Fundamental Hermite constants of linear algebraic groups

By Takao Watanabe

(Received Dec. 20, 2001)
(Revised May 23, 2002)

Abstract

Let G be a connected reductive algebraic group defined over a global field k and Q a maximal k-parabolic subgroup of G. The constant $\gamma(G, Q, k)$ attached to (G, Q) is defined as an analogue of Hermite's constant. This constant depends only on G, Q and k in contrast to the previous definition of generalized Hermite constants ([W1]). Some functorial properties of $\gamma(G, Q, k)$ are proved. In the case that k is a function field of one variable over a finite field, $\gamma\left(G L_{n}, Q, k\right)$ is computed.

Let k be an algebraic number field of finite degree over \boldsymbol{Q} and let G be a connected reductive algebraic group defined over k. In [W1], we introduced a constant γ_{π}^{G} attached to an absolutely irreducible strongly k-rational representation $\pi: G \rightarrow$ $G L\left(V_{\pi}\right)$ of G. More precisely, if $G(\boldsymbol{A})$ denotes the adele group of G and $G(\boldsymbol{A})^{1}$ the unimodular part of $G(\boldsymbol{A})$, it is defined by

$$
\gamma_{\pi}^{G}=\max _{g \in G(\boldsymbol{A})^{1}} \min _{\gamma \in G(k)}\left\|\pi(g \gamma) x_{\pi}\right\|^{2 /[k: \boldsymbol{Q}]}
$$

where x_{π} is a non-zero k-rational point of the highest weight line in the representation space V_{π} and $\|\cdot\|$ is a height function on the space $G L\left(V_{\pi}(\boldsymbol{A})\right) V_{\pi}(k)$. This constant is called a generalized Hermite constant by the reason that, in the case when $k=\boldsymbol{Q}$, $G=G L_{n}$ and $\pi=\pi_{d}$ is the d-th exterior representation of $G L_{n}, \gamma_{\pi_{d}}^{G L_{n}}$ is none other than the Hermite-Rankin constant ([R]):

$$
\gamma_{n, d}=\max _{g \in G L_{n}(\boldsymbol{R})} \min _{\substack{x_{1}, \ldots, x_{d} \in \boldsymbol{Z}^{n} \\ x_{1} \wedge \ldots \wedge x_{d} \neq 0}} \frac{\operatorname{det}\left({ }^{t} x_{i}{ }^{t} g g x_{j}\right)_{1 \leq i, j \leq d}}{|\operatorname{det} g|^{2 d / n}} .
$$

When $G L_{n}$ is defined over a general k, then $\gamma_{\pi_{d}}^{G L_{n}}$ coincides with the following generalization of $\gamma_{n, d}$ due to Thunder ([T2]):

$$
\gamma_{n, d}(k)=\max _{g \in G L_{n}(\boldsymbol{A})} \min _{X \in \operatorname{Gr}_{d}\left(k^{n}\right)} \frac{H_{g}(X)^{2}}{|\operatorname{det} g|_{\boldsymbol{A}}^{2 d /(n[k: \boldsymbol{Q})}},
$$

where $\operatorname{Gr}_{d}\left(k^{n}\right)$ is the Grassmannian variety of d-dimensional subspaces in k^{n} and H_{g} a twisted height on $\mathrm{Gr}_{d}\left(k^{n}\right)$. In a general G, γ_{π}^{G} has a geometrical representation similarly to $\gamma_{n, d}(k)$. In order to describe this, we change our primary object from a representation π to a parabolic subgroup of G. Thus, we first fix a k-parabolic sub-

[^0]group Q of G, and then take a representation π such that the stabilizer Q_{π} of the highest weight line of π in G is equal to Q. The mapping $g \mapsto \pi\left(g^{-1}\right) x_{\pi}$ gives rise to a k rational embedding of the generalized flag variety $Q \backslash G$ into the projective space $\boldsymbol{P} V_{\pi}$. Taking a k-basis of $V_{\pi}(k)$, we get a height H_{π} on $\boldsymbol{P} V_{\pi}(k)$, and on $Q(k) \backslash G(k)$ by restriction. In this notation, γ_{π}^{G} is represented as
$$
\gamma_{\pi}^{G}=\max _{g \in G(\boldsymbol{A})^{1}} \min _{x \in Q(k) \backslash G(k)} H_{\pi}(x g)^{2} .
$$

In this paper, we investigate γ_{π}^{G} more closely when Q is a maximal k-parabolic subgroup of G. Especially, we shall show that π and H_{π} are not essentials of the constant γ_{π}^{G}, to be exact, there exists a constant $\gamma(G, Q, k)$ depending only on G, Q and k such that the equality $\gamma_{\pi}^{G}=\gamma(G, Q, k)^{c_{\pi}}$ holds for any π with $Q_{\pi}=Q$, where c_{π} is a positive constant depending only on π. This $\gamma(G, Q, k)$ is called the fundamental Hermite constant of (G, Q) over k. We emphasize that there is a similarity between the definition of $\gamma(G, Q, k)$ and a representation of the original Hermite's constant $\gamma_{n, 1}$ as the maximum of some lattice constants. Remember that $\gamma_{n, 1}$ is represented as

$$
\gamma_{n, 1}^{1 / 2}=\max _{\substack{g \in G L_{n}(\boldsymbol{R}) \\|\operatorname{det} g|=1}} \min \left\{T>0: B_{T}^{n} \cap g \boldsymbol{Z}^{n} \neq\{0\}\right\}
$$

where B_{T}^{n} stands for the ball of radius T with center 0 in \boldsymbol{R}^{n}. Corresponding to \boldsymbol{R}^{n}, we consider the adelic homogeneous space $Y_{Q}=Q(\boldsymbol{A})^{1} \backslash G(\boldsymbol{A})^{1}$ as a base space. The set X_{Q} of k-rational points of $Q \backslash G$ plays a role of the standard lattice \boldsymbol{Z}^{n}. In addition, there is a notion of "the ball" B_{T} of radius T in Y_{Q}, whose precise definition will be given in Section 2. Then $\gamma(G, Q, k)$ is defined by

$$
\gamma(G, Q, k)=\max _{g \in G(A)^{1}} \min \left\{T>0: B_{T} \cap X_{Q} g \neq \varnothing\right\}
$$

Independency of $\gamma(G, Q, k)$ on π and H_{π} allows us to study some functorial properties of fundamental Hermite constants. For instance, the following theorems will be verified in Section 4.

Theorem. If $\beta: G \rightarrow G^{\prime}$ is a surjective k-rational homomorphism of connected reductive groups defined over k such that its kernel is a central k-split torus in G, then $\gamma(G, Q, k)=\gamma\left(G^{\prime}, \beta(Q), k\right)$.

Theorem. If $R_{k / \ell}$ denotes the functor of restriction of scalars for a subfield $\ell \subset k$, then $\gamma\left(R_{k / \ell}(G), R_{k / \ell}(Q), \ell\right)=\gamma(G, Q, k)$.

Theorem. If both Q and R are standard maximal k-parabolic subgroups of G and M_{R} is a standard Levi subgroup of R, then one has an inequality of the form

$$
\gamma(G, Q, k) \leq \gamma\left(M_{R}, M_{R} \cap Q, k\right)^{\omega_{1}} \gamma(G, R, k)^{\omega_{2}}
$$

where ω_{1} and ω_{2} are rational numbers explicitly determined from Q and R.
These theorems are including the duality theorem: $\gamma_{n, j}(k)=\gamma_{n, n-j}(k)$ for $1 \leq j \leq$ $n-1$ and Rankin's inequality (R], [T2]): $\quad \gamma_{n, i}(k) \leq \gamma_{j, i}(k) \gamma_{n, j}(k)^{i / j}$ for $1 \leq i<j \leq n-1$ as a particular case.

Since no any serious problem arises from replacing k with a function field of one variable over a finite field, we shall develop a theory of fundamental Hermite constants for any global field. In the case of number fields, the main theorem of [W1] gives a lower bound of $\gamma(G, Q, k)$. An analogous result will be proved for the case of function fields in the last half of this paper. The case of $G=G L_{n}$ is especially studied in detail because this case gives an analogue of the classical Hermite-Rankin constants. When k is a function field, it is almost trivial from definition that $\gamma(G, Q, k)$ is a power of the cardinal number q of the constant field of k. Thus, the possible values of $\gamma(G, Q, k)$ are very restricted if both lower and upper bounds are given. This is a striking difference between the number fields and the function fields. For example, it will be proved that $\gamma\left(G L_{n}, Q, k\right)=1$ for all maximal Q and all $n \geq 2$ provided that the genus of k is zero, i.e., k is a rational function field over a finite field.

The paper is organized as follows. In Section 1, we recall the Tamagawa measures of algebraic groups and homogenous spaces. In Sections 2 and 3, the constant $\gamma(G, Q, k)$ is defined, and then a relation between $\gamma(G, Q, k)$ and γ_{π}^{G} is explained. The functorial properties of $\gamma(G, Q, k)$ is proved in Section 4. In Section 5, we will give a lower bound of $\gamma(G, Q, k)$ when k is a function field, and compute $\gamma\left(G L_{n}, Q, k\right)$ in Section 6.

Notation. As usual, $\boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{R}$ and \boldsymbol{C} denote the ring of integers, the field of rational, real and complex numbers, respectively. The group of positive real numbers is denoted by $\boldsymbol{R}_{+}^{\times}$.

Let k be a global field, i.e., an algebraic number field of finite degree over \boldsymbol{Q} or an algebraic function field of one variable over a finite field. In the latter case, we identify the constant field of k with the finite field \boldsymbol{F}_{q} with q elements. Let \mathfrak{B} be the set of all places of k. We write \mathfrak{B}_{∞} and \mathfrak{B}_{f} for the sets of all infinite places and all finite places of k, respectively. For $v \in \mathfrak{B}, k_{v}$ denotes the completion of k at v. If v is finite, \mathfrak{D}_{v} denotes the ring of integers in k_{v}, \mathfrak{p}_{v} the maximal ideal of $\mathfrak{D}_{v}, \mathfrak{f}_{v}$ the residual field $\mathfrak{D}_{v} / \mathfrak{p}_{v}$ and q_{v} the order of \mathfrak{f}_{v}. We fix, once and for all, a Haar measure μ_{v} on k_{v} normalized so that $\mu_{v}\left(\mathfrak{D}_{v}\right)=1$ if $v \in \mathfrak{B}_{f}, \mu_{v}([0,1])=1$ if v is a real place and $\mu_{v}\left(\left\{a \in k_{v}: a \bar{a} \leq 1\right\}\right)=$ 2π if v is an imaginary place. Then the absolute value $|\cdot|_{v}$ on k_{v} is defined as $|a|_{v}=$ $\mu_{v}(a C) / \mu_{v}(C)$, where C is an arbitrary compact subset of k_{v} with nonzero measure.

Let \boldsymbol{A} be the adele ring of $k,|\cdot|_{\boldsymbol{A}}=\prod_{v \in \mathfrak{B}}|\cdot|_{v}$ the idele norm on the idele group \boldsymbol{A}^{\times} and $\mu_{\boldsymbol{A}}=\prod_{v \in \mathfrak{B}} \mu_{v}$ an invariant measure on \boldsymbol{A}. The measure $\mu_{\boldsymbol{A}}$ is characterized by

$$
\mu_{\boldsymbol{A}}(\boldsymbol{A} / k)= \begin{cases}\left|D_{k}\right|^{1 / 2} & \text { (if } \left.k \text { is an algebraic number field of discriminant } D_{k}\right) . \\ q^{g(k)-1} & \text { (if } k \text { is a function field of genus } g(k)) .\end{cases}
$$

In general, if μ_{A} and μ_{B} denote Haar measures on a locally compact unimodular group A and its closed unimodular subgroup B, respectively, then $\mu_{B} \backslash \mu_{A}$ (resp. μ_{A} / μ_{B}) denotes a unique right (resp. left) A-invariant measure on the homogeneous space $B \backslash A$ (resp. A / B) matching with μ_{A} and μ_{B}.

