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Abstract. Let us consider the following nonlinear singular partial differential
equation (£0/81)™u = F(1,x,{(t0/d1)’(0/dx)"u i+ou<m, j<m) i0 the complex domain. When
the equation is of totally characteristic type, the author has proved with H. Chen in
the existence of the unique holomorphic solution provided that the equation satisfies the
Poincaré condition and that no resonances occur. In this paper, he will solve the same
equation in the case where some resonances occur.

§1. Introduction.

Notations: (z,x) e C; x Cy, N={0,1,2,...}, and N*={1,2,...}. Let meN",
set N=#{(j,a) e N X N;j+a<m,j<m} (that is, N =m(m + 3)/2), and denote the
complex variables z as z={zj s}, )< jcm € c”.

In this paper we will consider the following nonlinear singular partial differential
equation:

a m a j a o
E = =F|t 1= —
(E) ( 6[) ! " ( 0Z) (ax)u jro<m ’

j<m
where F(t,x,z) is a function of the variables (¢,x,z) defined in a neighborhood 4 of
the origin of C, x C, X CZN , and u = u(t,x) is the unknown function. Set 4y = 4N
{t=0,z=0}. We impose the following conditions on F(t,x,z):

Aj) F(t,x,z) is a holomorphic function on 4;
A) F(0,x,0) =0 on 4.

Set also I, ={(j,a) e Nx N;j+o<m,j<m} and L,(+)={(j,a) € Ly;a > 0}.
Then the situation is divided into the following three cases:

oF
Case 1: aZ—(O,x,O) =0 on 4o for all (j,«) € Lu(+);
j-,:x
oF .
Case 2: 0—(0’0’0) # 0 for some (j,a) € L,(+);
Z.j:o(

Case 3: the other case.
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In the case 1, equation (E) is called a nonlinear Fuchsian type partial differential
equation and it was studied quite well in Gérard-Tahara [3][4]. In the case 2, a kind of
Grousat problem appears: Gérard-Tahara discussed a particular class of the case 2
and proved the existence of holomorphic solutions and also singular solutions of (E).

In the case 3, equation (E) is called a nonlinear totally characteristic type partial
differential equation. The main thema of this paper is to discuss the case 3 under the
following condition:

oF . .
Aj) %(O,x, 0) = O(x*) (as x — 0) for all (j,a) € Ly(+).
Under this condition, Chen-Tahara has proved the existence of the unique holo-
morphic solution provided that the equation satisfies both non-resonance condition and
the Poincaré condition.
Let us now recall the result in [2]. By the condition A3) we have

oF
0zj 4

(1.1) (0,x,0) = x%¢j 4(x), (j,a) €Ly

for some holomorphic functions c¢;,(x). Set

(12) L(Z,p) = 2" = > ¢u(0)p(p—=1)---(p—a+1),

Jta<m
j<m

Lp(X) = X" = 3 ¢.(0)X/,
JjHo=m
j<m

and denote by ci,...,c, the roots of the equation L, (X)=0 in X. Then our non-
resonance condition and the Poincaré condition are stated as follows:

(N) (non-resonance) L(k,I) # 0 holds for any (k,/)e N* x N,
(P) (Poincaré condition) ¢; € C\[0,00) for i=1,...,m.

Note that if we factorize L(4,/) into the form

(1.3) L0 = (A=&(D)---(A=&ull), [eN,

by renumbering the subscript i of &;(/) suitably we have

(1.4) lliméiT(l):ci fori=1,...,m.
THEOREM 1 (Chen-Tahara [2]). Assume Aj), A,) and As). If the conditions (N)

and (P) are satisfied, equation (E) has a unique holomorphic solution u(t,x) in a neigh-
borhood of (0,0) € C, x Cy satisfying u(0,x) =0 near x = 0.

The purpose of this paper is to solve equation (E) in the case where the Poincaré
condition (P) is satisfied but the non-resonance condition (N) is not satisfied.
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§2. Main result.

Let L(4,p) be the polynomial in [I1.2], and let &(/) (i=1,...,m) be as in and
(1.4). Set

M = {(k,]) e N* x N;L(k,l) = 0},
My ={(k,]) e N" x Nk =¢(l)=0} (i=1,...,m).

We have 4 = M yU---U.4,y. Note that .# = (Z is equivalent to the non-resonance
condition (N). In the case .# # J we note:

ProOPOSITION 1. If the Poincaré condition (P) is satisfied, we have the following
properties.

(1) A is a finite set.

(2) There is a >0 such that |k—¢&;(1)| >a(k+1) holds for any (k)€
(N* X N\ (i=1,...,m).

