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Abstract. Let u be a A-Holder continuous function on the closure of a bounded
domain D with fractal boundary 0D. We estimate the Besov norm of the restriction of u
to 0D by the L?(D)-norm of |Vu(y)|dist(y,dD)" for an adequate 2 > 0. We apply it to
the boundedness of operators related to the double layer potentials on the Besov spaces
on dD.

1. Introduction.

Let D be a bounded Lipschitz domain in R? (d >3). For some operators on
L?(0D) we need to consider singular integrals and some techniques to prove the L?(0D)-
boundedness of them. One of them is the following operator K:

(L1) Kf(2) = — Jf<y)<vyN<z — y),my>do(y)

for f € LP(0D) and z € 0D, where { ) is the inner product, ¢ is the surface measure on
0D and N(x —y) is the Newton kernel, i.e.,

1
wq(d = 2)|x = y|*7

N(x—y)=

and w, stands for the surface area of the unit ball in RY.

In R. Coifman, A. Mclntosh and Y. Meyer established the L”-boundedness
of the Cauchy integral on curves with arbitrary large Lipschitz norms and their theory
played important roles to consider boundary value problems, especially, the Dirichlet
problem and the Neumann problem in a Lipschitz domain (cf. [Ve], [Ke], [DK]).

The function defined by the right-hand side of for ze RY\éD is called the
double layer potential for f and the L”-boundedness of K is necessary to solve the
Dirichlet problem and the Neumann problem in a Lipschitz domain D by using layer
potentials.

In this paper we consider the boundedness of the operator K on the Besov space on
the fractal boundary. More precisely, let D be a bounded domain in R? (d >2) and
assume that 0D is a f-set (d — 1 < f < d), i.e., there exist a positive Radon measure u
on 0D and positive real numbers by, by, rp such that
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(1.2) bir* < u(B(x,r)N D) < byr?

for all ze D and all r < ry, where B(z,r) stands for the open ball in R? with center z
and radius r. Such a measure u is called a f-measure.

We give examples.

1. If D is a bounded Lipschitz domain in R“  then 0D is a (d — 1)-set and the
surface measure is a (d — 1)-measure.

2. If 0D consists of a finite number of self-similar sets, which satisfies the open
set condition, and whose similarity dimensions are f, then 0D is a f-set and the fS-
dimensional Hausdorff measure restricted to 0D is a f-measure.

By the same method as in we constructed an extention operator & in and
defined the double layer potential @f for f e L”(u) by

(13) o) = |, VAN TN =) dy
if xeD and
(1.4) of (x) = - jD VES) ), VN (x = y)dy

if xe R/\D. Here N(x — y) stands for the Newton kernel if d > 3 and the logarithmic
kernel if n = 2, respectively.

But the integral of the right-hand side of or does not always converge for
feL?(u). So we consider Besov spaces on a fi-set dD. In general, let F be a closed
f-set in R and p be a f-measure on F. Let 0 < o < 1. We define a Besov space AL(F)
by the Banach space of all functions f € L?(u) such that

”If(X)—f(Z)I‘"

|x — 2|7

du(x)du(z) < oo

with norm

111, = (| !f(x)|pdﬂ<x)>l/p ¥ (” /) ;|§£j§"’dﬂ<x>dﬂ<z>>l/p.

|x —

IfO<p—(d—1)<a<1and f e A2(0D), then the integral defined by the right-
hand side of (resp. [T.4)) always converges and &f is harmonic in R?\&D.
Furthermore @f converges ‘non-tangentially’ to K f(z) (resp. K> f(z)) for p-a.e. z € oD,
where

(1.5) Kif(2) =j V()9 VoN (2 — p)> dy

RN\D

if it is well-defined and K, f(z) = 0 otherwise, and
(1.6 Kaf ()= = | W0 VNG =3 dy

if it is well-defined and K, f(z) = 0 otherwise (cf. [W3]). We also define, for f € A2(0D),
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(17) K1) = 5 (Kif(2) + Ko f (2).

This operator is a generalization of K defined by and we see that, if both of K; and
K> are bounded operators from AZ(0D) to AL(dD), so is K.

Hereafter we shall fix a f-measure x on D and suppose D = B(0, R/2) with R > 1.

To prove that K; is bounded on A2(0D), we consider an estimate of the Besov
norm of a function u, which is Hélder continuous on D and a Cj-function in D, by the
L?(D)-norm of |Vulé(y)* for an adequate 4 >0. Here 5(y) stands for the distance
from y to dD.

We now consider a uniform domain by O. Martio and J. Sarvas (cf. [MS]). Recall
that D is called a uniform domain if there exist constants ¢ and b such that each pair of
points xg, yo € D can be joined by a rectifiable arc y « D for which

(1.8) I(y) < alxo = yol,
min{/(y(xo,x)),/(y(x, »0))} < bdist(x,dD) for all x € y.
Here /(y) (resp. y(xo,x)) stands for the euclidean length of y (resp. the part of y between
xo and Xx).
Note that an (¢, 00) domain, which was introduced by P. W. Jones in [Jo], is a
uniform one (cf. [Va]). Therefore a Lipschitz domain is uniform and the snow flake

domain is also uniform.
In §4 we shall prove the following theorem.

