
J. Math. Soc. Japan
Vol. 55, No. 4, 2003

Fundamental Hermite constants of linear algebraic groups

By Takao Watanabe

(Received Dec. 20, 2001)

(Revised May 23, 2002)

Abstract. Let G be a connected reductive algebraic group defined over a global field

k and Q a maximal k-parabolic subgroup of G. The constant gðG;Q; kÞ attached to

ðG;QÞ is defined as an analogue of Hermite’s constant. This constant depends only on

G;Q and k in contrast to the previous definition of generalized Hermite constants ([W1]).

Some functorial properties of gðG;Q; kÞ are proved. In the case that k is a function field

of one variable over a finite field, gðGLn;Q; kÞ is computed.

Let k be an algebraic number field of finite degree over Q and let G be a con-

nected reductive algebraic group defined over k. In [W1], we introduced a constant

g
G
p

attached to an absolutely irreducible strongly k-rational representation p : G !

GLðVpÞ of G. More precisely, if GðAÞ denotes the adele group of G and GðAÞ1 the

unimodular part of GðAÞ, it is defined by

g
G
p
¼ max

g AGðAÞ1
min

g AGðkÞ
kpðggÞxpk

2=½k:Q�;

where xp is a non-zero k-rational point of the highest weight line in the representation

space Vp and k � k is a height function on the space GLðVpðAÞÞVpðkÞ. This constant is

called a generalized Hermite constant by the reason that, in the case when k ¼ Q,

G ¼ GLn and p ¼ pd is the d-th exterior representation of GLn, g
GLn
pd

is none other than

the Hermite-Rankin constant ([R]):

gn;d ¼ max
g AGLnðRÞ

min
x1;...;xd AZ

n

x15���5xd00

detð txi
tggxjÞ1ai; jad

jdet gj2d=n
:

When GLn is defined over a general k, then g
GLn
pd

coincides with the following gen-

eralization of gn;d due to Thunder ([T2]):

gn;dðkÞ ¼ max
g AGLnðAÞ

min
X AGrd ðk nÞ

HgðXÞ2

jdet gj
2d=ðn½k:Q�Þ
A

;

where Grdðk
nÞ is the Grassmannian variety of d-dimensional subspaces in k n and Hg

a twisted height on Grdðk
nÞ. In a general G, g

G
p

has a geometrical representation

similarly to gn;dðkÞ. In order to describe this, we change our primary object from a

representation p to a parabolic subgroup of G. Thus, we first fix a k-parabolic sub-
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group Q of G, and then take a representation p such that the stabilizer Qp of the highest

weight line of p in G is equal to Q. The mapping g 7! pðg�1Þxp gives rise to a k-

rational embedding of the generalized flag variety QnG into the projective space PVp.

Taking a k-basis of VpðkÞ, we get a height Hp on PVpðkÞ, and on QðkÞnGðkÞ by

restriction. In this notation, gGp is represented as

gGp ¼ max
g AGðAÞ1

min
x AQðkÞnGðkÞ

HpðxgÞ
2:

In this paper, we investigate gGp more closely when Q is a maximal k-parabolic

subgroup of G. Especially, we shall show that p and Hp are not essentials of the

constant gGp , to be exact, there exists a constant gðG;Q; kÞ depending only on G;Q and

k such that the equality gGp ¼ gðG;Q; kÞcp holds for any p with Qp ¼ Q, where cp is

a positive constant depending only on p. This gðG;Q; kÞ is called the fundamental

Hermite constant of ðG;QÞ over k. We emphasize that there is a similarity between

the definition of gðG;Q; kÞ and a representation of the original Hermite’s constant gn;1 as

the maximum of some lattice constants. Remember that gn;1 is represented as

g
1=2
n;1 ¼ max

g AGLnðRÞ
jdet gj¼1

minfT > 0 : Bn
T V gZ n 0 f0gg;

where Bn
T stands for the ball of radius T with center 0 in R

n. Corresponding to R
n, we

consider the adelic homogeneous space YQ ¼ QðAÞ1nGðAÞ1 as a base space. The set XQ

of k-rational points of QnG plays a role of the standard lattice Z
n. In addition, there is

a notion of ‘‘the ball’’ BT of radius T in YQ, whose precise definition will be given in

Section 2. Then gðG;Q; kÞ is defined by

gðG;Q; kÞ ¼ max
g AGðAÞ1

minfT > 0 : BT VXQg0qg:

Independency of gðG;Q; kÞ on p and Hp allows us to study some functorial

properties of fundamental Hermite constants. For instance, the following theorems will

be verified in Section 4.

Theorem. If b : G ! G 0 is a surjective k-rational homomorphism of connected

reductive groups defined over k such that its kernel is a central k-split torus in G, then

gðG;Q; kÞ ¼ gðG 0; bðQÞ; kÞ.

Theorem. If Rk=l denotes the functor of restriction of scalars for a subfield lH k,

then gðRk=lðGÞ;Rk=lðQÞ; lÞ ¼ gðG;Q; kÞ.

Theorem. If both Q and R are standard maximal k-parabolic subgroups of G and

MR is a standard Levi subgroup of R, then one has an inequality of the form

gðG;Q; kÞa gðMR;MR VQ; kÞo1gðG;R; kÞo2 ,

where o1 and o2 are rational numbers explicitly determined from Q and R.

These theorems are including the duality theorem: gn; jðkÞ ¼ gn;n� jðkÞ for 1a ja

n� 1 and Rankin’s inequality ([R], [T2]): gn; iðkÞa gj; iðkÞgn; jðkÞ
i=j for 1a i < ja n� 1

as a particular case.
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Since no any serious problem arises from replacing k with a function field of one

variable over a finite field, we shall develop a theory of fundamental Hermite constants

for any global field. In the case of number fields, the main theorem of [W1] gives a

lower bound of gðG;Q; kÞ. An analogous result will be proved for the case of function

fields in the last half of this paper. The case of G ¼ GLn is especially studied in detail

because this case gives an analogue of the classical Hermite-Rankin constants. When k

is a function field, it is almost trivial from definition that gðG;Q; kÞ is a power of the

cardinal number q of the constant field of k. Thus, the possible values of gðG;Q; kÞ are

very restricted if both lower and upper bounds are given. This is a striking di¤erence

between the number fields and the function fields. For example, it will be proved that

gðGLn;Q; kÞ ¼ 1 for all maximal Q and all nb 2 provided that the genus of k is zero,

i.e., k is a rational function field over a finite field.

The paper is organized as follows. In Section 1, we recall the Tamagawa mea-

sures of algebraic groups and homogenous spaces. In Sections 2 and 3, the constant

gðG;Q; kÞ is defined, and then a relation between gðG;Q; kÞ and g
G
p

is explained. The

functorial properties of gðG;Q; kÞ is proved in Section 4. In Section 5, we will give

a lower bound of gðG;Q; kÞ when k is a function field, and compute gðGLn;Q; kÞ in

Section 6.

Notation. As usual, Z;Q;R and C denote the ring of integers, the field of

rational, real and complex numbers, respectively. The group of positive real numbers is

denoted by R�
þ.

