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Abstract. Motivated by the classification problem of atomic degenerations, in our

series of papers, we make a systematic study for splitting deformations of degenerations of

complex curves. We provide various new methods to construct splitting deformations,

and deduce many splitting criteria of degenerations, which will be applied to the clas-

sification of atomic degenerations. Roughly, our criteria are separated into two types; in

the first type the criteria are expressed in terms of the configuration of a singular fiber, and

in the second type, in terms of sub-divisors of a singular fiber. In both types, our con-

structions are ‘visible’, in that we can view how the singular fiber is deformed. In the

present paper, we demonstrate splitting criteria of the first type.

Introduction.

This paper constitutes one part of our series of papers on degenerations. By a

degeneration, we mean a proper surjective holomorphic map p : M ! D from a smooth

complex surface M to the unit disk D such that the fiber over the origin is singular and

any other fiber is a smooth complex curve of genus g ðgb1Þ. A deformation of a

degeneration is called a splitting deformation provided that it induces a splitting of its

singular fiber. We notice that it may occur that a degeneration admits no splitting

deformation at all, in which case the degeneration is called atomic. Our main problem

is to classify atomic degenerations of arbitrary genera (see [Re]). The classification has

been known only for the very low genus cases; for the genus 1 case, by Moishezon [Mo],

and for the genus 2 case, by Horikawa [Ho] together with some result of Arakawa and

Ashikaga [AA], where these results are based on the construction of splitting de-

formations by the double covering method. (Note that [Ho] showed the existence of

splittings into types I1 modulo type 0 while splittings of type 0 are due to Corollary 4.12

of [AA].)

Recent progress for the genus 3 case was made by Ashikaga and Arakawa [AA],

who obtained the classification of absolute atomic degenerations of hyperelliptic curves

of genus 3, where a degeneration p : M ! D is absolutely atomic provided that all degen-

erations with the same topological type as p : M ! D are atomic. Their method is also

based on the double covering method. Unfortunately, this method fails to work for

degenerations of non-hyperelliptic curves. Some new idea is needed for constructing

splitting deformations of degenerations of non-hyperelliptic curves even for the genus 3
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case (note that for the genus 2 case, all curves are hyperelliptic, but this is not the case

for genusb 3). In our series of papers we develop completely di¤erent methods for

constructing splitting deformations, and apply them to achieve the classification of abso-

lute atomic degenerations for the genus 3, 4 and 5 cases [Ta,III]. The aim of this paper

is to study the relation between the configurations of singular fibers and the existence of

splitting deformations. We first show that two types of degenerations are atomic.

Theorem 2.0.2. Let p : M ! D be a degeneration of curves such that the singular

fiber X is either (I) a reduced curve with one node, or (II) a multiple of a smooth curve of

multiplicity at least 2. Then p : M ! D is atomic.

(The statement for (I) may be known to experts, but for the convenience of discussions,

we include it.) We remark that the proof of Theorem 2.0.2 carries over to arbitrary

dimensions to show that a degeneration of type (II) is atomic, i.e. letting p : M ! D be

a degeneration of compact complex manifolds of arbitrary dimension, if the singular

fiber X is a multiple of a smooth complex manifold, then p : M ! D is atomic.

Next, we shall state results on existence of splitting deformations; we demonstrate

several splitting criteria via the configuration of the singular fiber. Roughly, these cri-

teria are classified into two types; the first one is in terms of some singularities on the

singular fiber and the second one is in terms of the existence of irreducible components

of multiplicity 1 satisfying certain properties (see the list of splitting criteria in the

bottom of this introduction). We note that most of our criteria give the explicit

description of splittings of singular fibers. From our criteria, we will see that many

degenerations with constellar (constellation-shaped) singular fibers always admit splitting

deformations (see §4 for ‘‘constellar’’). Together with Theorem 2.0.2 it is interesting to

know whether the following is true or not.

Conjecture 6.3.1. A degeneration is atomic if and only if its singular fiber is either

a reduced curve with one node, or a multiple of a smooth curve.

(Actually, this conjecture seems too optimistic for higher genus cases. A more rea-

sonable conjecture is given by replacing ‘‘atomic’’ by ‘‘absolutely atomic’’.) In order to

classify atomic degenerations, the results of this paper enable us to use the induction

with respect to genus g (see §6.3 for details); let Lg be a set of degenerations p : M ! D

of curves of genus g such that

(1) the singular fiber X has a multiple node (see below) or

(2) X contains an irreducible component Y0 of multiplicity 1 satisfying the fol-

lowing condition: if X nY0 is connected, then either genusðY0Þb1, or Y0 is a

projective line intersecting other irreducible components at at least two points.

We note that a multiple node is either an intersection point of two irreducible compo-

nents of the same multiplicity, or a self-intersection point of one irreducible component.