THEOREM 1. Assume that D is a bounded uniform domain such that 0D is a f-set
d-1<p<d). Letl<p<oo. Ifl—(d-p)<a<l—(Wd-p)/p,a+(d-p)/p<
A <1 and, u is A-Hélder continuous on D and of C' in D, then

“%dﬂwww e

where ¢ is a constant independent of u.

To prove [Theorem 1, we use a similar covering argument to that in [Ko].
In §5 we shall show that the following theorem on the extension operator &.

THEOREM 2. Let 1<p<ow, 1—(d—-f)<a<l—(d—p)/p and f e AL(0D).
Then

| Iwsoiraty Ly < el

where ¢ is a constant independent of f.

Further we consider a weaker assumption for D. We say that a set G satisfies the
condition (b) if there exist a constant ¢ and r; > 0 such that

|B(z,r) NG| > cr!

for each point z € 0G and each positive real number r < r;.
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With the aid of [Theorem 1 and [Theorem 2| we see that, to prove the boundedness of
the operator K; from A7(0D) to A2(0D), it suffices to show the following theorem, which
will be proved in §6.

THEOREM 3. Assume that R\D is connected and satisfies the condition (b). Let
p>L, 1—(d—-p)<a<l—(d-p)/p and f € AL(0D). Then

J |qu5f(x)|p5(x)p_1’°‘_d+ﬂ dx < CJ |Vxéa(f) (x>|175(x)p—pa—d+/)’ dx,
D R‘I\D

where ¢ is a constant independent of f.

Thus it suffices to compare volume integrals over disjoint domains of two functions
instead of considering directly the singular integral.

We introduce three kinds of maximal functions relative to two disjoint spaces to
prove [Theorem 1, [Theorem 2 and [Theorem 3.

Using above theorems, we shall give the proof of our main theorems in §6.

THEOREM 4.  Assume that D is a bounded uniform domain in R? (d > 2) and 0D is a
f-set (d—1< p<d). Further assume that RI\D is connected and satisfies the condition
(b). Let 1<p<oo, 1 =(d—-p)<a<1—(d—p)/p. Then operator K, is bounded
from AL(0D) to AP(0D).

THEOREM 5. Assume that D is a bounded uniform domain in R? (d > 2) and 0D is a
p-set (d—1< p <d). Further assume that Rd\D is connected and each pair of points
X0, Yo of the set

Fi(R\D) = {y e R)\D;6(y) < 1}

is joined by a rectifiable arc y = RY\D satisfying (1.8) for every t < to for some ty. Let
l<p<oo, 1=(d—-p)<a<1—(d—p)/p. Then the operator K defined by (1.7) is
bounded from AL(0D) to AP(0D).

It seems that our methods used in this paper are also useful to prove the
boundedness of other operators on A7(dD) for a bounded domain D with fractal
boundary.

2. Properties of a uniform domain.

In this section we prepare the properties of a uniform domain, which are used to
prove [Theorem 1.

Let us begin with the following lemma.

LEMMA 2.1. Let G be a domain in R such that 0G is compact. Assume that each
pair of points xo, yo of Fi(G) for every t <ty for some ty is joined by a rectifiable arc
y < G satisfying (1.8). Then there exist positive real numbers b' and ry such that for each
z€ 0G and each r (r < ry) we can find a point y, € G satisfying

B(y1,b'r) = B(z,r) NG.

Therefore G satisfies the condition (b).
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Proor. Choose yy € G satisfying o(yo) = max, g o(y) and put r, =d(yo)/4.
‘o

Letze 0Gand 0 <r <r,. Then |z—yy| =(y9). Pick x; € G such that |z — x| < r/8.
Then

31
|ye—x1|2|YO—Z|—|Z—X1|Z4V—§=?F-

By the assumption there is an arc y < G joining x; to y such that

I(y) < alx1 =y

and
min{/(y(x1, %)), [(7(x, ¥0))} < bo(x)

for every xey. We may assume that b > 1. Take the first point y; €y such that
|x; —y1| =r/8. Then

| r
o(y1) = 5 min{|x; — y1|,[y1 — yol} = -

Hence B(y;,r/(16b)) c G.
We also get B(y,r/(16b)) < B(z,r). Indeed, for x € B(y;,r/(16D)),

Ix—z| < |x—=y|+ |y — x|+ |x1 — 2| <,

whence

B(yl,%> < B(z,r)NG.

Thus G satisfies the condition (b). O

LEMMA 2.2. Let G be a domain in R® such that 3G is compact. Assume that two
points xo, yo € G can be joined by a rectifiable arc y = G satisfying (1.8). If c10(xp) <
(o) < 20(x0) and

2j5(XQ> < |X() — y0| < 2j+15(x0),

then there exist balls By = B(zx,ry) (k=0,1,...,m), B, = B(z;,r) (k=0,1,...,n) hav-
ing the following properties:
(i)  zo = xo, ro =0(x0)/(4b), zy = yo, 1y =0(10)/(4D), zsw = z,, and ry, =71}, 1} <
rens < (L4 1/ @), 1) <y < (1+1/(4),
(i) m < c3j and n < caj, where ¢; (i =3,4) are constants independent of x¢, yo
and J,
(iii)  dist(Bk, 0G) = 3ry and dist(B],0G) > 31,
(iv)  xo € B(zk, 5bry) and yo € B(z, 5br)),
(V) B(yk,rk/z) c BkﬂBk_H, B(y//(,l”]é/z) c Bl/cﬂB//c—H’
(vi)  y e B(zk,rx) implies 6(y) < (8b+ 1)ry and ye B(z;,r)) implies o(y) <
(80 + 1)ry,
(vii) 1 < (a/(8b))|xo — yol, and 1 < (a/(8D))|xo — yol.
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Proor. By the assumption there are positive real numbers a, b and a rectifiable arc
y such that

(2.1) I(y) < alxo — ol
and

min{/(y(xo,2)),(y(z, »0))} < bé(z) for all zey.

