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Abstract. The purpose of this paper is to study extendibility and stable extendibility
of vector bundles over real projective spaces. We determine a necessary and sufficient
condition that a vector bundle $\zeta$ over the real projective $n$-space $RP^{n}$ is extendible (or
stably extendible) to $RP^{m}$ for every $m>n$ in the case where $\zeta$ is the complexification of
the tangent bundle of $RP^{n}$ and in the case where $\zeta$ is the normal bundle associated to an
immersion of $RP^{n}$ in the Euclidean $(n+k)$ -space $R^{n+k}$ or its complexification, and give
examples of the normal bundle which is extendible to $RP^{N}$ but is not stably extendible to
$RP^{N+1}$ .

1. Introduction and results.

Let $F$ stand for any one of the real number field $R$ , the complex number field $C$ or
the quaternion number field $H$ . Let $X$ be a space and $A$ its subspace. An F-vector
bundle $\zeta$ of dimension $t$ over $A$ is said to be extendible (respectively stably extendible)
to $X$ , if there is a $t$-dimensional $F$-vector bundle over $X$ whose restriction to $A$ is
equivalent (respectively stably equivalent) to $\zeta$ as $F$-vector bundles, that is, if $\zeta$ is
equivalent (respectively stably equivalent) to the induced bundle $ i^{*}\alpha$ of a t-dimensional
$F$-vector bundle 2 over $X$ under the inclusion map $i$ : $A\rightarrow X$ (cf. [15, p. 20], [16, p. 191]
and [3, p. 273] $)$ .

An example of an $R$-vector bundle that is stably extendible but is not extendible
is given by the tangent bundle $\tau(S^{n})$ of the $n$-sphere $S^{n}$ in the $(n+1)$ -sphere $S^{n+1}$ for
$n\neq 1,3,7$ . In fact, $\tau(S^{n})\oplus 1$ is the $(n+1)$ -dimensional trivial bundle over $S^{n}$ and
so $\tau(S^{n})\oplus 1=(i^{*}n)\oplus 1$ , where $i$ : $S^{n}\rightarrow S^{n+1}$ is the inclusion map, 1 denotes the trivial
$R$-line bundle over $S^{n},$ $n$ denotes the trivial $R$-vector bundle over $S^{n+1}$ of dimension $n$

and $\oplus$ denotes the Whitney sum. Hence $\tau(S^{n})$ is stably extendible to $S^{n+1}$ . But $\tau(S^{n})$

is not extendible to $S^{n+1}$ for $n\neq 1,3,7$ (cf. [10, Proof of Theorem 2.2]).
It is important in topology and in algebraic geometry to determine whether an

$F$-vector bundle $\zeta$ is stably equivalent to a sum of $F$-line bundles. Let $F=R$ or $C$

and let $\zeta$ be an $F$-vector bundle of dimension $t$ over the projective $n$-space $RP^{n}$ . Then
$\zeta$ is stably equivalent to a sum of $tF$-line bundles if and only if $\zeta$ is stably extendible
to $RP^{m}$ for every $m>n$ (Theorem 3.2). So in this paper we firstly study the problem:
Determine the condition that an $F$-vector bundle over $RP^{n}$ is extendible (or stably
extendible) to $RP^{m}$ for every $m>n$ . As for the problem, several results have been
obtained (cf. $[5]-[10],$ $[12]$ and [15]).
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Let $\tau(RP^{n})$ denote the tangent bundle of $RP^{n}$ . We have proved in [6, Theorem
6.6] and [8, Theorem 4.2] that the following three conditions are equivalent:

(1) $\tau(RP^{n})$ is extendible to RP for every $m>n$ .
(2) $\tau(RP^{n})$ is stably extendible to RP for every $m>n$ .
(3) $n=1,3$ or 7.
For an $R$-vector bundle $\zeta$ , denote by $ c\zeta$ the complexification of $\zeta$ . Then we

obtain

THEOREM 1. The following three conditions are equivalent:
(1) $c\tau(RP^{n})$ is extendible to RP for every $m>n$ .
(2) $c\tau(RP^{n})$ is stably extendible to RP for every $m>n$ .
(3) $1\leqq n\leqq 5$ or $n=7$ .