1. Tamagawa measures.

Let G be a connected affine algebraic group defined over k. For any k algebra $A, G(A)$ stands for the set of A-rational points of G. Let $\boldsymbol{X}^{*}(G)$ and $\boldsymbol{X}_{k}^{*}(G)$ be
the free \boldsymbol{Z}-modules consisting of all rational characters and all k-rational characters of G, respectively. The absolute Galois group $\operatorname{Gal}(\bar{k} / k)$ acts on $\boldsymbol{X}^{*}(G)$. The representation of $\operatorname{Gal}(\bar{k} / k)$ in the space $\boldsymbol{X}^{*}(G) \otimes_{\boldsymbol{Z}} \boldsymbol{Q}$ is denoted by σ_{G} and the corresponding Artin L-function is denoted by $L\left(s, \sigma_{G}\right)=\prod_{v \in \mathfrak{B}_{f}} L_{v}\left(s, \sigma_{G}\right)$. We set $\sigma_{k}(G)=$ $\lim _{s \rightarrow 1}(s-1)^{n} L\left(s, \sigma_{G}\right)$, where $n=\operatorname{rank} \boldsymbol{X}_{k}^{*}(G)$. Let ω^{G} be a nonzero right invariant gauge form on G defined over k. From ω^{G} and the fixed Haar measure μ_{v} on k_{v}, one can construct a right invariant Haar measure ω_{v}^{G} on $G\left(k_{v}\right)$. Then, the Tamagawa measure on $G(\boldsymbol{A})$ is well defined by

$$
\omega_{\boldsymbol{A}}^{G}=\mu_{\boldsymbol{A}}(\boldsymbol{A} / k)^{-\operatorname{dim} G} \omega_{\infty}^{G} \omega_{f}^{G},
$$

where

$$
\omega_{\infty}^{G}=\prod_{v \in \mathfrak{Y}_{\infty}} \omega_{v}^{G} \quad \text { and } \quad \omega_{f}^{G}=\sigma_{k}(G)^{-1} \prod_{v \in \mathfrak{Y}_{f}} L_{v}\left(1, \sigma_{G}\right) \omega_{v}^{G}
$$

For each $g \in G(\boldsymbol{A})$, we define the homomorphism $\vartheta_{G}(g): \boldsymbol{X}_{k}^{*}(G) \rightarrow \boldsymbol{R}_{+}^{\times}$by $\vartheta_{G}(g)(\chi)=|\chi(g)|_{\boldsymbol{A}}$ for $\chi \in \boldsymbol{X}_{k}^{*}(G)$. Then ϑ_{G} is a homomorphism from $G(\boldsymbol{A})$ into $\operatorname{Hom}_{\boldsymbol{Z}}\left(\boldsymbol{X}_{k}^{*}(G), \boldsymbol{R}_{+}^{\times}\right)$. We write $G(\boldsymbol{A})^{1}$ for the kernel of ϑ_{G}. The Tamagawa measure $\omega_{G(\boldsymbol{A})^{1}}$ on $G(\boldsymbol{A})^{1}$ is defined as follows:

- The case of $\operatorname{ch}(k)=0$. If a \boldsymbol{Z}-basis $\chi_{1}, \ldots, \chi_{n}$ of $\boldsymbol{X}_{k}^{*}(G)$ is fixed, then $\operatorname{Hom}_{\boldsymbol{Z}}\left(\boldsymbol{X}_{k}^{*}(G), \boldsymbol{R}_{+}^{\times}\right)$is identified with $\left(\boldsymbol{R}_{+}^{\times}\right)^{n}$ and ϑ_{G} gives rise to an isomorphism from $G(\boldsymbol{A})^{1} \backslash G(\boldsymbol{A})$ onto $\left(\boldsymbol{R}_{+}^{\times}\right)^{n}$. Put the Lebesgue measure $d t$ on \boldsymbol{R} and the invariant measure $d t / t$ on $\boldsymbol{R}_{+}^{\times}$. Then $\omega_{G(\boldsymbol{A})^{1}}$ is the measure on $G(\boldsymbol{A})^{1}$ such that the quotient measure $\omega_{G(\boldsymbol{A})^{\wedge}} \backslash \omega_{A}^{G}$ is the pullback of the measure $\prod_{i=1}^{n} d t_{i} / t_{i}$ on $\left(\boldsymbol{R}_{+}^{\times}\right)^{n}$ by ϑ_{G}. The measure $\omega_{G(\boldsymbol{A})^{1}}$ is independent of the choice of a \boldsymbol{Z}-basis of $\boldsymbol{X}_{k}^{*}(G)$.
- The case of $\operatorname{ch}(k)>0$. The value group of the idele norm $|\cdot|_{A}$ is the cyclic group q^{Z} generated by q (cf. [We2]). Thus the image $\operatorname{Im} \vartheta_{G}$ of ϑ_{G} is contained in $\operatorname{Hom}_{\boldsymbol{Z}}\left(\boldsymbol{X}_{k}^{*}(G), q^{\boldsymbol{Z}}\right.$) and $G(\boldsymbol{A})^{1}$ is an open normal subgroup of $G(\boldsymbol{A})$. Since the index of $\operatorname{Im} \vartheta_{G}$ in $\operatorname{Hom}_{\boldsymbol{Z}}\left(\boldsymbol{X}_{k}^{*}(G), q^{\boldsymbol{Z}}\right)$ is finite ([Oe, I, Proposition 5.6]),

$$
\begin{equation*}
d_{G}^{*}=(\log q)^{\operatorname{rank} \boldsymbol{X}_{k}^{*}(G)}\left[\operatorname{Hom}_{\boldsymbol{Z}}\left(\boldsymbol{X}_{k}^{*}(G), q^{\boldsymbol{Z}}\right): \operatorname{Im} \vartheta_{G}\right] \tag{1.1}
\end{equation*}
$$

is well defined. The measure $\omega_{G(\boldsymbol{A})^{1}}$ is defined to be the restriction of the measure $\left(d_{G}^{*}\right)^{-1} \omega_{\boldsymbol{A}}^{G}$ to $G(\boldsymbol{A})^{1}$.

In both cases, we put the counting measure $\omega_{G(k)}$ on $G(k)$. The volume of $G(k) \backslash G(\boldsymbol{A})^{1}$ with respect to the measure $\omega_{G}=\omega_{G(k)} \backslash \omega_{G(\boldsymbol{A})^{1}}$ is called the Tamagawa number of G and denoted by $\tau(G)$.

In the following, let G be a connected reductive group defined over k. We fix a maximally k-split torus S of G, a maximal k-torus S_{1} of G containing S, a minimal k-parabolic subgroup P of G containing S and a Borel subgroup B of P containing S_{1}. Denote by Φ_{k} and Δ_{k} the relative root system of G with respect to S and the set of simple roots of Φ_{k} corresponding to P, respectively. Let M be the centralizer of S in G. Then P has a Levi decomposition $P=M U$, where U is the unipotent radical of P. For every standard k-parabolic subgroup R of G, R has a unique Levi subgroup M_{R} containing M. We denote by U_{R} the unipotent radical of R. Throughout this paper, we fix a maximal compact subgroup K of $G(\boldsymbol{A})$ satisfying
the following property; For every standard k-parabolic subgroup R of $G, K \cap M_{R}(\boldsymbol{A})$ is a maximal compact subgroup of $M_{R}(\boldsymbol{A})$ and $M_{R}(\boldsymbol{A})$ possesses an Iwasawa decomposition $\left(M_{R}(\boldsymbol{A}) \cap U(\boldsymbol{A})\right) M(\boldsymbol{A})\left(K \cap M_{R}(\boldsymbol{A})\right)$. We set $K^{M_{R}}=K \cap M_{R}(\boldsymbol{A}), P^{R}=M_{R} \cap P$ and $U^{R}=M_{R} \cap U$.

Let R be a standard k-parabolic subgroup of G and Z_{R} be the greatest central k split torus in M_{R}. The restriction map $\boldsymbol{X}_{k}^{*}\left(M_{R}\right) \rightarrow \boldsymbol{X}_{k}^{*}\left(Z_{R}\right)$ is injective. Since $\boldsymbol{X}_{k}^{*}\left(M_{R}\right)$ has the same rank as $\boldsymbol{X}_{k}^{*}\left(\boldsymbol{Z}_{R}\right)$, both indexes

$$
d_{R}=\left[\boldsymbol{X}_{k}^{*}\left(Z_{R}\right): \boldsymbol{X}_{k}^{*}\left(M_{R}\right)\right] \quad \text { and } \quad \hat{d}_{R}=\left[\boldsymbol{X}_{k}^{*}\left(Z_{R} / Z_{G}\right): \boldsymbol{X}_{k}^{*}\left(M_{R} / Z_{G}\right)\right]
$$

are finite. We define another Haar measure $v_{M_{R}(\boldsymbol{A})}$ of $M_{R}(\boldsymbol{A})$ as follows. Let $\omega_{\boldsymbol{A}}^{M}$ and $\omega_{A}^{U^{R}}$ be the Tamagawa measures of $M(\boldsymbol{A})$ and $U^{R}(\boldsymbol{A})$, respectively. The modular character $\delta_{P^{R}}^{-1}$ of $P^{R}(\boldsymbol{A})$ is a function on $M(\boldsymbol{A})$ which satisfies the integration formula

$$
\int_{U^{R}(\boldsymbol{A})} f\left(\mathrm{mum}^{-1}\right) d \omega_{\boldsymbol{A}}^{U^{R}}(u)=\delta_{P^{R}}(m)^{-1} \int_{U^{R}(\boldsymbol{A})} f(u) d \omega_{\boldsymbol{A}}^{U^{R}}(u) .
$$

Let $v_{K^{M_{R}}}$ be the Haar measure on $K^{M_{R}}$ normalized so that the total volume equals one. Then the mapping

$$
f \mapsto \int_{U^{R}(\boldsymbol{A}) \times M(\boldsymbol{A}) \times K^{M_{R}}} f(n m h) \delta_{P^{R}}(m)^{-1} d \omega_{\boldsymbol{A}}^{U^{R}}(u) d \omega_{\boldsymbol{A}}^{M}(m) d v_{K^{M_{R}}}(h), \quad\left(f \in C_{0}\left(M_{R}(\boldsymbol{A})\right)\right)
$$

defines an invariant measure on $M_{R}(\boldsymbol{A})$ and is denoted by $v_{M_{R}(\boldsymbol{A})}$. There exists a positive constant C_{R} such that

$$
\omega_{A}^{M_{R}}=C_{R} v_{M_{R}(\boldsymbol{A})} .
$$

We have the following compatibility formula:

$$
\begin{equation*}
\int_{G(\boldsymbol{A})} f(g) d \omega_{\boldsymbol{A}}^{G}(g)=\frac{C_{G}}{C_{R}} \int_{U_{R}(\boldsymbol{A}) \times M_{R}(\boldsymbol{A}) \times K} f(u m h) \delta_{R}(m)^{-1} d \omega_{A}^{U_{R}} d \omega_{\boldsymbol{A}}^{M_{R}}(m) d v_{K}(h) \tag{1.2}
\end{equation*}
$$

for $f \in C_{0}(G(\boldsymbol{A}))$, where δ_{R}^{-1} is the modular character of $R(\boldsymbol{A})$.
On the homogeneous space $Y_{R}=R(\boldsymbol{A})^{1} \backslash G(\boldsymbol{A})^{1}$, we define the right $G(\boldsymbol{A})^{1}$-invariant measure $\omega_{Y_{R}}$ by $\omega_{R(\boldsymbol{A})^{1}} \backslash \omega_{G(\boldsymbol{A})^{1}}$. We note that both $G(\boldsymbol{A})^{1}$ and $R(\boldsymbol{A})^{1}$ are unimodular.