We may assume that a,b > 1. Take z’ € y satisfying /(y(xo,z")) = I(y(z’, yo)). Further
we choose points zy,zy,z2,...,2, on y(xg,z’) inductively as follows.

Put zp=xp and let x; be the point satisfying [(y(zo,x1)) =0(x0)/4b. If
[(y(x0,x1)) = I(p(x0,2")), we set z; =z and stop the process. If I(y(xp,x1)) <
[(y(x0,2")), we set z; = x;. Let us now suppose that zj,z,...,zx—1 have already been
chosen on y(xg,z’). Choose a point x; € y satisfying /(y(zxk—_1, xx)) = I(y(x0,zr-1))/(4D).
If I(y(xo0,x%)) = (p(x0,2")), set zx =2z and stop the process. If I(p(xo,xr)) <
[(y(x0,2")), we set zx = x.

Put p =0(x0)/(4b). Then

I(y(z0,21)) = p,
[(y(z0,22)) = P+% = p<1 +ﬁ>,

2
I(y(20,23)) = 1(9(20,22)) + W = /)(1 - %) .

Hence we see inductively that

k—1
(2.2) l(y(zo,zk)):p<l+$> for k=1,2,...,m—1.

Thus we have, by and the assumption,

1 m—2 / a .
p(1455) =106 < 2 < v - ol < 2adto)

whence

1 m—2 .
1 +— < 4ab2’.
< +4b) < d4ab

This implies

log(4ab) jlog?2
M= 2 e+ 1/(d5)) " Tog(l + 1/(@6))"

which leads to the first inequality of (ii).
We next put
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4b
and
Bi. = B(zk,rx) (k=0,1,...,m).
Then
1
rk<rk+1£(1+@)rk (k=0,1,...,m—1)
and

B(yk,%()CBkﬂBk_H (k:O,l,...,m—l)
for some y; € G. Hence the first parts on {Bx} of (i) and (v) hold.
Since
dist(By, 0G) > dist(zx, 6G) — rr > 3ry,

we get the first part of (iii).
Noting that

|x0 — zi| < I(y(x0,2x)) = 4bry,

we see that xo € B(zx, Shry), which is the first part of (iv).
For each y e B(zx,r) we have

0(y) < 6(zk) + rie < d(x0) +4bry + 1 < (85 + 1)ry.

Thus we get the first part of (vi).
Noting rx = I(y(z0,2x))/(4D) < (a/(8D))|xo — yo|, we have the first part of (vii).
We next consider (—y)(yo,z’) instead of y(x,z’) and can construct B; (k
0,1,...,n) by the same method.

LI

3. Maximal functions.

In this section we introduce two kinds of maximal functions, which will play
important roles in later sections. Without loss of generality we may assume that
r1 > 3R in the condition (b).

Since 0D is a f-set, there exists a positive number s, such that

dy < syrPed="

(3.1) J
{0(y)<e}NB(z,r)ND

for all positive real numbers r, ¢ satisfying 0 <& <r < 3R (cf. [W1, Lemma 2.1]).
Moreover, if D satisfies the condition (b), then
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(3.2) sirfed=F < J dy
{0(y)<e}NB(z,r)ND

for all positive real numbers r, ¢ satisfying 0 < & <r < 3R (cf. [W4, Lemma 2.1)).

We fix positive real numbers s, s, satisfying 3.2}, [3.1), respectively and define, for
t> 0,

S\ @)
(3.3) A,(D)EAl:{yeDé(é) Sé(y)<l}.

Let t>0, 0<A<d—p. We define a Borel measure v;, on 4, by

v dE) = L_M 3(y) " dy

for each Borel set E. We also define a Borel measure v} on D by

) =] s

These two measures have the following properties.

LemMma 3.1, Assume that D satisfies the condition (b). Let0 < i<d—-p,0<t<1,
x € A(D) and 26(x) <r < R. Then

(3.4) vi(B(x,r)) < eir’™" < ev) (B(x,r)) < e3r?
where ¢y, ¢; and c3 are constants independent of x, t and r.

Proor. Choose x'edD satistying |x —x'| = dist(x,dD). Since for every
y € B(x,r),

" =yl < X" = x|+ |x —y| < (x) +r <2,
we have, by [3.1),
v, (B(x,1)) < crt " |B(x",2r) N {y € D;6(y) < 1}]

< czt_’]“(2r)ﬁtd_/} = cyrPrdP=+

d—7

9

< C4rﬁrd_/’)_)“ = c4r

which shows the first inequality of |3.4).
We next show the second inequality. Noting that r > 26(x), we have, by [3.2),

v (B(x,r) = j 5(y)"* dy
B(x',r/2)ND

J (r/2)™*

B o i .
> 5 (f) J A P17 gy > esrd=
27 Japay

B(x/é) N{ye D;d(y) < s V*}| ds
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The third inequality of is obtained by the inequality

v (B(x,r)) < J 5(3) " dy
B(x',2r)ND

w
< J B(X',2r) N {y e D;6(y) < s VY| ds
(2r)™*

o0
< S2(2r)ﬂJ ) sB=D s < corPrd=P—4 < cord= 0O
(2r)”

Fix >0 and define, for feL'(v]), a maximal function .#(v,,vi)(f) of f
by

B(x,r)

M08 () = up{%J (v} (7);26(x) < < R}

for each x € 4,(D). Then the maximal function has the following properties as usual.