Let $\xi_{n}$ be the canonical $R$-line bundle over $RP^{n}$ . Then we have

THEOREM 2. Let $v(f)$ be the normal bundle associated to an immersion $f$ of $RP^{n}$ in
the Euclidean $(n+k)$ -space $R^{n+k}$ , where $k>0$ . Then the following hold.

(i) $v(f)$ is stably extendible to RP for every $m>n$ if and only if $v(f)$ is stably
equivalent to $s\xi_{n}$ for some integer $s$ with $0\leqq s\leqq k$ .

(ii) $cv(f)$ is stably extendible to RP for every $m>n$ if and only if $cv(f)$ is stably
equivalent to $sc\xi_{n}$ for some integer $s$ with $0\leqq s\leqq k$ .

Secondly, we study the problem: Determine the dimension $m$ for which an F-
vector bundle over $RP^{n}$ is extendible to $RP^{m}$ . The answer for $c\tau(RP^{n})$ is obtained in
[5, Theorem 3] (and [12, Theorem 4.1]) as follows:

If $n=6$ or $n>7,$ $c\tau(RP^{n})$ is extendible to $RP^{2n+1}$ , but is not stably extendible to
$RP^{2n+2}$ .

For an $R$-vector bundle 2, denote by span cc the maximum of the number of
cross-sections of 2 which are nowhere linearly dependent. For a differentiable manifold
$M$ , let span $M$ stand for span $\tau(M)$ , where $\tau(M)$ is the tangent bundle of $M$ . Let $\phi(n)$

denote the number of integers $s$ such that $0<s\leqq n$ and $s\equiv 0,1,2$ , or 4 mod 8 and let
$N(n)=2^{\phi(n)}-n-$ $2$ . Then we have the following table for $1\leqq n\leqq 11$ .

We prove

THEOREM 3. Let $v(f)$ be the normal bundle associated to an immersion $f$ of $RP^{n}$ in
$R^{n+k}$ , and let $N(=N(n))=2^{\phi(n)}-n-$ $2$ . Suppose $0<k<N+1\leqq spanRP^{N}+k+1$ .
Then $v(f)$ is extendible to $RP^{N}$ , but is not stably extendible to $RP^{N+1}$ .

This paper is arranged as follows. We prove Theorems 12 and 3 in Sections 2, 3
and 4 respectively. In Section 5 we give some examples of Theorem 3 and give a proof
of Theorem 4.4 that is stated in Section 4 and is used for the proof of Theorem 3.

The authors would like to thank the referee for his valuable comments and sug-
gestions.



Extendible and stably extendible vector bundles 1055

2. Proof of Theorem 1.

The following is clear by definition.

LEMMA 2.1. Let $A$ be a subspace of a space $X$ , and let $\zeta$ and $\eta$ be stably equivalent
$F$-vector bundles of same dimension over $A$ , where $F=R,$ $C$ , or H. Then $\zeta$ is stably
extendible to $X$ if and only if $\eta$ is stably extendible to $X$.

In the following, we use the same letter for a vector bundle and its equivalence
class. Let $d$ denote $\dim_{R}F$ , where $F=R,$ $C$ , or $H$ . Then the following fact is known.

THEOREM 2.2 (cf. [2, Theorem 1.5, p. 100]). If 2 and $\beta$ are two t-dimensional
$F$-vector bundles over an $n$-dimensional $CW$-complex $X$ such that $\langle(n+2)/d-1\rangle\leqq t$

and $\alpha\oplus k=\beta\oplus k$ for some $k$-dimensional trivial $F$-bundle $k$ over $X$, then $\alpha=\beta$ , where
$\langle x\rangle$ denotes the smallest integer $m$ with $x\leqq m$ .

Let $\xi_{n}$ denote the canonical $R$-line bundle over $RP^{n}$ and $c\xi_{n}$ its complexification.

PROOF OF THEOREM 1 (cf. [12, Theorem 4.1]). It is clear that (1) implies (2).
That (2) implies (3) is proved in [5, Theorem 3]. Hence it suffices to prove that (3)
implies (1).