2. Definition of fundamental Hermite constants.

Throughout this paper, Q denotes a standard maximal k-parabolic subgroup of G. There is an only one simple root $\alpha \in \Delta_{k}$ such that the restriction of α to Z_{Q} is nontrivial. Let n_{Q} be the positive integer such that $\left.n_{Q}^{-1} \alpha\right|_{Z_{Q}}$ is a Z-basis of $\boldsymbol{X}_{k}^{*}\left(Z_{Q} / Z_{G}\right)$. We write α_{Q} and $\hat{\alpha}_{Q}$ for $\left.n_{Q}^{-1}\right|_{Z_{Q}}$ and $\hat{d}_{Q} n_{Q}^{-1} \alpha_{Z_{Q}}$, respectively. Then $\hat{\alpha}_{Q}$ is a Z-basis of the submodule $\boldsymbol{X}_{k}^{*}\left(M_{Q} / Z_{G}\right)$ of $\boldsymbol{X}_{k}^{*}\left(Z_{Q} / Z_{G}\right)$. If we set $e_{Q}=n_{Q} \operatorname{dim} U_{Q}$ and $\hat{e}_{Q}=$ $n_{Q} \operatorname{dim} U_{Q} / \hat{d}_{Q}$, then

$$
\delta_{Q}(z)=\left|\alpha_{Q}(z)\right|_{A}^{e_{Q}} \quad \text { and } \quad \delta_{Q}(m)=\left|\hat{\alpha}_{Q}(m)\right|_{A}^{\hat{e}_{Q}}
$$

hold for $z \in Z_{Q}(\boldsymbol{A})$ and $m \in M_{Q}(\boldsymbol{A})$.
Define a map $z_{Q}: G(\boldsymbol{A}) \rightarrow Z_{G}(\boldsymbol{A}) M_{Q}(\boldsymbol{A})^{1} \backslash M_{Q}(\boldsymbol{A})$ by $z_{Q}(g)=Z_{G}(\boldsymbol{A}) M_{Q}(\boldsymbol{A})^{1} m$ if $g=u m h, u \in U_{Q}(\boldsymbol{A}), m \in M_{Q}(\boldsymbol{A})$ and $h \in K$. This is well defined and a left
$Z_{G}(\boldsymbol{A}) Q(\boldsymbol{A})^{1}$-invariant. Since $Z_{G}(\boldsymbol{A})^{1}=Z_{G}(\boldsymbol{A}) \cap G(\boldsymbol{A})^{1} \subset M_{Q}(\boldsymbol{A})^{1}, z_{Q}$ gives rise to a map from $Y_{Q}=Q(\boldsymbol{A})^{1} \backslash G(\boldsymbol{A})^{1}$ to $M_{Q}(\boldsymbol{A})^{1} \backslash\left(M_{Q}(\boldsymbol{A}) \cap G(\boldsymbol{A})^{1}\right)$. Namely, we have the following commutative diagram:

In this diagram, the vertical arrows are injective, and in particular, these are bijective if $\operatorname{ch}(k)=0$. We further define a function $H_{Q}: G(\boldsymbol{A}) \rightarrow \boldsymbol{R}_{+}^{\times}$by $H_{Q}(g)=\left|\hat{\alpha}_{Q}\left(z_{Q}(g)\right)\right|_{\boldsymbol{A}}^{-1}$ for $g \in G(\boldsymbol{A})$. This has the following property:

- The case of $\operatorname{ch}(k)=0$. Let Z_{G}^{+}and Z_{Q}^{+}be the subgroups of $Z_{G}(\boldsymbol{A})$ and $Z_{Q}(\boldsymbol{A})$, respectively, defined as in [W1]. Then H_{Q} gives a bijection from $Z_{G}^{+} \backslash Z_{Q}^{+}$onto $\boldsymbol{R}_{+}^{\times}$. If $\left(\left.H_{Q}\right|_{Z_{G}^{+} \backslash Z_{Q}^{+}}\right)^{-1}$ denotes the inverse map of this bijection, then the map

$$
i_{Q}: \boldsymbol{R}_{+}^{\times} \times K \rightarrow Y_{Q}:(t, h) \mapsto Q(\boldsymbol{A})^{1}\left(\left.H_{Q}\right|_{Z_{G}^{+} \backslash Z_{Q}^{+}}\right)^{-1}(t) h
$$

is surjective.

- The case of $\operatorname{ch}(k)>0$. The value group $\left|\hat{\alpha}_{Q}\left(M_{Q}(\boldsymbol{A}) \cap G(\boldsymbol{A})^{1}\right)\right|_{A}$ is a subgroup of $q^{\boldsymbol{Z}}$. Let $q_{0}=q_{0}(Q)$ be the generator of $\left|\hat{\alpha}_{Q}\left(M_{Q}(\boldsymbol{A}) \cap G(\boldsymbol{A})^{1}\right)\right|_{\boldsymbol{A}}$ that is greater than one. Then H_{Q} gives a surjection from Y_{Q} onto the cyclic group q_{0}^{Z}.

We set $X_{Q}=Q(k) \backslash G(k)$, which is regarded as a subset of Y_{Q}. Let $B_{T}=$ $\left\{y \in Y_{Q}: H_{Q}(y) \leq T\right\}$ for $T>0$. The volume of B_{T} is given by

$$
\omega_{Y_{Q}}\left(B_{T}\right)= \begin{cases}\frac{C_{G} d_{Q}}{C_{Q} d_{G} e_{Q}} T^{\hat{e}_{Q}} & (\operatorname{ch}(k)=0) \\ \frac{C_{G} d_{Q}^{*}}{C_{Q} d_{G}^{*}} \frac{q_{0}^{\left[\log _{q_{0}} T\right] \hat{e}_{Q}}}{1-q_{0}^{-\hat{e}_{Q}}} & (\operatorname{ch}(k)>0)\end{cases}
$$

where $\left[\log _{q_{0}} T\right]$ is the largest integer which is not exceeding $\log _{q_{0}} T$ (cf. [W1, Lemma 1] and Lemma 1 in §5).

Proposition 1. For $T>0$ and any $g \in G(\boldsymbol{A})^{1}, B_{T} \cap X_{Q} g$ is a finite set. Hence, one can define the function

$$
\Gamma_{Q}(g)=\min \left\{T>0: B_{T} \cap X_{Q} g \neq \varnothing\right\}=\min _{y \in X_{Q} g} H_{Q}(y)
$$

on $G(\boldsymbol{A})^{1}$. Then the maximum

$$
\gamma(G, Q, k)=\max _{g \in G(\boldsymbol{A})^{1}} \Gamma_{Q}(g)
$$

exists.
Proposition 1 will be proved in the next section.
Definition. The constant $\gamma(G, Q, k)$ is called the fundamental Hermite constant of (G, Q) over k.

We often write γ_{Q} for $\gamma(G, Q, k)$ if k and G are clear from the context. The constant γ_{Q} is characterized as the greatest positive number T_{0} such that $B_{T} \cap X_{Q} g_{T}=$ \varnothing for any $T<T_{0}$ and some $g_{T} \in G(\boldsymbol{A})^{1}$. It is obvious by definition that $\gamma_{Q} \in q_{0}^{Z}$ if $\operatorname{ch}(k)>0$.

Remark. Let $\tilde{Y}_{Q}=Z_{G}(\boldsymbol{A}) Q(\boldsymbol{A})^{1} \backslash G(\boldsymbol{A})$. Then, for any $g \in G(\boldsymbol{A}), X_{Q} g$ is regarded as a subset of \tilde{Y}_{Q}. In some cases, it is more convenient to consider the constant

$$
\tilde{\gamma}(G, Q, k)=\max _{g \in G(\boldsymbol{A})} \min _{y \in X_{Q} g} H_{Q}(y)
$$

In general, $\gamma(G, Q, k) \leq \tilde{\gamma}(G, Q, k)$ holds. If $\operatorname{ch}(k)=0$ or G is semisimple, then $\gamma(G, Q, k)=\tilde{\gamma}(G, Q, k)$ because of $\tilde{Y}_{Q}=Y_{Q}$.

Remark. If $\operatorname{ch}(k)=0$, one can consider the more general Hermite constant defined by

$$
\gamma(G, Q, D, k)=\max _{g \in G(A)^{1}} \min \left\{T>0: i_{Q}((0, T] \times D) \cap X_{Q} g \neq \varnothing\right\}
$$

for an open and closed subset D of K.

3. A relation between γ_{Q} and a generalized Hermite constant.

We recall the definition of generalized Hermite constants ([W1, §2]). Let V_{π} be a finite dimensional \bar{k}-vector space defined over k and $\pi: G \rightarrow G L\left(V_{\pi}\right)$ be an absolutely irreducible k-rational representation. The highest weight space in V_{π} with respect to B is denoted by x_{π}. Let Q_{π} be the stabilizer of x_{π} in G and λ_{π} the rational character of Q_{π} by which Q_{π} acts on x_{π}. In the following, we assume $Q=Q_{\pi}$ and π is strongly k-rational, i.e., x_{π} is defined over k. Then λ_{π} is a k-rational character of Q_{π}. It is known that such π always exists (cf. [Ti1], [W1]). We use a right action of G on V_{π} defined by $a \cdot g=\pi\left(g^{-1}\right) a$ for $g \in G$ and $a \in V_{\pi}$. Then the mapping $g \mapsto x_{\pi} \cdot g$ gives rise to a k-rational embedding of $Q \backslash G$ into the projective space $\boldsymbol{P} V_{\pi}$. We fix a k-basis $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ of the k-vector space $V_{\pi}(k)$ and define a local height H_{v} on $V_{\pi}\left(k_{v}\right)$ for each $v \in \mathfrak{B}$ as follows:

$$
H_{v}\left(a_{1} \boldsymbol{e}_{1}+\cdots+a_{n} \boldsymbol{e}_{n}\right)= \begin{cases}\left(\left|a_{1}\right|_{v}^{2}+\cdots+\left|a_{n}\right|_{v}^{2}\right)^{1 / 2} & \text { (if } v \text { is real). } \\ \left|a_{1}\right|_{v}+\cdots+\left|a_{n}\right|_{v} & \text { (if } v \text { is imaginary). } \\ \sup \left(\left|a_{1}\right|_{v}, \ldots,\left|a_{n}\right|_{v}\right) & \text { (if } \left.v \in \mathfrak{B}_{f}\right) .\end{cases}
$$

The global height H_{π} on $V_{\pi}(k)$ is defined to be a product of all H_{v}, that is, $H_{\pi}(a)=$ $\prod_{v \in \mathfrak{B}} H_{v}(a)$. By the product formula, H_{π} is invariant by scalar multiplications. Thus, H_{π} defines a height on $\boldsymbol{P} V_{\pi}(k)$, and on X_{Q} by restriction. The height H_{π} is extended to $G L\left(V_{\pi}(\boldsymbol{A})\right) \boldsymbol{P} V_{\pi}(k)$ by

$$
H_{\pi}(\xi \bar{a})=\prod_{v \in \mathfrak{B}} H_{v}\left(\xi_{v} a\right)
$$

for $\xi=\left(\xi_{v}\right) \in G L\left(V_{\pi}(\boldsymbol{A})\right)$ and $\bar{a}=k a \in \boldsymbol{P} V_{\pi}(k), a \in V_{\pi}(k)-\{0\}$. Put

$$
\Phi_{\pi, \xi}(g)=H_{\pi}\left(\xi\left(x_{\pi} \cdot g\right)\right) / H_{\pi}\left(\xi x_{\pi}\right), \quad(g \in G(\boldsymbol{A})) .
$$

Since this satisfies

$$
\Phi_{\pi, \xi}\left(g g^{\prime}\right)=\left|\lambda_{\pi}(g)^{-1}\right|_{\boldsymbol{A}} \Phi_{\pi, \xi}\left(g^{\prime}\right), \quad\left(g \in Q(\boldsymbol{A}), g^{\prime} \in G(\boldsymbol{A})\right),
$$

$\Phi_{\pi, \xi}$ defines a function on Y_{Q}. We can and do choose a $\xi \in G L\left(V_{\pi}(\boldsymbol{A})\right)$ so that $\Phi_{\pi, \xi}$ is right K-invariant. Then, in the case of $\operatorname{ch}(k)=0$, the generalized Hermite constant attached to π is defined by

$$
\begin{equation*}
\gamma_{\pi}=\max _{g \in G(\boldsymbol{A})^{1}} \min _{x \in X_{Q}} \Phi_{\pi, \xi}(x g)^{2 /[k: Q]} . \tag{3.1}
\end{equation*}
$$

Let us prove Proposition 1. We take positive rational numbers e_{π} and \hat{e}_{π} such that

$$
\left|\lambda_{\pi}(z)\right|_{A}=\left|\alpha_{Q}(z)\right|_{A}^{e_{\pi}} \quad \text { and } \quad\left|\lambda_{\pi}(m)\right|_{A}=\left|\hat{\alpha}_{Q}(m)\right|_{A}^{\hat{e}_{\pi}}
$$

for $z \in Z_{Q}(\boldsymbol{A}) \cap G(\boldsymbol{A})^{1}$ and $m \in M_{Q}(\boldsymbol{A}) \cap G(\boldsymbol{A})^{1}$. Then, by definition,

$$
\Phi_{\pi, \xi}(y)=H_{Q}(y)^{\hat{e}_{\pi}}, \quad\left(y \in Y_{Q}\right)
$$

Therefore, one has

$$
B_{T} \cap X_{Q}=\left\{x \in X_{Q}: H_{\pi}(\xi x) \leq H_{\pi}\left(\xi x_{\pi}\right) T^{\hat{e}_{\pi}}\right\} .
$$

