h_{j}=1}^{\alpha_{j}} \partial_{j} u_{m_{j,h_{j}}},$$
(2.9)

$$Lw_{m} = \sum_{\substack{p+|\alpha|\geq 2\\ n+|m|, |=m}} a_{p,\alpha}(x)t^{p} \prod_{h_{0}=1}^{\alpha_{0}} (u_{m_{0,h_{0}}} + w_{m_{0,h_{0}}}) \prod_{j=1}^{n} \prod_{h_{j}=1}^{\alpha_{j}} \partial_{j} (u_{m_{j,h_{j}}} + w_{m_{j,h_{j}}})$$

$$-\sum_{\substack{p+|\alpha|\geq 2\\p+|m_{n}|=m}} a_{p,\alpha}(x)t^{p} \prod_{h_{0}=1}^{\alpha_{0}} u_{m_{0},h_{0}} \prod_{j=1}^{n} \prod_{h_{j}=1}^{\alpha_{j}} \partial_{j} u_{m_{j,h_{j}}},$$
(2.10)

where $|m_n| = \sum_{i=0}^n m_i(\alpha_i)$ and $m_i(\alpha_i) = m_{i,1} + \cdots + m_{i,\alpha_i}$ for $i = 0, 1, \dots, n$.

We take any holomorphic function $\varphi(x) \in \mathbb{C}\{x\}$ and put $w_{0,1,0}^0(x) = \varphi(x)$, and by (2.8), we put $u_1^0(x) \equiv 0$ and $u_0^{e_0}(x) = a(x)$.

For $m \ge 2$, let us show that u_m and w_m are determined by induction. By Lemma 2.5, the right side of (2.9) belongs to U_m and the right side of (2.10) belongs to W_m . Further by $m_{j,h_j} \ge 1$, we have $m_{j,h_j} < m$ for $h_j = 1, \ldots, \alpha_j$ and $j = 0, \ldots, n$. Then for $m \ge 2$, we compare with the coefficients of $t^i \Phi_1^{\beta}$ and $t^{i+j\rho(x)} \{\log t\}^k \Phi_1^{\beta}$ respectively for (2.9) and (2.10), then put

$$\{i + (|\beta| - 1)\rho(x)\}u_{i}^{\beta}(x)$$

$$+ (\beta_{0} + 1)u_{i-1}^{\beta + e_{0}}(x) + \sum_{|I^{0}|=1}^{m-1} \sum_{0 \leq I^{1} < I^{0}} (\beta_{I^{0}} + 1) \frac{\hat{\sigma}_{x}^{I^{0} - I^{1}} \rho(x)}{(I^{0} - I^{1})!} u_{i}^{\beta + e_{I^{0}} - e_{I^{1}}}(x)$$

$$= f_{i}^{\beta} \{\{a_{p,\alpha}\}_{2 \leq p + |\alpha| \leq m}, \{u_{i'}^{\beta'}(x)\}_{i' + |\beta'| < m}\}$$

$$(2.11)$$

and

$$\{i + (j + |\beta| - 1)\rho(x)\}w_{i,j,k}^{\beta}(x) + (k + 1)w_{i,j,k+1}^{\beta}(x)$$

$$+ (\beta_0 + 1)w_{i-1,j,k}^{\beta+e_0}(x) + \sum_{|l^0|=1}^{m-1} \sum_{0 \le l^1 < l^0} (\beta_{l^0} + 1) \frac{\hat{\mathcal{O}}_x^{l^0-l^1}\rho(x)}{(l^0 - l^1)!} w_{i,j,k}^{\beta+e_{l^0}-e_{l^1}}(x)$$

$$= g_{i,j,k}^{\beta}(\{a_{p,\alpha}\}_{2 \le p+|\alpha| \le m}, \{u_{i'}^{\beta'}(x)\}_{i'+|\beta'| \le m}, \{w_{i',j',k'}^{\beta'}(x)\}_{i'+i'+|\beta'| \le m}).$$
(2.12)

We define an order for the multi indices (i, β) and (i, j, k, β) to show that $u_i^{\beta}(x)$ and $w_{i,i,k}^{\beta}(x)$ are determined by (2.11) and (2.12).

DEFINITION 2.6. The relation $(i', \beta') < (i, \beta)$ is defined by the following orders;

- 1. $i' + |\beta'| < i + |\beta|$.
- 2. If $i' + |\beta'| = i + |\beta|$, then i' < i.
- 3. If $i' + |\beta'| = i + |\beta|$ and i' = i, then $|\beta'|_0 < |\beta|_0$.
- 4. If $i' + |\beta'| = i + |\beta|$, i' = i, $|\beta'|_0 = |\beta|_0, \dots, |\beta'|_l = |\beta|_l$, then $|\beta'|_{l+1} < |\beta|_{l+1}$.