Proor. It is sufficient to prove the following assertion: (x), there are g; > 0, K; > 0
and L; > 0 such that |k —¢;(/)| = gi(k+ 1) holds for any (k,/) satisfying k > K; or
[ > L;. Let us show this now.

Denote by 7(1, —¢;) the segment in the complex plane joining the two points 1 and
—c;. Let d; be the distance from the origin to /(1,—¢;). Since (P) is assumed, we
easily see that d; > 0. Since (k —¢;l)/(k+1) is a point on the segment /(1,—c;), we
have |(k —¢il)/(k+1)| = d; for any (k,I) e N* x N. Moreover, by (1.4) we can take
an L; > 0 so that |(;(/)/]) — ¢;| <d;/2 holds for any [/ > L;.

If ke N* and [ > L; we have

(2.1) k= &(D] = |k — cil| — &) — ¢
> ((k —cil) [ (k + D) = [(&(D) /1) = ei) (k +1)

d; d;
> (di_i)(k‘f’l)—z(k—f—l).
If ke N" and 0 </ < L;, we have |k —&;()| =k —|&(D)| = (k+1)/3+ (k/3 —|&:(D)]) +
(k —1)/3; therefore if we set K; = max{3|&;(0),...,3|&(L; —1)|,L; — 1} we obtain

(2.2) lk— &) > =(k+1) for k>K; and 0</< L;.

W[ =

and (2.2) complete the proof of the assertion (x);. O

For (k,l) e .# we set u(k,l) =#{i;&;(I) =k} and we say that u(k,l) is the mul-
tiplicity of resonance of L(A,p) at (k,I). We denote by u the total number of the
multiplicities of resonances, that is,

(2.3) u=3" ulk0).

(k,)) el

The following is the main theorem of this paper.
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THEOREM 2 (when resonances occur). Assume Ajp), Az), Asz), (P) and 4 # &.
Then, equation (E) has a family of solutions u(t,x) of the form

(2.4) u(t,x) = w(t, t(log 1), t(log 1)%, . . ., t(log )", x)

where w(ty,ti,...,t,x) is a holomorphic function in a neighborhood of the origin
(to,t1,- ., by, x) = (0,0,...,0,0) satisfying w(0,0,...,0,x) =0 near x=0; moreover
w(to, t1,- .., lu,X) contains u arbitrary constants.

Now, in order to look for a solution of the form we set
(2.5) o=t t =t(logt),..., 1, =t(logt)"

and suppose that u(¢,x) is expressed in the form for some holomorphic function
w(to, t1,- .., 4, x). We have

ou

—=1Tw
ot

where 7 is the vector field defined by

2000 ) 0
(26) T:Zlia—i—lei_]a.

If we could find a holomorphic solution w(ty, t,...,,x) of the equation

(2.7) "W = F(lo,x, { (7:/ (ai) W} ),
X (%) € L

is straightforward; though, to solve [(2.7) is impossible in general. By this
reason, we will consider equation in a modulo class as follows.

Denote by Clt,1,...,1,x| the ring of polynomials in (#,?,...,,x) with coeffi-
cients in C, and set

A= > Clio,tr, ... 140X (til; — tyly).
+j=p+q

For f(t,t,...,t,x) and g(to,t1,...,4,x), we denote by f=¢g (modZ) if f—geR
holds. It is clear that if f(t,t,...,%,Xx) € # we have

£(t,1(log 1), t(log1)?, ..., t(log )", x) =0

as a function of (z,x). Therefore, to get a solution u(z, x) of the form it is suffi-
cient to consider the following equation with respect to w:

(2.8) "W = F<to,x, {‘L’j (ai) w} ) (mod ).
X (J,o)ely

Thus our target is to prove the following theorem:

THEOREM 3 (result on (2.8)). Assume Ap), Az), Asz), (P) and M # &. Then,
equation (2.8) has a family of solutions w(ty, t1,...,t,x) holomorphic in a neighborhood
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of the origin (to,t,...,t4,x)=(0,0,...,0,0) satisfying w(0,0,...,0,x) =0 near x =0
and with p arbitrary constants.

The proof of this theorem will be given in sections 4 and 5; in section 4 we will
construct a formal solution w(#y,#,...,%,x) and in section 5 we will prove the con-
vergence of the formal solution. In the next section 3 we will present some lemmas
which are needed in the proof of theorem 3.

§3. Some lemmas.