LemMMA 3.2.  Assume that D satisfies the condition (b). Let 0 < A<d—p.
(i) Let feL'(v]), s>0 and set

E,={xeA; %(Vim Vj)(f)()o > s}
Then

v/l,l(E&') <

~ | o

[is1a:,

where ¢ is a constant independent of f, s.
(i) Let 1 <p<oo and feLP(v). Then

J%(Vﬂ,t’ V}L)(f)p dV).,t < CJ |f|p dV;{_,

where ¢ is a constant independent of f.

ProoOF. (i) For each x € E; there is a positive real number r, such that r, < R
and

1

d—7
ry

[ vt s
B(x,ry)

Using the Besicovitch covering theorem, we can find a subcovering {B(xj,r;)} of
{B(x,rx)} cp such that
E = U B(x,r))
J

and each point x € E; is contained in at most N numbers of B(x;,r;). [Lemma 3.1
yields
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v/l,t(Es> < ZV;L,[(B(xj7rj)) = erd*i
j J

SCIEZJ

J B(Xﬁr_/‘)

aN
7O (0) < 22| Yl o).
This shows (i).
(i) The assertion (ii) is deduced from (i) by the usual method. O

We next consider another maximal function. To do so, let 0 < A<d—f and
define, for a Borel set E,

v; (E) =j () .
(B(0,2R)\D)NE

We can easily show the following lemma as the proof of [Lemma 3.1.

LemMMA 3.3. Assume that RI\D satisfies the condition (b). Let 0 <\ <d—p.
Further let xe D and (4/3)0(x) <r <3R. Then

(3.5) vi(B(x, 1)) < err®™ < vy (B(x, 1)) < 3™,
where ¢y, ¢y and c3 are constants independent of x and r.

Let ue L'(v;). We define a maximal function .#(v],v;)(u) of u by

(3.6) M (V5 v;) () (x)

Jaenneso. 2005y Ul dv; 4
= ’ ’ ;=0(x) <r<3R
S“p{ B 30T

for x e D.
Using [Cemma 3.3, we can prove the following lemma by the same method as in the
proof of [Lemma 3.2l

LEMMA 3.4. Assume that R\D satisfies the condition (b). Let 0 < <d — p.
(i) Let ue L'(v]), s> 0 and set

Fy = {xeD;.(v],v])(u)(x) > s}.
Then

c _
1 (E) < < [Julav;,

where ¢ is a constant independent of u, s.
(ii) Let 1 <p<oo and ueL?(v]). Then

vy vy < [ ur as;.

where ¢ is a constant independent of u.
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REMARK 3.1. For t>0 and 0 < 41 <d — f we define

GAE) =] a0y
ENA,(RY\D)
for each Borel set E. [Lemma 3.1 remains valid if we replace D, v;,, vi with R‘\D,
Vi vy, respectively. We also see that is valid even if we exchange D and
v} for RY\D and v}, respectively. Therefore the maximal functions ./# (v;.»v;)(f) and
M (v;,v])(u) are defined and assertions corresponding to Lemmas B.2 and B.4 hold.

4. Proof of Theorem 1.

In this section we assume that D is a bounded domain such that 0D is a f-set. We
prepare some lemmas.
The estimate for the Besov norm in the product of two balls is as follows.

LEMMA 4.1. Let 1 <p<ow, p—po—d+p>0 and xo€ R?. Further let r>0
and u e C'(B(xo,r)). Then

Ju(x) —u(y)|” Cpd
dyJ o dx < cr? T +h \Vu(y)|” dy,
JB(xo,r) B(xo,r) |X — y|d+p +d=p B(xo,r)

where ¢ is a constant independent of u, xo and r.

Proor. Let x,ye B(xg,r). From

1
ulx) = uly) = | Gutr+ it = )
1

—(x—)- jo Vu(y + i(x - y)) dr,

we deduce

‘ p

|u(x) — u(y) d—pr-dip [
oy < WA | Wy iy =)l

Let 0 < s < 2r. Then

I= J u(x) — u(y)
0By, )NB(xor) |x — | TP*TAP

| P

dfl(x)

1
< Sp—d—poc—d+ﬂ

dzj Valy + 1(x — )P dod (x)
0 0B(y,s)NB(xo,r)

(L dr

—d—po—d+p
< gPar
Jo td—l

J Valw)|? d = ()
0B(y,st)NB(x,r)

N dt/

p—d—po+f—2
= Nz

\Vu(w)|? da =" (w).