Let k be a global field, i.e., an algebraic number field of finite degree over Q or an

algebraic function field of one variable over a finite field. In the latter case, we identify

the constant field of k with the finite field Fq with q elements. Let V be the set of all

places of k. We write Vy and Vf for the sets of all infinite places and all finite places

of k, respectively. For v A V, kv denotes the completion of k at v. If v is finite, Ov

denotes the ring of integers in kv, pv the maximal ideal of Ov, fv the residual field Ov=pv
and qv the order of fv. We fix, once and for all, a Haar measure mv on kv normalized so

that mvðOvÞ ¼ 1 if v A Vf , mvð½0; 1�Þ ¼ 1 if v is a real place and mvðfa A kv : aaa 1gÞ ¼

2p if v is an imaginary place. Then the absolute value j � jv on kv is defined as jajv ¼

mvðaCÞ=mvðCÞ, where C is an arbitrary compact subset of kv with nonzero measure.

Let A be the adele ring of k, j � jA ¼
Q

v AV j � jv the idele norm on the idele group A�

and mA ¼
Q

v AV mv an invariant measure on A. The measure mA is characterized by

mAðA=kÞ ¼
jDkj

1=2 (if k is an algebraic number field of discriminant Dk).

qgðkÞ�1 (if k is a function field of genus gðkÞ).

(

In general, if mA and mB denote Haar measures on a locally compact unimodular

group A and its closed unimodular subgroup B, respectively, then mBnmA (resp. mA=mB)

denotes a unique right (resp. left) A-invariant measure on the homogeneous space BnA

(resp. A=B) matching with mA and mB.

1. Tamagawa measures.

Let G be a connected a‰ne algebraic group defined over k. For any k-

algebra A, GðAÞ stands for the set of A-rational points of G. Let X �ðGÞ and X �
kðGÞ be
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the free Z-modules consisting of all rational characters and all k-rational characters of

G, respectively. The absolute Galois group Galðk=kÞ acts on X �ðGÞ. The repre-

sentation of Galðk=kÞ in the space X �ðGÞnZ Q is denoted by sG and the corre-

sponding Artin L-function is denoted by Lðs; sGÞ ¼
Q

v AVf
Lvðs; sGÞ. We set skðGÞ ¼

lims!1ðs� 1ÞnLðs; sGÞ, where n ¼ rankX �
kðGÞ. Let oG be a nonzero right invariant

gauge form on G defined over k. From oG and the fixed Haar measure mv on kv,

one can construct a right invariant Haar measure oG
v on GðkvÞ. Then, the Tamagawa

measure on GðAÞ is well defined by

oG
A ¼ mAðA=kÞ

�dimG
oG
yoG

f ;

where

oG
y ¼

Y

v AVy

oG
v and oG

f ¼ skðGÞ�1
Y

v AVf

Lvð1; sGÞo
G
v :

For each g A GðAÞ, we define the homomorphism QGðgÞ : X
�
kðGÞ ! R�

þ by

QGðgÞðwÞ ¼ jwðgÞjA for w A X �
kðGÞ. Then QG is a homomorphism from GðAÞ into

HomZðX
�
kðGÞ;R�

þÞ. We write GðAÞ1 for the kernel of QG. The Tamagawa measure

o
GðAÞ1 on GðAÞ1 is defined as follows:

. The case of chðkÞ ¼ 0. If a Z-basis w1; . . . ; wn of X �
kðGÞ is fixed, then

HomZðX
�
kðGÞ;R�

þÞ is identified with ðR�
þÞ

n and QG gives rise to an isomorphism

from GðAÞ1nGðAÞ onto ðR�
þÞ

n. Put the Lebesgue measure dt on R and the invari-

ant measure dt=t on R�
þ. Then o

GðAÞ1 is the measure on GðAÞ1 such that the quotient

measure o
GðAÞ1no

G
A is the pullback of the measure

Qn
i¼1 dti=ti on ðR�

þÞ
n by QG. The

measure o
GðAÞ1 is independent of the choice of a Z-basis of X �

kðGÞ.
. The case of chðkÞ > 0. The value group of the idele norm j � jA is the cyclic

group qZ generated by q (cf. [We2]). Thus the image Im QG of QG is contained in

HomZðX
�
kðGÞ; qZÞ and GðAÞ1 is an open normal subgroup of GðAÞ. Since the index of

Im QG in HomZðX
�
kðGÞ; qZÞ is finite ([Oe, I, Proposition 5.6]),

d �
G ¼ ðlog qÞrankX

�
k ðGÞ½HomZðX

�
kðGÞ; q

ZÞ : Im QG�ð1:1Þ

is well defined. The measure o
GðAÞ1 is defined to be the restriction of the measure

ðd �
GÞ

�1
oG
A to GðAÞ1.

In both cases, we put the counting measure oGðkÞ on GðkÞ. The volume of

GðkÞnGðAÞ1 with respect to the measure oG ¼ oGðkÞnoGðAÞ1 is called the Tamagawa

number of G and denoted by tðGÞ.

In the following, let G be a connected reductive group defined over k. We

fix a maximally k-split torus S of G, a maximal k-torus S1 of G containing S, a

minimal k-parabolic subgroup P of G containing S and a Borel subgroup B of P

containing S1. Denote by Fk and Dk the relative root system of G with respect to S

and the set of simple roots of Fk corresponding to P, respectively. Let M be the

centralizer of S in G. Then P has a Levi decomposition P ¼ MU , where U is the

unipotent radical of P. For every standard k-parabolic subgroup R of G, R has a

unique Levi subgroup MR containing M. We denote by UR the unipotent radical of

R. Throughout this paper, we fix a maximal compact subgroup K of GðAÞ satisfying
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the following property; For every standard k-parabolic subgroup R of G, K VMRðAÞ

is a maximal compact subgroup of MRðAÞ and MRðAÞ possesses an Iwasawa decom-

position ðMRðAÞVUðAÞÞMðAÞðK VMRðAÞÞ. We set KMR ¼ K VMRðAÞ, P
R ¼ MR VP

and U R ¼ MR VU .

Let R be a standard k-parabolic subgroup of G and ZR be the greatest central k-

split torus in MR. The restriction map X
�
kðMRÞ ! X

�
kðZRÞ is injective. Since X

�
kðMRÞ

has the same rank as X
�
kðZRÞ, both indexes

dR ¼ ½X �
kðZRÞ : X

�
kðMRÞ� and d̂dR ¼ ½X �

kðZR=ZGÞ : X
�
kðMR=ZGÞ�

are finite. We define another Haar measure nMRðAÞ of MRðAÞ as follows. Let oM
A

and o
U R

A
be the Tamagawa measures of MðAÞ and U RðAÞ, respectively. The modular

character d
�1
PR of PRðAÞ is a function on MðAÞ which satisfies the integration formula

ð
U RðAÞ

f ðmum�1Þ doU R

A
ðuÞ ¼ dPRðmÞ�1

ð
U RðAÞ

f ðuÞ doU R

A
ðuÞ:

Let nKMR be the Haar measure on KMR normalized so that the total volume equals one.

Then the mapping

f 7!

ð
U RðAÞ�MðAÞ�KMR

f ðnmhÞdPRðmÞ�1
doU R

A
ðuÞdoM

A
ðmÞdnKMR ðhÞ; ð f A C0ðMRðAÞÞÞ

defines an invariant measure on MRðAÞ and is denoted by nMRðAÞ. There exists a

positive constant CR such that

o
MR

A
¼ CRnMRðAÞ:

We have the following compatibility formula:

ð
GðAÞ

f ðgÞ doG
A
ðgÞ ¼

CG

CR

ð
URðAÞ�MRðAÞ�K

f ðumhÞdRðmÞ�1
doUR

A
doMR

A
ðmÞdnKðhÞð1:2Þ

for f A C0ðGðAÞÞ, where d
�1
R is the modular character of RðAÞ.

