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Abstract. We give a formula for the coe‰cients of the Yablonskii-Vorob’ev poly-

nomial. Also the reduction modulo a prime number of the polynomial is studied.

1. Introduction.

The object of study in the present article is a sequence of polynomials TnðxÞ A

Z½x� ðn ¼ 0; 1; 2; . . .Þ, referred to as the Yablonskii-Vorob’ev polynomials, satisfying the

recursion

Tnþ1ðxÞTn�1ðxÞ ¼ xTnðxÞ
2 þ TnðxÞT

00
n ðxÞ � T 0

nðxÞ
2; ð1Þ

with the initial condition T0ðxÞ ¼ 1, T1ðxÞ ¼ x. The first few are

T2ðxÞ ¼ x3 � 1;

T3ðxÞ ¼ x6 � 5x3 � 5;

T4ðxÞ ¼ x10 � 15x7 � 175x;

T5ðxÞ ¼ x15 � 35x12 þ 175x9 � 1225x6 � 12250x3 þ 6125:

Note that we have adopted a normalization di¤erent from the usual one (see the remark

at the end of Section 2).

Although it is not clear a priori that the recursion (1) gives a sequence of poly-

nomials, we know it does indeed, the fact which is most naturally explained in the

context of connection with rational solutions of the second Painlevé equation (PII ).

(See, e.g., [1], [6] for this and related subjects.) Specifically, the logarithmic derivative

y ¼ T 0
nðxÞ=TnðxÞ � T 0

n�1ðxÞ=Tn�1ðxÞ of the ratio TnðxÞ=Tn�1ðxÞ is a solution of

d 2y

dx2
¼ 2y3 � 4xyþ 4n:ðPII Þ

As such, the Yablonskii-Vorob’ev polynomial can be thought of as a non-linear

analogue of the classical special polynomials associated to linear di¤erential equations.

In this paper, we discuss some properties including explicit formulas and reductions

modulo primes of coe‰cients of this ‘‘Painlevé special polynomial’’. We note that,

owing to the connection with Schur functions, such results also give a kind of infor-

mation on certain character values of irreducible representations of symmetric groups.
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Now we state our main results. Using the recursion (1), it is easy to see by

induction that the polynomial TnðxÞ is monic of degree nðnþ 1Þ=2 and has the following

expansion;

TnðxÞ ¼
X

jb0

tjðnÞx
3jþd; tjðnÞ A Z; ð2Þ

where d ¼ 1 if n1 1 mod 3 and 0 otherwise. Set

mn ¼
Y

n

k¼1

ð2k � 1Þ!!:

The first theorem gives the coe‰cient of the term of the lowest degree (¼ the constant

term if n1 0; 2 mod 3 and the term of degree 1 if n1 1 mod 3) of TnðxÞ.

Theorem 1. We have

t0ðnÞ ¼

ð�1Þm3�ð3m�1Þm=2mn=ðm
2
m�1mmÞ; if n ¼ 3m� 1;

ð�1Þm3�ð3mþ1Þm=2mn=ðmm�1m
2
mÞ; if n ¼ 3m;

ð�1Þm3�3ðmþ1Þm=2mn=m
3
m; if n ¼ 3mþ 1:

8

>

<

>

:

ð3Þ

As for the higher coe‰cients, we show the following.

Theorem 2. For fixed j, the function n 7! tjðnÞ=t0ðnÞ extends to a polynomial

function in n depending on n mod 3.

Several examples of the theorem will be given at the end of Section 3.

The next result concerns the reduction modulo a prime of the polynomial TnðxÞ.

Theorem 3. For a prime number p > 3 and any non-negative integers m and n, we

have

TmpþnðxÞ1 xdmpþn�dnTnðxÞ mod p;

where dn ¼ nðnþ 1Þ=2, the degree of TnðxÞ.