,[53(% YN B(xp,r)
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Since p —d — pa+ f >0, we choose a positive number ¢ < 1 such that p —d — pa+
p—1+¢e>0. Then we have

Sl

p—d—po+f—2+e
I S § 0 Z/d—1+£

dz'J Vau(w)|” d =" (w)
OB(y,t")NB(xo,r)

2r p
—d— —Dte |Vu<w)| d—1
< gpd-patp-2+¢ dﬂj R A" (w)
0 2B(y,)NB(xo,r) |y — W]

Vu(w)|”

_ Sp—d—poc+ﬂ—2+s
d—1+¢

uB(X().,I‘) |y - W|

Hence

I u(x) — u()|”

(x0,7) |X N yldJrPOHrd*/f

Vu(w)|”

2r
— p—d—po+f—1+e
—J Ids < cir I y

0 B(Xo,r) |y - W|

Noting that d — 1 + & < d and integrating over B(xo,r) with respect to y, we have the
conclusion. ]

In [W6, Theorem 2] we gave the following theorem.

LEMMA A. Suppose that G is a domain in RY such that 0G is compact and a [-set
(d—1< p<d) and satisfies the condition (b). Let 1 < p<oo and o+ (d—p)/p <
i< 1. If f is J-Holder continuous on G, then

() —F ()P
LG LG B ()

Ix—y
_ P
gcliminfj J /) df Ef;’ﬁdxdy,
=0 Ja6) Jade) |x — y| 7

where ¢ is a constant independent of [ and A,(G) is the set defined by (3.3).

Note that we assumed in [W6, Theorem 2] that G is bounded. But the theorem is
valid under our assumption with a small change in the proof.

Lemma 4.2. Let p—pou—d+f >0 and ue C'(D). Set

IB(V r) Udy
Ny, =—1——— and ry=—7>
T B(x, )
for x € D and r > 0 satisfying B(x,r) = D and b is the constant in (1.8). If 0<c¢ <1
and ¢y > 1, then
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o0 ’ P

‘ ( ) —Hxr,
de ) I'x dy
j_Zl L, 1275(x) < [x—y|<es2i10(x) |x — y|PETATE

j Vu()|P5(p)" 4 gy,
D

where ¢ is a constant independent of u and t.

Proor. Since 4, = | J__, B(x,6(x)/(20b)), we can find {x;} = A4, such that

xeA,

(4.1) A, < U (k, 4b))

and {B(xx,0(xx)/(20b))} is mutually disjoint.
Fix a natural number k and let x € B(xy,0(xx)/(4b)) N A4,. Then

V4
1 1
\u(x)—nmr"sq,(] ru<x>—u<z>rdz> sag| - ue)d
Ix B(x,ry) I JB(x,ry)

X

By the same method as in the proof of we have

1 1 4 P 2ry
_dJ |u(x) — U(Z)|p dZ < C4—dj Lmj)a!%‘dWJ sp+d7176 dS
Iy JB(x,ry) ) B |x — w|?F 0
P
< csé(x)p_sj Wulwl” 4,
B(x,r,) | X — W]

where ¢ is a positive number satisfying p —pa —d +f —¢ > 0. Hence

| ( ) - ﬂx,rx g
d+pot-d—p

Jclzfo‘()<|x yl<e2i15(x) | X — ¥

vutw)

e e =

Take z; € 0D satistying o(xx) = |xx — zx|. Since

1
’Zk — X| < |Zk — xk| + ]xk — X| < (1 -i—@)&(xk),

we see that d(x) < (1 +1/(4b))o(xx). Similarly d(x) > (1 —1/(4b))o(xx).
From these we deduce, for every w e B(x,ry),

and

Setting ry = d(xx)/(4b), we have

577
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|M(X) - 77x.,r|p

[
B(xe,re) 1278(x) < |x—y|<e27H18(x) | X — Y|

d+po+d—p
N i d
< cr(2y T | V() 0)” 7 i | —
B(xy,4r,)ND [x—w| < cgd(w) |W — X|
< C9(2f)—1’“—d+ﬁj IVu(w)|P5(w)? 7= gy,
B(Xk,4l’k)ﬂD

Since {B(xx,rx/5)} are mutually disjoint and (s /s2)"/"P¢t/(8b) < r < t/(4b), we have

|U(X) - 77x, r |p
d+pot-d—p

[, ]
A, €1276(x) < |x—y|<c22/415(x) |X — y|

< clo<2f>-'”—"+ﬁj IV u(w) [P8() 77 gy,
D

whence
i J de |u<x) - nx,rlp
= a T ez <xesicezmis Jx — p| TP
D
Thus we have the conclusion. -

LemMAa 4.3. Suppose that for each t <ty each pair of points xg, yo € Fy(D) is
joined by a rectifiable arc y satisfying (1.8) in D. Let 1<p<owo, 1—(d—-p)<
a<1—(d—p)/p and ue C'(D). Then

- u(x) — u(y))” U
imior | | oy B P = e, v w

where ¢ is a constant independent of u.

ProoF. We may assume that
| wutmpscy ety < ce.
D

Let x € A, and write

J Ju(x) — u()|”

, |X _ y’dJr]?OH*df[)’

| ) e | ) — u ()"

- d d— d d—
AN{x—yl<o()/2} |x — y| PP Nyl 20002} |x — y| THPreP

=1+ 5.