Since $\#\left\{x \in \boldsymbol{P} V_{\pi}(k): H_{\pi}(\xi x) \leq c\right\}$ is finite for a fixed constant c (cf. [S]), $B_{T} \cap X_{Q}$ is a finite set. If $g \in G(\boldsymbol{A})^{1}$ is given, then there is a $T_{g}>0$ depending on g such that $B_{T} g^{-1} \subset B_{T_{g}}$. This implies that $\#\left(B_{T} \cap X_{Q} g\right)=\#\left(B_{T} g^{-1} \cap X_{Q}\right)$ is also finite. Furthermore, we obtain

$$
\Gamma_{Q}(g)=\min _{x \in X_{Q}} \Phi_{\pi, \xi}(x g)^{1 / \hat{e}_{\pi}}
$$

In [W1, Proposition 2], we proved in the case of $\operatorname{ch}(k)=0$ that the function in $g \in G(\boldsymbol{A})^{1}$ defined by the right hand side attains its maximum. The same proof works well for the case of $\operatorname{ch}(k)>0$ by using the reduction theory due to Harder $([\mathbf{H}])$. We mention its proof for the sake of completeness. If necessary, by replacing G with $G /(\operatorname{Ker} \pi)^{0}$, we may assume $\operatorname{Ker} \pi$ is finite. Let

$$
S(\boldsymbol{A})_{c}=\left\{z \in S(\boldsymbol{A}):|\beta(z)|_{A}^{-1} \leq c \text { for all } \beta \in \Delta_{k}\right\}
$$

and

$$
S(\boldsymbol{A})_{c}^{\prime}=\left\{z \in S(\boldsymbol{A}): c^{-1} \leq|\beta(z)|_{\boldsymbol{A}}^{-1} \leq c \text { for all } \beta \in \Delta_{k}\right\}
$$

for a sufficiently large constant $c>1$. By reduction theory, there are compact subsets $\Omega_{1} \subset P(\boldsymbol{A})$ and $\Omega_{2} \subset G(\boldsymbol{A})$ such that $K \subset \Omega_{2}$ and $G(\boldsymbol{A})=G(k) \Omega_{1} S(\boldsymbol{A})_{c} \Omega_{2}$. Set $\mathfrak{S}(c)=$ $\Omega_{1} S(\boldsymbol{A}){ }_{c} \Omega_{2} \cap G(\boldsymbol{A})^{1}$ and $\mathfrak{S}(c)^{\prime}=\Omega_{1} S(\boldsymbol{A})_{c}^{\prime} \Omega_{2} \cap G(\boldsymbol{A})^{1}$. There is a constant c^{\prime} such that

$$
\min _{x \in X_{Q}} \Phi_{\pi, \xi}\left(x \omega_{1} z \omega_{2}\right) \leq \Phi_{\pi, \xi}\left(\omega_{1} z \omega_{2}\right) \leq c^{\prime}\left|\lambda_{\pi}(z)\right|_{A}^{-1}
$$

holds for all $\omega_{1} \in \Omega_{1}, z \in S(\boldsymbol{A})_{c}$ and $\omega_{2} \in \Omega_{2}$. The highest weight λ_{π} can be written as a \boldsymbol{Q}-linear combination of simple roots modulo $\boldsymbol{X}_{k}^{*}\left(\boldsymbol{Z}_{G}\right) \otimes_{\boldsymbol{Z}} \boldsymbol{Q}$, i.e.,

$$
\left.\lambda_{\pi}\right|_{S} \equiv \sum_{\beta \in \Lambda_{k}} c_{\beta} \beta \quad \bmod \boldsymbol{X}_{k}^{*}\left(Z_{G}\right) \otimes_{\boldsymbol{Z}} \boldsymbol{Q}
$$

A crucial fact is $c_{\beta}>0$ for all $\beta \in \Delta_{k}$ (cf. [W1, Proof of Proposition 2]). From this and the above inequality, it follows

$$
\sup _{g \in \mathfrak{S}(c)} \min _{x \in X_{Q}} \Phi_{\pi, \xi}(x g)=\sup _{g \in \subseteq(c)^{\prime}} \min _{x \in X_{Q}} \Phi_{\pi, \xi}(x g)
$$

This implies that the function $g \mapsto \min _{x \in X_{Q}} \Phi_{\pi, \xi}(x g)$ attains its maximum since $\mathfrak{\Im}(c)^{\prime}$ is relatively compact in $G(\boldsymbol{A})^{1}$ modulo $G(k)$. Therefore, the maximum

$$
\begin{equation*}
\gamma_{Q}=\max _{g \in G(\boldsymbol{A})^{1}} \min _{x \in X_{Q}} \Phi_{\pi, \xi}(x g)^{1 / \hat{e}_{\pi}} \tag{3.2}
\end{equation*}
$$

exists. This completes the proof of Proposition 1.
Next theorem is obvious by (3.1), (3.2), $e_{\pi}=\hat{d}_{Q} \hat{e}_{\pi}, e_{Q}=\hat{d}_{Q} \hat{e}_{Q}$ and [W1, Theorem 1].
Theorem 1. If $\operatorname{ch}(k)=0$, then the Hermite constant attached to a strongly k rational representation π is given by

$$
\gamma_{\pi}=\gamma_{Q}^{2 \hat{e}_{\pi} /[k: \boldsymbol{Q}]} .
$$

One has an estimate of the form

$$
\begin{equation*}
\left(\frac{C_{Q} d_{G} e_{Q} \tau(G)}{C_{G} d_{Q} \tau(Q)}\right)^{1 / \hat{e}_{Q}} \leq \gamma_{Q} \tag{3.3}
\end{equation*}
$$

Example 1. Let V be an n dimensional vector space defined over an algebraic number field k and $e_{1}, \ldots, \boldsymbol{e}_{n}$ a k-basis of $V(k)$. We identify the group of linear automorphisms of V with $G L_{n}$. For $1 \leq j \leq n-1, Q_{j}$ denotes the stabilizer of the subspace spanned by $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{j}$ in $G L_{n}$ and $\pi_{j}: G L_{n} \rightarrow G L\left(\bigwedge^{j} V\right)$ the j-th exterior representation. A k-basis of $V_{\pi_{j}}(k)=\bigwedge^{j} V(k)$ is formed by the elements $\boldsymbol{e}_{I}=\boldsymbol{e}_{i_{1}} \wedge \cdots \wedge \boldsymbol{e}_{i_{j}}$ with $I=\left\{1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq n\right\}$. The global height $H_{\pi_{j}}$ is defined similarly as above with respect to the basis $\left\{\boldsymbol{e}_{I}\right\}_{I}$. By definition and $H_{\pi_{j}}\left(\boldsymbol{e}_{1} \wedge \cdots \wedge \boldsymbol{e}_{j}\right)=1$, we have

$$
\begin{aligned}
\gamma_{n, j}(k)=\gamma_{\pi_{j}} & =\max _{g \in G L_{n}(\boldsymbol{A})^{1}} \min _{x \in Q_{j}(k) \backslash G L_{n}(k)} H_{\pi_{j}}(x \cdot g)^{2 /[k: \boldsymbol{Q}]} \\
& =\max _{g \in G L_{n}(\boldsymbol{A})} \min _{\substack{x_{1}, \ldots, x_{j} \\
x_{1} \wedge \vee\left(x_{j} \neq 0\right.}} \frac{H_{\pi_{j}}\left(g x_{1} \wedge \cdots \wedge g x_{j}\right)^{2 /[k: \boldsymbol{Q}]}}{|\operatorname{deg} g|_{\boldsymbol{A}}^{2 j /(n[k: \boldsymbol{Q}])}} .
\end{aligned}
$$

Let $\operatorname{gcd}(j, n-j)$ be the greatest common divisor of j and $n-j$. It is easy to see that

$$
\begin{equation*}
\hat{d}_{Q_{j}}=\frac{j(n-j)}{\operatorname{gcd}(j, n-j)}, \quad \hat{e}_{Q_{j}}=\operatorname{gcd}(j, n-j), \quad \hat{e}_{\pi_{j}}=\frac{\operatorname{gcd}(j, n-j)}{n} \tag{3.4}
\end{equation*}
$$

Therefore,

$$
\gamma\left(G L_{n}, Q_{j}, k\right)=\gamma_{n, j}(k)^{n[k: Q] /(2 \operatorname{gcd}(j, n-j))},
$$

and in particular, $\gamma\left(G L_{n}, Q_{1}, \boldsymbol{Q}\right)^{2 / n}$ is none other than the classical Hermite's constant $\gamma_{n, 1}$. By [T2] and [W1, Example 2], we have

$$
\left(\frac{\left|D_{k}\right|^{j(n-j) / 2} n}{\operatorname{Res}_{s=1} \zeta_{k}(s)} \frac{\prod_{i=n-j+1}^{n} Z_{k}(i)}{\prod_{j=2}^{j} Z_{k}(j)}\right)^{1 / \operatorname{gcd}(j, n-j)} \leq \gamma\left(G L_{n}, Q_{j}, k\right)
$$

$$
\gamma\left(G L_{n}, Q_{j}, k\right) \leq\left(\frac{2^{r_{1}+r_{2}}\left|D_{k}\right|^{1 / 2}}{\pi^{r / 2}} \Gamma\left(1+\frac{n}{2}\right)^{r_{1} / n} \Gamma(1+n)^{r_{2} / n}\right)^{j n / \operatorname{gcd}(j, n-j)},
$$

where $\zeta_{k}(s)$ denotes the Dedekind zeta function of $k, \Gamma(s)$ the gamma function, $Z_{k}(s)=$ $\left(\pi^{-s / 2} \Gamma(s / 2)\right)^{r_{1}}\left((2 \pi)^{1-s} \Gamma(s)\right)^{r_{2}} \zeta_{k}(s), r_{1}$ and r_{2} the numbers of real and imaginary places of k, respectively. When $j=1$, the next inequality was proved in $[\mathbf{O}-\mathbf{W}]$:

$$
\gamma\left(G L_{n}, Q_{1}, k\right) \leq\left|D_{k}\right|^{1 /[k: \boldsymbol{Q}]} \frac{\gamma\left(G L_{n[k: \boldsymbol{Q}]}, Q_{1}, \boldsymbol{Q}\right)}{[k: \boldsymbol{Q}]} .
$$

4. Some properties of fundamental Hermite constants.

First, we consider the exact sequence

$$
1 \rightarrow Z \rightarrow G \xrightarrow{\beta} G^{\prime} \rightarrow 1
$$

of connected reductive groups defined over a global field k. We assume the following two conditions for Z :
(4.1) Z is central in G.
(4.2) Z is isomorphic to a product of tori of the form $R_{k^{\prime} / k}\left(G L_{1}\right)$, where each k^{\prime} / k is a finite separable extension and $R_{k^{\prime} / k}$ denotes the functor of restriction of scalars from k^{\prime} to k.

By $\left[\mathbf{B}\right.$, Theorem 22.6], the assumption (4.1) implies that $P^{\prime}=\beta(P), S^{\prime}=\beta(S)$ and $Q^{\prime}=\beta(Q)$ give a minimal k-parabolic subgroup, a maximal k-split torus and a maximal standard k-parabolic subgroup of G^{\prime}, respectively, and furthermore, the homomorphism $\left(\left.\beta\right|_{S}\right)^{*}: \boldsymbol{X}_{k}^{*}\left(S^{\prime}\right) \rightarrow \boldsymbol{X}_{k}^{*}(S)$ induced from β maps bijectively the relative root system Φ_{k}^{\prime} of $\left(G^{\prime}, S^{\prime}\right)$ onto Φ_{k}. From the assumption (4.2), it follows that β gives rise to the isomorphisms $G(k) / Z(k) \cong G^{\prime}(k), G(\boldsymbol{A}) / Z(\boldsymbol{A}) \cong G^{\prime}(\boldsymbol{A})$ and $X_{Q} \cong X_{Q^{\prime}}$ (cf. [Oe, III 2.2]). By the commutative diagram

we obtain the isomorphisms $G(\boldsymbol{A})^{1} / Z(\boldsymbol{A})^{1} \cong G^{\prime}(\boldsymbol{A})^{1}, \quad Q(\boldsymbol{A})^{1} / Z(\boldsymbol{A})^{1} \cong Q^{\prime}(\boldsymbol{A})^{1}$ and $Y_{Q} \cong Y_{Q^{\prime}}$. Since $Z \cap Z_{G}$ is the greatest k-split subtorus of Z, the character group $\boldsymbol{X}_{k}^{*}\left(Z / Z \cap Z_{G}\right)$ is trivial. Therefore, β induces an isomorphism $\boldsymbol{X}_{k}^{*}\left(M_{Q^{\prime}} / Z_{G^{\prime}}\right) \rightarrow$ $\boldsymbol{X}_{k}^{*}\left(M_{Q} / Z_{G}\right)$ and maps $\hat{\alpha}_{Q^{\prime}}$ to $\hat{\alpha}_{Q}$. The next proposition is now obvious.