For ke N and 0 <d < u, we denote by Hg[to,1,...,t4] the set of all the homo-
geneous polynomials of degree k in (79,1,...,2;). It is easy to see:

LemMma 1. If k> 1, the set Hilto, t1,...,t4] is decomposed into
Hilto,ty, .. ta) = Y Hiilto, 0, 4its.
0<i<d

For k = (ko,ki,...,ks) e N™*' we write |k| =ko+k +---+ky and k> =k +
2ky +---+dky. Let ¢ >0 and let us define the norm |w|. of

(3.1) w= Y welt - 15 € Helto, 0. .., L]
k|=k

by

‘Wk|
3.2
(3:2) =2

R=
LEmMMA 2.  For the vector field t in (2.6) and w e Hylty, 11, ..., t;] we have

(3.3) ltw|. < (1 4 cd)k|w|...

Proor. If w is expressed in the form we have

(3.4) tw=Y(ko+ki+-+kg)wergts 1y
k|=k
o] T el |
|k|=k I<i<d

and therefore by the definition of the norm we see

foul, < kvl + 3 gl 3

|k\ k 1<i<d€
d(ki +- +kd)
<klwl,+ Y |wyl - < k|w|, + cdk|w|,
|k|=k

which completes the proof of [Lemma 2. O
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Next, let 7 be the vector field in and let us consider the following equation

/l

(3.5) (r—f)w:geHk[to,tl,...,td]

with £ € C. The non-resonant case corresponds to the case & # k, and the resonant
case corresponds to the case £ = k. We have

LEmMMA 3 (when & # k). Let k>1,0<d <pu and g e Hilto,t1,...,tq]. If &#k,
equation (3.5) has a unique solution w € Hy[ty, ty,...,14]; moreover we have the estimate

(2/0)

Wl <

Sfor any o and ¢ with |k — & > a(k+1) and 0 < ¢ < a/2d.

ProOOF. Since & # k is assumed, the former part is verified by a simple calculation.
Moreover by the same argument as in the proof of [Lemma 2 we have

9|, = |[tw — Ew| = |k — &]|w|, — cdk|w].
> o(k +1)|wl|, — (o/2d)dk|w|. = (a/2)(k + 1)]w];
this proves the latter part. (]

Let L(4,p) be the polynomial in [T.2), let & (/) (i=1,...,m) be as in [1.3], and let
us consider the following equation

(3.6) L(t,l)w =g € Hi[to, t1,. .., 4]
Since is decomposed into

(t=&(0)-- (T =&uD))w =y,
applying m-times we obtain

CorOLLARY 1. Let (k,])e N* xN, 0<d <u and g€ Hilty,t1,...,ts]. Assume
the Poincaré condition (P) and let o be the constant in Proposition 1. If (k,l) ¢ M,
equation (3.6) has a unique solution w € Hy[ty, t1,. .., 14]; moreover we have the estimate
(2/a)"
< 77

for any ¢ with 0 < ¢ <a/2d.

Now let us consider equation in the resonant case (that is, £ =k). In this
case, to solve exactly in Hylty, t,...,t;] is impossible in general and so we will
employ the following idea: we introduce a new variable #;,; and find a solution w e
Hy[to, t1,...,t4,t441] in the following modulo class:

(3.7) (t—&w=g (mod2Y)
where %) = {0}, %) = {0} and %} (for k > 2) is defined by

A= Healtotr,...,4)(tit; — tyly).
i+j=p+q
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LemMA 4 (when ¢=k). Let k>1, 0<d<u—1 and ge Hito,t1,...,t4]. If

& =k, equation (3.7) has a family of solutions w e Hy[to, t1,...,tq,ta1] of the form
(3.8) W= At(])C + Z Z W7l (1)10 lhl . tl.h" liv

0<i<d |h\ —J—1
with an arbitrary constant A € C (where h = (ho,hy,. .., h) and |h| = ho + hy + -+ + h;);
moreover we have the following estimate for any ¢ > 0:

(3.9) Wl < 4]+~ Igl

Proor. If w is expressed in the form and if ¢ =k, we have
: hy1+1 -1 . : .
=w= > > wl.7,;< S jhtg -t ---t?'tm+(z+1)t{}°t{“---t§““>.
0<i<d|p|=k-1 I<j<i
Since tj_1ti11 = tjt (mod%z) we see that
. : h hy
e |5 gl ey )
0<i<d \E\:k—l 1<j<i

Hence if we express g € Hy[to, 1, ..,%4] in the form (by [Cemma 1)

(3.10) g= > | D gttt 6

0<i<d| |h|=k-1
(where h= (ho,hy, ..., h;)), by taking A arbitrarily and by setting
9in -
W=t (0<i<d|h=k-1)
<hy 4+ (i+1)

we get a solution of the form [3.8). The estimate is verified as follows:

el 3 3 e

0<z<d‘h| —k—
<14 ’g,h’ B 1
A+ 3 3 i~ Ml 0
0<i<d|p|=k—

In the resonant case, our equation should be considered in the modulo class as
follows:

(3.11) L(r,)w=g (mod2)).