2. Constant terms.

To prove Theorem 1, we recall the determinant expression of the Yablonskii-

Vorob’ev polynomial of Jacobi-Trudi type [2]. Define a family of polynomials hkðxÞ A

Q½x� ðn ¼ 0; 1; 2; . . .Þ by the generating function

exlþð1=3Þl3 ¼
X

y

k¼0

hkðxÞl
k; ð4Þ

and set h�1 ¼ h�2 ¼ � � � ¼ 0. Writing the left-hand side as exlel
3=3 and expanding this

out, we see that the polynomial hkðxÞ is given by

hkðxÞ ¼
X

½k=3�

i¼0

1

3 ii!ðk � 3iÞ!
xk�3i; ð5Þ
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where ½k=3� is the greatest integer which does not exceed k=3. In particular, the degree

of hkðxÞ is k and the leading coe‰cient is 1=k!. Set

tnðxÞ ¼ detðhj�2iþnþ1ðxÞÞ1ai; jan: ð6Þ

The polynomial tnðxÞ is known as the 2-core Schur polynomial attached to the staircase

partition of depth n. The degree of tnðxÞ is at most dn ¼ nðnþ 1Þ=2 since the degree of

hkðxÞ is k, but it turns out that it is exactly dn and the coe‰cient of xdn in tnðxÞ is given

by m
�1
n ¼ 1=

Qn
k¼1ð2k � 1Þ!!, as the following lemma shows.

Lemma 4. We have

detð1=ð j � 2i þ nþ 1Þ!Þ1ai; jan ¼ m
�1
n ;

where we understand 1=l! ¼ 0 if l < 0.

A proof is found in [5], Corollary 7.16.3 (formula 7.71) combined with Corollary 7.21.6.

The determinant formula for the Yablonskii-Vorob’ev polynomial ([2], [7]) asserts

that TnðxÞ is a constant multiple of tnðxÞ:

TnðxÞ ¼ mntnðxÞ: ð7Þ

Proof of Theorem 1.

Suppose n ¼ 3m� 1. Then t0ðnÞ is the constant term of TnðxÞ. From equations

(7) and (6), we want to compute the determinant

tnð0Þ ¼ detðhj�2iþ3mð0ÞÞ1ai; ja3m�1:

The point is that this determinant splits into three blocks and we can calculate each

block separately by using Lemma 4. Actually, noting from (5) that h3lð0Þ ¼ 1=ð3 l l!Þ

and h3l�1ð0Þ ¼ h3lþ1ð0Þ ¼ 0, we proceed as follows:

(1) For i ¼ 3k with 1a kam� 1, the ði; jÞ entry hj�6kþ3mð0Þ is zero unless j ¼ 3l

with 1a lam� 1, in which case the value is h3ðl�2kþmÞð0Þ ¼ 1=ð3 l�2kþmðl�

2k þmÞ!Þ. Then, by Lemma 4, the determinant of m� 1 by m� 1 matrix

with these ðk; lÞ entries is equal to 1=ð3ðm�1Þm=2
mm�1Þ.

(2) For i ¼ 3k � 1 with 1a kam, the ði; jÞ entry hj�6kþ3mþ2ð0Þ is zero

unless j ¼ 3l � 2 with 1a lam, in which case the value is h3ðl�2kþmÞð0Þ ¼

1=ð3 l�2kþmðl � 2k þmÞ!Þ. Noting that this is equal to 0 for k ¼ m and l < m,

and 1 for k ¼ l ¼ m, we see that the m by m determinant is equal to the one

in (1) as above, i.e., equal to 1=ð3ðm�1Þm=2
mm�1Þ.

(3) Similarly, for i ¼ 3k � 2 with 1a kam, the ði; jÞ entry hj�6kþ3mþ4ð0Þ is zero

unless j ¼ 3l � 1 with 1a lam. By Lemma 4, the determinant of m by m

matrix with entries 1=ð3 l�2kþmþ1ðl � 2k þmþ 1Þ!Þ is equal to 1=ð3ðmþ1Þm=2
mmÞ.

Combining the above three, we conclude t3m�1ð0Þ ¼G1=ð3ð3m�1Þm=2
m
2
m�1mmÞ, the sign

being the inversion number of the permutations of rows and columns, which, as is

readily seen, is equal to ð�1Þm. This establishes the formula in the case of n ¼ 3m� 1.

The computation in the case when n ¼ 3m is exactly the same and will be omitted.