The relation $(i', j', k', \beta') < (i, j, k, \beta)$ is defined by the following orders;

- 1. $i' + j' + |\beta'| < i + j + |\beta|$.
- 2. If $i' + j' + |\beta'| = i + j + |\beta|$, then i' < i.
- 3. If $i' + j' + |\beta'| = i + j + |\beta|$ and i' = i, then j' < j.
- 4. If $i' + j' + |\beta'| = i + j + |\beta|$, i' = i and j' = j, then $|\beta'|_0 < |\beta|_0$.
- 5. If $i' + j' + |\beta'| = i + j + |\beta|$, i' = i, j' = j, $|\beta'|_0 = |\beta|_0, \dots, |\beta'|_l = |\beta|_l$, then $|\beta'|_{l+1} < |\beta|_{l+1}$.
- 6. If $(i', j', \beta') = (i, j, \beta)$, then k' > k.

For $m \ge 2$, we have $i + (|\beta| - 1)\rho(x) \ne 0$ and $i + (j + |\beta| - 1)\rho(x) \ne 0$ by $\rho(0) = 1$. Therefore all the coefficients $u_i^{\beta}(x)$ and $w_{i,j,k}^{\beta}(x)$ are determined in the order of Definition 2.6. Hence we obtain Proposition 2.1.

3. Convergence of the formal solutions in the case $\rho(0) = 1$.

In this section, we show that the formal solution (2.3) converges in $\tilde{\mathcal{O}}_+$.

PROPOSITION 3.1. Let γ satisfy $0 < \gamma < 1$ and let λ be sufficiently large. Then for any sufficiently small r > 0 we have the following result;

For any $\theta > 0$ there is an $\varepsilon > 0$ such that the formal solution (2.3) converges in the following region:

$$\{(t,x) \in C_t \times C_x^n; |\eta(t,\lambda)t| < \varepsilon, |\eta(t,\lambda)^2 t^{\rho(x)}| < \varepsilon, |\eta(t,\lambda)t^{\gamma}| < \varepsilon, t \in S_\theta \text{ and } x \in D_r\},$$
where $\eta(t,\lambda) = \max\{|(\log t)/\lambda|, 1\}.$

In this section, we put $w_{i,0,0}^{\beta}(x) = u_i^{\beta}(x)$ and $w_{i,0,k}^{\beta}(x) \equiv 0$ for $k \geq 1$ in the formal solution (2.3). Then the formal solution (2.3) is as follows:

$$u = w_{0,0,0}^{e_0}(x)\phi_1 + w_{0,1,0}^0(x)t^{\rho(x)}$$

$$+ \sum_{m \ge 2} \sum_{\substack{i+j+|\beta|=m \\ |\beta| \le m-2}} \sum_{\substack{k \le i+|\beta|_0+|\beta|_1 \\ +2(j-1)}} w_{i,j,k}^{\beta}(x)t^{i+j\rho(x)} \{\log t\}^k \Phi_1^{\beta}.$$
(3.1)

Let us define the following set V_m for (3.1).

DEFINITION 3.2. We denote by V_m the set of all the functions v_m of the following forms:

$$v_{1} = w_{0,0,0}^{e_{0}}(x)\phi_{1} + w_{0,1,0}^{0}(x)t^{\rho(x)},$$

$$v_{m} = \sum_{\substack{i+j+|\beta|=m\\ [\beta] \leq m-2}} \sum_{\substack{k \leq i+|\beta|_{0}+|\beta|_{1}\\ +2(j-1)}} w_{i,j,k}^{\beta}(x)t^{i+j\rho(x)} \{\log t\}^{k} \Phi_{1}^{\beta} \quad \text{for } m \geq 2.$$

$$(3.2)$$

We define the following estimate for the function v_m .

DEFINITION 3.3. For the function (3.2), we define

$$||v_{1}||_{r,c,\lambda} = ||v_{1}||_{r,c} := \frac{||w_{0,0,0}^{e_{0}}||_{r}}{c} + ||w_{0,1,0}^{0}||_{r},$$

$$||v_{m}||_{r,c,\lambda} := \sum_{\substack{i+j+|\beta|=m\\ [\beta] \le m-2}} \sum_{\substack{k \le i+|\beta|_{0}+\beta_{1}\\ +2(j-1)}} \frac{||w_{i,j,k}^{\beta}||_{r}\lambda^{k}}{c^{\langle\beta\rangle}} \quad \text{for } m \ge 2,$$

$$(3.3)$$

for c > 0 and $\lambda > 0$, where

$$\|w_{i,j,k}^{\beta}\|_r = \max_{x \in D_r} |w_{i,j,k}^{\beta}(x)| \quad \text{and} \quad \langle \beta \rangle = \sum_{|l| \ge 0} (|l| + 1)\beta_l.$$

We will make use of

LEMMA 3.4. For a holomorphic function f(x) on D_{R_0} , we have

$$\|\partial_x^{\alpha} f\|_R \le \frac{\alpha!}{(R_0 - R)^{|\alpha|}} \|f\|_{R_0} \quad \text{for } 0 < R < R_0.$$

PROOF. By Cauchy's integral formula, we have the desired result.