COROLLARY 2. Assume the Poincaré condition (P) and (k,l)e 4. Let o be the
constant in Proposition 1, u(k,l) be the multiplicity of resonance at (k,l), 0 <d <
w—u(k,l) and g € Hilto, t1,...,t4]. Then, equation (3.11) has a family of solutions w €
Hk[to,ll,...,ld,td+1,.. td+ukl] of the form
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Iu(kJ)_l
(3.12) W= At i+ Y| DD wate ! e
n=0 0<i<d | |h|=k-1
with u(k,l) arbitrary constants Ao, ..., A,x n—1. Moreover we have the estimate
ulk,l m—u(k,!
313 3 LU (2/g)" "
(3.13) wl, < WD (e )] k1) 9.
= ulke, DY (K 4 1)+

for any ¢ with 0 < ¢ < a/2d.

PrOOF. (3.11) is written in the form

(3.14) (t=Cu() - (T = ey (D) - (= & (D))w =
and without loss of generality we may assume that
{é,-(l) =k, fori=1,... u(k]),
E(l) #k, fori=u(k,)+1,....,m
By we have a unique solution W e Hilt,1,...,1,] of the equation

(T - ém(l» T (T - é,u(k,l)—&—l(l)) W=yg

and have the estimate

(2/O_>m (k1)
Wl < ng‘

for any ¢ with 0 < ¢ < a/2d.
Then, to get a solution w of (3.11) we have to solve the equation
(3.15) (= (D) - (T = &Dw=W (mod #D).

Since &;(/) =k for i=1,...,u(k,1) we can apply Lemma 4 to [(3.15): if W is expressed
in the form (3.10) with g replaced by W, then by taking Ao, ..., Ay -1 arbitrarily and
by setting

Wi
W,z = —= 7

we get a solution of of the form |3.12). Since |w, z| < [W,;|/u(k,])! holds we
have the estimate

wl, < W],
o Du(k,1)!
for any ¢ > 0. This completes the proof of [Corollary 2| ]

Lastly, let us give a lemma which will play an important role in the proof of
Theorem 3. For k € N we denote by Hy[to, 11, - ., t4][[x]] the set of all the formal power
series in x with coefficients in Hy[to,t,...,t45]. For ¢ >0, p >0 and a function
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f = kail(l(), h,..., ld)xl € Hk[l07 P ld”[XH

=0

we define the norm |||, , (or the formal norm |11, ,) by

c,p

(316) ”f”c/) :Z‘fk,l’upl

>0

Similarly, for p > 0 and f(x) = ,., fix' € C[[x]] (the ring of formal power series in x)
we define the norm |[|f||, (or the formal norm |f1|,) by

(3.17) 171, =" 1Aile".

>0

Note that we can regard as a particular case k =0 of (3.16).
Lemma 5. Let ¢ >0 and R >0 be fixed. If the estimate

C
11, < R=p)° for any 0 <p <R

holds for some C >0 and a >0, we have

o
ox

- (a+1)eC

_W for any 0 < p < R.
¢p

Proor. Since

T (p+h)!
=1 = <
'p STk

holds for any />1, p >0 and 4 > 0, we have

9
ox

_ (p+h' 1
=Sl = S el L <

Cp I1>1 >1

therefore, by the assumption we have

I
0x

C

1
(3.18) <o
¢,p h (R_p_h)

for any 0 <h < R—p.
When a =0, by we have [|f/0x||., < C/h and by letting h — R—p we
obtain

o

C eC
<
ox

< < .
¢, p R_p R_p

When a > 0, we take 1 = (R —p)/(a+1); then by (3.18) we have
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o

1 C a+1 C
<
ox

o hHR—p—B) R-p" R-p)Y
(k- -E20)

= —(1(: * 1>)£1 X (1 +1>a < lat DeC
—p a

§4. Construction of a formal solution.

In this section we will construct a formal solution of equation [2.8).