Theorem 2. If the exact sequence

$$
1 \rightarrow Z \rightarrow G \xrightarrow{\beta} G^{\prime} \rightarrow 1
$$

of connected reductive groups defined over k satisfies the conditions (4.1) and (4.2), then $\gamma(G, Q, k)$ equals $\gamma\left(G^{\prime}, \beta(Q), k\right)$.

Example 2. If $\beta: G L_{n} \rightarrow P G L_{n}$ denotes a natural quotient morphism, then $\gamma\left(G L_{n}, Q, k\right)=\gamma\left(P G L_{n}, \beta(Q), k\right)$.

Example 3. Let D be a division algebra of finite dimension m^{2} over k and D° the opposition algebra of D. There are inner k-forms G and G^{\prime} of $G L_{m n}$ such that $G(k)=G L_{n}(D)$ and $G^{\prime}(k)=G L_{n}\left(D^{\circ}\right)$. We put

$$
w_{0}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right) \in G L_{n}\left(D^{\circ}\right)
$$

Then the morphism $\beta: G \rightarrow G^{\prime}$ defined by $\beta(g)=w_{0}\left({ }^{t} g^{-1}\right) w_{0}^{-1}$ yields a k-isomorphism. If we take a maximal k-parabolic subgroup Q_{j} of G as

$$
Q_{j}(k)=\left\{\left(\begin{array}{cc}
a & * \\
0 & b
\end{array}\right): a \in G L_{j}(D), b \in G L_{n-j}(D)\right\}
$$

for $1 \leq j \leq n-1$, then $\beta\left(Q_{j}(k)\right)$ equals

$$
Q_{n-j}^{\prime}(k)=\left\{\left(\begin{array}{cc}
a^{\prime} & * \\
0 & b^{\prime}
\end{array}\right): a^{\prime} \in G L_{n-j}\left(D^{\circ}\right), b^{\prime} \in G L_{j}\left(D^{\circ}\right)\right\} .
$$

Therefore,

$$
\gamma\left(G, Q_{j}, k\right)=\gamma\left(G^{\prime}, Q_{n-j}^{\prime}, k\right)
$$

This relation was first proved in [W3]. Particularly, if $m=1$, this is none other than the duality relation

$$
\gamma\left(G L_{n}, Q_{j}, k\right)=\gamma\left(G L_{n}, Q_{n-j}, k\right) .
$$

Remark. When $\operatorname{ch}(k)=0$, for a given connected reductive k-group G, there exists a group extension

$$
1 \rightarrow Z \rightarrow \tilde{G} \rightarrow G \rightarrow 1
$$

defined over k such that Z satisfies (4.1) and (4.2), and in addition, the derived group of \tilde{G} is simply connected. Such an extension of G is called z-extension (cf. [K, §1]).

Second, we consider a restriction of scalars. Take a subfield ℓ of k such that k / ℓ is a finite separable extension and put $G^{\prime}=R_{k / \ell}(G), P^{\prime}=R_{k / \ell}(P)$ and $Q^{\prime}=R_{k / \ell}(Q)$. The adele ring of ℓ is denoted by \boldsymbol{A}_{ℓ}. Since the functor $R_{k / \ell}$ yields a bijection from the set of k-parabolic subgroups of G to the set of ℓ-parabolic subgroups of G^{\prime} ([BTi, Corollaire 6.19]), P^{\prime} and Q^{\prime} give a minimal ℓ-parabolic subgroup and a maximal standard ℓ-parabolic subgroup of G^{\prime}, respectively. Although the torus $R_{k / \ell}(S)$ does not necessarily split over ℓ, the greatest ℓ-split subtorus S^{\prime} of $R_{k / \ell}(S)$ gives a maximal ℓ-split torus of G^{\prime}. For an arbitrary connected k-subgroup R of G and $R^{\prime}=R_{k / \ell}(R)$, we
introduce a canonical homomorphism $\beta^{*}: \boldsymbol{X}_{k}^{*}(R) \rightarrow \boldsymbol{X}_{\ell}^{*}\left(R^{\prime}\right)$. If A is an ℓ-algebra, there is a canonical identification $R^{\prime}(A)$ with $R\left(A \otimes_{\ell} k\right)$. Then, for $\chi \in \boldsymbol{X}_{k}^{*}(R), \beta^{*}(\chi)$ is defined to be

$$
\beta^{*}(\chi)(a)=N_{A \otimes k / A}(\chi(a)), \quad\left(a \in R^{\prime}(A)=R\left(A \otimes_{\ell} k\right)\right)
$$

for any ℓ-algebra A, where $N_{A \otimes k / A}:\left(A \otimes_{\ell} k\right)^{\times} \rightarrow A^{\times}$denotes the norm. This β^{*} is bijective ($\left[\mathbf{O e}\right.$, II Theorem 2.4]), and if $R=S$, then β^{*} maps Φ_{k} to the relative root system Φ_{ℓ}^{\prime} of $\left(G^{\prime}, S^{\prime}\right)([\mathbf{B}-\mathbf{T i}, 6.21])$. From the commutative diagram

it follows $R(\boldsymbol{A})^{1}=R^{\prime}\left(\boldsymbol{A}_{\ell}\right)^{1}$. Accordingly, $Q(\boldsymbol{A})^{1} \backslash G(\boldsymbol{A})^{1}=Q^{\prime}\left(\boldsymbol{A}_{\ell}\right)^{1} \backslash G^{\prime}\left(\boldsymbol{A}_{\ell}\right)^{1}$. . Since $Z_{G^{\prime}}$ is the greatest ℓ-split torus in $R_{k / \ell}\left(Z_{G}\right)$, the natural quotient morphism $M_{Q^{\prime}} / Z_{G^{\prime}} \rightarrow$ $M_{Q^{\prime}} / R_{k / \ell}\left(Z_{G}\right)$ induces an isomorphism $X_{\ell}^{*}\left(M_{Q^{\prime}} / R_{k / \ell}\left(Z_{G}\right)\right) \cong \boldsymbol{X}_{\ell}^{*}\left(M_{Q^{\prime}} / Z_{G^{\prime}}\right)$. The composition of this and β^{*} yields an isomorphism between $\boldsymbol{X}_{k}^{*}\left(M_{Q} / Z_{G}\right)$ and $\boldsymbol{X}_{\ell}^{*}\left(M_{Q^{\prime}} / Z_{G^{\prime}}\right)$. This maps $\hat{\alpha}_{Q}$ to $\hat{\alpha}_{Q^{\prime}}$. Then, by definition of β^{*},

$$
\left|\hat{\alpha}_{Q^{\prime}}(m)\right|_{\boldsymbol{A}_{\ell}}=\left|N_{\boldsymbol{A} / \boldsymbol{A}_{\ell}}\left(\hat{\alpha}_{Q}(m)\right)\right|_{\boldsymbol{A}_{\ell}}=\left|\hat{\alpha}_{Q}(m)\right|_{\boldsymbol{A}}
$$

for $m \in M_{Q^{\prime}}\left(\boldsymbol{A}_{\ell}\right) \cap G^{\prime}\left(\boldsymbol{A}_{\ell}\right)^{1}=M_{Q}(\boldsymbol{A}) \cap G(\boldsymbol{A})^{1}$. In other words, $H_{Q^{\prime}}$ is equal to H_{Q} on $Y_{Q^{\prime}}=Y_{Q}$. As a consequence, we proved the following

Theorem 3. If k / ℓ is a finite separable extension, then $\gamma\left(R_{k / \ell}(G), R_{k / \ell}(Q), \ell\right)$ is equal to $\gamma(G, Q, k)$.

Finally, we show a generalization of Rankin's inequality. Let R and Q be two different maximal standard k-parabolic subgroups of G. We set $Q^{R}=M_{R} \cap Q, M_{Q}^{R}=$ $M_{R} \cap M_{Q}, U_{Q}^{R}=M_{R} \cap U_{Q}$ and $X_{Q}^{R}=Q^{R}(k) \backslash M_{R}(k)$. Then Q^{R} is a maximal standard parabolic subgroup of M_{R} with a Levi decomposition $U_{Q}^{R} M_{Q}^{R}$. We write $\hat{\alpha}_{Q}^{R}$ for the \boldsymbol{Z} basis $\hat{\alpha}_{Q^{R}}$ of $\boldsymbol{X}_{k}^{*}\left(M_{Q}^{R} / Z_{R}\right), z_{Q}^{R}$ for the map $z_{Q^{R}}: M_{R}(\boldsymbol{A}) \rightarrow Z_{R}(\boldsymbol{A}) M_{Q}^{R}(\boldsymbol{A})^{1} \backslash M_{Q}^{R}(\boldsymbol{A})$ and H_{Q}^{R} for the function $H_{Q^{R}}: M_{R}(\boldsymbol{A}) \rightarrow \boldsymbol{R}_{+}^{\times}$defined by $m \mapsto\left|\hat{\alpha}_{Q}^{R}\left(z_{Q}^{R}(m)\right)\right|_{\boldsymbol{A}}^{-1}$. The fundamental Hermite constants of $\left(M_{R}, Q^{R}\right)$ are given by

$$
\gamma\left(M_{R}, Q^{R}, k\right)=\max _{m \in M_{R}(\boldsymbol{A})^{1}} \min _{y \in X_{Q}^{R} m} H_{Q}^{R}(y) \quad \text { and } \tilde{\gamma}\left(M_{R}, Q^{R}, k\right)=\max _{m \in M_{R}(\boldsymbol{A})} \min _{y \in X_{Q}^{R_{m}}} H_{Q}^{R}(y) .
$$

The exact sequence

$$
1 \rightarrow Z_{R} / Z_{G} \rightarrow M_{Q}^{R} / Z_{G} \rightarrow M_{Q}^{R} / Z_{R} \rightarrow 1
$$

induces the exact sequence

$$
1 \rightarrow \boldsymbol{X}_{k}^{*}\left(M_{Q}^{R} / Z_{R}\right) \rightarrow \boldsymbol{X}_{k}^{*}\left(M_{Q}^{R} / Z_{G}\right) \rightarrow \boldsymbol{X}_{k}^{*}\left(Z_{R} / Z_{G}\right)
$$

From $\left.\hat{\alpha}_{R}\right|_{Z_{R}}=\hat{d}_{R} \alpha_{R} \neq 0$, it follows that the \boldsymbol{Q}-vector space $\boldsymbol{X}_{k}^{*}\left(M_{Q}^{R} / Z_{G}\right) \otimes_{\boldsymbol{Z}} \boldsymbol{Q}$ is spanned by $\hat{\alpha}_{Q}^{R}$ and $\left.\hat{\alpha}_{R}\right|_{M_{Q}^{R}}$, and hence there are $\omega_{1}, \omega_{2} \in \boldsymbol{Q}$ such that

$$
\begin{equation*}
\left.\hat{\alpha}_{Q}\right|_{M_{Q}^{R}}=\omega_{1} \hat{\alpha}_{Q}^{R}+\left.\omega_{2} \hat{\alpha}_{R}\right|_{M_{Q}^{R}} . \tag{4.3}
\end{equation*}
$$

Theorem 4. Being notations as above, one has the inequality

$$
\gamma(G, Q, k) \leq \tilde{\gamma}\left(M_{R}, Q^{R}, k\right)^{\omega_{1}} \gamma(G, R, k)^{\omega_{2}} .
$$