LEMMA 3.5. If a holomorphic function f(x) on D_R satisfies

$$||f||_r \le \frac{C}{(R-r)^p}$$
 for $0 < r < R$

then we have

$$\|\partial_i f\|_r \le \frac{Ce(p+1)}{(R-r)^{p+1}}$$
 for $0 < r < R$, $i = 1, ..., n$.

For the proof, see Hörmander ([5], lemma 5.1.3).

Let us show the following estimate for the function Lv_m .

Lemma 3.6. Let $0 < R < R_0$. Then there exists a positive constant σ such that for $m \ge 2$, if $v_m \in V_m$ we have

$$||Lv_m||_{r,c,\lambda} \ge \frac{\sigma}{2} m ||v_m||_{r,c,\lambda} \quad for \ 0 < r \le R$$

for sufficiently small c > 0 and sufficiently large $\lambda > 0$.

PROOF. Let us give an estimate the second, the third and the fourth term in the right side of the second relation in (2.7) respectively.

For the second term, since $k \le i + |\beta|_0 + |\beta|_1 + 2(j-1) \le 2m$ by $i+j+|\beta| = m$ we have

$$T_{2} := \sum_{\substack{i+j+|\beta|=m\\|\beta|< m-2}} \sum_{\substack{k \leq i+|\beta|_{0}+|\beta|_{1}\\+2(i-1)}} k \frac{\|w_{i,j,k}^{\beta}\|_{r} \lambda^{k-1}}{c^{\langle\beta\rangle}} \leq \frac{2m}{\lambda} \|v_{m}\|_{r,c,\lambda}.$$

For the fourth term, we have

$$T_4 := \sum_{\substack{i+j+|\beta|=m\\ |\beta| \leq m-2}} \sum_{\substack{k \leq i+|\beta|_0+|\beta|_1\\ +2(j-1)}} \sum_{|l^0|=1}^{m-1} \sum_{l^1 < l^0} \frac{\beta_{l^0}}{(l^0-l^1)!} \frac{\|\hat{\sigma}_x^{l^0-l^1} \rho w_{i,j,k}^{\beta}\|_r \lambda^k}{c^{\langle \beta - e_{l^0} + e_{l^1} \rangle}}$$

$$\leq \sum_{\substack{i+j+|\beta|=m\\ |\beta| \leq m-2}} \sum_{\substack{k \leq i+|\beta|_0+|\beta|_1\\ +2(i-1)}} \sum_{l=1}^{m-1} \sum_{l^1 < l^0} c^{|l^0|-|l^1|} \beta_{l^0} \frac{\|\hat{\mathcal{C}}_x^{l^0-l^1}\rho\|_R}{(l^0-l^1)!} \frac{\|w_{i,j,k}^\beta\|_r \lambda^k}{c^{\langle\beta\rangle}}. \tag{3.4}$$

By Lemma 3.4, we have

$$\sum_{l^{1} < l^{0}} c^{|l^{0}| - |l^{1}|} \frac{\|\hat{\sigma}_{x}^{l^{0} - l^{1}} \rho\|_{R}}{(l^{0} - l^{1})!} \leq \sum_{l^{1} < l^{0}} \left(\frac{c}{R_{0} - R}\right)^{|l^{0}| - |l^{1}|} \|\rho\|_{R_{0}} \leq \frac{cn\|\rho\|_{R_{0}}}{R_{0} - R} \left(\frac{R_{0} - R}{R_{0} - R - c}\right)^{n}$$
(3.5)

for sufficiently small c > 0. Therefore by (3.4) and (3.5), we have

$$T_{4} \leq \kappa(c) \sum_{\substack{i+j+|\beta|=m \\ |\beta| \leq m-2}} \sum_{\substack{k \leq i+|\beta|_{0}+|\beta|_{1} \\ +2(j-1)}} \sum_{l^{0}=1}^{m-1} \beta_{l^{0}} \frac{\|w_{i,j,k}^{\beta}\|_{r} \lambda^{k}}{c^{\langle \beta \rangle}}$$

where $\kappa(c) := (cn/(R_0 - R))((R_0 - R)/(R_0 - R - c))^n \|\rho\|_{R_0}$.