Set S={keN";L(k,/) =0 for some /e N}, and S(k)={le N;L(k,I) =0} for
keS. Since (P) is assumed, S and S(k) are finite sets and so we can write S =
{ki ko, ... ky} where 1 <k; <ky <---<ky;< oo, and for k=k; (i=1,...,49) we can
write S(k;) = {li1,0i2,...,li i} where 0 </l <lip <--- <l 4 < oo. For simplicity
we denote by g, ; the multiplicity of resonance of L(4,p) at (k;,/i;) and set u; =
#ii+ -+ yq for i=1,...,q. Note that the number x in 1s given by u=
My + ety

Let us define a sequence {N(k);k € N} by the following:

(0, if 0 <k <k,

U if k| <k <k,

if ky <k <k

N(k) — Iul +ﬂ27 1 2 = < 3,
Ay, if ky1 <k <ky,
L+t gy, i kg <k <o,

Note that N(k) = u holds for all k > k,. Similarly let us define a sequence {d(k,/);
(k,]) e N* x ({-1}UN)} by the following (i) and (ii): (i) if k #ky,...,k, we set
dk,l)=N(k—1) for all /e {—-1}UN; (ii) if k =k; we set

(N(k—1), it —1<i<l),

Nk — 1) + g1, it <1<l

Nk—l—i‘l-—f’i, if [, <Il<ls3,
Y S st

Nk =1) + i+ + 1 g6)-15 if £ gy < T <lijq),

Nk =1) + w1+ -+t -1 + igwy, 1l <1< 0.

\
It is easy to see

Lemma 6. (1) d(k,l) < N(k) holds for all | € N.

(2) d(k,l1) = N(k) holds for sufficiently large [ € N.
(3) If (k,I) ¢ 4 we have d(k,I) =d(k,]—1).

4) If (k,])e s we have d(k,I) =d(k,]— 1)+ u(k,I).

Now, let us prove

PROPOSITION 2. Egquation (2.8) has a formal solution w of the form
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(41) w = Z wklel
k>1,1>0
with
(42) Wi 1 :Wk,l(town;td(k,l)) EHk[lo,...,td(kJ)] ((k,l)EN* XN);
moreover we may assume that if (k,l) € M the polynomial wy (to, ..., tqk,) contains

w(k, 1) arbitrary constants.

Proor. By the Taylor expansion of F(z,x,z) in (¢,z) and by the conditions Aj),
Aj), Aj) we see that F(¢,x,z) is expressed in the form

F(t,x,z) = a(x)t + Z x%¢j,0(X)Zj,0 + Z Gp.v(x)tPz",

(J;2) €l =2

where v={v;.}; e, €N M =0 er, Vi 2 =Tl(0es, (5.2)"" and all the

m

coefficients a(x), ¢j »(x),gp,»(x) are holomorphic functions on 4.
For simplicity, we write

Clx,2p) = 2" = Y Ga)Ap(p—1)-(p—a+1),

(J,2) € L

oY
DW = {Dj,OLW}(j,[x)e[m’ and Dj71W - Tj (a> "

Then equation is written in the form
0 » v
(4.3) Clxt,xo- |w=a®+ > gpu(x)if(Dw)" (mod ).
0x
p+|v| =2
Let w be a formal solution of the form with [4.2), and set
(4.4) Wi =Y wii(lo, - tagen)x' € Helto, . ino)[[¥]] - (k = 1);
1>0

then we have w =73 ,_, wr. By substituting this into and by comparing the
homogeneous part of degree k with respect to f,1,...,tyq) in both sides of we
see that equation is decomposed into the following recursive family:

(4.5), C(x, T,X%) wk = fr  (mod %)

for k > 1, where f; =a(x)ty and f; (for k >2) is a polynomial of {D; ,wy;1 < p <
k—1,(j,a) € I,}; precisely, it is given by

46) fi= D g™ D T Drawi.) x - X (Dyawi, )

2<p+v|<k |k*|=k—p \ (j,o) eI,

where |k*| = 32; e, (Rjol1) + - 4 K52 (v).0)).
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Moreover, by we see also that equation (4.5); is decomposed into the fol-
lowing recursive family:

(4.7),, L(t,)wi; = gr; (mod #Y)
with
/-1 )
(4.8) g1 = > ¢y, 1= ] Wi + B 1,
(j,o) €L, h=0

where ¢; ,,; are the coefficients of the Taylor expansion ¢; 4(x) = >0 ¢j.0X', [y =1,
A, =4(A=1)---(A—a+1) for «>1, and ¢, are the coefficients of

(4.9) fe=> diilto,tr, .. tyg-n)x' € Hlto, 11, .ty [[X]]
1=0

which is determined by wy,...,wx_; provided that wy,...,wi_; are of the form (4.4).
Note the following proposition.

PROPOSITION 3. Let g be the constant in Proposition 1, and let u be as in (2.3).
Then, in the above context we have:

(1) If wi,...,wi_y are of the form (4.4), then fi is expressed in the form (4.9).