On the homogeneous space YR ¼ RðAÞ1nGðAÞ1, we define the right GðAÞ1-invariant

measure oYR
by o

RðAÞ1noGðAÞ1 . We note that both GðAÞ1 and RðAÞ1 are unimodular.

2. Definition of fundamental Hermite constants.

Throughout this paper, Q denotes a standard maximal k-parabolic subgroup of

G. There is an only one simple root a A Dk such that the restriction of a to ZQ is non-

trivial. Let nQ be the positive integer such that n�1
Q ajZQ

is a Z-basis of X
�
kðZQ=ZGÞ.

We write aQ and âaQ for n�1
Q ajZQ

and d̂dQn
�1
Q ajZQ

, respectively. Then âaQ is a Z-basis

of the submodule X
�
kðMQ=ZGÞ of X

�
kðZQ=ZGÞ. If we set eQ ¼ nQ dimUQ and êeQ ¼

nQ dimUQ=d̂dQ, then

dQðzÞ ¼ jaQðzÞj
eQ
A

and dQðmÞ ¼ jâaQðmÞj
êeQ
A

hold for z A ZQðAÞ and m A MQðAÞ.

Define a map zQ : GðAÞ ! ZGðAÞMQðAÞ
1nMQðAÞ by zQðgÞ ¼ ZGðAÞMQðAÞ

1
m

if g ¼ umh, u A UQðAÞ, m A MQðAÞ and h A K . This is well defined and a left
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ZGðAÞQðAÞ1-invariant. Since ZGðAÞ
1 ¼ ZGðAÞVGðAÞ1 HMQðAÞ

1, zQ gives rise to a

map from YQ ¼ QðAÞ1nGðAÞ1 to MQðAÞ
1nðMQðAÞVGðAÞ1Þ. Namely, we have the fol-

lowing commutative diagram:

YQ ���!
zQ

MQðAÞ
1nðMQðAÞVGðAÞ1Þ

?
?
?
y

?
?
?
y

ZGðAÞQðAÞ1nGðAÞ ���!
zQ

ZGðAÞMQðAÞ
1nMQðAÞ

In this diagram, the vertical arrows are injective, and in particular, these are bijective if

chðkÞ ¼ 0. We further define a function HQ : GðAÞ ! R
�
þ by HQðgÞ ¼ jâaQðzQðgÞÞj

�1
A

for

g A GðAÞ. This has the following property:
. The case of chðkÞ ¼ 0. Let Zþ

G and Zþ
Q be the subgroups of ZGðAÞ and ZQðAÞ,

respectively, defined as in [W1]. Then HQ gives a bijection from Zþ
GnZ

þ
Q onto R

�
þ. If

ðHQjZþ
G
nZþ

Q
Þ�1 denotes the inverse map of this bijection, then the map

iQ : R
�
þ � K ! YQ : ðt; hÞ 7! QðAÞ1ðHQjZþ

G
nZþ

Q
Þ�1ðtÞh

is surjective.
. The case of chðkÞ > 0. The value group jâaQðMQðAÞVGðAÞ1Þj

A
is a subgroup

of qZ . Let q0 ¼ q0ðQÞ be the generator of jâaQðMQðAÞVGðAÞ1Þj
A

that is greater than

one. Then HQ gives a surjection from YQ onto the cyclic group qZ

0 .

We set XQ ¼ QðkÞnGðkÞ, which is regarded as a subset of YQ. Let BT ¼

fy A YQ : HQðyÞaTg for T > 0. The volume of BT is given by

oYQ
ðBT Þ ¼

CGdQ

CQdGeQ
T êeQ ðchðkÞ ¼ 0Þ

CGd
�
Q

CQd
�
G

q
½logq0 T �êeQ

0

1� q
�êeQ
0

ðchðkÞ > 0Þ

8

>
>
>
>
>
<

>
>
>
>
>
:

where ½logq0 T � is the largest integer which is not exceeding logq0 T (cf. [W1, Lemma 1]

and Lemma 1 in §5).

Proposition 1. For T > 0 and any g A GðAÞ1, BT VXQg is a finite set. Hence, one

can define the function

GQðgÞ ¼ minfT > 0 : BT VXQg0qg ¼ min
y AXQg

HQðyÞ

on GðAÞ1. Then the maximum

gðG;Q; kÞ ¼ max
g AGðAÞ1

GQðgÞ

exists.

Proposition 1 will be proved in the next section.

Definition. The constant gðG;Q; kÞ is called the fundamental Hermite constant of

ðG;QÞ over k.
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We often write gQ for gðG;Q; kÞ if k and G are clear from the context. The

constant gQ is characterized as the greatest positive number T0 such that BT VXQgT ¼

q for any T < T0 and some gT A GðAÞ1. It is obvious by definition that gQ A qZ

0 if

chðkÞ > 0.

Remark. Let ~YYQ ¼ ZGðAÞQðAÞ1nGðAÞ. Then, for any g A GðAÞ, XQg is regarded

as a subset of ~YYQ. In some cases, it is more convenient to consider the constant

~ggðG;Q; kÞ ¼ max
g AGðAÞ

min
y AXQg

HQðyÞ:

In general, gðG;Q; kÞa ~ggðG;Q; kÞ holds. If chðkÞ ¼ 0 or G is semisimple, then

gðG;Q; kÞ ¼ ~ggðG;Q; kÞ because of ~YYQ ¼ YQ.

Remark. If chðkÞ ¼ 0, one can consider the more general Hermite constant

defined by

gðG;Q;D; kÞ ¼ max
g AGðAÞ1

minfT > 0 : iQðð0;T � �DÞVXQg0qg

for an open and closed subset D of K .

3. A relation between gQ and a generalized Hermite constant.

We recall the definition of generalized Hermite constants ([W1, §2]). Let Vp be a

finite dimensional k-vector space defined over k and p : G ! GLðVpÞ be an absolutely

irreducible k-rational representation. The highest weight space in Vp with respect to B

is denoted by xp. Let Qp be the stabilizer of xp in G and lp the rational character of

Qp by which Qp acts on xp. In the following, we assume Q ¼ Qp and p is strongly

k-rational, i.e., xp is defined over k. Then lp is a k-rational character of Qp. It is

known that such p always exists (cf. [Ti1], [W1]). We use a right action of G on Vp

defined by a � g ¼ pðg�1Þa for g A G and a A Vp. Then the mapping g 7! xp � g gives rise

to a k-rational embedding of QnG into the projective space PVp. We fix a k-basis

e1; . . . ; en of the k-vector space VpðkÞ and define a local height Hv on VpðkvÞ for each

v A V as follows:

Hvða1e1 þ � � � þ anenÞ ¼

ðja1j
2
v þ � � � þ janj

2
v Þ

1=2 (if v is real).

ja1jv þ � � � þ janjv (if v is imaginary).

supðja1jv; . . . ; janjvÞ (if v A Vf ).