As a consequence of our splitting criteria, we obtain the following.

Theorem 6.3.2. Suppose that Conjecture 6.3.1 is valid for genusa g� 1. If p :

M ! D is a degeneration in Lg, then p is not atomic.

Hence, if the assumption of this theorem is fulfilled (e.g. g ¼ 2 and 3), to determine

atomic degenerations of curves of genus g, it su‰ces to check the splittability of degen-

erations p : M ! D such that

S. Takamura116



(A) X ¼ p
�1ð0Þ is stellar (star-shaped), i.e. the dual graph of X is star-shaped, or

(B) X is constellar and (B.1) X has no multiple node and (B.2) if X has an

irreducible component Y0 of multiplicity 1, then Y0 is a projective line, and

intersects other irreducible components of X only at one point.

In [Ta,III], we develop another method for constructing splitting deformations, which

uses ‘barkable’ sub-divisors in singular fibers. This method is quite powerful and works

for degenerations satisfying (A) or (B).

List of splitting criteria via configurations of singular fibers.

In the list below we notice that in some cases, two di¤erent criteria are applicable to

one degeneration. Unless otherwise mentioned, a plane curve singularity always means

a reduced one.

Criterion 5.1.4. Let p : M ! D be normally minimal such that the singular fiber X

has a multiple node of multiplicity at least 2. Then there exists a splitting family of

p : M ! D, which splits X into X1 and X2, where X1 is a reduced curve with one node and

X2 is obtained from X by replacing the multiple node with a multiple annulus.

Criterion 5.1.5. Let p : M ! D is normally minimal such that the singular fiber X

contains a multiple node (of multiplicityb1). Then p : M ! D is atomic if and only if X

is a reduced curve with one node.

Criterion 5.2.3. Let p : M ! D be relatively minimal. Suppose that the singular

fiber X has a point p such that a germ of p in X is either

(1) a multiple of a plane curve singularity of multiplicity at least 2, or

(2) a plane curve singularity such that if it is a node, then X np is not smooth.

Then p : M ! D admits a splitting family.

Criterion 6.1.1. Let p : M ! D be normally minimal. Suppose that the singular

fiber X contains an irreducible component Y0 of multiplicity 1 such that X nY0 is (to-

pologically) disconnected. Denote by Y1;Y2; . . . ;Yl ðlb 2Þ all connected components of

X nY0. Then p : M ! D admits a splitting family which splits X into X1;X2; . . . ;Xl ,

where Xi ði ¼ 1; 2; . . . ; lÞ is obtained from X by ‘smoothing’ Y1;Y2; . . . ;
�YYi; . . . ;Yl . Here

�YYi is the omission of Yi.

Criterion 6.2.1. Let p : M ! D be normally minimal such that the singular fiber X

contains an irreducible component Y0 of multiplicity 1. Let p1 : W1 ! D be the re-

striction of p to a tubular neighborhood W1 of X nY0 in M. Suppose that p1 : W1 ! D

admits a splitting family C1 which splits Yþ
:¼ W1 VX into Yþ

1 ;Y
þ
2 ; . . . ;Y

þ
l . Then

p : M ! D admits a splitting family C which splits X into X1;X2; . . . ;Xl , where Xi is

obtained from Yþ
i by gluing Y0nðW1 VY0Þ along the boundary.
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1. Preparation.

In this paper, D :¼ fs A C : jsj < 1g stands for the unit disk. Let p : M ! D be a

proper surjective holomorphic map from a smooth complex surface M to D such that

p�1ð0Þ is singular and p�1ðsÞ for s0 0 is a smooth complex curve of genus g ðgb1Þ.

We say that p : M ! D is a degeneration of complex curves of genus g with the singular

fiber X :¼ p�1ð0Þ. Two degenerations p1 : M1 ! D and p2 : M2 ! D are called topo-

logically equivalent if there are orientation preserving homeomorphisms H : M1 ! M2

and h : D ! D which make the following diagram commutative:

M1 ���!
H

M2

p1

?
?
?
y

?
?
?
y
p2

D ���!
h

D

Next, we introduce basic terminology concerned with deformations of degen-

erations. We set Dy
:¼ ft A C : jtj < eg, where e is su‰ciently small. Suppose that M

is a smooth complex 3-manifold, and C : M ! D� Dy is a proper flat surjective

holomorphic map. (Note: Unless we pose ‘‘flatness’’, a fiber of C is possibly 2-

dimensional, e.g. blow up of M at one point.) We set Mt :¼ C�1ðD� ftgÞ and

pt :¼ C jMt
: Mt ! D� ftg. Since M is smooth and dimDy ¼ 1, the composite map

pr2 �C : M ! Dy is a submersion, and so Mt is smooth. We say that C : M ! D� Dy

is a deformation family of p : M ! D if p0 : M0 ! D� f0g coincides with p : M ! D.