(2) If wi,...,wi_1 are of the form (4.4) and if wy 4 € Hilto, ..., tyw,i—1)] for all
q <1, we have gy € Hilto, ..., tag 1-1))-
(3) If (k,I) ¢ M and zfgk 1 € Hilto, ... tag,i-1)), equation (4.7)x; has a unique exact
solution wy ;€ Hilto, ..., tyk ) and it satlsﬁes
(2/0)"
4.10 < M
(4.10) Wil k)7 9kl

SJor any ¢ with 0 <c<c/2u. Here an “exact solution” means that wy, satisfies
L(t,)wi,; = gi.1 exactly.

4) If (k,l)e . and if gii€ Hilto,- .., tax, -1y, equation (4.7)i; has a solution
Wi,1 € Hilto, ..., tage,n] with u(k,l) arbitrary constants A(k,l;n) (n=0,1,...,u(k,l) —1).
Moreover, we have

kl)l kll’l 1 (2/ )mukl

(4.11) Wil < i 19k

~ D, 1) (e 1 1)

S

for any ¢ with 0 < ¢ < a/2u.

PrOOF. (1) and (2) are clear from the definition of the sequences N (k) and d(k, /).
By we see: if (k,[) ¢ .4 we have d(k,l) =d(k,] —1); if (k,l) e .4 we have
d(k,l)=d(k,l —1)+ u(k,l). Therefore, (3) and (4) are consequences of Corollaries 1
and 2. ]

Thus, to get a formal solution w in the form {4.1) with [4.2), we have only to
apply to (4.7)k,; inductively on (k,/) in the following way. 1) First we
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solve (4.7)10, then we solve (4.7);; inductively on /, and by we obtain wy. ii) If
Wi, ..., wr—1 are already constructed, we solve (4.7)x.0, then we solve (4.7) ; inductively
on /, and we obtain wy. 1iii) Repeating the same procedure, we can obtain a formal
solution of with u arbitrary constants.

This completes the proof of [Proposition 2. O

§5. Convergence of the formal solution.

In this section we will prove the convergence of the formal solution constructed in
section 4.
Let

(5.1) W= wi !

be the formal solution in [Proposition 2, and let wy, fi,gx,; and ¢, ; be as in [4.4], (4.6),

and [4.9), respectively.
Set ¢ =0/2u, and take C >0 so that C > (2/5)" and

(k—l—l)'u(k’l)(Z/ )mfll(kyl)
5.2
(52) T )

for any (k,l)e.#

recall that .# is a finite set). From [4.10) and [4.11) we have the estimate
\ /l /l

C
ka Ies when (k)4
5.3 Wil <
(5.3) Wiile <9 ke Ak, 1) C \gx.1l., when (k1) e .#
=0 c" (k+D)" Jille |

Take an R > 0 sufficiently small so that 0 < R <1 and

(54) Cl+a)™ R Y [18()lx <5

(j? a) EIVH

where S is the shift operator defined by the following: for a(x) = leoalxl we write
S(a)(x) =Y ,soa1x'. Set also

(5.5) = Z(:Z k”l”’ |R1 i=1
. i _7"'7q'

j=1 n=0
Then we have the following estimates:

PRrROPOSITION 4. In the above context, we have:
(1) If k#ki,ka,... kg, we have

2C

el < 2

I fell,, for any 0<p<R.
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(2) If k=k; for some i, we have

A 2C
HWkH pS k_m—{_k_mek”C,p fOl’ any O<pSR

We first note the following: by and we have

-1
kile < DD lainl (L ) K wic sl + |,

(j,o) €l h=0

ProoFr.

and therefore

C e
(5.6) (k—i— R w9kl < C(1+ cu) : Z Z ¢y, 1=l Wil +k’” |¢k e
(j,a)el, h=0

When k # ki, ks, ..., ky, we have (k,l) ¢ .4 for all [ > 0: then, by combining (5.6)

with and we have
(5.7) wille, =D Iwealep’ <

=0 >0

m—1
<C(+ew)"'p > ISl Iwell., + kmllkac,,
(J,a) €Ly,

C /
ka,lhﬁ

1
3 wille,p + 2 Ikl

<
which yields the result (1).
When k = k; holds for some i, we have (k,/; ;) e .# for j=1,...,J(i), and also
(k,1)¢ 4 for I #1;y,....1; yi. Therefore by [5.3}-(5.6) we obtain
J(@) ulki 1 ;)— k I 7’l)|
Iwelle,, < > Fn B
j=1 n=0
+C(L+ew)™ 'p > 1Sl Iwell,., + o kaHcp
(Jso) €1
1 A;

<5 m e alnd, + o

which yields the result (2).