8

>

<

>

:

The global height Hp on VpðkÞ is defined to be a product of all Hv, that is, HpðaÞ ¼
Q

v AVHvðaÞ. By the product formula, Hp is invariant by scalar multiplications. Thus,

Hp defines a height on PVpðkÞ, and on XQ by restriction. The height Hp is extended to

GLðVpðAÞÞPVpðkÞ by

HpðxaÞ ¼
Y

v AV

HvðxvaÞ

for x ¼ ðxvÞ A GLðVpðAÞÞ and a ¼ ka A PVpðkÞ, a A VpðkÞ � f0g. Put

Fp;xðgÞ ¼ Hpðxðxp � gÞÞ=HpðxxpÞ; ðg A GðAÞÞ:

Fundamental Hermite constants 1067



Since this satisfies

Fp;xðgg
0Þ ¼ jlpðgÞ

�1jAFp;xðg
0Þ; ðg A QðAÞ; g 0 A GðAÞÞ;

Fp;x defines a function on YQ. We can and do choose a x A GLðVpðAÞÞ so that Fp;x

is right K-invariant. Then, in the case of chðkÞ ¼ 0, the generalized Hermite constant

attached to p is defined by

gp ¼ max
g AGðAÞ1

min
x AXQ

Fp;xðxgÞ
2=½k:Q�:ð3:1Þ

Let us prove Proposition 1. We take positive rational numbers ep and êep such that

jlpðzÞjA ¼ jaQðzÞj
ep
A and jlpðmÞjA ¼ jâaQðmÞjêepA

for z A ZQðAÞVGðAÞ1 and m A MQðAÞVGðAÞ1. Then, by definition,

Fp;xðyÞ ¼ HQðyÞ
êep ; ðy A YQÞ:

Therefore, one has

BT VXQ ¼ fx A XQ : HpðxxÞaHpðxxpÞT
êepg:

Since #fx A PVpðkÞ : HpðxxÞa cg is finite for a fixed constant c (cf. [S]), BT VXQ is

a finite set. If g A GðAÞ1 is given, then there is a Tg > 0 depending on g such that

BTg
�1

HBTg
. This implies that #ðBT VXQgÞ ¼ #ðBTg

�1 VXQÞ is also finite. Further-

more, we obtain

GQðgÞ ¼ min
x AXQ

Fp;xðxgÞ
1=êep :

In [W1, Proposition 2], we proved in the case of chðkÞ ¼ 0 that the function in g A GðAÞ1

defined by the right hand side attains its maximum. The same proof works well for the

case of chðkÞ > 0 by using the reduction theory due to Harder ([H]). We mention its

proof for the sake of completeness. If necessary, by replacing G with G=ðKer pÞ0, we

may assume Ker p is finite. Let

SðAÞc ¼ fz A SðAÞ : jbðzÞj�1
A a c for all b A Dkg

and

SðAÞ 0c ¼ fz A SðAÞ : c�1
a jbðzÞj�1

A a c for all b A Dkg

for a su‰ciently large constant c > 1. By reduction theory, there are compact subsets

W1 HPðAÞ and W2 HGðAÞ such that KHW2 and GðAÞ ¼ GðkÞW1SðAÞcW2. Set SðcÞ ¼

W1SðAÞcW2 VGðAÞ1 and SðcÞ 0 ¼ W1SðAÞ
0
cW2 VGðAÞ1. There is a constant c 0 such that

min
x AXQ

Fp;xðxo1zo2ÞaFp;xðo1zo2Þa c 0jlpðzÞj
�1
A

holds for all o1 A W1, z A SðAÞc and o2 A W2. The highest weight lp can be written as

a Q-linear combination of simple roots modulo X �
kðZGÞnZ Q, i.e.,

lpjS 1
X

b ADk

cbb modX �
kðZGÞnZ Q:
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A crucial fact is cb > 0 for all b A Dk (cf. [W1, Proof of Proposition 2]). From this and

the above inequality, it follows

sup
g ASðcÞ

min
x AXQ

Fp;xðxgÞ ¼ sup
g ASðcÞ 0

min
x AXQ

Fp;xðxgÞ:

This implies that the function g 7! minx AXQ
Fp;xðxgÞ attains its maximum since SðcÞ 0 is

relatively compact in GðAÞ1 modulo GðkÞ. Therefore, the maximum

gQ ¼ max
g AGðAÞ1

min
x AXQ

Fp;xðxgÞ
1=êepð3:2Þ

exists. This completes the proof of Proposition 1.

Next theorem is obvious by (3.1), (3.2), ep ¼ d̂dQêep, eQ ¼ d̂dQêeQ and [W1, Theorem 1].

Theorem 1. If chðkÞ ¼ 0, then the Hermite constant attached to a strongly k-

rational representation p is given by

gp ¼ g
2êep=½k:Q�
Q :

One has an estimate of the form

CQdGeQtðGÞ

CGdQtðQÞ

� �1=êeQ

a gQ:ð3:3Þ

Example 1. Let V be an n dimensional vector space defined over an algebraic

number field k and e1; . . . ; en a k-basis of VðkÞ. We identify the group of linear

automorphisms of V with GLn. For 1a ja n� 1, Q j denotes the stabilizer of the

subspace spanned by e1; . . . ; ej in GLn and pj : GLn ! GLð5j
VÞ the j-th exterior rep-

resentation. A k-basis of Vpj ðkÞ ¼ 5j
VðkÞ is formed by the elements eI ¼ ei15� � �5eij

with I ¼ f1a i1 < i2 < � � � < ija ng. The global height Hpj is defined similarly as

above with respect to the basis feIgI . By definition and Hpj ðe15� � �5ejÞ ¼ 1, we have

gn; jðkÞ ¼ gpj ¼ max
g AGLnðAÞ

1
min

x AQ jðkÞnGLnðkÞ
Hpj ðx � gÞ2=½k:Q�

¼ max
g AGLnðAÞ

min
x1;...;xj AVðkÞ
x15���5xj00

Hpj ðgx15� � �5gxjÞ
2=½k:Q�

jdeg gj
2j=ðn½k:Q�Þ
A

:

Let gcdð j; n� jÞ be the greatest common divisor of j and n� j. It is easy to see that

d̂dQ j
¼

jðn� jÞ

gcdð j; n� jÞ
; êeQ j

¼ gcdð j; n� jÞ; êepj ¼
gcdð j; n� jÞ

n
:ð3:4Þ

Therefore,

gðGLn;Q j; kÞ ¼ gn; jðkÞ
n½k:Q�=ð2 gcdð j;n� jÞÞ;

and in particular, gðGLn;Q1;QÞ2=n is none other than the classical Hermite’s constant

gn;1. By [T2] and [W1, Example 2], we have

jDkj
jðn� jÞ=2

n

Ress¼1 zkðsÞ

Qn
i¼n� jþ1 ZkðiÞ
Q j

j¼2 Zkð jÞ

 !1=gcdð j;n� jÞ

a gðGLn;Q j; kÞ;
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gðGLn;Q j; kÞa
2r1þr2 jDkj

1=2

p r=2
G 1þ

n

2

� �r1=n

Gð1þ nÞr2=n
 !jn=gcdð j;n� jÞ

;

where zkðsÞ denotes the Dedekind zeta function of k, GðsÞ the gamma function, ZkðsÞ ¼

ðp�s=2Gðs=2ÞÞr1ðð2pÞ1�s
GðsÞÞr2zkðsÞ, r1 and r2 the numbers of real and imaginary places

of k, respectively. When j ¼ 1, the next inequality was proved in [O-W]:

gðGLn;Q1; kÞa jDkj
1=½k:Q� gðGLn½k:Q�;Q1;QÞ

½k : Q�
:

4. Some properties of fundamental Hermite constants.

First, we consider the exact sequence

1 ! Z ! G !
b
G 0 ! 1

of connected reductive groups defined over a global field k. We assume the following

two conditions for Z:

(4.1) Z is central in G.