For the third term, we have

$$T_3 := \sum_{\substack{i+j+|\beta|=m\\ [\beta] \leq m-2}} \sum_{\substack{k \leq i+|\beta|_0+|\beta|_1\\ +2(j-1)}} \beta_0 \frac{\|w_{i,j,k}^\beta\|_r \lambda^k}{c^{\langle \beta - e_0 \rangle}} = \sum_{\substack{i+j+|\beta|=m\\ [\beta] \leq m-2}} \sum_{\substack{k \leq i+|\beta|_0+|\beta|_1\\ +2(j-1)}} c\beta_0 \frac{\|w_{i,j,k}^\beta\|_r \lambda^k}{c^{\langle \beta \rangle}}.$$

Therefore, since $c\beta_0 + \kappa(c) \sum_{|I^0|=1}^{m-1} \beta_{I^0} \le (\sigma/3)m$ by the conditions $\kappa(0) = 0$ and $i+j+|\beta| = m \ge 2$ for sufficiently small c>0 and some $\sigma>0$ we have

$$T_2+T_3+T_4\leq \left(\frac{2m}{\lambda}+\frac{\sigma}{3}m\right)\|v_m\|_{r,c,\lambda}.$$

Further we have $|i+(j+|\beta|-1)\rho(x)| \ge \sigma m$ by the condition $\rho(0)=1$ and $i+j+|\beta|=m\ge 2$. Therefore we have

$$||Lv_m||_{r,c,\lambda} \ge \left(\sigma m - \frac{2m}{\lambda} - \frac{\sigma}{3}m\right) ||v_m||_{r,c,\lambda}.$$

Hence for sufficiently small c > 0 and sufficiently large $\lambda > 0$, we obtain the desired result.

Let us estimate the function $\partial_i v_m$.

DEFINITION 3.7. For the function $v_m \in V_m$ we define

$$D_p v_m := \sum_{\substack{i+j+|\beta|=m \ k \le i+|\beta|_0+|\beta|_1 \\ [\beta] \le m-2}} \sum_{\substack{k \le i+|\beta|_0+|\beta|_1 \\ +2(j-1)}} \partial_p w_{i,j,k}^{\beta}(x) t^{i+j\rho(x)} \{\log t\}^k \Phi_1^{\beta}$$

for p = 1, ..., n.

LEMMA 3.8. If $v_m \in V_m$, then for i = 1, ..., n, we have

$$\|\partial_{i}v_{m}\|_{r,c,\lambda} \leq \|D_{i}v_{m}\|_{r,c,\lambda} + c_{0}\lambda m\|v_{m}\|_{r,c,\lambda} + \frac{3m-2}{c}\|v_{m}\|_{r,c,\lambda} \quad \text{for } 0 < r \leq R. \quad (3.6)$$

Proof. We have

$$\sum_{|l|>0} (l_p+1)\beta_l \le \sum_{|l|=0}^{m-1} (|l|+1)\beta_l = 2|\beta| + [\beta] \le 3m - 2.$$
(3.7)

We put $c_0 = \max_{i=1,...,n} \{\|\partial_i \rho\|_R\}$, and by the relations (2.6), (3.7) and $j \le m$ we obtain the desired estimate.

Therefore by the relations (2.9), (2.10) and Lemma 3.8, we have the following lemma.

LEMMA 3.9. If $u = \sum_{m \ge 1} v_m$ is a formal solution of the equation (2.1) constructed in Section 2, we have the following inequality for v_m $(m \ge 2)$:

$$\begin{split} \|Lv_{m}\|_{r,c,\lambda} &\leq \sum_{\substack{p+|\alpha|\geq 2\\p+|m_{n}|=m}} \|a_{p,\alpha}\|_{r} \prod_{h_{0}=1}^{\alpha_{0}} \|v_{m_{0,h_{0}}}\|_{r,c,\lambda} \\ &\times \prod_{i=1}^{n} \prod_{h_{i}=1}^{\alpha_{i}} \left\{ \|D_{i}v_{m_{i,h_{i}}}\|_{r,c,\lambda} + c_{0}\lambda m_{i,h_{i}} \|v_{m_{i,h_{i}}}\|_{r,c,\lambda} + \frac{3m_{i,h_{i}}-2}{c} \|v_{m_{i,h_{i}}}\|_{r,c,\lambda} \right\}. \end{split}$$

Let us define a majorant equation to show that the formal solution (3.1) converges. We take A_1 so that

$$\begin{split} \frac{\|w_{0,0,0}^{e_0}\|_R}{c} + \|w_{0,1,0}^0\|_R \leq A_1, \\ \frac{\|\partial_i w_{0,0,0}^{e_0}\|_R}{c} + \|\partial_i w_{0,1,0}^0\|_R \leq A_1 \end{split}$$

for i = 1, ..., n.