When n ¼ 3mþ 1, t0ðnÞ is not the constant term and the above computation does not

work. But the following lemma allows us to reduce this case to the preceding two.
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Lemma 5. We have

Tn�1ðxÞT
0
nþ1ðxÞ � T 0

n�1ðxÞTnþ1ðxÞ ¼ ð2nþ 1ÞTnðxÞ
2

for all n.

See [6, p. 92] or [1, p. 188] for a proof. Putting n ¼ 3m in the lemma and comparing

the constant term of both sides, we obtain

t0ð3m� 1Þt0ð3mþ 1Þ ¼ ð6mþ 1Þt0ð3mÞ2: ð8Þ

From this, we have

t0ð3mþ 1Þ ¼ ð6mþ 1Þt0ð3mÞ2=t0ð3m� 1Þ

¼ ð�1Þmð6mþ 1Þ3�3ðmþ1Þm=2
m
2
3m=ðm3m�1m

3
mÞ

¼ ð�1Þm3�3ðmþ1Þm=2
m3mþ1=m

3
m;

which completes the proof of Theorem 1. r

Remark 6. When n1 0; 2 mod 3, there is an alternative way to derive the formula

in Theorem 1 from the hook-type formula of TnðxÞ in [7] (the authors would like to

thank Masatoshi Noumi for pointing out this). However, the case n1 1 mod 3 does

not follow from the hook-type formula.

Remark 7. As mentioned in the introduction, the usual recursion for the

Yablonskii-Vorob’ev polynomials is

Tnþ1ðxÞTn�1ðxÞ ¼ xTnðxÞ
2 � 4ðTnðxÞT

00
n ðxÞ � T 0

nðxÞ
2Þ: ð9Þ

If in general we start with the recursion

Tnþ1ðxÞTn�1ðxÞ ¼ xTnðxÞ
2 þ aðTnðxÞT

00
n ðxÞ � T 0

nðxÞ
2
Þ; ð10Þ

a being a constant, and the same initial values T0ðxÞ ¼ 1 and T1ðxÞ ¼ x, the formula for

the lowest term in Theorem 1 changes only by a power of a, namely,

t0ðnÞ ¼
ð�1Þmða=3Þ3ð3m�1Þm=2

mn=ðm
2
m�1mmÞ; if n ¼ 3m� 1;

ð�1Þmða=3Þð3mþ1Þm=2
mn=ðmm�1m

2
mÞ; if n ¼ 3m;

ð�1Þmða=3Þ3ðmþ1Þm=2
mn=m

3
m; if n ¼ 3mþ 1:

8

>

<

>

:

3. Higher coe‰cients.

For the proof of Theorem 2, it is convenient to use di¤erent symbols for tjðnÞ

according to the congruence classes of n modulo 3. Put

ajðmÞ ¼ tjð3m� 1Þ; bjðmÞ ¼ tjð3mÞ; and cjðmÞ ¼ tjð3mþ 1Þ:

Also put

~aajðmÞ ¼ ajðmÞ=a0ðmÞ; ~bbjðmÞ ¼ bjðmÞ=b0ðmÞ; and ~ccjðmÞ ¼ cjðmÞ=c0ðmÞ:
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Proof of Theorem 2. First let n ¼ 3m. We substitute the expansion (2) into the

recursion (1) and compare the coe‰cients of x3kþ1 for kb 0 to obtain

Xk

i¼0

ciðmÞak�iðmÞ ¼
Xk

i¼0

biðmÞbk�iðmÞ þ
Xkþ1

i¼1

3ið3i � 1ÞbiðmÞbkþ1�iðmÞ

�
Xk

i¼1

9ijbiðmÞbkþ1�iðmÞ:

Dividing both sides by c0ðmÞa0ðmÞ, which is equal to ð6mþ 1Þb0ðmÞ2 by (8), and

separating the term with i ¼ k þ 1 in the middle sum on the right (the only place where

bkþ1ðmÞ appears), we obtain

3ðk þ 1Þð3k þ 2Þ~bbkþ1ðmÞ ¼ ð6mþ 1Þ
Xk

i¼0

~cciðmÞ~aak�iðmÞ �
Xk

i¼0

~bbiðmÞ~bbk�iðmÞ

þ 3
Xk

i¼1

ið3k � 6i þ 4Þ~bbiðmÞ~bbkþ1�iðmÞ ð11Þ

for kb 0. Similarly, for n ¼ 3m� 1 we obtain from the recursion (1)