(4.2) Z is isomorphic to a product of tori of the form Rk 0=kðGL1Þ, where each k 0=k

is a finite separable extension and Rk 0=k denotes the functor of restriction of scalars from

k 0 to k.

By [B, Theorem 22.6], the assumption (4.1) implies that P 0 ¼ bðPÞ, S 0 ¼ bðSÞ and

Q 0 ¼ bðQÞ give a minimal k-parabolic subgroup, a maximal k-split torus and a maximal

standard k-parabolic subgroup of G 0, respectively, and furthermore, the homomorphism

ðbjSÞ
�
: X �

kðS
0Þ ! X �

kðSÞ induced from b maps bijectively the relative root system F 0
k

of ðG 0;S 0Þ onto Fk. From the assumption (4.2), it follows that b gives rise to the

isomorphisms GðkÞ=ZðkÞGG 0ðkÞ, GðAÞ=ZðAÞGG 0ðAÞ and XQ GXQ 0 (cf. [Oe, III 2.2]).

By the commutative diagram

ZðAÞ1 ���! GðAÞ1 ���!
b

G 0ðAÞ1
?
?
?
y

?
?
?
y

?
?
?
y

ZðAÞ ���! GðAÞ ���!
b

G 0ðAÞ

QZ

?
?
?
y

QG

?
?
?
y

QG 0

?
?
?
y

HomZðX
�
kðZÞ;R

�
þÞ ���! HomZðX

�
kðGÞ;R�

þÞ ���!
ðb �Þ�

HomZðX
�
kðG

0Þ;R�
þÞ

we obtain the isomorphisms GðAÞ1=ZðAÞ1 GG 0ðAÞ1, QðAÞ1=ZðAÞ1 GQ 0ðAÞ1 and

YQ GYQ 0 . Since ZVZG is the greatest k-split subtorus of Z, the character group

X �
kðZ=ZVZGÞ is trivial. Therefore, b induces an isomorphism X �

kðMQ 0=ZG 0Þ !

X �
kðMQ=ZGÞ and maps âaQ 0 to âaQ. The next proposition is now obvious.

Theorem 2. If the exact sequence

1 ! Z ! G !
b
G 0 ! 1
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of connected reductive groups defined over k satisfies the conditions ð4:1Þ and ð4:2Þ, then

gðG;Q; kÞ equals gðG 0; bðQÞ; kÞ.

Example 2. If b : GLn ! PGLn denotes a natural quotient morphism, then

gðGLn;Q; kÞ ¼ gðPGLn; bðQÞ; kÞ.

Example 3. Let D be a division algebra of finite dimension m2 over k and D�

the opposition algebra of D. There are inner k-forms G and G 0 of GLmn such that

GðkÞ ¼ GLnðDÞ and G 0ðkÞ ¼ GLnðD
�Þ. We put

w0 ¼

0

B

B

B

B

B

B

@

0 0 � � � 0 1

0 0 � � � 1 0
.
.
.

.

.

.
.
.

.
.
.
.

.

.

.

0 1 � � � 0 0

1 0 � � � 0 0

1

C

C

C

C

C

C

A

A GLnðD
�Þ:

Then the morphism b : G ! G 0 defined by bðgÞ ¼ w0ð
tg�1Þw�1

0 yields a k-isomorphism.

If we take a maximal k-parabolic subgroup Q j of G as

Q jðkÞ ¼
a �

0 b

� �

: a A GLjðDÞ; b A GLn� jðDÞ

� �

for 1a ja n� 1, then bðQ jðkÞÞ equals

Q 0
n� jðkÞ ¼

a 0 �

0 b 0

� �

: a 0
A GLn� jðD

�Þ; b 0
A GLjðD

�Þ

� �

:

Therefore,

gðG;Q j; kÞ ¼ gðG 0;Q 0
n� j ; kÞ:

This relation was first proved in [W3]. Particularly, if m ¼ 1, this is none other than the

duality relation

gðGLn;Q j; kÞ ¼ gðGLn;Qn� j; kÞ:

Remark. When chðkÞ ¼ 0, for a given connected reductive k-group G, there exists

a group extension

1 ! Z ! ~GG ! G ! 1

defined over k such that Z satisfies ð4:1Þ and ð4:2Þ, and in addition, the derived group of
~GG is simply connected. Such an extension of G is called z-extension (cf. [K, §1]).

Second, we consider a restriction of scalars. Take a subfield l of k such that k=l

is a finite separable extension and put G 0 ¼ Rk=lðGÞ, P 0 ¼ Rk=lðPÞ and Q 0 ¼ Rk=lðQÞ.

The adele ring of l is denoted by Al. Since the functor Rk=l yields a bijection from

the set of k-parabolic subgroups of G to the set of l-parabolic subgroups of G 0 ([B-

Ti, Corollaire 6.19]), P 0 and Q 0 give a minimal l-parabolic subgroup and a maximal

standard l-parabolic subgroup of G 0, respectively. Although the torus Rk=lðSÞ does not

necessarily split over l, the greatest l-split subtorus S 0 of Rk=lðSÞ gives a maximal l-split

torus of G 0. For an arbitrary connected k-subgroup R of G and R 0 ¼ Rk=lðRÞ, we
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introduce a canonical homomorphism b�
: X �

kðRÞ ! X �
l
ðR 0Þ. If A is an l-algebra,

there is a canonical identification R 0ðAÞ with RðAnl kÞ. Then, for w A X �
kðRÞ, b

�ðwÞ is

defined to be

b�ðwÞðaÞ ¼ NAnk=AðwðaÞÞ; ða A R 0ðAÞ ¼ RðAnl kÞÞ

for any l-algebra A, where NAnk=A : ðAnl kÞ
� ! A� denotes the norm. This b� is

bijective ([Oe, II Theorem 2.4]), and if R ¼ S, then b� maps Fk to the relative root

system F 0
l
of ðG 0;S 0Þ ([B-Ti, 6.21]). From the commutative diagram

RðAÞ R 0ðAlÞ

QR

?
?
?
y

QR 0

?
?
?
y

HomZðX
�
kðRÞ;R

�
þÞ ���!

ðb �Þ �

HomZðX
�
kðR

0Þ;R�
þÞ

it follows RðAÞ1 ¼ R 0ðAlÞ
1. Accordingly, QðAÞ1nGðAÞ1 ¼ Q 0ðAlÞ

1nG 0ðAlÞ
1. Since ZG 0

is the greatest l-split torus in Rk=lðZGÞ, the natural quotient morphism MQ 0=ZG 0 !

MQ 0=Rk=lðZGÞ induces an isomorphism X �
l
ðMQ 0=Rk=lðZGÞÞGX �

l
ðMQ 0=ZG 0Þ. The com-

position of this and b� yields an isomorphism between X �
kðMQ=ZGÞ and X �

l
ðMQ 0=ZG 0Þ.

This maps âaQ to âaQ 0 . Then, by definition of b �,

jâaQ 0ðmÞjAl
¼ jNA=Al

ðâaQðmÞÞjAl
¼ jâaQðmÞjA

for m A MQ 0ðAlÞVG 0ðAlÞ
1 ¼ MQðAÞVGðAÞ1. In other words, HQ 0 is equal to HQ on

YQ 0 ¼ YQ. As a consequence, we proved the following

Theorem 3. If k=l is a finite separable extension, then gðRk=lðGÞ;Rk=lðQÞ; lÞ is

equal to gðG;Q; kÞ.