Take the covering {B(xx,d5(x;)/(4b))} of and assume that x € B(xy,d(xx)/(4b))
and |x —y| <d(x)/2. We note that b >1. From
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oyl < Jx < %) o
O(xk) | 50(xk) _ T0(xk)
N 8

we deduce that y e B(xy,76(xx)/8). Hence, by [Lemma 4.1,

J Il dx
A,ﬁB(xk,(S(xk)/(4b))

ju(x) — u(y)l”

dxj ; y
JA,HB(Xkd(Xk)/(4b)) Ame(xk775(xk)/8) |x _ y|d+[1 +d ﬁ

- J dxj |u(x) —u(y)|”
= ) - d+potd—p
B(xi, 76(x)/8) B, 10(x0)/8) |x — |

<

saamwwﬁwj V()| dy.
B(xy,70(xy)/8)

On the other hand, if y e B(xx,70(x)/8), then

75(xk)
8

o(xx) < () + |k =yl < 0(y) +
and hence J(xx)/8 < d(y). Consequently

I dx < CzJ \Vu(p)[Po(y)? 7 ay.

J ANB(xi,8(x1)/(4b)) B(xi, 70(x1)/8)

Noting that B(xx,d(xx)/(205)) are mutually disjoint, we have

(4.2) | nar<>| V() P8(3) P dy
A, k (oK, 70(xk) /8)

<a | WulnPs) Y dy,
D
We next estimate /,. Let y be a point in 4, such that 2/5(x) < |x — y| < 2/715(x).

For xo=x and yo=y we choose families {Bi} (Bx = B(zx,rc)) and {B;} (B, =
B(z;,r])) satisfying (i)—(vii) of [Lemma 2.2. Noting that B(zy,r,) = B(z),r],), we write

u(x) = u(y)] < |u(x) nxrol+z

'72/( Tk 77Zk+1 y Tk+1 |

+|u ”yr|+2|77’ ;T Zk+1’rkl+1|

m—1

n—1
XA T+ T )+ L
k=0

k=0
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yields

< J(x)”
(4.3) J dx[ ———dy
/;1 4, Jpise lsl<amawna, |x — y| PP
< | Wuln(n 7 dy
D
and
- J'(»)"
4.4 J de dy
@4 j_z_:l A Jist) <lx—yl<2iiaina, |x — y| TP
< J'(x)"
< dyJ -
j_z_l JA, (d1275(3) < |x—y|<ds215(y)}0 4, |x — y| TP

< s j Vu(y)P8(y)" 7~ dy.
D

We next consider S/ ' Ji. Noting that

B(yk, Vk/Z) [ B(Zk, Vk) N B(Zk+1, Vk+1)

for some y;, we have, by Poincaré’s inequality and [Cemma 2.2, (iii),

J Jx dy
B(yi,r/2)

B(zk11,Fk41)

< J u(y) = 1. | dy + J u(y) =12y, | Y
B(zk, 1)

< ¢4 rkj |Vu<y>|dy+rk+lj Vu(y)| dy
B(zk, %) B(zZky1,7k+1)

< ¢ <J Vu(y)|o(y) dy + J Vu(y)o(y) dy> :
B(zy, i) B(zki1,rk+1)
Hence
1
Ji < s dj V() (y) dy
("k) B(zk, k)
]
ra— | Va(»)Io(y) dv.
(Vk+l) B(zks1,rk41)
Set

1

L =
)

j Vu(2)I6() dy.
B(Zk7 rk)
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Choose ¢ > 0 satisfying 0 < d — f — pe and set A =d — § — pe. With the aid of Lemmal
2.2, (i), (vi), (vii) we have

oc+a

Vu
I < co IB (x, 10br)ND |

(DI 5(y) " dy
d A
T

< crolx =yl (v, V) () (%),
where f(y) = [Vu(»)[0(y)' ™ °. Here we note that

10bry > 10br) = gé(x).

Therefore we have, by [Lemma 2.2, (ii),

3

Jir < cll\x —y|“+8j=/%(vx,z,vf)(f)<x)a
0

=
Il

whence

(ie Ji)”

. dipard—p Y
L«/a()<|x yl<2it1a(x) |x — y| THTEE

JPAM (3,0, ) () ()"
d+d—p—pe

<cn2 J
2i8(x) < |x—pl<2it15(x)  |x — ¥

< ez (20) I S ()T (v v ) () ()P

Using and [Lemma 3.2, we have

-1
o0 m J p
(4.5) j dxy | : "ﬁm’fdﬁdy

1 26 < [x-y1<2it16(x) [x — )|

< i | YN T = cva | M) ()

A,

<cas | Vu)["o(y)" " dvi (y) = CISJ Vu(y)|76(y)" 7" dy.
b D

On the other hand, if y e 4, and 2/d(x) < |x — y| < 2/715(x), then

NI AN
2/ (—) 6(y) < |x—y| <2/* (S—> ().
1

82

So, for S/, J/, we also obtain the same estimate as S 7" Ji.
Combining the above facts with (4.2), (4.3), (4.4), (4.5) we have the conclusion.
O]

Let us prove [Theorem 1.
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ProoF OF THEOREM 1. Let u be J-Holder continuous on D and a C!-function in D.
Lemmas A and 4.3 yield

”Mdﬂ(x)dﬂ(y) < ¢; liminf L J u(x) — u(y)|” dxdy

|X . y|ﬂ+poc 1—0 4, |x B y|d+pa+d—ﬁ

< czj Vu(p)|P5(y)" 7P dy.
D

This completes the proof. L]
REMARK 4.1. We note that Lemmas and are valid if we replace D with
R\D.
5. Extention operator &.

In this section we consider the relation of the L-norm of [V&(f)|6(x)* and the
norm |[|f]|, ,. To do so, we first mention the property of & (cf. [JW], [W3], [W4]).
Recall that #"(RY\0D) stands for a Whitney decomposition of R?\dD.