Proof. Since X_{Q}^{R} is naturally regarded as a subset of X_{Q}, the inequality

$$
\Gamma_{Q}(g)=\min _{x \in X_{Q}} H_{Q}(x g) \leq \min _{x \in X_{Q}^{R}} H_{Q}(x g)
$$

holds for $g \in G(\boldsymbol{A})^{1}$. By the Iwasawa decomposition, we write $g=u m h$, where $u \in$ $U_{R}(\boldsymbol{A}), m \in M_{R}(\boldsymbol{A}) \cap G(\boldsymbol{A})^{1}$ and $h \in K$. Then, for $x \in M_{R}(k), x u x^{-1} \in U_{R}(\boldsymbol{A}) \subset Q(\boldsymbol{A})^{1}$, and

$$
H_{Q}(x g)=H_{Q}\left(\left(x u x^{-1}\right) x m h\right)=H_{Q}(x m)=\left|\hat{\alpha}_{Q}\left(z_{Q}(x m)\right)\right|_{A}^{-1} .
$$

If we write $x m=u_{1} m_{1} h_{1}, u_{1} \in U_{Q}^{R}(\boldsymbol{A}), m_{1} \in M_{Q}^{R}(\boldsymbol{A})$ and $h_{1} \in K^{M_{R}}$ by the Iwasawa decomposition $M_{R}(\boldsymbol{A})=U_{Q}^{R}(\boldsymbol{A}) M_{Q}^{R}(\boldsymbol{A}) K^{M_{R}}$, then

$$
\begin{aligned}
H_{Q}(x m) & =\left|\hat{\alpha}_{Q}\left(m_{1}\right)\right|_{\boldsymbol{A}}^{-1}=\left|\hat{\alpha}_{Q}^{R}\left(m_{1}\right)\right|_{\boldsymbol{A}}^{-\omega_{1}}\left|\hat{\alpha}_{R}\left(m_{1}\right)\right|_{\boldsymbol{A}}^{-\omega_{2}} \\
& =\left|\hat{\alpha}_{Q}^{R}\left(z_{Q}^{R}(x m)\right)\right|_{\boldsymbol{A}}^{-\omega_{1}}\left|\hat{\alpha}_{R}(x m)\right|_{\boldsymbol{A}}^{-\omega_{2}}=H_{Q}^{R}(x m)^{\omega_{1}}\left|\hat{\alpha}_{R}(m)\right|_{\boldsymbol{A}}^{-\omega_{2}} \\
& =H_{Q}^{R}(x m)^{\omega_{1}} H_{R}(g)^{\omega_{2}} .
\end{aligned}
$$

Therefore,

$$
\Gamma_{Q}(g) \leq\left(\min _{x \in X_{Q}^{R}} H_{Q}^{R}(x m)\right)^{\omega_{1}} H_{R}(g)^{\omega_{2}} \leq \tilde{\gamma}\left(M_{R}, Q^{R}, k\right)^{\omega_{1}} H_{R}(g)^{\omega_{2}} .
$$

As Γ_{Q} is left $G(k)$-invariant, the inequality

$$
\Gamma_{Q}(g) \leq \tilde{\gamma}\left(M_{R}, Q^{R}, k\right)^{\omega_{1}} H_{R}(x g)^{\omega_{2}}
$$

holds for all $x \in G(k)$. Taking the minimum, we get

$$
\Gamma_{Q}(g) \leq \tilde{\gamma}\left(M_{R}, Q^{R}, k\right)^{\omega_{1}} \Gamma_{R}(g)^{\omega_{2}} .
$$

The assertion follows from this.
Notice that $\tilde{\gamma}\left(M_{R}, Q^{R}, k\right)=\gamma\left(M_{R}, Q^{R}, k\right)$ in the case of number fields.
Corollary. If $\operatorname{ch}(k)=0$, then $\gamma(G, Q, k) \leq \gamma\left(M_{R}, Q^{R}, k\right)^{\omega_{1}} \gamma(G, R, k)^{\omega_{2}}$.
Example 4. We use the same notations as in Example 1. For $i, j \in \boldsymbol{Z}$ with $1 \leq i<j \leq n-1$, both $R=Q_{j}$ and $Q=Q_{i}$ are maximal standard k-parabolic subgroups of $G L_{n}$. Then, $M_{R}=G L_{j} \times G L_{n-j}, M_{Q}=G L_{i} \times G L_{n-i}$ and $M_{Q}^{R}=G L_{i} \times G L_{j-i} \times G L_{n-j}$. We denote an element of M_{Q}^{R} by

$$
\operatorname{diag}(a, b, c)=\left(\begin{array}{ccc}
a & & 0 \\
& b & \\
0 & & c
\end{array}\right), \quad\left(a \in G L_{i}, b \in G L_{j-i}, c \in G L_{n-j}\right) .
$$

It is easy to see

$$
\begin{aligned}
\hat{\alpha}_{Q}^{R}(\operatorname{diag}(a, b, c)) & =(\operatorname{det} a)^{(j-i) / \operatorname{gcd}(i, j-i)}(\operatorname{det} b)^{-i / \operatorname{gcd}(i, j-i)} \\
\left.\hat{\alpha}_{R}\right|_{M_{Q}^{R}}(\operatorname{diag}(a, b, c)) & =(\operatorname{det} a)^{(n-j) / \operatorname{gcd}(j, n-j)}(\operatorname{det} b)^{(n-j) / \operatorname{gcd}(j, n-j)}(\operatorname{det} c)^{-j / \operatorname{gcd}(j, n-j)} \\
\left.\hat{\alpha}_{Q}\right|_{M_{Q}^{R}}(\operatorname{diag}(a, b, c)) & =(\operatorname{det} a)^{(n-i) / \operatorname{gcd}(i, n-i)}(\operatorname{det} b)^{-i / \operatorname{gcd}(i, n-i)}(\operatorname{det} c)^{-i / \operatorname{gcd}(i, n-i)} .
\end{aligned}
$$

Thus,

$$
\omega_{1}=\frac{n}{j} \frac{\operatorname{gcd}(i, j-i)}{\operatorname{gcd}(i, n-i)}, \quad \omega_{2}=\frac{i}{j} \frac{\operatorname{gcd}(j, n-j)}{\operatorname{gcd}(i, n-i)} .
$$

Theorem 4 deduces

$$
\gamma\left(G L_{n}, Q_{i}, k\right) \leq \tilde{\gamma}\left(M_{Q_{j}}, Q_{i}^{Q_{j}}, k\right)^{(n / j)(\operatorname{gcd}(i, j-i) / \operatorname{gcd}(i, n-i))} \gamma\left(G L_{n}, Q_{j}, k\right)^{(i / j)(\operatorname{gcd}(j, n-j) / \operatorname{gcd}(i, n-i))} .
$$

If $\operatorname{ch}(k)=0$, then, by Example 1, this reduces to Rankin's inequality

$$
\gamma_{n, i}(k) \leq \gamma_{j, i}(k) \gamma_{n, j}(k)^{i / j} .
$$

5. A lower bound of γ_{Q}.

We prove an analogous inequality to (3.3) when $\operatorname{ch}(k)>0$. Thus we assume $\operatorname{ch}(k)>0$ throughout this section.

Lemma 1. If f is a right K-invariant measurable function on Y_{Q},

$$
\int_{Y_{Q}} f(y) d \omega_{Y_{Q}}(y)=\frac{C_{G} d_{Q}^{*}}{C_{Q} d_{G}^{*}} \sum_{M_{Q}(\boldsymbol{A})^{1} \xi \in M_{Q}(\boldsymbol{A})^{1} \backslash\left(M_{Q}(\boldsymbol{A}) \cap G(\boldsymbol{A})^{1}\right)} \delta_{Q}(\xi)^{-1} f(\xi) .
$$

Proof. Let $\phi \in C_{0}\left(G(\boldsymbol{A})^{1}\right)$ be a right K-invariant function. By the definition of invariant measures, we have

$$
\begin{aligned}
\int_{G(\boldsymbol{A})^{1}} \phi(g) d \omega_{G(\boldsymbol{A})^{1}}(g) & =\left(d_{G}^{*}\right)^{-1} \int_{G(\boldsymbol{A})^{1^{2}}} \phi(g) d \omega_{\boldsymbol{A}}^{G}(g) \\
& =\frac{C_{G}}{C_{Q} d_{G}^{*}} \int_{U_{Q}(\boldsymbol{A}) \times\left(M_{Q}(\boldsymbol{A}) \cap G(\boldsymbol{A})^{1}\right)} \phi(u m) \delta_{Q}(m)^{-1} d \omega_{\boldsymbol{A}}^{U_{Q}}(u) d \omega_{\boldsymbol{A}}^{M_{Q}}(m) \\
& =\frac{C_{G} d_{Q}^{*}}{C_{Q} d_{G}^{*}} \sum_{M_{Q}(\boldsymbol{A})^{1} \in M_{Q}(\boldsymbol{A})^{1} \backslash\left(M_{Q}(\boldsymbol{A}) \cap G(\boldsymbol{A})^{1}\right)} \delta_{Q}(\xi)^{-1} f(\xi),
\end{aligned}
$$

where

$$
f(\xi)=\int_{U_{Q}(\boldsymbol{A}) \times M_{Q}(\boldsymbol{A})^{1}} \phi(u m \xi) d \omega_{\boldsymbol{A}}^{U_{Q}}(u) d \omega_{M_{Q}(\boldsymbol{A})^{1}}(m)=\int_{Q(\boldsymbol{A})^{1}} \phi(g \xi) d \omega_{Q(\boldsymbol{A})^{1}}(g) .
$$

On the other hand,

$$
\begin{aligned}
\int_{G(\boldsymbol{A})^{1}} \phi(g) d \omega_{G(\boldsymbol{A})^{1}}(g) & =\int_{Y_{Q}} \int_{Q(\boldsymbol{A})^{1}} \phi(g y) d \omega_{Q(\boldsymbol{A})^{1}}(g) d \omega_{Y_{Q}}(y) \\
& =\int_{Y_{Q}} f(y) d \omega_{Y_{Q}}(y) .
\end{aligned}
$$

Theorem 5. If $\operatorname{ch}(k)>0$, one has

$$
\left(\frac{C_{Q} d_{G}^{*} \tau(G)}{C_{G} d_{Q}^{*} \tau(Q)}\left(1-q_{0}^{-\hat{e}_{Q}}\right)\right)^{1 / \hat{e}_{Q}}<q_{0}^{j_{0}+1} \leq \gamma_{Q}
$$

where the integer j_{0} is given by

$$
j_{0}=\max \left\{j \in \boldsymbol{Z}: q_{0}^{j \hat{e}_{Q}} \leq \frac{C_{Q} d_{G}^{*} \tau(G)}{C_{G} d_{Q}^{*} \tau(Q)}\left(1-q_{0}^{-\hat{e}_{Q}}\right)\right\}
$$

and $q_{0}=q_{0}(Q)$ is the generator of the value group $\left|\hat{\alpha}_{Q}\left(M_{Q}(\boldsymbol{A}) \cap G(\boldsymbol{A})^{1}\right)\right|_{A}$ which is greater than one.