Finally, we show a generalization of Rankin’s inequality. Let R and Q be two

di¤erent maximal standard k-parabolic subgroups of G. We set QR ¼ MR VQ, MR
Q ¼

MR VMQ, UR
Q ¼ MR VUQ and XR

Q ¼ QRðkÞnMRðkÞ. Then QR is a maximal standard

parabolic subgroup of MR with a Levi decomposition UR
Q MR

Q . We write âaR
Q for the Z-

basis âaQR of X �
kðM

R
Q =ZRÞ, z

R
Q for the map zQR : MRðAÞ ! ZRðAÞM

R
Q ðAÞ1nMR

Q ðAÞ and

HR
Q for the function HQR : MRðAÞ ! R�

þ defined by m 7! jâaR
Qðz

R
Q ðmÞÞj�1

A . The funda-

mental Hermite constants of ðMR;Q
RÞ are given by

gðMR;Q
R; kÞ ¼ max

m AMRðAÞ
1

min
y AXR

Q
m
HR

QðyÞ and ~ggðMR;Q
R; kÞ ¼ max

m AMRðAÞ
min

y AXR
Q
m
HR

QðyÞ:

The exact sequence

1 ! ZR=ZG ! MR
Q =ZG ! MR

Q =ZR ! 1

induces the exact sequence

1 ! X �
kðM

R
Q =ZRÞ ! X �

kðM
R
Q =ZGÞ ! X �

kðZR=ZGÞ:

From âaRjZR
¼ d̂dRaR 0 0, it follows that the Q-vector space X �

kðM
R
Q =ZGÞnZ Q is spanned

by âaR
Q and âaRjM R

Q
, and hence there are o1;o2 A Q such that

âaQjM R
Q
¼ o1âa

R
Q þ o2âaRjM R

Q
:ð4:3Þ
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Theorem 4. Being notations as above, one has the inequality

gðG;Q; kÞa ~ggðMR;Q
R
; kÞo1gðG;R; kÞo2

:

Proof. Since XR
Q is naturally regarded as a subset of XQ, the inequality

GQðgÞ ¼ min
x AXQ

HQðxgÞa min
x AXR

Q

HQðxgÞ

holds for g A GðAÞ1. By the Iwasawa decomposition, we write g ¼ umh, where u A

URðAÞ, m A MRðAÞVGðAÞ1 and h A K . Then, for x A MRðkÞ, xux
�1 A URðAÞHQðAÞ1,

and

HQðxgÞ ¼ HQððxux
�1ÞxmhÞ ¼ HQðxmÞ ¼ jâaQðzQðxmÞÞj�1

A
:

If we write xm ¼ u1m1h1, u1 A UR
Q ðAÞ, m1 A MR

Q ðAÞ and h1 A KMR by the Iwasawa

decomposition MRðAÞ ¼ UR
Q ðAÞMR

Q ðAÞKMR , then

HQðxmÞ ¼ jâaQðm1Þj
�1
A

¼ jâaR
Qðm1Þj

�o1

A
jâaRðm1Þj

�o2

A

¼ jâaR
Qðz

R
Q ðxmÞÞj�o1

A
jâaRðxmÞj�o2

A
¼ HR

QðxmÞo1 jâaRðmÞj�o2

A

¼ HR
QðxmÞo1HRðgÞ

o2
:

Therefore,

GQðgÞa min
x AXR

Q

HR
QðxmÞ

 !o1

HRðgÞ
o2
a ~ggðMR;Q

R
; kÞo1HRðgÞ

o2
:

As GQ is left GðkÞ-invariant, the inequality

GQðgÞa ~ggðMR;Q
R
; kÞo1HRðxgÞ

o2

holds for all x A GðkÞ. Taking the minimum, we get

GQðgÞa ~ggðMR;Q
R
; kÞo1GRðgÞ

o2
:

The assertion follows from this. r

Notice that ~ggðMR;Q
R; kÞ ¼ gðMR;Q

R; kÞ in the case of number fields.

Corollary. If chðkÞ ¼ 0, then gðG;Q; kÞa gðMR;Q
R; kÞo1gðG;R; kÞo2

:

Example 4. We use the same notations as in Example 1. For i; j A Z with

1a i < ja n� 1, both R ¼ Q j and Q ¼ Qi are maximal standard k-parabolic subgroups

of GLn. Then, MR ¼ GLj �GLn� j, MQ ¼ GLi �GLn�i and MR
Q ¼ GLi �GLj�i �GLn� j.

We denote an element of MR
Q by

diagða; b; cÞ ¼

a 0

b

0 c

0

@

1

A; ða A GLi; b A GLj�i; c A GLn� jÞ:
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It is easy to see

âaR
Qðdiagða; b; cÞÞ ¼ ðdet aÞð j�iÞ=gcdði; j�iÞðdet bÞ�i=gcdði; j�iÞ

âaRjM R
Q
ðdiagða; b; cÞÞ ¼ ðdet aÞðn� jÞ=gcdð j;n� jÞðdet bÞðn� jÞ=gcdð j;n� jÞðdet cÞ�j=gcdð j;n� jÞ

âaQjM R
Q
ðdiagða; b; cÞÞ ¼ ðdet aÞðn�iÞ=gcdði;n�iÞðdet bÞ�i=gcdði;n�iÞðdet cÞ�i=gcdði;n�iÞ:

Thus,

o1 ¼
n

j

gcdði; j � iÞ

gcdði; n� iÞ
; o2 ¼

i

j

gcdð j; n� jÞ

gcdði; n� iÞ
:

Theorem 4 deduces

gðGLn;Qi; kÞa ~ggðMQ j
;Q

Q j

i ; kÞðn=jÞðgcdði; j�iÞ=gcdði;n�iÞÞ
gðGLn;Q j; kÞ

ði=jÞðgcdð j;n� jÞ=gcdði;n�iÞÞ:

If chðkÞ ¼ 0, then, by Example 1, this reduces to Rankin’s inequality

gn; iðkÞa gj; iðkÞgn; jðkÞ
i=j:

5. A lower bound of gQ.

We prove an analogous inequality to ð3:3Þ when chðkÞ > 0. Thus we assume

chðkÞ > 0 throughout this section.