Now, set

B= max ((1+cu)’(em)”),
(J,00) €l

choose an H > 0 sufficiently large so that

H > ||Dj w1l g for any (j,a) € Ly

(5.8)
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(where ¢ = g/2u), and let us consider the following equation with respect to Y:

q A
(59) Y:Hl+ ﬁlki
i—1 (R _P)m( )
2C 19p.v|| v
+ o t’(BY)
(R=p)" , 57es (R = p)" 72

where p is a parameter with 0 < p < R.

Since i1s an analytic functional equation, by the implicit function theorem we
see that has a unique holomorphic solution Y = Y (¢) in a neighborhood of t =0
satisfying Y (0) =0. If we expand this into

Y = Z Yit®,

the coefficients Y, (k=1,2,...) are determined uniquely by the following recursive
family:

H when k| > 1
5.10 = ’ ’
( ) ! {H+A1, whenk1:1
and for k> 2
q
A;
(511) Yk - 5/{,‘7/(7
IZ:; (R—p)"tV
2C 1951 =

T —m Y
(R—p) 2sp+\v|sk(R_P) (pHp1=2)

X Z H (BY (1) X -+ X (BYp,(v,.,))

where 0y, ; denotes the Kronecker’s delta. Moreover we can easily see by induction on

k that Y, has the form
C
Yk = (—;C(kl) for k Z 1
R _ p m(K—

where C; >0 is a constant independent of the parameter p.
We have:

LemMmA 7. The following estimates hold for all k =1,2,...:
(5.12), ||Dj,awk||c7p < BY; for any 0<p <R and (j,a) € I,.

Let us admit this lemma for a while; then the convergence of the formal solution
is proved as follows. Let |to| <¢,|t| <e/c, || <e/c?,...,|1| <e&/ct, and |x| < p.
Then we have |gx| < |gk|.e* for any gx € Hi[to, 1,...,2,]. Therefore
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wie| x| < weal 2 p" = will,. ,&°
k>1,1>0 k>1,1>0 k>1

Z Yiek = BY (¢).

This implies that if ¢ > 0 is sufficiently small, our formal solution converges

n {(to,t1,. .., 4, X);lto| <& |t <efe,....|t] <e/ct |x| < p}. Summing up, we obtain
Theorem 3.

Thus, to complete the proof of it is suffient to prove above.

PrOOF OF LEMMA 7. Note that the case k = 1 is clear from (5.8), and the
fact B> 1. The general case is proved by induction on k.

Let k > 2 and suppose that (5.12), is already proved for p=1,...,k —1. Then,
by [Proposition 4, (4.6) and the induction hypothesis we have

I/\

|Wk||c p o= 2516 k_l_l__“kac P

1 ¢ 2C
Sk—mz5k,-,k14i+k—m Z 19501 &
i—1

2<p+v| <k

X H (BYk, (1) X =+ X (BYk, ,(.,)
lk*|=k—p \ (J, %) €Ly

for any 0 <p < R. Since 0 < R<1 is assumed, by comparing this with we
obtain

(R=p)", _ 1 C

(513) ||Wk||c,p =< Jem k= fem (R _p>m(k—2)

for any 0 < p < R.

By using this, (5.12), is verified in the following way. Let (j, o) € 1,,. By Lemmal
2 we see that [[t/wg||. , < (1+cu)’k/||will,, and therefore by (5.13) we have

(1 + C,u)jkj Ck
c .0 - Jem (R - p)m(ku)

1T/ wi| for any 0 <p < R.

Applying a-times we obtain

o\ .
\Dj awkll,. , = H (—) T/ wy
c,p Ox e

_ 0+ cw)’ k7 (m(k —2) + 1) (m(k — 2) 4+ a)e*Cy
- fem (R _ p>m(k72)+oc

< (1 +c,u)j(em)“(R_

for any 0 < p < R, which proves (5.12);. O]
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§6. Supplementary remark.

In this last section, let us show that we can also get a good result in the first order
equations with (n+ 1) independent variables (z,x,...,x,) € C x C".
Consider the following nonlinear partial differential equation:

ou ou
(61) IE_F<Z,X7L{’$)

where 1€ C, x = (x1,...,x,) € C", 0u/dx = (0u/dxy,...,0u/dx,), F(t,x,u,v) with v =
(v1,...,0,) 1s a function of the variables (7, x,u,v) defined in a neighborhood 4 of the
origin of C; x C! x C, x C;, and u = u(¢,x) is the unknown function. Set 4y = 4N
{t=0,u=0,v=0}. We assume the following conditions:

By) F(t,x,u,v) is a holomorphic function on A;
B;) F(0,x,0,0) =0 on A;

B;) a—F(O,O,O,O) =0 fori=1,...,n
8v,~
These conditions correspond to the conditions A;), A;) and Aj) in section 1, respec-
tively.