Proof. For $j \in \boldsymbol{Z}$, we define the function $\psi_{j}: q_{0}^{\boldsymbol{Z}} \rightarrow \boldsymbol{R}$ by

$$
\psi_{j}\left(q_{0}^{i}\right)= \begin{cases}1 & (i \leq j) \\ 0 & (i>j) .\end{cases}
$$

Then, by Lemma 1,

$$
\begin{aligned}
I_{j} & =\int_{Y_{Q}} \psi_{j}\left(H_{Q}(y)\right) d \omega_{Y_{Q}}(y) \\
& =\frac{C_{G} d_{Q}^{*}}{C_{Q} d_{G}^{*}} \sum_{M_{Q}(\boldsymbol{A})^{1} \xi \in M_{Q}(\boldsymbol{A})^{1} \backslash\left(M_{Q}(\boldsymbol{A}) \cap G(\boldsymbol{A})^{1}\right)} \delta_{Q}(\xi)^{-1} \psi_{j}\left(H_{Q}(\xi)\right) .
\end{aligned}
$$

Since H_{Q} is bijective from $M_{Q}(\boldsymbol{A})^{1} \backslash\left(M_{Q}(\boldsymbol{A}) \cap G(\boldsymbol{A})^{1}\right)$ to q_{0}^{Z} and $\delta_{Q}(m)^{-1}=H_{Q}(m)^{\hat{e}_{Q}}$ for $m \in M_{Q}(\boldsymbol{A})$, we have

$$
I_{j}=\frac{C_{G} d_{Q}^{*}}{C_{Q} d_{G}^{*}} \sum_{i=-\infty}^{j} q_{0}^{i \hat{e}_{Q}}=\frac{C_{G} d_{Q}^{*}}{C_{Q} d_{G}^{*}} \frac{q_{0}^{j \hat{e}_{Q}}}{1-q_{0}^{-\hat{e}_{Q}}} .
$$

If j satisfies $I_{j}<\tau(G) / \tau(Q)$, then

$$
I_{j}=\frac{1}{\tau(Q)} \int_{G(k) \backslash G(A)^{1}} \sum_{x \in X_{Q}} \psi_{j}\left(H_{Q}(x g)\right) d \omega_{G}(g)<\frac{\tau(G)}{\tau(Q)} .
$$

Therefore, at least one $g_{0} \in G(\boldsymbol{A})^{1}$,

$$
\sum_{x \in X_{Q}} \psi_{j}\left(H_{Q}\left(x g_{0}\right)\right)<1
$$

holds, and hence $\psi_{j}\left(H_{Q}\left(x g_{0}\right)\right)=0$ for all $x \in X_{Q}$. This implies

$$
\min _{x \in X_{Q}} H_{Q}\left(x g_{0}\right) \geq q_{0}^{j+1}
$$

and

$$
\begin{aligned}
\gamma_{Q} & \geq q_{0} \sup \left\{q_{0}^{j}: \frac{C_{G} d_{Q}^{*}}{C_{Q} d_{G}^{*}} \frac{q_{0}^{j \hat{e}_{Q}}}{1-q_{0}^{-\hat{e}_{Q}}}<\frac{\tau(G)}{\tau(Q)}\right\}=q_{0}^{1+j_{0}} \\
& >\left(\frac{C_{Q} d_{G}^{*} \tau(G)}{C_{G} d_{Q}^{*} \tau(Q)}\left(1-q_{0}^{-\hat{e}_{Q}}\right)\right)^{1 / \hat{e}_{Q}}
\end{aligned}
$$

Remark. In $\S 6$, Example 5, we will see an example of γ_{Q} satisfying

$$
\left(\frac{C_{Q} d_{G}^{*} \tau(G)}{C_{G} d_{Q}^{*} \tau(Q)}\left(1-q_{0}^{-\hat{e}_{Q}}\right)\right)^{1 / \hat{e}_{Q}}<\gamma_{Q}<q_{0}\left(\frac{C_{Q} d_{G}^{*} \tau(G)}{C_{G} d_{Q}^{*} \tau(Q)}\left(1-q_{0}^{-\hat{e}_{Q}}\right)\right)^{1 / \hat{e}_{Q}}
$$

If G splits over k, this lower bound is described more precisely. For $v \in \mathfrak{B}_{f}$, we choose each v component K_{v} of K as follows:
(5.1) K_{v} is a hyperspecial maximal compact subgroup $\mathscr{G}_{v}\left(\mathfrak{D}_{v}\right)$ of $G\left(k_{v}\right)$, and
(5.2) $K_{v} \cap M_{Q}\left(k_{v}\right)$ is a hyperspecial maximal compact subgroup $\mathscr{M}_{Q, v}\left(\mathfrak{D}_{v}\right)$ of $M_{Q}\left(k_{v}\right)$, where \mathscr{G}_{v} and $\mathscr{M}_{Q, v}$ stand for the smooth affine group schemes defined over \mathfrak{D}_{v} with generic fiber G and M_{Q}, respectively (cf. [Ti2]).

Then it is known by [Oe, I Proposition 2.5] that

$$
\begin{aligned}
\omega_{\boldsymbol{A}}^{G}(K) & =\mu_{\boldsymbol{A}}(\boldsymbol{A} / k)^{-\operatorname{dim} G} \sigma_{k}(G)^{-1} \prod_{v \in \mathfrak{B}_{f}} L_{v}\left(1, \sigma_{G}\right) q_{v}^{-\operatorname{dim} G}\left|\mathscr{G}_{v}\left(\tilde{\mathfrak{f}}_{v}\right)\right| \\
\omega_{\boldsymbol{A}}^{M_{Q}}\left(K^{M_{Q}}\right) & =\mu_{\boldsymbol{A}}(\boldsymbol{A} / k)^{-\operatorname{dim} M_{Q}} \sigma_{k}\left(M_{Q}\right)^{-1} \prod_{v \in \mathfrak{B}_{f}} L_{v}\left(1, \sigma_{M_{Q}}\right) q_{v}^{-\operatorname{dim} M_{Q}}\left|\mathscr{M}_{Q, v}\left(\tilde{\mathrm{f}}_{v}\right)\right| \\
\omega_{\boldsymbol{A}}^{U_{Q}}\left(K \cap U_{Q}(\boldsymbol{A})\right) & =\mu_{\boldsymbol{A}}(\boldsymbol{A} / k)^{-\operatorname{dim} U_{Q}} .
\end{aligned}
$$

In the integral formula (1.2), if we put the characteristic function of K as f, then

$$
\frac{C_{G}}{C_{Q}}=\frac{\omega_{\boldsymbol{A}}^{G}(K)}{\omega_{\boldsymbol{A}}^{U_{Q}}\left(K \cap U_{Q}(\boldsymbol{A})\right) \omega_{\boldsymbol{A}}^{M_{Q}}\left(K^{M_{Q}}\right)} .
$$

Since G splits over k, σ_{G} is the trivial representation of $\operatorname{Gal}(\bar{k} / k)$ of dimension $\operatorname{rank} \boldsymbol{X}^{*}(G)=\operatorname{dim} Z_{G} . \quad$ As Q is a maximal parabolic subgroup, we have

$$
\frac{\sigma_{k}(G)}{\sigma_{k}\left(M_{Q}\right)}=\frac{\left(\operatorname{Res}_{s=1} \zeta_{k}(s)\right)^{\operatorname{dim} Z_{G}}}{\left(\operatorname{Res}_{s=1} \zeta_{k}(s)\right)^{\operatorname{dim} Z_{Q}}}=\frac{1}{\operatorname{Res}_{s=1} \zeta_{k}(s)}=\frac{q^{g(k)-1}(q-1) \log q}{h_{k}},
$$

where $\zeta_{k}(s)$ denotes the congruence zeta function of k and h_{k} the divisor class number of k. Summing up, we obtain

Theorem 6. If $\operatorname{ch}(k)>0$ and G splits over k, then

$$
\left(\frac{\left(1-q_{0}^{-\hat{e}_{Q}}\right) q^{(g(k)-1) \operatorname{dim} G / Q}}{\operatorname{Res}_{s=1} \zeta_{k}(s)} \frac{d_{G}^{*} \tau(G)}{d_{Q}^{*} \tau(Q)} \prod_{v \in \mathfrak{Y}}\left(1-q_{v}^{-1}\right) q_{v}^{\operatorname{dim} G / M_{Q}} \frac{\left|\mathscr{M}_{Q, v}\left(\tilde{\mathfrak{f}}_{v}\right)\right|}{\left|\mathscr{G}_{v}\left(\mathfrak{f}_{v}\right)\right|}\right)^{1 / \hat{e}_{Q}}<\gamma_{Q} .
$$

6. Computations of $\gamma\left(G L_{n}, Q, k\right)$ when $\operatorname{ch}(k)>0$.

In this section, we assume $\operatorname{ch}(k)>0$. We concentrate our attention on $G=G L_{n}$ because this case gives an analogue of classical Hermite's constant. We use the same notations as in Example 1 of $\S 3$. Namely, V denotes an n dimensional vector space defined over $k, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ a k-basis of $V(k), Q_{j}$ the stabilizer of the subspace spanned by $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{j}$ in $G L_{n}$ and $\pi_{j}: G L_{n} \rightarrow G L\left(V_{\pi_{j}}\right)$ the j-th exterior representation of $G L_{n}$ for $1 \leq j \leq n-1$. We take K as $\prod_{v \in \mathfrak{B}} G L_{n}\left(\mathfrak{D}_{v}\right)$. The global height $H_{j}=H_{\pi_{j}}$ on $V_{\pi_{j}}(k)$ is defined to be

$$
H_{j}\left(\sum_{I} a_{I} \boldsymbol{e}_{I}\right)=\prod_{v \in \mathfrak{B}} \sup _{I}\left(\left|a_{I}\right|_{v}\right) .
$$

As an analogue of the number fields case, we can define the constant

$$
\gamma_{n, j}(k)=\max _{g \in G L_{n}(\boldsymbol{A})} \min _{\substack{x_{1}, \ldots, x_{j} \in V(k) \\ x_{1} \wedge \ldots \wedge x_{j} \neq 0}} \frac{H_{j}\left(g x_{1} \wedge \cdots \wedge g x_{j}\right)}{|\operatorname{det} g|_{\boldsymbol{A}}^{j / n}} .
$$

It is immediate to see that

$$
\frac{H_{j}\left(g^{-1} \boldsymbol{e}_{1} \wedge \cdots \wedge g^{-1} \boldsymbol{e}_{j}\right)}{\left|\operatorname{det} g^{-1}\right|_{\boldsymbol{A}}^{j / n}}=H_{Q_{j}}(g)^{\operatorname{gcd}(j, n-j) / n}
$$

for $g \in G L_{n}(\boldsymbol{A})$, and hence

$$
\gamma_{n, j}(k)=\tilde{\gamma}\left(G L_{n}, Q_{j}, k\right)^{\operatorname{gcd}(j, n-j) / n} .
$$

In general, $Z_{G L_{n}}(\boldsymbol{A}) G L_{n}(\boldsymbol{A})^{1}$ is not equal to $G L_{n}(\boldsymbol{A})$ in contrast to the number fields case. It is obvious that $Z_{G L_{n}}(\boldsymbol{A}) G L_{n}(\boldsymbol{A})^{1}$ is an index finite normal subgroup of $G L_{n}(\boldsymbol{A})$. Let $\Xi=\{\xi\}$ be a complete set of representatives for the cosets of $Z_{G L_{n}}(\boldsymbol{A}) G L_{n}(\boldsymbol{A})^{1} \backslash G L_{n}(\boldsymbol{A})$. If we put

$$
\begin{aligned}
\gamma_{n, j}(k)_{\xi} & =\max _{g \in Z_{G L_{n}}(\boldsymbol{A}) G L_{n}(\boldsymbol{A})^{1} \xi} \min _{\substack{x_{1}, \ldots, x_{j} \in V(k) \\
x_{1} \wedge \ldots \wedge x_{j} \neq 0}} \frac{H_{j}\left(g x_{1} \wedge \cdots \wedge g x_{j}\right)}{|\operatorname{det} g|_{\boldsymbol{A}}^{j / n}} \\
& =\frac{1}{|\operatorname{det} \xi|_{\boldsymbol{A}}^{j / n}} \max _{\substack{\left.g \in G L_{n}(\boldsymbol{A})^{1}\right)^{\prime}{ }_{\begin{subarray}{c}{x_{1} \\
x_{1}, \ldots, x_{j} \in V(k) \\
x_{1} \wedge \ldots \wedge x_{j} \neq 0} }}}\end{subarray}} H_{j}\left(g x_{1} \wedge \cdots \wedge g x_{j}\right)
\end{aligned}
$$

for $\xi \in \Xi$, then

$$
\gamma_{n, j}(k)=\max _{\xi \in \Xi} \gamma_{n, j}(k)_{\xi},
$$

and in particular, for the unit element $\xi=1$,

$$
\gamma_{n, j}(k)_{1}=\gamma\left(G L_{n}, Q_{j}, k\right)^{\operatorname{gcd}(j, n-j) / n} .
$$

Since $1 \leq \gamma_{n, j}(k)_{1}$ by the definition of H_{j}, we obtain

$$
\begin{equation*}
1 \leq \gamma\left(G L_{n}, Q_{j}, k\right) \leq \gamma_{n, j}(k)^{n / \operatorname{gcd}(j, n-j)} \tag{6.1}
\end{equation*}
$$

Lemma 2. $\quad \gamma_{n, j}(k) \leq q^{j g(k)}$.
Proof. By $\left[\mathbf{T 1}, \S 5\right.$, Corollary 1], for a given $g \in G L_{n}(\boldsymbol{A})$, there are linearly independent vectors x_{1}, \ldots, x_{n} of $V(k)$ with

$$
H_{1}\left(g x_{1}\right) \cdots H_{1}\left(g x_{n}\right) \leq q^{n g(k)}|\operatorname{det} g|_{A}
$$

We may assume $H_{1}\left(g x_{1}\right) \leq H_{1}\left(g x_{2}\right) \leq \cdots \leq H_{1}\left(g x_{n}\right)$. Then,

$$
\begin{aligned}
H_{j}\left(g x_{1} \wedge \cdots \wedge g x_{j}\right) & \leq H_{1}\left(g x_{1}\right) \cdots H_{1}\left(g x_{j}\right) \\
& \leq\left(H_{1}\left(g x_{1}\right) \cdots H_{1}\left(g x_{n}\right)\right)^{j / n} \\
& \leq q^{j g(k)}|\operatorname{det} g|_{A}^{j / n}
\end{aligned}
$$

This implies the assertion. We note that our definition of the global height H_{j} is slightly different from [T1].