Then we consider the following equation:

$$\frac{\sigma}{2}Y = \frac{\sigma}{2}A_1t_1 + \frac{1}{R - r} \sum_{p + |\alpha| \ge 2} \frac{A_{p,\alpha}(R)}{(R - r)^{p + |\alpha| - 2}} t_1^p Y^{\alpha_0} \prod_{i=1}^n \left(eY + c_0 \lambda Y + \frac{3}{c} Y \right)^{\alpha_i}.$$
 (3.8)

The equation (3.8) has a unique holomorphic solution $Y = Y(t_1)$ with Y(0) = 0 at $(Y, t_1) = (0, 0)$ by implicit function theorem. By an easy calculation, the solution $Y = Y(t_1)$ has the following form:

$$Y = \sum_{m \ge 1} Y_m t_1^m \quad \text{with} \quad Y_m = \frac{C_m}{(R - r)^{m-1}}$$

where $Y_1 = C_1 = A_1$ and $C_m \ge 0$ for $m \ge 1$.

Then we have;

Lemma 3.10. For $m \ge 1$, we have

$$m||v_m||_{r,c,\lambda} \le Y_m \quad for \ 0 < r < R \tag{3.9}$$

$$||D_i v_m||_{r,c,\lambda} \le e Y_m \quad \text{for } 0 < r < R, \tag{3.10}$$

for i = 1, ..., n.

PROOF. By $A_1 = Y_1$ and the definition of A_1 , (3.9) and (3.10) hold for m = 1. By induction on m, let us show that (3.9) and (3.10) hold for $m \ge 2$. By substituting the solution $Y = \sum_{m \ge 1} Y_m t_1^m$ into the equation (3.8), we have the following relation:

$$\frac{\sigma}{2} Y_{m} = \frac{1}{R - r} \sum_{\substack{p + |\alpha| \ge 2 \\ p + |m_{n}| = m}} \frac{A_{p,\alpha}(R)}{(R - r)^{p + |\alpha| - 2}} \prod_{h_{0} = 1}^{\alpha_{0}} Y_{m_{0,h_{0}}}$$

$$\times \prod_{i=1}^{n} \prod_{h=1}^{\alpha_{i}} \left\{ e Y_{m_{i,h_{i}}} + c_{0} \lambda Y_{m_{i,h_{i}}} + \frac{3}{c} Y_{m_{i,h_{i}}} \right\} \tag{3.11}$$

for $m \ge 2$. Therefore if we assume that (3.9) and (3.10) hold for $m_{i,h_i} < m$, by (3.11), Lemma 3.6 and Lemma 3.9 we obtain

$$\frac{\sigma}{2}m\|v_m\|_{r,c,\lambda} \leq (R-r)\frac{\sigma}{2}Y_m.$$

Therefore we have

$$m||v_m||_{r,c,\lambda} \le (R-r)Y_m \le Y_m.$$
 (3.12)

The relation (3.12) is rewrited as follows:

$$m \sum_{\substack{i+j+|\beta|=m \\ |\beta| < m-2}} \sum_{\substack{k \le i+|\beta|_0+|\beta|_1 \\ +2(j-1)}} \frac{\|w_{i,j,k}^{\beta}\|_r \lambda^k}{c^{\langle \beta \rangle}} \le \frac{C_m}{(R-r)^{m-2}}.$$
 (3.13)

By (3.13) and Lemma 3.5, we have

$$m||D_i v_m||_{r,c,\lambda} \le \frac{(m-1)eC_m}{(R-r)^{m-1}}$$

for i = 1, ..., n and 0 < r < R < 1. Therefore we have

$$||D_i v_m||_{r,c,\lambda} \le \frac{eC_m}{(R-r)^{m-1}} = eY_m.$$

Hence (3.9) and (3.10) hold for $m \ge 2$.

Let us show that the formal solution (3.1) converges by using (3.9) in Lemma 3.10. We rewrite (3.1) as follows:

$$\begin{split} u &= u_0^{e_0}(x)\phi_1 + w_{0,1,0}^0(x)t^{\rho(x)} \\ &+ \sum_{m \geq 2} \sum_{\substack{i+j+|\beta| = m \\ |\beta| \leq m-2}} \sum_{\substack{k \leq i+|\beta|_0 + |\beta|_1 \\ +2(j-1)}} \frac{w_{i,j,k}^\beta(x)\lambda^k}{c^{\langle \beta \rangle}} t^{i+j\rho(x)} \left(\frac{\log t}{\lambda}\right)^k \Psi_1^\beta, \end{split}$$

where

$$\Psi_1^{\beta} = \prod_{|l| \ge 0} \left(c^{|l|+1} \frac{\partial_x^l \phi_1}{l!} \right)^{\beta_l}. \tag{3.14}$$

Firstly let us estimate (3.14). For $\|\phi_1\|_R$, we have the following lemma.

LEMMA 3.11. For any γ with $0 < \gamma < 1$, there is an R > 0 such that

$$\|\phi_1\|_R = O(|t|^{\gamma})$$
 as $t \to 0$ in S_{θ}

holds for any $\theta > 0$.