Note that the condition $1\leqq n\leqq 5$ or $n=7$ is equivalent to the condition $ 2^{[n/2]}\leqq$

$n+1$ , where $[x]$ denotes the integral part of a real number $x$ .
Complexifying the equality $\tau(RP^{n})\oplus 1=(n+1)\xi_{n}$ , and using the fact that $c\xi_{n}-1$

is of order $2^{[n/2]}$ (cf. [1, Theorem 7.3]), we have

$c\tau(RP^{n})=(n+1)c\xi_{n}-1=(n+1-2^{[n/2]})c\xi_{n}+2^{[n/2]}-1$

in $K(RP^{n})$ . Here $n+1-2^{[n/2]}\geqq 0$ and $2^{[n/2]}-1\geqq 0$ . As $\langle(n+2)/2-1\rangle\leqq$

$\dim c\tau(RP^{n})$ , we have, by Theorem 2.2,

$c\tau(RP^{n})=(n+1-2^{[n/2]})c\xi_{n}\oplus(2^{[n/2]}-1)$ .

Since $c\xi_{n}$ and the trivial bundle are both extendible to $RP^{m}$ for any $m>n$ , so is
$c\tau(RP^{n})$ . $\square $

3. Proof of Theorem 2.

The following “stably extendible version” of Theorem 6.5 in [6] is obtained from
(2.3) in [9] which is the “stably extendible version” of Theorem 6.2 in [6]. For com-
pleteness we give a proof.

THEOREM 3.1. Let $\zeta$ be a $t$-dimensional $R$-vector bundle over $RP^{n}$ . Then the fol-
lowing hold.

(i) For $n\neq 1,3,7,$ $\zeta$ is stably equivalent to a sum of $tR$-line bundles if $\zeta$ is stably
extendible to $RP^{N}$ , where $N=2^{\phi(n)}-1$ .

(ii) For $n=1,3$ , or 7, $\zeta$ is stably equivalent to a sum of $tR$-line bundles.

PROOF. There is an integer 1 such that

$\zeta-t=$ $(t+ ?)$ $(\xi_{n}-1)\in KO^{\sim}(RP^{n})$ .
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Since $\xi_{n}-1$ is of order $2^{\phi(n)}$ (cf. [1, Theorem 7.4]), we have $0\leqq t+\ell<2^{\phi(n)}$ . If $\ell>0$ ,
$ n<t+\ell$ and $\zeta$ is not stably extendible to $RP^{t+\ell}$ by (2.3) in [9]. If $n\neq 1,3,7$ , the latter
contradicts the assumption of (i), and if $n=1,3$ , or 7 the former contradicts. We
therefore have $1\leqq 0$ . Hence we obtain (i) and (ii). $[$

Using Theorem 3.1, we have

THEOREM 3.2. Let $F=R$ or $C$ , and let $\zeta$ be a $t$-dimensional $F$-vector bundle over
$RP^{n}$ . Then $\zeta$ is stably extendible to RP for every $m>n$ if and only if $\zeta$ is stably
equivalent to a sum of $tF$-line bundles.

PROOF. For $F=R$ , the “only if” part follows from Theorem 3.1 (or from the
“stably extendible version” of Corollary to Theorem 3 in [15] $)$ . For a positive integer $n$

and a group $G$ , let $K(G, n)$ denote the Eilenberg-MacLane space of type $(G, n)$ , let
$BO(n)$ and $BU(n)$ denote the classifying spaces for the orthogonal group $O(n)$ and the
unitary group $U(n)$ respectively, and $[X, Y]$ denote the set of all homotopy classes of
continuous maps (not necessarily base point preserving) from $X$ to $Y$ . Then we have

$[RP^{n}, BO(1)]=[RP^{n}, K(Z/2,1)]=H^{1}(RP^{n}; Z/2)=Z/2$ .

Hence $R$-line bundles over $RP^{n}$ are $\xi_{n}$ and the trivial $R$-line bundle. Since they are
extendible to $RP^{m}$ for every $m>n$ , a $t$-dimensional $R$-vector bundle which is stably
equivalent to a sum of $tR$-line bundles is stably extendible to $RP^{m}$ for every $m>n$ , by
Lemma 2.1. This proves the “if” part for $F=R$ .

For $F=C$ , the “only if” part is Theorem A in [8]. For $n\geqq 2$ , we have

$[RP^{n}, BU(1)]=[RP^{n}, K(Z, 2)]=H^{2}(RP^{n}; Z)=Z/2$ .