Set a(x) = (0F/dt)(0,x,0,0), y(x)=(0F/0ou)(0,x,0,0), and b;(x) = (0F/dv;)
(0,x,0,0) (i=1,...,n). By Bj3) we see that »;(0) =0 holds for i=1,...,n. We
denote by (0b/0x)(x) = [0b;/0x;](x) the Jacobi matrix of b(x) = (bi(x),...,b,(x)), and
by ci,...,c, the eigenvalues of the matrix (0b/0x)(0). Set

Li(A,p)=A—cipy— - —cup, —y(0) for p=(py,...,p,) € R".

Then the non-resonance condition and the Poincaré condition for

) are stated as
follows:

(N;) (non-resonance) Li(k,/)# 0 holds for any (k,/) e N* x N",

(P;) (Poincaré condition) the convex hull of the set {1,—cy,...,—cy}
in C does not contain the origin of C.

By Chen-Luo [1], Shirai [6] we have:

THEOREM 4. Assume By)), By) and Bs). If the conditions (N}) and (Py) are satisfied,
equation (6.1) has a unique holomorphic solution u(t,x) in a neighborhood of (0,0) €
C, x C} satisfying u(0,x) =0 near x = 0.

Now, let us consider the case where the Poincaré condition (P;) is satisfied but the
non-resonance condition (Nj) is not satisfied.

Set 4 = {(k,])e N* x N";Ly(k,]) =0} and assume that .#; # ¢§. Since (P;) is
assumed, it is easy to see that .#; is a finite set. Denote by g, the cardinal of .#;.
Then by the same argument as in we have:

THEOREM 5. Assume By), B2), Bs), (P1), and 4 # &. Then, equation (6.1) has a
Sfamily of solutions u(t,x) of the form
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(6.2) u(t,x) = w(t, t(logt), ..., t(logt)", x)

where w(to,t1,...,t,,X) is a holomorphic function in a neighborhood of the origin
(tost1y .-y ty,x) =(0,0,...,0,0) satisfying w(0,0,...,0,x) =0 near x=0; moreover
w(to,tl,...,tﬂl,x) contains p, arbitrary constants.

In order to prove this, we expand F(¢,x,u,v) into the Taylor series in (#,u,v):
n
F([7 X, Uy U) = Cl(X)l + y(x)u + Zbi(x)vi + GQ([7 X, Uy U)
i1

where G,(t,x,u,v) is the sum of terms whose degree (with respect to (#,u,v)) is
greater than or equal to 2. By a suitable linear change of variables x = (xy,...,x,), we
can reduce the equation to the case where the matrix (0b/0x)(0) is lower triangular;
therefore, without loss of generality we may suppose that b;(x) (i=1,...,n) has the
form

bi(x) = cix;i + Z ci x4+ O(x]?)  (as x — 0),

1<j<i
where ¢j,...,c, are the eigenvalues of the matrix (db/0x)(0).
Set
to=t 1 =t(logt),..., t, =t(logt)"

and set the vector field 7 as

My 0 Jad! 0
T= ti— iti 1 —.

Under the relation {(6.2), equation is reduced to the following equation with respect
to the unknown function w(to, 1, ..., 1, ,X):

n 2 aW
(6.3) w=a(x)t+ p(x)u+ Z CiXi + Z ci jxj + O(|x|”) s

i=1 1<j<i

+ Gy (lo,x,w,g—:) (mod,%)

Now let us set a formal solution w in the form
(6.4) W= Z w !
(k,)eN*xN"
where
wi,1 € Hilto, t1y - tagen]  ((k, 1) e N* X N")

and {d(k,l);(k,]) e N* x N"} is a suitable sequence in {0,1,...,4,}. Then, by the
argument quite parallel to the one in section 4 we can determine wy ; inductively on
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(k,1), if we introduce the following total order relation < in N* x N": for (k,p) =
(k,p1,...,pn) and (h,q) = (h,q1,...,q,) we write (k, p) < (h,q) if one of the following
conditions is satisfied;

1) k<h,

2) k=h and |p| <|q| (Where [p| = pi+---+ p, and [g| = q1 + -+ qn),

3) k=h, |p|=lq| and p; <gqi,

4) k=h, |pl=lq|, pr=q and p» < q,

5) and so on.
Since the discussion of the proof of is almost the same as in sections 4 and 5,
we may omit the details.
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