Proof. We put

$$\phi_1 = t^{\gamma} \frac{t^{\rho_0(x) + \alpha} - t^{\alpha}}{\rho_0(x)}$$

with $\alpha + \gamma = 1$ and $\rho_0(x) = \rho(x) - 1$. Then we can take R > 0 with

$$\|\rho_0\|_R < \alpha$$

by $\rho_0(0) = 0$. Therefore we have

$$\left\| \frac{t^{\rho_0(x)+\alpha} - t^{\alpha}}{\rho_0(x)} \right\|_{R} \le \left| \log t \right| \left| t \right|^{\alpha - \|\rho_0\|_{R}} \to 0 \quad \text{as } t \to 0 \text{ in } S_{\theta}$$

for any $\theta > 0$. Hence we have the desired result.

By Lemma 3.11, there exists a positive constant c_1 such that

$$\|\phi_1\|_R \le c_1 |t|^{\gamma} \quad \text{in } S_{\theta}. \tag{3.15}$$

By Lemma 3.4 and (3.15), for $|l| \ge 0$ we have

$$\|\partial_x^l \phi_1\|_r \le \frac{l!}{(R-r)^{|l|}} \|\phi_1\|_R \le \frac{l!c_1}{(R-r)^{|l|}} |t|^{\gamma} \quad \text{for } 0 < r < R.$$
 (3.16)

Therefore, we have

$$\|\Psi_{1}^{\beta}\|_{r} \leq \prod_{|l| \geq 0} \left(c^{|l|+1} \frac{c_{1}}{(R-r)^{|l|}} |t|^{\gamma} \right)^{\beta_{l}} = \left(\frac{c}{R-r} \right)^{\langle \beta \rangle} (c_{1}(R-r)|t|^{\gamma})^{|\beta|}$$
(3.17)

for $0 < R < R_0$ in S_θ .

Let us estimate $t^{i+j\rho(x)}((\log t)/\lambda)^k \Psi_1^{\beta}$.

We put $\eta(t, \lambda) = \max\{|(\log t)/\lambda|, 1\}$, $c_2 = \max\{c/(R-r), 1\}$ and $c_3 = c_1(R-r)$. Since we have $[\beta] \le m-2 < m = i+j+|\beta|$,

$$\langle \beta \rangle \le 2|\beta| + [\beta] \le i + j + 3|\beta|$$

and

$$k \le i + |\beta|_0 + |\beta|_1 + 2(i-1) \le i + |\beta| + 2i$$

we obtain

$$\left\| t^{i+j\rho(x)} \left(\frac{\log t}{\lambda} \right)^k \Psi_1^{\beta} \right\|_r \leq \{ |c_2\eta(t,\lambda)t| \}^i \{ \|c_2\eta(t,\lambda)^2 t^{\rho(x)}\|_r \}^j \{ |(c_2)^3 c_3\eta(t,\lambda) t^{\gamma}| \}^{|\beta|}$$

in S_{θ} . For any sufficiently small $\varepsilon > 0$, there exists a sufficiently small $\delta > 0$ such that for any $t \in S_{\theta}$ with $0 < |t| < \delta$ we have

$$|c_2\eta(t,\lambda)t| < \varepsilon$$
, $||c_2\eta(t,\lambda)^2t^{\rho(x)}||_r < \varepsilon$, $|(c_2)^3c_3\eta(t,\lambda)t^{\gamma}| < \varepsilon$,

and we obtain

$$\left\| t^{i+j\rho(x)} \left(\frac{\log t}{\lambda} \right) \Psi_1^{\beta} \right\|_r \le \varepsilon^m.$$

Then by Lemma 3.10, we have

$$||u||_r \le \sum_{m>1} Y_m \varepsilon^m \tag{3.18}$$

for sufficiently small |t| in S_{θ} . Hence the formal solution (3.1) converges for $x \in D_r$ and sufficiently small |t| in S_{θ} .

4. Completion of the proof of Theorem 1.5 in the case $\rho(0) = 1$.

In this section, let us complete the proof of Theorem 1.5 in the case $\rho(0) = 1$. We know the following theorem.

THEOREM 4.1. If $u_i(t,x) \in \tilde{\mathcal{O}}_+$ (i=1,2) are solutions of (2.1), we have;

- 1. For any $a < \rho(0) = 1$, we have $t^{-a}(u_1 u_2) \in \tilde{\mathcal{O}}_+$.
- 2. If $t^{-b}(u_1-u_2) \in \tilde{\mathcal{O}}_+$ for some $b \geq \rho(0)=1$, we have $u_1(t,x)=u_2(t,x)$ in $\tilde{\mathcal{O}}_+$.

For the proof, see Gérard and Tahara ([2], Theorem 3).