3ðk þ 1Þð3k þ 2Þ~aakþ1ðmÞ ¼ � ð6m� 1Þ
Xk

i¼0

~cciðm� 1Þ~bbk�iðmÞ

�
Xk

i¼0

~aaiðmÞ~aak�iðmÞ þ 3
Xk

i¼1

ið3k � 6i þ 4Þ~aaiðmÞ~aakþ1�iðmÞ

ð12Þ

for kb 0. Here, we have used the identity b0ðmÞc0ðm� 1Þ ¼ �ð6m� 1Þa0ðmÞ2 which

follows from Lemma 5 by putting n ¼ 3m� 1 and comparing the constant terms of

both sides. For n ¼ 3mþ 1, we compare the constant terms in the recursion (1) to get

a0ðmþ 1Þb0ðmÞ ¼ �c0ðmÞ2, and then with this we obtain as above (comparing the

coe‰cients of x3kþ3 in (1))

ð3k þ 1Þð3k þ 4Þ~cckþ1ðmÞ ¼ �
Xkþ1

i¼0

~aaiðmþ 1Þ~bbkþ1�iðmÞ �
Xk

i¼0

~cciðmÞ~cck�iðmÞ

þ
Xk

i¼1

ð3i þ 1Þð3k � 6i þ 4Þ~cciðmÞ~cckþ1�iðmÞ ð13Þ

for kb 0.

Now we prove Theorem 2 by induction on j. For j ¼ 0, the required property,

which is equivalent to the statement that ~aajðmÞ; ~bbjðmÞ, and ~ccjðmÞ are polynomials in

m, holds trivially. Suppose the property holds up to ja k. Then equations (12) and

(11) ensures respectively that both ~aakþ1ðmÞ and ~bbkþ1ðmÞ are polynomials in m. Then,
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we conclude in turn by equation (13) that ~cckþ1ðmÞ is also a polynomial in m. This

completes the proof of Theorem 2. r

Equations (11), (12), and (13) allow us to compute explicitly the polynomials ~aajðmÞ,
~bbjðmÞ, and ~ccjðmÞ. First several examples are given below.

Example 8.

~aa1ðmÞ ¼ �m; ~aa2ðmÞ ¼ �mðm� 1Þ=10; ~aa3ðmÞ ¼ ðmþ 1Þmðm� 1Þ=210;

~aa4ðmÞ ¼ �ð19mþ 6Þðmþ 1Þmðm� 1Þ=46200;

~aa5ðmÞ ¼ �ð155m2 � 572m� 48Þðmþ 1Þmðm� 1Þ=21021000;

~bb1ðmÞ ¼ m; ~bb2ðmÞ ¼ �mðmþ 1Þ=10; ~bb3ðmÞ ¼ �ðmþ 1Þmðm� 1Þ=210;

~bb4ðmÞ ¼ �ð19m� 6Þðmþ 1Þmðm� 1Þ=46200;

~bb5ðmÞ ¼ ð155m2 þ 572m� 48Þðmþ 1Þmðm� 1Þ=21021000;

~cc1ðmÞ ¼ 0; ~cc2ðmÞ ¼ 3mðmþ 1Þ=70; ~cc3ðmÞ ¼ �ðmþ 1Þm=350;

~cc4ðmÞ ¼ �9ðmþ 2Þðmþ 1Þmðm� 1Þ=200200;

~cc5ðmÞ ¼ 3ðmþ 2Þðmþ 1Þmðm� 1Þ=3503500;

~cc6ðmÞ ¼ �ð207m2 þ 207mþ 50Þðmþ 2Þðmþ 1Þmðm� 1Þ=4526522000;

~cc7ðmÞ ¼ 9ð107m2 þ 107mþ 4Þðmþ 2Þðmþ 1Þmðm� 1Þ=348542194000:

Remark 9. (i) We can extend the recursion (1) to negative n. Then by the

symmetry we have T�n�1ðxÞ ¼ TnðxÞ. From this, we can deduce ~bbjðmÞ ¼

~aajð�mÞ and ~ccjðmÞ ¼ ~ccjð�m� 1Þ.