PROPOSITION B.  Assume that D = B(0,R/2). Then there exists a linear operator &
from LP(u) to L?(RY) having the properties (i)—(vi):
(i) &(f) is a C*-function in R\OD,
(i) &)=/ on D,
(i) supp&(f) < B(0,2R),
(
(

iv) &(1)=1 on B(0,R),
v)

[iecrar <e [ i1 au

where ¢ is a constant independent f,
(vi) Let Qe ¥ (RI\OD) be a cube with common side-length 1. Then, for each

yeo,
Vo) ()| < el ! j

B(a,b"

NICIRZC!
where a is a boundary point satisfying dist(0D, Q) = dist(a, Q) and b" = 6\/d, and c is a
constant independent of I, y and f.
Set

H = {y;0(y) <R}

and denote by vy the positive measure on B(0,2R)\dD defined by
() = | 30 dy
EN(B(0,2R)\0D)NH

for a Borel set E.
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We begin with estimates for two measures u x u and .

LemmAa 5.1.

W(B(y.r) < e < czj dp(x)dp(z)

B(y,r)NéD JB(y, rNéD
for every ye H and every r satisfying (11/10)6(y) <r < (3/2)R.

Proor. Let y e H and (11/10)6(y) <r < (3/2)R. Sinced >2andd —-1< f < d,
26—d >0,

10 \%—4
s(x) P dx < ¢ (ﬁ r) rd < cpr?

Y

JB(y,r)ﬂH

which is the first inequality.
Denote by »’ a boundary point such that d(y) = |y —y’|. Since B(y’,(1/11)r)
B(y,r) and 0D is a f-set, we also get the second inequality. ]

We introduce the following maximal function on 0D x dD. We define, for he
LP(uxp) and ye H,

M (vo, i< p)(h)(y)

1
— sup i J J
w(B(y,r)N0OD)” JB(y,nnep JB(y,rnep

[2(x, 2)| du(x)dpu(z);

11 R
l—oé(y) <r< Z}'

Using Vitali’s covering lemma and [Lemma 5.1, we can prove the following lemma
by the same method as the proof of [Lemma 3.2

Lemma 5.2. (i) Let t>0, he L'(ux pn) and set

E = {yeH;Mvo,pux p)(h)(y) > t}.
Then

vo(E) < cr”! ” 1h(x, 2)| dp(x)du(2),

where ¢ is a constant independent of f and t.
(1) Let p>1 and he L?(ux u). Then

V(vo,u % 1) () ()" dvol(y) < ” (e, )7 da(x)dp(z).

PrOOF OF THEOREM 2. Let {Q;} be a Whitney decomposition of R“\dD (cf. [S]).
Denote by /; and a; the common side-length of Q; and a boundary point satisfying
dist(0D, Q;) = dist(aj, Q;), respectively. Put
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1

Y= a(Blaynly)

j £00) dpu(w),
B(aj,nly)

where 7 is a fixed positive real number satisfying 0 < # < 1/4 and used in the definition
£(f) in [W3].
With the aid of Proposition B we have, for each y e Q;
Ve, = b))l
1
<cigorg| o du@) | ) ) dut
P10 ) oy Blay.ni)

flpracsil /(2) ~ /()
< J dulz J ——t——du(w).
J B(a;,b"1;) ( ) Blaynh) |Z . W‘[f/eroz ( )

Further, let y € O; and x; be a point in Q; satisfying |a; — x;| = dist(aq;, Q;). If
z € B(a;,b"l;) N 0D, then

v =zl <y —x|+ % -l + |a; — 2|
< Vdl; +4Vdl; + b"l; = 11Vdl,.

Putting s’ = 11v/d, we have

(5.1) V&S = b)((y) "

SC?’T[]
f

du(z)j (h(z,w)| dp(ow),

J‘B(y,s/l,-)ﬂﬁD B(y,s'l;))NoD

where h(z,w) = |f(z) = f(w)|/|z — w|P/PT*.
Put s” = R/(s'5v/d). First, let [ <s" and ye Q;. Then

, R R

s'lh<s —— < —
/ s'5vVd S

and

§ > 90 _ 1o(y)

5vd 5
Noting that
1(B(p,5'l) N OD) < u(B(a;, 25'l;) N D) < el
we have, by [5.1),
VE(f — b)(0)0(») P17 < esat (vo, 1t x ) (h) ().

Since the interiors of Q; are mutually disjoint, we obtain, by [Lemma 5.2,
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(52) 3 j V() () P(r)" " dy

Li<s” 9

< ZJ V(S — b)(IP6(y) 7 P(y) 4 dy

L <s” 9
<c Y J A (vo, i1 @)(h)P dvy < ¢3 ”h(z, w)? du(z)pu(w).
9
We next assume that /; >s”. Then, by ye Q;, (vi) in Proposition B implies

V) ()| < et J F@ldu(z) < eo(s") P 11

Blay.b"1)

Noting that supp &(f) = B(0,2R), we have

(53) S |, wathmraty

i "
li>s

< cm<s">‘ﬂ‘f’||f||;:j QR dy < ey /]
B(0,2R)

)

Thus we have, by and [5.3),
|| IPS0Ia0) < el 1,
which completes the proof. O]

6. Boundedness of operators.

In this section we shall prove the boundedness of operators K;. To do so, we first
prove [Theorem 3.