By the discussions in sections 2, 3 and 4, we already know the following results:

(C1) If $\rho(0) = 1$ and $\rho(x) \not\equiv 1$, for any $\varphi(x) \in \mathbb{C}\{x\}$, the equation (1.1) has an $\tilde{\mathcal{O}}_+$ -solution $U(\varphi)(t,x)$ having an expansion of the form

$$U(\varphi) = w_{0,0,0}^{e_0}(x)\phi_1 + w_{0,1,0}^0(x)t^{\rho(x)} + \sum_{m\geq 2} \sum_{\substack{i+|\beta|=m\\ [\beta]\leq m-2}} u_i^{\beta}(x)t^i \Phi_1^{\beta}$$

$$+ \sum_{m\geq 2} \sum_{\substack{i+j+|\beta|=m\\ j\geq 1, [\beta]\leq m-2}} \sum_{\substack{k\leq i+|\beta|_0+|\beta|_1\\ +2(j-1)}} w_{i,j,k}^{\beta}(x)t^{i+j\rho(x)} \{\log t\}^k \Phi_1^{\beta}$$

$$(4.1)$$

with $w_{0,1,0}^0(x) = \varphi(x)$, where all the coefficients $u_i^{\beta}(x)$, $w_{i,j,k}^{\beta}(x)$ are holomorphic in a common disk centered at the origin of \mathbb{C}_x^n . If we take $\varphi(x) = 0$, then the solution U(0)(t,x) has the expansion

$$U(0)(t,x) = u_0^{e_0}(x)\phi_1 + \sum_{m \ge 2} \sum_{\substack{i+|\beta|=m\\ [\beta] \le m-2}} u_i^{\beta}(x)t^i \Phi_1^{\beta}. \tag{4.2}$$

(C2) If $\rho(0) = 1$ and $\rho(x) \not\equiv 1$, and if a solution $u(t, x) \in \tilde{\mathcal{O}}_+$ of the equation (1.1) is expressed in the form

$$t^{-1}(u(t,x) - u_0^{e_0}(x)\phi_1(t,x) - \varphi(x)t^{\rho(x)}) \in \tilde{\mathcal{O}}_+,$$

then the coefficient $u_0^{e_0}(x)$ is uniquely determined by the equation (1.1), and they are independent of $\varphi(x)$.

Moreover, by (C2) and Theorem 4.1 we can easily see that $U(\varphi)$ in (4.1) is uniquely determined by $\varphi(x)$. If $\rho(0) = 1$ and $\rho(x) \not\equiv 1$, by (C1) we have

$$S_{+} \supset \{U(\varphi); \varphi(x) \in \mathbb{C}\{x\}\}. \tag{4.3}$$

Hence it is sufficient to prove the following proposition to complete the proof of the main theorem.

PROPOSITION 4.2. Assume (A1), (A2) and (A3). If $\rho(0) = 1$ and $\rho(x) \not\equiv 1$, and if $u(t,x) \in S_+$, then we can find a $\varphi(x) \in C\{x\}$ such that $u(t,x) \equiv U(\varphi)(t,x)$ holds in $\tilde{\mathcal{O}}_+$.

The proof of this proposition is almost the same as that of Proposition 2 in Gérard and Tahara [1]; so we may omit the details.

By (4.3) and Proposition 4.2 we obtain the main theorem 1.5 in the case $\rho(0) = 1$ and $\rho(x) \not\equiv 1$.

5. Proof of Theorem 1.5 in the case $\rho(0) = N$.

In Section 2, 3 and 4, we have proved Theorem 1.5 in the case $\rho(0) = 1$. In this section, we will prove Theorem 1.5 in the case $\rho(0) = N \ge 2$ and $\rho(x) \ne N$.

We set

$$u(t,x) = \sum_{i=1}^{N-1} u_i(x)t^i + t^{N-1}w(t,x),$$
 (5.1)

where $u_i(x) \in \mathbb{C}\{x\}$ $(1 \le i \le N-1)$ and $w(t,x) \in \tilde{\mathcal{O}}_+$.

Then by an easy calculation we see

LEMMA 5.1. If the function (5.1) is a solution of the equation (2.1), the functions $u_1(x), \ldots, u_{N-1}(x)$ are uniquely determined and w(t, x) satisfies an equation of the following form:

$$(t\partial_{t} - \rho(x) + N - 1)w = ta(t, x) + tA_{0}(t, x)w + t\sum_{i=1}^{n} A_{i}(t, x)\partial_{i}w$$

$$+ \sum_{|\alpha| \ge 2} t^{(N-1)(|\alpha|-1)} A_{\alpha}(t, x)w^{\alpha_{0}} \prod_{i=1}^{n} (\partial_{i}w)^{\alpha_{i}},$$
(5.2)

where

$$a(t,x) = \frac{1}{t^N} (G_2(x)(t, w_0, \partial_x w_0) + ta(x) - (t\partial_t - \rho(x))w_0)$$

with $w_0 = \sum_{i=1}^{N-1} u_i(x)t^i$ and

$$A_{i}(t,x) = \frac{1}{t} \frac{\partial G_{2}}{\partial X_{i}}(x)(t, w_{0}, \partial_{x}w_{0}), \quad i = 0, 1, \dots, n,$$

$$A_{\alpha}(t,x) = \frac{1}{\alpha!} \frac{\partial^{|\alpha|} G_{2}}{\partial X^{\alpha}}(x)(t, w_{0}, \partial_{x}w_{0}), \quad |\alpha| \ge 2.$$

Since the equation (5.2) satisfies the conditions (A1), (A2), (A3) and the characteristic exponent $\rho^N(x) = \rho(x) - N + 1$ satisfies $\rho^N(0) = 1$, we can apply the results in sections 2, 3 and 4.