Lemma 1. If f is a right K-invariant measurable function on YQ,

ð
YQ

f ðyÞ doYQ
ðyÞ ¼

CGd
�
Q

CQd
�
G

X
MQðAÞ

1
x AMQðAÞ

1nðMQðAÞVGðAÞ
1Þ

dQðxÞ
�1
f ðxÞ:

Proof. Let f A C0ðGðAÞ
1Þ be a right K-invariant function. By the definition of

invariant measures, we have

ð
GðAÞ1

fðgÞ do
GðAÞ1ðgÞ ¼ ðd �

GÞ
�1

ð
GðAÞ1

fðgÞ doG
A
ðgÞ

¼
CG

CQd
�
G

ð
UQðAÞ�ðMQðAÞVGðAÞ

1Þ

fðumÞdQðmÞ�1
do

UQ

A
ðuÞdo

MQ

A
ðmÞ

¼
CGd

�
Q

CQd
�
G

X
MQðAÞ

1
x AMQðAÞ

1nðMQðAÞVGðAÞ
1Þ

dQðxÞ
�1
f ðxÞ;

where

f ðxÞ ¼

ð
UQðAÞ�MQðAÞ

1
fðumxÞ do

UQ

A
ðuÞdo

MQðAÞ
1ðmÞ ¼

ð
QðAÞ1

fðgxÞ do
QðAÞ1ðgÞ:

On the other hand,
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ð

GðAÞ1
fðgÞ do

GðAÞ1ðgÞ ¼

ð

YQ

ð

QðAÞ1
fðgyÞ do

QðAÞ1ðgÞdoYQ
ðyÞ

¼

ð

YQ

f ðyÞ doYQ
ðyÞ: r

Theorem 5. If chðkÞ > 0, one has

CQd
�
GtðGÞ

CGd
�
QtðQÞ

ð1� q
�êeQ
0 Þ

 !1=êeQ

< q
j0þ1
0 a gQ;

where the integer j0 is given by

j0 ¼ max j A Z : q
jêeQ
0 a

CQd
�
GtðGÞ

CGd
�
QtðQÞ

ð1� q
�êeQ
0 Þ

( )

and q0 ¼ q0ðQÞ is the generator of the value group jâaQðMQðAÞVGðAÞ1Þj
A
which is greater

than one.

Proof. For j A Z, we define the function cj : q
Z

0 ! R by

cjðq
i
0Þ ¼

1 ðia jÞ:

0 ði > jÞ:

�

Then, by Lemma 1,

Ij ¼

ð

YQ

cjðHQðyÞÞ doYQ
ðyÞ

¼
CGd

�
Q

CQd
�
G

X

MQðAÞ
1
x AMQðAÞ

1nðMQðAÞVGðAÞ
1Þ

dQðxÞ
�1
cjðHQðxÞÞ:

Since HQ is bijective from MQðAÞ
1nðMQðAÞVGðAÞ1Þ to qZ

0 and dQðmÞ�1 ¼ HQðmÞêeQ for

m A MQðAÞ, we have

Ij ¼
CGd

�
Q

CQd
�
G

X

j

i¼�y

q
iêeQ
0 ¼

CGd
�
Q

CQd
�
G

q
jêeQ
0

1� q
�êeQ
0

:

If j satisfies Ij < tðGÞ=tðQÞ, then

Ij ¼
1

tðQÞ

ð

GðkÞnGðAÞ1

X

x AXQ

cjðHQðxgÞÞ doGðgÞ <
tðGÞ

tðQÞ
:

Therefore, at least one g0 A GðAÞ1,

X

x AXQ

cjðHQðxg0ÞÞ < 1

holds, and hence cjðHQðxg0ÞÞ ¼ 0 for all x A XQ. This implies
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min
x AXQ

HQðxg0Þb q
jþ1
0 ;

and

gQb q0 sup q
j
0 :

CGd
�
Q

CQd
�
G

q
jêeQ
0

1� q
�êeQ
0

<
tðGÞ

tðQÞ

( )

¼ q
1þ j0
0

>
CQd

�
GtðGÞ

CGd
�
QtðQÞ

ð1� q
�êeQ
0 Þ

 !1=êeQ

: r

Remark. In §6, Example 5, we will see an example of gQ satisfying

CQd
�
GtðGÞ

CGd
�
QtðQÞ

ð1� q
�êeQ
0 Þ

 !1=êeQ

< gQ < q0
CQd

�
GtðGÞ

CGd
�
QtðQÞ

ð1� q
�êeQ
0 Þ

 !1=êeQ

:

If G splits over k, this lower bound is described more precisely. For v A Vf , we

choose each v component Kv of K as follows:

(5.1) Kv is a hyperspecial maximal compact subgroup GvðOvÞ of GðkvÞ, and

(5.2) Kv VMQðkvÞ is a hyperspecial maximal compact subgroup MQ; vðOvÞ of

MQðkvÞ, where Gv and MQ; v stand for the smooth a‰ne group schemes defined over Ov

with generic fiber G and MQ, respectively (cf. [Ti2]).

Then it is known by [Oe, I Proposition 2.5] that

oG
A
ðKÞ ¼ mAðA=kÞ

�dimG
skðGÞ�1

Y

v AVf

Lvð1; sGÞq
�dimG
v jGvðfvÞj

o
MQ

A
ðKMQÞ ¼ mAðA=kÞ

�dimMQskðMQÞ
�1
Y

v AVf

Lvð1; sMQ
Þq�dimMQ

v jMQ; vðfvÞj

o
UQ

A
ðK VUQðAÞÞ ¼ mAðA=kÞ

�dimUQ :

In the integral formula ð1:2Þ, if we put the characteristic function of K as f , then

CG

CQ

¼
oG
A
ðKÞ

o
UQ

A
ðK VUQðAÞÞo

MQ

A
ðKMQÞ

:

Since G splits over k, sG is the trivial representation of Galðk=kÞ of dimension

rankX �ðGÞ ¼ dimZG. As Q is a maximal parabolic subgroup, we have

skðGÞ

skðMQÞ
¼

ðRess¼1 zkðsÞÞ
dimZG

ðRess¼1 zkðsÞÞ
dimZQ

¼
1

Ress¼1 zkðsÞ
¼

qgðkÞ�1ðq� 1Þ log q

hk
;

where zkðsÞ denotes the congruence zeta function of k and hk the divisor class number

of k. Summing up, we obtain

Theorem 6. If chðkÞ > 0 and G splits over k, then

ð1� q
�êeQ
0 ÞqðgðkÞ�1Þ dimG=Q

Ress¼1 zkðsÞ

d �
GtðGÞ

d �
QtðQÞ

Y

v AV

ð1� q�1
v ÞqdimG=MQ

v

jMQ; vðfvÞj

jGvðfvÞj

 !1=êeQ

< gQ:
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6. Computations of gðGLn;Q; kÞ when chðkÞ > 0.

In this section, we assume chðkÞ > 0. We concentrate our attention on G ¼ GLn

because this case gives an analogue of classical Hermite’s constant. We use the same

notations as in Example 1 of §3. Namely, V denotes an n dimensional vector space

defined over k, e1; . . . ; en a k-basis of VðkÞ, Q j the stabilizer of the subspace spanned by

e1; . . . ; ej in GLn and pj : GLn ! GLðVpj Þ the j-th exterior representation of GLn for

1a ja n� 1. We take K as
Q

v AV GLnðOvÞ. The global height Hj ¼ Hpj on Vpj ðkÞ is

defined to be

Hj

X

I

aIeI

 !