(ii) As a polynomial in m, ~aajþ1ðmÞ is divisible by ~aajðmÞ for ja 3, but this does

not hold in general as the case j ¼ 4 shows. Likewise, ~ccjðmÞ divides ~ccjþ1ðmÞ

for 2a ja 5 but not for j ¼ 6.

(iii) The fact that ~cc1ðmÞ ¼ 0 was given in [6, Theorem 1].

4. Yablonskii-Vorob’ev polynomial modulo a prime.

Fix a prime number p > 3 once and for all. We first establish a special case of

Theorem 3, namely for m ¼ 1 and n ¼ 0. Once having this, the general case will be

proved rather easily.

Proposition 10. We have

TpðxÞ1 xdp mod p:

Proof. The key ingredient is again the determinant formula (7);

TpðxÞ ¼ mptpðxÞ:
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Noting that ð2k � 1Þ!! is prime to p if k < ðpþ 1Þ=2 and is divisible by p exactly once

if ðpþ 1Þ=2a ka p, we find the exact power of p which divides mp ¼
Qp

k¼1ð2k � 1Þ!! is

pðpþ1Þ=2. So, if we put m 0
p ¼ p�ðpþ1Þ=2mp, we have m 0

p A Z and

TpðxÞ ¼ m 0
p p

ð pþ1Þ=2tpðxÞ: ð14Þ

We first show that the polynomial pðpþ1Þ=2tpðxÞ is realized as a determinant of a matrix

with entries which have p-integral coe‰cients. To state this, we develop some nota-

tion. Let ZðpÞ denote the local ring fb=a A Q j a; b A Z; ða; pÞ ¼ 1g which contains Z

as a subring. The maximal ideal of ZðpÞ generated by p is denoted by p. Set p½x� ¼

f
P

jb0 rjx
j
A ZðpÞ½x� j rj A pg. By ‘‘mod p’’ of an element in ZðpÞ½x�, we mean its image

in the quotient ring ZðpÞ½x�=p½x�FFp½x�, where Fp is the field of p elements.

Recall the polynomial hkðxÞ was defined by the generating function (4). Expanding

ðd=dlÞexlþl3=3 ¼ ðxþ l2Þexlþl3=3 we obtain the recursion

ðk þ 1Þhkþ1ðxÞ ¼ xhkðxÞ þ hk�2ðxÞ for kb 2;

with h0 ¼ 1, h1 ¼ x, and h2 ¼ x2=2. Multiplying both sides by k! and setting ~hhkðxÞ ¼

k!hkðxÞ, we have

~hhkþ1ðxÞ ¼ x~hhkðxÞ þ kðk � 1Þ~hhk�2ðxÞ for kb 2;

with ~hh0 ¼ 1, ~hh1 ¼ x, ~hh2 ¼ x2. This implies inductively that ~hhkðxÞ is a monic polynomial

of degree k with integral coe‰cients. In particular, we have

hkðxÞ A ZðpÞ½x� if k < p and phkðxÞ A ZðpÞ½x� if pa k < 2p: ð15Þ

Now define a matrix ðaijÞ1ai; jap by

aij ¼
hj�2iþpþ1 if i > ðpþ 1Þ=2;

phj�2iþpþ1 if ia ðpþ 1Þ=2:

�

Then by (15) and (6), we have aij A ZðpÞ½x� and

pð pþ1Þ=2tpðxÞ ¼ detðaijÞ1ai; jap: ð16Þ

To compute this determinant modulo p, it is convenient to consider instead a modi-

fied matrix ðcijÞ1ai; jap which is obtained from ðaijÞ by a suitable permutation of rows:

namely set

cij ¼
akj if i ¼ 2k � 1;

akþðpþ1Þ=2; j if i ¼ 2k:

�

The inversion number of this permutation is
Pð p�1Þ=2

i¼1 i ¼ ðp2 � 1Þ=8 and so

detðaijÞ ¼ ð�1Þð p
2�1Þ=8 detðcijÞ: ð17Þ

The following lemma supplies enough information for computing detðcijÞ modulo p.