Further, by the form of all the nonlinear parts of the equation (5.2), we see that the formal solution constructed in Section 2 has the following form:

$$w = u_0^{N,e_0}(x)\phi_{N,1} + w_{0,1,0}^{N,0}(x)t^{\rho^N(x)}$$

$$+ \sum_{i\geq 2} u_i^N(x)t^i + \sum_{m\geq 2} \sum_{\substack{i+|\beta|=m\\ |\beta|\leq m-2, |\beta|\geq 1}} u_i^{N,\beta}(x)t^{i+(N-1)(|\beta|-1)} \boldsymbol{\Phi}_{N,1}^{\beta}$$

$$+ \sum_{m\geq 2} \sum_{\substack{i+j+|\beta|=m\\ j\geq 1, |\beta|\leq m-2}} \sum_{\substack{k\leq i+|\beta|_0+|\beta|_1\\ +2(j-1)}} w_{i,j,k}^{N,\beta}(x)t^{i+(N-1)(j+|\beta|-1)+j\rho^N(x)} \{\log t\}^k \boldsymbol{\Phi}_{N,1}^{\beta}$$

$$\text{where } \boldsymbol{\Phi}_{N,1}^{\beta} = \prod_{|I|\geq 0} \left(\frac{\partial_x^I \phi_{N,1}}{I!} \right)^{\beta_I} \text{ and } \phi_{N,1} = \frac{t^{\rho^N(x)} - t}{\rho^N(x) - 1}. \text{ Therefore we have }$$

$$u = \sum_{i=1}^{N-1} u_i(x)t^i + u_0^{N,e_0}(x)\phi_N + w_{0,1,0}^{N,0}(x)t^{\rho(x)}$$

$$+ \sum_{i\geq 2} u_i^N(x)t^{i+N-1} + \sum_{m\geq 2} \sum_{\substack{i+|\beta|=m\\ |\beta|\leq m-2, |\beta|\geq 1}} u_i^{N,\beta}(x)t^i \boldsymbol{\Phi}_N^{\beta}$$

$$+ \sum_{m\geq 2} \sum_{\substack{i+j+|\beta|=m\\ i\geq 1, |\beta|\leq m-2}} \sum_{\substack{k\leq i+|\beta|_0+|\beta|_1\\ j\geq 1, |\beta|\leq m-2}} w_{i,j,k}^{N,\beta}(x)t^{i+j\rho(x)} \{\log t\}^k \boldsymbol{\Phi}_N^{\beta}.$$

$$(5.4)$$

We put

$$u_i^N(x) \mapsto u_{i+N-1}(x)$$
 for $i \ge 2$, $u_i^{N,\beta}(x) \mapsto u_i^{\beta}(x)$ for $|\beta| \ge 1$, $w_{i,j,k}^{N,\beta}(x) \mapsto w_{i,j,k}^{\beta}(x)$ for any (i,j,k,β) ,

and we have $u_N^0(x) \equiv 0$ by the form of the solution (5.3) and the above relations. Hence this completes the proof of Theorem 1.5.

References

- [1] Ch. Briot and J. Cl. Bouquet, Recherches sur les propriétés des fonctions définies par des équations différentielles, J. École Polytech., 21 (1856), 133-197.
- [2] R. Gérard and H. Tahara, Holomorphic and Singular Solutions of Nonlinear Singular First Order Partial Differential Equations, Publ. Res. Inst. Math. Sci., Kyoto Univ., **26** (1990), 979–1000.

- [3] R. Gérard and H. Tahara, Singular Nonlinear Partial Differential Equations, Aspects Math., Vieweg, 1996.
- [4] E. Hill, Ordinary differential equations in the complex domain, John Wiley, 1976.
- [5] L. Hörmander, Linear partial differential operators, Springer, 1963.
- [6] T. Kimura, Ordinary differential equations, Iwanami Shoten, 1977 (in Japanese).
- [7] H. Yamane, Nonlinear Singular First Order Partial Differential Equations Whose Characteristic Exponent Takes a Positive Integral Value, Publ. Res. Inst. Math. Sci., Kyoto Univ., 33 (1997), 801–811.

Hiroshi Yamazawa

Department of Language and Culture Caritas Junior College Azamino, Aoba-ku Yokohama, 225-0011 Japan