Theorem 7. We have the following estimate.

$$
\begin{aligned}
& \left(\frac{q^{(g(k)-1)(j(n-j)+1)}(q-1)\left(1-q^{-n}\right)}{h_{k}} \frac{\prod_{i=n-j+1}^{n} \zeta_{k}(i)}{\prod_{i=2}^{j} \zeta_{k}(i)}\right)^{1 / \operatorname{gcd}(j, n-j)} \\
& \quad<\gamma\left(G L_{n}, Q_{j}, k\right) \leq \tilde{\gamma}\left(G L_{n}, Q_{j}, k\right) \leq q^{n j g(k) / \operatorname{gcd}(j, n-j)}=q_{0}\left(Q_{j}\right)^{j g(k)}
\end{aligned}
$$

Proof. Recall that $q_{0}\left(Q_{j}\right)$ is the generator of the value group $\mid \hat{\alpha}_{Q_{j}}\left(M_{Q_{j}}(\boldsymbol{A}) \cap\right.$ $\left.G L_{n}(\boldsymbol{A})^{1}\right)\left.\right|_{\boldsymbol{A}}$ which is greater than one. Since

$$
M_{Q_{j}}=\left\{\operatorname{diag}(a, b)=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right): a \in G L_{j}, b \in G L_{n-j}\right\}
$$

any $\operatorname{diag}(a, b) \in M_{Q_{j}}(\boldsymbol{A}) \cap G L_{n}(\boldsymbol{A})^{1}$ satisfies

$$
|\operatorname{det} a|_{A}=|\operatorname{det} b|_{\boldsymbol{A}}^{-1} .
$$

The \boldsymbol{Z}-basis $\hat{\alpha}_{Q_{j}}$ of $\boldsymbol{X}^{*}\left(M_{Q_{j}} / Z_{G L_{n}}\right)$ is given by

$$
\hat{\alpha}_{Q_{j}}(\operatorname{diag}(a, b))=(\operatorname{det} a)^{(n-j) / \operatorname{gcd}(j, n-j)}(\operatorname{det} b)^{-j / \operatorname{gcd}(j, n-j)} .
$$

Hence, $\left|\hat{\alpha}_{Q_{j}}(\operatorname{diag}(a, b))\right|_{A}=|\operatorname{det} a|^{n / \operatorname{gcd}(j, n-j)}$ holds for $\operatorname{diag}(a, b) \in M_{Q_{j}}(\boldsymbol{A}) \cap G L_{n}(\boldsymbol{A})^{1}$. This and $\left\{|\operatorname{det} a|_{\boldsymbol{A}}: a \in G L_{j}(\boldsymbol{A})\right\}=q^{\boldsymbol{Z}}$ conclude $q_{0}\left(Q_{j}\right)=q^{n / \operatorname{gcd}(j, n-j)}$. The upper estimate is obvious from Lemma 2 and (6.1). Since the order of the finite group $G L_{n}\left(\mathfrak{f}_{v}\right)$ is equal to $\left(q_{v}^{n}-1\right)\left(q_{v}^{n}-q_{v}\right) \cdots\left(q_{v}^{n}-q_{v}^{n-1}\right)$, one has

$$
\prod_{v \in \mathfrak{B}}\left(1-q_{v}^{-1}\right) q_{v}^{\operatorname{dim} G L_{n} / M_{Q_{j}}} \frac{\left|G L_{j}\left(\mathfrak{f}_{v}\right) \times G L_{n-j}\left(\mathfrak{f}_{v}\right)\right|}{\left|G L_{n}\left(\tilde{\mathfrak{f}}_{v}\right)\right|}=\frac{\prod_{i=n-j+1}^{n} \zeta_{k}(i)}{\prod_{i=2}^{j} \zeta_{k}(i)} .
$$

It is known that $\tau\left(G L_{n}\right)=\tau\left(G L_{j} \times G L_{n-j}\right)=1$ (cf. [We1, Theorem 3.2.1] and [Oe, III Theorem 5.2]). From the surjectivity of $\vartheta_{G L_{n}}$, it follows $d_{G L_{n}}^{*}=\log q, d_{Q_{j}}^{*}=d_{G L_{j} \times G L_{n-j}}^{*}=$ $(\log q)^{2}$ and

$$
\frac{1}{\operatorname{Res}_{s=1} \zeta_{k}(s)} \frac{d_{G L_{n}}^{*} \tau\left(G L_{n}\right)}{d_{Q_{j}}^{*} \tau\left(Q_{j}\right)}=\frac{q^{g(k)-1}(q-1)}{h_{k}}
$$

Then, the lower bound is a result of Theorem 6 and $\hat{e}_{Q_{j}}=\operatorname{gcd}(j, n-j)$.
Corollary 1. If $g(k)=0$, i.e., k is a rational function field over \boldsymbol{F}_{q}, then $\gamma\left(G L_{n}, Q_{j}, k\right)=\tilde{\gamma}\left(G L_{n}, Q_{j}, k\right)=1$ for all n and j.

It is known that the zeta function $\zeta_{k}(s)$ is of the form

$$
\zeta_{k}(s)=\frac{L_{k}\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)},
$$

where $L_{k}(t)$ is a polynomial of degree $2 g(k)$ with integer coefficients. If we write $L_{k}(t)$ as

$$
L_{k}(t)=a_{0}+a_{1} t+\cdots+a_{2 g(k)} t^{2 g(k)}
$$

then a_{i} 's have the following properties:

1) $a_{0}=1, a_{2 g(k)}=q^{g(k)}$ and $a_{2 g(k)-i}=q^{g(k)-i} a_{i}$ for $1 \leq i \leq g(k)$.
2) $a_{1}=N(k)-(q+1)$, where $N(k)=\#\left\{v \in \mathfrak{B}:\left[\tilde{\mathfrak{f}}_{v}: \boldsymbol{F}_{q}\right]=1\right\}$.
3) $L_{k}(1)=h_{k}$.

In this notation, Theorem 4 deduces the following inequality.
Corollary 2. If $j=1$, then

$$
\frac{q^{g(k) n}(q-1) L_{k}\left(q^{-n}\right)}{h_{k}\left(q^{n}-q\right)}<\gamma\left(G L_{n}, Q_{1}, k\right) \leq \tilde{\gamma}\left(G L_{n}, Q_{1}, k\right) \leq q^{g(k) n}=q_{0}\left(Q_{1}\right)^{g(k)} .
$$

Example 5. If $g(k)=0$, then $L_{k}(t)=1$ and $h_{k}=1$. So that we have

$$
\frac{q-1}{q^{n}-q}<\gamma\left(G L_{n}, Q_{1}, k\right)=1<q^{n} \frac{q-1}{q^{n}-q}=q_{0}\left(Q_{1}\right) \frac{q-1}{q^{n}-q} .
$$

Put

$$
\varepsilon_{n}(k)=\frac{q^{n}(q-1) L_{k}\left(q^{-n}\right)}{h_{k}\left(q^{n}-q\right)} .
$$

By Corollary 2, if $1 \leq \varepsilon_{n}(k)$ holds for k, then both $\gamma\left(G L_{n}, Q_{1}, k\right)$ and $\tilde{\gamma}\left(G L_{n}, Q_{1}, k\right)$ must be equal to $q^{g(k) n}$.

Example 6. If $g(k)=1$, then

$$
\varepsilon_{n}(k)=\frac{(q-1)\left(q^{2 n}+a_{1} q^{n}+q\right)}{\left(q+a_{1}+1\right)\left(q^{2 n}-q q^{n}\right)} .
$$

We have the inequality:

$$
1 \leq \frac{q^{2 n}+a_{1} q^{n}+q}{q^{2 n}-q q^{n}}
$$

This is obvious by the Hasse-Weil bound $\left|a_{1}\right| \leq 2 \sqrt{q}$. Hence, if $a_{1} \leq-2$, i.e., $h_{k} \leq$ $q-1$, then $\gamma\left(G L_{n}, Q_{1}, k\right)=\tilde{\gamma}\left(G L_{n}, Q_{1}, k\right)=q^{n}$ for all $n \geq 2$.

Remark. In the case of number fields, the explicit values of $\gamma\left(G L_{n}, Q_{1}, k\right)$ are very little known. One knows only $\gamma\left(G L_{n}, Q_{1}, \boldsymbol{Q}\right)$ for $2 \leq n \leq 8$ and $\gamma\left(G L_{2}, Q_{1}, k\right)$ for a few quadratic number fields k (cf. [BCIO], [O-W]).

References

[BCIO] R. Baeza, R. Coulangeon, M. I. Icaza and M. O'Ryan, Hermite's constant for quadratic number fields, Experiment. Math., 10 (2001), 543-551.
[B] A. Borel, Linear Algebraic Groups, 2nd ed., Springer, Grad. Texts in Math., 126, 1991.
[B-Ti] A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math., 27 (1965), 55-150.
[G] R. Godement, Domaines fondamentaux des groupes arithmétiques, Séminaire Bourbaki, 15, Exp. 257 (1962/1963).
[G-L] P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers, 2nd ed., North-Holland Math. Library, 37, North-Holland, 1987.
[H] G. Harder, Minkowskische Reductionstheorie über Functionenkörpern, Invent. Math., 7 (1969), 33-54.
[K] R. Kottwitz, Rational conjugacy classes in reductive groups, Duke Math. J., 49 (1982), 785-806.
$[R] \quad$ R. A. Rankin, On positive definite quadratic forms, J. London Math. Soc. (2), 28 (1953), 309-319.
[Oe] J. Oesterlé, Nombres de Tamagawa et groupes unipotents en caractéristique p, Invent. Math., 78 (1984), 13-88.
[O-W] S. Ohno and T. Watanabe, Estimates of Hermite constants for algebraic number fields, Comment. Math. Univ. St. Paul., 50 (2001), 53-63.
[S] J. H. Silverman, The theory of height functions, Arithmetic Geometry, Papers from the conference held at the University of Connecticut (ed. G. Cornell and J. Silverman), Springer, 1986, pp. 151-166.
[T1] J. L. Thunder, An adelic Minkowski-Hlawka theorem and an application to Siegel's lemma, J. Reine Angew. Math., 475 (1996), 167-185.
[T2] J. L. Thunder, Higher dimensional analogues of Hermite's constant, Michigan Math. J., 45 (1998), 301-314.
[Ti1] J. Tits, Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque, J. Reine Angew. Math., 247 (1971), 196-220.
[Ti2] J. Tits, Reductive groups over local fields, Proc. Sympos. Pure Math., 33 (1979), 29-69.
[W1] T. Watanabe, On an analog of Hermite's constant, J. Lie Theory, $\mathbf{1 0}$ (2000), 33-52.
[W2] T. Watanabe, Upper bounds of Hermite constants for orthogonal groups, Comment. Math. Univ. St. Paul., 48 (1999), 25-33.
[W3] T. Watanabe, Hermite constants of division algebras, Monatsh. Math., 135 (2002), 157-166.
[W4] T. Watanabe, The Hardy-Littlewood property of flag varieties, Nagoya Math. J., 170 (2003), 185211.
[We1] A. Weil, Adeles and Algebraic Groups, Progr. Math., 23, Birkhäuser, 1982.
[We2] A. Weil, Basic Number Theory, 3rd ed., Grundlehren Math. Wiss., 144, Springer, 1974.

Takao Watanabe

Department of Mathematics
Graduate School of Science Osaka University Toyonaka, Osaka, 560-0043 Japan
E-mail: watanabe@math.wani.osaka-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 11R56; Secondary 11G35, 14G25.
 Key Words and Phrases. Hermite constant, Tamagawa number, linear algebraic group.
 This research was partly supported by Grant-in-Aid for Scientific Research (No. 12640023), Ministry of Education, Culture, Sports, Science and Technology, Japan.