¼
Y

v AV

sup
I

ðjaI jvÞ:

As an analogue of the number fields case, we can define the constant

gn; jðkÞ ¼ max
g AGLnðAÞ

min
x1;...;xj AVðkÞ
x15���5xj00

Hjðgx15� � �5gxjÞ

jdet gj
j=n
A

:

It is immediate to see that

Hjðg
�1
e15� � �5g�1

ejÞ

jdet g�1j
j=n
A

¼ HQ j
ðgÞgcdð j;n� jÞ=n

for g A GLnðAÞ, and hence

gn; jðkÞ ¼ ~ggðGLn;Q j; kÞ
gcdð j;n� jÞ=n:

In general, ZGLn
ðAÞGLnðAÞ

1
is not equal to GLnðAÞ in contrast to the number

fields case. It is obvious that ZGLn
ðAÞGLnðAÞ

1
is an index finite normal subgroup

of GLnðAÞ. Let X ¼ fxg be a complete set of representatives for the cosets of

ZGLn
ðAÞGLnðAÞ

1nGLnðAÞ. If we put

gn; jðkÞx ¼ max
g AZGLn ðAÞGLnðAÞ

1
x

min
x1;...;xj AVðkÞ
x15���5xj00

Hjðgx15� � �5gxjÞ

jdet gj
j=n
A

¼
1

jdet xj
j=n
A

max
g AGLnðAÞ

1
x

min
x1;...;xj AVðkÞ
x15���5xj00

Hjðgx15� � �5gxjÞ

for x A X, then

gn; jðkÞ ¼ max
x AX

gn; jðkÞx;

and in particular, for the unit element x ¼ 1,

gn; jðkÞ1 ¼ gðGLn;Q j; kÞ
gcdð j;n� jÞ=n:

Since 1a gn; jðkÞ1 by the definition of Hj , we obtain

1a gðGLn;Q j; kÞa gn; jðkÞ
n=gcdð j;n� jÞ:ð6:1Þ
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Lemma 2. gn; jðkÞa q jgðkÞ.

Proof. By [T1, §5, Corollary 1], for a given g A GLnðAÞ, there are linearly inde-

pendent vectors x1; . . . ; xn of VðkÞ with

H1ðgx1Þ � � �H1ðgxnÞa qngðkÞjdet gj
A
:

We may assume H1ðgx1ÞaH1ðgx2Þa � � �aH1ðgxnÞ. Then,

Hjðgx15� � �5gxjÞaH1ðgx1Þ � � �H1ðgxjÞ

a ðH1ðgx1Þ � � �H1ðgxnÞÞ
j=n

a q jgðkÞjdet gj
j=n
A

:

This implies the assertion. We note that our definition of the global height Hj is

slightly di¤erent from [T1]. r

Theorem 7. We have the following estimate.

qðgðkÞ�1Þð jðn� jÞþ1Þðq� 1Þð1� q�nÞ

hk

Qn
i¼n� jþ1 zkðiÞ
Q j

i¼2 zkðiÞ

 !1=gcdð j;n� jÞ

< gðGLn;Q j; kÞa ~ggðGLn;Q j; kÞa qnjgðkÞ=gcdð j;n� jÞ ¼ q0ðQ jÞ
jgðkÞ:

Proof. Recall that q0ðQ jÞ is the generator of the value group jâaQ j
ðMQ j

ðAÞV

GLnðAÞ
1Þj

A
which is greater than one. Since

MQ j
¼ diagða; bÞ ¼

a 0

0 b

� �

: a A GLj ; b A GLn� j

� �

;

any diagða; bÞ A MQ j
ðAÞVGLnðAÞ

1 satisfies

jdet aj
A
¼ jdet bj�1

A
:

The Z-basis âaQ j
of X

�ðMQ j
=ZGLn

Þ is given by

âaQ j
ðdiagða; bÞÞ ¼ ðdet aÞðn� jÞ=gcdð j;n� jÞðdet bÞ�j=gcdð j;n� jÞ:

Hence, jâaQ j
ðdiagða; bÞÞj

A
¼ jdet ajn=gcdð j;n� jÞ holds for diagða; bÞ A MQ j

ðAÞVGLnðAÞ
1.

This and fjdet aj
A
: a A GLjðAÞg ¼ qZ conclude q0ðQ jÞ ¼ qn=gcdð j;n� jÞ. The upper esti-

mate is obvious from Lemma 2 and ð6:1Þ. Since the order of the finite group GLnðfvÞ is

equal to ðqn
v � 1Þðqn

v � qvÞ � � � ðq
n
v � qn�1

v Þ, one has

Y

v AV

ð1� q�1
v Þq

dimGLn=MQj
v

jGLjðfvÞ � GLn� jðfvÞj

jGLnðfvÞj
¼

Qn
i¼n� jþ1 zkðiÞ
Q j

i¼2 zkðiÞ
:

It is known that tðGLnÞ ¼ tðGLj � GLn� jÞ ¼ 1 (cf. [We1, Theorem 3.2.1] and [Oe, III

Theorem 5.2]). From the surjectivity of QGLn
, it follows d �

GLn
¼ log q, d �

Q j
¼ d �

GLj�GLn� j
¼

ðlog qÞ2 and
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1

Ress¼1 zkðsÞ
d �
GLn

tðGLnÞ
d �
Q j
tðQ jÞ

¼ qgðkÞ�1ðq� 1Þ
hk

:

Then, the lower bound is a result of Theorem 6 and êeQ j
¼ gcdð j; n� jÞ. r

Corollary 1. If gðkÞ ¼ 0, i.e., k is a rational function field over Fq, then

gðGLn;Q j; kÞ ¼ ~ggðGLn;Q j; kÞ ¼ 1 for all n and j.

It is known that the zeta function zkðsÞ is of the form

zkðsÞ ¼
Lkðq�sÞ

ð1� q�sÞð1� q1�sÞ ;

where LkðtÞ is a polynomial of degree 2gðkÞ with integer coe‰cients. If we write LkðtÞ
as

LkðtÞ ¼ a0 þ a1tþ � � � þ a2gðkÞt
2gðkÞ

;

then ai’s have the following properties:

1) a0 ¼ 1, a2gðkÞ ¼ qgðkÞ and a2gðkÞ�i ¼ qgðkÞ�iai for 1a ia gðkÞ.
2) a1 ¼ NðkÞ � ðqþ 1Þ, where NðkÞ ¼ #fv A V : ½fv : Fq� ¼ 1g.
3) Lkð1Þ ¼ hk.

In this notation, Theorem 4 deduces the following inequality.

Corollary 2. If j ¼ 1, then

qgðkÞnðq� 1ÞLkðq�nÞ
hkðqn � qÞ < gðGLn;Q1; kÞa ~ggðGLn;Q1; kÞa qgðkÞn ¼ q0ðQ1ÞgðkÞ:

Example 5. If gðkÞ ¼ 0, then LkðtÞ ¼ 1 and hk ¼ 1. So that we have

q� 1

qn � q
< gðGLn;Q1; kÞ ¼ 1 < qn q� 1

qn � q
¼ q0ðQ1Þ

q� 1

qn � q
:

Put

enðkÞ ¼
qnðq� 1ÞLkðq�nÞ

hkðqn � qÞ :

By Corollary 2, if 1a enðkÞ holds for k, then both gðGLn;Q1; kÞ and ~ggðGLn;Q1; kÞ must

be equal to qgðkÞn.

Example 6. If gðkÞ ¼ 1, then

enðkÞ ¼
ðq� 1Þðq2n þ a1q

n þ qÞ
ðqþ a1 þ 1Þðq2n � qqnÞ :

We have the inequality:

1a
q2n þ a1q

n þ q

q2n � qqn
:

This is obvious by the Hasse-Weil bound ja1ja 2
ffiffiffi

q
p

. Hence, if a1a�2, i.e., hka

q� 1, then gðGLn;Q1; kÞ ¼ ~ggðGLn;Q1; kÞ ¼ qn for all nb 2.
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Remark. In the case of number fields, the explicit values of gðGLn;Q1; kÞ are very

little known. One knows only gðGLn;Q1;QÞ for 2a na 8 and gðGL2;Q1; kÞ for a few

quadratic number fields k (cf. [BCIO], [O-W]).
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