Hence $C$-line bundles over $RP^{n}$ for $n\geqq 2$ are $c\xi_{n}$ and the trivial $C$-line bundle. Clearly
any $C$-line bundle over $RP^{1}(=S^{1})$ is trivial. Since $c\xi_{n}$ and the trivial $C$-line bundle
are extendible to RP for every $m>n$ , a $t$-dimensional $C$-vector bundle which is stably
equivalent to a sum of $tC$-line bundles is stably extendible to RP for every $m>n$ , by
Lemma 2.1. This proves the “if” part for $F=C$ . $[$

PROOF OF THEOREM 2. (i) If $v(f)$ is stably equivalent to $s\xi_{n}$ for some integer $s$

with $0\leqq s\leqq k,$ $v(f)$ is stably equivalent to $s\xi_{n}\oplus(k-s)$ and $\dim v(f)=k=\dim(s\xi_{n}\oplus$

$(k-s))$ . Hence the “if” part follows from Lemma 2.1. The “only if” part follows
from that of Theorem 3.2 for $F=R$ .

(ii) The proof is similar to that of (i). lm

4. Proof of Theorem 3.

Let $N=N(n)=2^{\phi(n)}-n-$ $2$ . The following is Theorem 3.5 in [10] (cf. also [10,
(3.3) $])$ .

THEOREM 4.1. Let $v(f)$ be the normal bundle associated to an immersion $f$ of $RP^{n}$ in
$R^{n+k}$ . Suppose $0<k<N+1$ . Then $n<N+1$ (that is, $n\geqq 9$ ) and $v(f)$ is not stably
extendible to RP for any $m\geqq\min\{N+1, n+k+1\}$ .

We have
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THEOREM 4.2. Let $f$ be an immersion of $RP^{n}$ in $R^{n+k}$ and $m$ an integer with $m\geqq n$ .
Provided $0<k<N+1$ and span(N $+1$ ) $\xi_{m}\geqq N-k+1$ , the normal bundle $v(f)$ asso-
ciated to $f$ is stably extendible to $RP^{m}$ . If $n<k$ , in addition, $v(f)$ is extendible to $RP^{m}$ .

PROOF. Since $\tau(RP^{n})\oplus v(f)=n+k$ and $\tau(RP^{n})\oplus 1=(n+1)\xi_{n}$ , $(n+1)\xi_{n}\oplus$

$v(f)=n+k+1$ . Using the fact that $\xi_{n}-1$ is of order $2^{\phi(n)}$ (cf. [1, Theorem 7.4]), we
have

$v(f)+(N-k+1)=(N+1)\xi_{n}$

in $KO(RP^{n})$ . Let $i$ : $RP^{n}\rightarrow RP^{m}$ be the standard inclusion. Then

$(N+1)\xi_{n}=(N+1)i^{*}\xi_{m}=i^{*}((N+1)\xi_{m})$ .

By the assumption, there is a $k$-dimensional $R$-vector bundle 2 over $RP^{m}$ such that
$(N+1)\xi_{m}=\alpha\oplus(N-k+1)$ . Hence

$v(f)+(N-k+1)=(i^{*}\alpha)\oplus(N-k+1)$ ,

and $v(f)$ is stably equivalent to $ i^{*}\alpha$ . So $v(f)$ is stably extendible to $RP^{m}$ , since
$\dim v(f)=k=\dim\alpha$ .

The latter part follows from [10, Theorem 2.2]. $[$

The following is proved in [14, Theorem 2.4] (cf. also [11]).

THEOREM 4.3. span $(n+1)\xi_{n}=$ span $RP^{n}+1$ .

The proof of the following theorem will be given in the next section.

THEOREM 4.4. If $n\geqq 9$ , span $RP^{N}<N-n$ , where $N=2^{\phi(n)}-n-$ $2$ .

PROOF OF THEOREM 3. The latter part follows from Theorem 4.1.
By Theorem 4.1, it follows from the inequalities $0<k<N+1$ that $n\leqq N$ , namely

$n\geqq 9$ . Furthermore, it follows from the inequality $ N+1\leqq$ span $RP^{N}+k+1$ that
$ N+1\leqq$ span(N $+1$ ) $\xi_{N}+k$ by Theorem 4.3, and that, for $n\geqq 9,$ $N+1<N-n+$
$k+1$ , namely $n<k$ , by Theorem 4.4. Hence we have the latter part of Theorem 3 by
setting $m=N$ in Theorem 4.2. $[$

5. Examples.

We give some examples of Theorem 3.
The following is well-known (cf. [1], [13] and [4]).