Lemma 11. (i) If i > j, then cij A p½x�.

(ii) If i is odd, then cii 1�xp mod p.

(iii) If i is even, then cii ¼ 1.
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Proof of Lemma. If i ¼ 2k � 1, then ka ðpþ 1Þ=2 and cij ¼ akj ¼ phj�2kþpþ1 ¼

php�ði� jÞ. By (15), this belongs to p½x� if i > j, while for i ¼ j this is equal to phpðxÞ ¼
~hhpðxÞ=ðp� 1Þ!1�~hhpðxÞ mod p by Wilson’s lemma. By (5), the coe‰cient of xp�3i in
~hhpðxÞ is p!=ð3 ii!ðp� 3iÞ!Þ, which is in p for ib 1 and hence ~hhpðxÞ1 xp mod p. If

i ¼ 2k, then cij ¼ akþðpþ1Þ=2; j ¼ hj�2k ¼ hj�i. This is 0 if i > j and 1 if i ¼ j. r

From (i) of the lemma, the matrix ðcijÞ modulo p is upper-triangular, the diagonal

entries of which are given by (ii) and (iii) of the lemma. We therefore have

detðcijÞ1 ð�1Þð pþ1Þ=2
xpðpþ1Þ=2 mod p:

Combining this with (17), (16) and (14), we have

TpðxÞ1 ð�1Þðp
2�1Þ=8þðpþ1Þ=2

m
0
px

dp mod p:

But we know that TpðxÞ is a monic polynomial of degree dp, hence the constant on the

right should be congruent to 1 modulo p and we obtain the proposition. r

Corollary 12. We have Tpþ1 1 xdpþ1 mod p and Tp�1 1 xdp�1 mod p.

Proof. From Proposition 10 we have T 0
pðxÞ1 0 mod p since dp 1 0 mod p.

Thus the recursion (1) reduces modulo p to Tpþ1Tp�1 1 xT 2
p 1 x2dpþ1. Since Tpþ1ðxÞ

and Tp�1ðxÞ are monic of degrees dpþ1 and dp�1 respectively, and dpþ1 þ dp�1 ¼ 2dp þ 1,

we get the formulas in the corollary. r

Proof of Theorem 3. Set Sn ¼ x�ðdnþp�dnÞTnþp mod p. We know S0 ¼ 1 and

S1 ¼ x by Proposition 10 and Corollary 12. Noting that S 0
n ¼ x�ðdnþp�dnÞT 0

nþp and S 00
n ¼

x�ðdnþp�dnÞT 00
nþp since dnþp � dn ¼ pðpþ 1þ 2nÞ=21 0 mod p, we have the same recursion

(1) for fSngnb0. Thus we conclude Sn 1Tn mod p for all n. Applying this inductively,

we establish Theorem 3. r

Corollary 13. We have Tp�1�i 1 xdp�1�i�diTi mod p.

Proof. We use the relation T�n�1ðxÞ ¼ TnðxÞ as indicated in Remark 9. The-

orem 3 also holds for negative indices and we obtain

Tp�1�iðxÞ ¼ T�pþiðxÞ1 xd�pþi�diTiðxÞ ¼ xdp�i�diTiðxÞ: r

Finally, we briefly mention what happens in the case when p ¼ 2 and 3.

Remark 14. Consider the general recursion (10) in Remark 7 with a A Z. For

p ¼ 3, it is easy to see (using the fact that TnðxÞ is ‘‘almost’’ a polynomial in x3) that

TnðxÞ1 ðx� aÞdn mod 3 if n1 0; 2 mod 3

and

TnðxÞ1 xðx� aÞdn�1 mod3 if n1 1 mod 3:

In contrast, it trivially holds that TnðxÞ1 xdn mod 2 if a is even, while for odd a,

numerical computation suggests that no periodic pattern for TnðxÞmod2 exists and that

irreducible factors of arbitrary high degree occur as n gets bigger.
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