PrOOF OF THEOREM 3. Denote by 7,(D) the set of all n-cubes in D. If xe Qe
Yu(D), then

Vd2™ < §(x) < 5Vd2™".
Consider Q € 7,(D) and denote by x, the center of Q. For each x e Q we write

r=|%2 0| =| @ - ertaanw

| WE Ty (N =) = N = )y
R\D Xi

Scl|x—x0|J

WVES)W(x =y |y = xo T dy.
B(0,2R)\D

Since
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N
v~ 21 2 b=yl — w0 — x| 2 [~y — 502
o(x) _ 1
>x—yl——2 > Z|x—
> [x —y| 5 _2!x V|
for y e B(0,2R)\D, we write
I< cza<x>J ] VES) )] 1x -y dy
(B(0,2R)\D)N{o(y)<R/2}
+cza<x>J ] VEL) D) Ix -y dy =1 + b
(B(O,2R)\D)ﬂ{<5(y)>R/2}
Then
I < 28(x) j ] VES) )] x— y 4 dy
=1 J(B0.2RND)N 12 16(x) < 3y <250(x)}
< c35<x>2<2"—‘5<x>>—"—1j ] VES) ()] dy,
k=1 (B(0,2R)\D)N{25-16(x) <|x—y| <2%d(x)}

where m, stands for the natural number satisfying 2”=15(x) < 3R/2 < 2"5(x).
Set g=p/(p—1) and A=¢q(l —a—(d—p)/p)>0. Then d —f—A=q(d—f+
«—1)>0. Hence, by Cemma 3.3,

1. f(B(O,2R)\D)ﬂ{|xfy|sZ"&(x)} VE(f)(D)o(y)" dv; ()
(2k6(x)) "

L6(x)" < ¢4 f:(zk)
k=1

< cs g@")”ﬂw, ) VEIB0) ) ()

< co (v} v )(IVE(S)I6(2) ) ().

yields

|| oo dx < e | s ) (VBN 50 dy

< ¢ J VE)()P() 5 (y) ™ dy.
B(0,2R\D

Since pA—A=p—pa—d+ f, we have

(6.1) J I{’(S(x)”‘p“‘”ﬁ dx < c9J . VE) ()PS5 ()% gy,
D B(0,2R)\D

We next estimate I,. Since
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b < CzJ ] X — W IVES) )] |x — ¥~ dy
(B(0, 2R)\D)ﬂ{(5(y)>R/2}

R —d
s(zm(z) j ] V() ()| dy
(B(0,2R)\D)N{o(»)>R/2}

<1 _ V&) (v)ldy,
(B(0,2R)\D)N{d(y)>R/2}

we have
(6.2) | axceo| ax| o wampaty ey
D D B(0,2R)\D
sen| o PENOIPIY T dy
B(0,2R)\D
The inequalities [(6.1) and 6.2) lead to the conclusion. O

We next prove [Theorem 4.

PrOOF OF THEOREM 4. We show that K; is bounded from A7(dD) to A7(0D). In
[W3, Proof of Theorem| we saw that K; is bounded from A7(0D) to L?(ux). So it
suffices to prove that

(6.3) ” |Kif(x) = Kif(2))

|x — z|/’u””°C

du(x)du(z) < arll F17,,

for every f e A7(dD).
For this purpose let f be a Lipschitz function on dD. Define

ux) = | TSN TNG 3 dy
R\D

for xe D. Then u(x) = @f(x) for xe D and u(x) = K, f(x) for x e dD.
We choose a real number A satisfying o+ (d —f)/p <1< 1. Then we see by
[W2, Lemma 3.2] that u is A-Holder continuous on D and a C'-function in D.

Theorem 1, Mheorem 3 and yield

(6.4) ” |K1f|(x) —|1ﬂ<+1pfa(2)|pdu(x)dﬂ(z) < c6J VDS (x)|75(x)7 PP gy
X —Zz b

<o | VNI T dy <
RN\D

for every Lipschitz function f on dD.

We next consider f € A2(0D). We have known that the set of all Lipschitz func-
tions on 0D is dense in A7(0D) (cf. [W5, Lemma 3.1]). So we take a sequence {f,} of
Lipschitz functions on 0D such that [ f, —f],, — 0. By we have
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— Z P
I J |Ku€1‘<;c>_z|§]{;< W g)du(z) < ool £l12,

Noting that ||Kif, — Kif||, — 0 and || f, —f1|, — 0, we can find a subsequence {f,,} of
{fu} such that f,(z) — f(z) w-ae. zedD and Kf,(z) — K, f(z) p-ae. zedD. We
also use {g;} instead of {f,}. With the aid of Fatou’s lemma we obtain

” K1 f(x) — K f(2)

|x_Z|ﬂ+pa

J J K9/ = Kigs @ gy
|X B Z| +po

du(x)dp(z)

< liminf
J— o0

X . . P P
< C10 lljl’gldljlf anH%p = CIOHfHoc,p‘

Thus we have and we see that K; is bounded from A%2(0D) from A2(0D). O

/l

PROOF OF THEOREM 5. By the domain R?\D satisfies the condition (b).
Hence, by [Theorem 4, the operator K is bounded on AZ(6D). Noting Remarks 3.1
and 4.1, we can prove by the same method as in the proof of [Theorem 4 that K, is also
bounded. Since

K + K
K:%7

we also see that K is bounded on A2(dD). ]
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