THEOREM 5.1. Write $n+1=(2a+1)2^{c+4d}$ , wwhheerree $a,$ $c$ and $d$ are non-negative
integers and $0\leqq c\leqq 3$ . Then span $RP^{n}=span$ $S^{n}=2^{c}+8d-1$ .

We have

PROPOSITION 5.2. Let $v(f)$ be the normal bundle associated to an immersion $f$ of
$RP^{n}$ in $R^{n+k}$ , where $k=20$ or 21 if $n=9,$ $k=52$ if $n=10$ , and $k=48,49,50$ or 51
if $n=11$ . Then $v(f)$ is extendible to $RP^{N}$ but not stably extendible to $RP^{N+1}$ , where
$N=21$ if $n=9,$ $N=52$ if $n=10$ and $N=51$ if $n=11$ .
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PROOF. Let us consider the case $n=9,10$ or 11. Since $N=2^{\phi(n)}-n-2$ ,
we have $N=21$ if $n=9,$ $N=52$ if $n=10$ and $N=51$ if $n=11$ , and conclude
spanRP $=1$ if $n=9$ , spanRP $=0$ if $n=10$ and span 3 if $n=11$ , from
Theorem 5. 1. Therefore, the assumption

$0<k<N+1\leqq span$ $RP^{N}+k+1$

in Theorem 3 is equivalent to

$k<22\leqq k+2$ if $n=9$ , $k<53\leqq k+1$ if $n=10$ , $k<52\leqq k+4$ if $n=11$ ,

namely

$k=20,21$ if $n=9$ , $k=52$ if $n=10$ , $k=48,49,50,51$ if $n=11$ .

Hence, the proposition follows from Theorem 3. $[$

Finally, we give a proof of Theorem 4.4 in the previous section. We prepare two
lemmas for the proof.

LEMMA 5.3. span $RP^{n}$ ( $=$ span $S^{n}$ ) $<n/2$ if and only if $n\neq 1,3,7,15$ .

PROOF. Write $n+1=(2a+1)2^{c+4d}$ , where $a,$ $c$ and $d$ are non-negative inte-
gers and $0\leqq c\leqq 3$ . Then, by Theorem 5.1, span $RP^{n}=2^{c}+8d-1$ . Hence we have
span $RP^{n}<n/2$ if and only if $2^{c+1}+16d-1<(2a+1)2^{c+4d}$ . We see easily that the
inequality above holds if and only if $(a, c, d)\neq(0,0,1),$ $(0,1,0),$ $(0,2,0),$ $(0,3,0)$ , that is,
$n\neq 15,1,3,7$ . $\square $

LEMMA 5.4. $Jf$ $n\geqq 9,3n+2<2^{\phi(n)}$ .

PROOF. Let $n=8k+r$ , where $k$ is a positive integer and $r$ is an integer with
$0\leqq r\leqq 7$ . The inequality $3n+2<2^{\phi(n)}$ holds for every $n$ with $9\leqq n\leqq 16$ clearly.
Assume that the inequality $3n+2<2^{\phi(n)}$ holds for some $n$ with $n\geqq 9$ . Then

$2^{\phi(n+8)}-(3(n+8)+2)=2^{\phi(n)+4}-(3n+26)=16\cdot 2^{\phi(n)}-(3n+26)$

$>16(3n+2)-(3n+26)=45n+6>0$ .

Hence the result follows by induction on $n$ . $[$

PROOF 0F THEOREM 4.4. Assume $n\geqq 9$ . Then $3n+2<2^{\phi(n)}$ by Lemma 5.4.
Hence $N=2^{\phi(n)}-n-2>2n\geqq 18$ , and so span $RP^{N}<N/2$ by Lemma 5.3. On the
other hand, $N/2<2^{\phi(n)}-2n-$ $2$ for $n\geqq 9$ . Therefore we have span $RP^{N}<2^{\phi(n)}-$

$2n-$ $2$ if $n\geqq 9$ , as desired. $\square $
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