For consistency, we mainly use the notation Dt instead of D� ftg, and we say that pt :

Mt ! Dt is a deformation of p : M ! D.

We introduce a special class of deformation families of a degeneration. Suppose

that p : M ! D is relatively minimal, i.e. its singular fiber contains no ð�1Þ-curve (excep-

tional curve of the first kind). A deformation family C : M ! D� Dy is said to be a

splitting deformation family (or splitting family) of p : M ! D provided that for t0 0,

pt : Mt ! Dt has at least two singular fibers. In this case, we say that pt : Mt ! Dt is a

splitting deformation of p : M ! D, and letting X1;X2; . . . ;Xl ðlb 2Þ be the singular

fibers of pt : Mt ! Dt, we say that X splits into X1;X2; . . . ;Xl where l is independent of t.

(In fact, the discriminant D ¼ fðs; tÞ A D� Dy
: C�1ðs; tÞ is singularg of C is a plane

curve in D� Dy passing through the origin, and hence #ðDVDtÞ, the number of the

singular fibers of pt, is constant for su‰ciently small t0 0.) The above definition of a

splitting family is too restrictive because we are rather interested in ‘‘the germ of a

degeneration’’, and we adopt the following weaker definition. We say that p : M ! D

admits a splitting family provided that for some d ð0 < d < 1Þ the restriction p 0
: M 0 !

D 0
:¼ fjsj < dg, where M 0

:¼ p�1ðD 0Þ and p 0
:¼ pjM 0 , admits a spitting family in the

above sense, and if this is the case, for simplicity we use the convention to rewrite

p 0
: M 0 ! D 0 as p : M ! D.

We note that a splitting of the singular fiber induces a factorization of the topolog-

ical monodromy g of p : M ! D along the loop qD with counterclockwise orientation,
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where the topological monodromy is an element of the mapping class group acting on a

smooth fiber (see §4). Namely take disjoint simple closed oriented loops li in Dt

circuiting around the points xi :¼ pðXiÞ ði ¼ 1; 2; . . . ; lÞ such that the product l1l2 � � � ll
is homotopic to qD and their orientations coincide. Letting gi be the topological

monodromy around Xi in pt : Mt ! Dt along li, then g ¼ g1g2 � � � gl .

Next we define the notion of splitting families for a degeneration p : M ! D which

is not relatively minimal. We first introduce some notation. Let us take a sequence of

blow down maps

M !
f1
M1 !

f2
M2 !

f3
� � � !

fr
Mr;

and degenerations pi : Mi ! D ði ¼ 1; 2; . . . ; rÞ where

(1) fi : Mi�1 ! Mi is a blow down of a ð�1Þ-curve in Mi�1 and the map

pi : Mi ! D is naturally induced from pi�1 : Mi�1 ! D, and

(2) pr : Mr ! D is a relatively minimal.

Given a deformation family C : M ! D� Dy of p : M ! D, we shall construct a defor-

mation family Cr : Mr ! D� Dy of the relatively minimal degeneration pr : Mr ! D.

First, recall that by Kodaira’s Stability Theorem [Ko2], any ð�1Þ-curve in a complex

surface is preserved under an arbitrary deformation of the surface. Thus, there exists a

family of ð�1Þ-curves in M. By [FN], we may blow down them simultaneously to

obtain a deformation family C1 : M1 ! D of p1 : M1 ! D. Again, by Kodaira’s

Stability Theorem, there exists a family of ð�1Þ-curves in M1, which we blow down

simultaneously to obtain a deformation family C2 : M2 ! D of p2 : M2 ! D. We

repeat this process and finally obtain a deformation family Cr : Mr ! D of

pr : Mr ! D. Namely, given a deformation family C : M ! D� Dy of p : M ! D, we

obtain a deformation family Cr : Mr ! D� Dy of pr : Mr ! D. We say that C :

M ! D� Dy is a splitting family of p : M ! D provided that Cr : Mr ! D� Dy is a

splitting family of the relatively minimal degeneration pr : Mr ! D. We say that a

degeneration is atomic if it admits no splitting family at all.

In this paper, instead of relatively minimal degenerations, we mainly use normally

minimal degenerations, because they reflect the topological type (or topological mono-

dromies) of degenerations. See §4. We express a singular fiber as a divisor, that is,

X ¼
P

i miYi where Yi is an irreducible component and a positive integer mi is its

multiplicity. Recall that p : M ! D is normally minimal if X satisfies the following

conditions:

(1) the reduced curve Xred :¼
P

i Yi is normal crossing, and

(2) if Yi is a ð�1Þ-curve, then Yi intersects other irreducible components at at least

three points.

In this case, we also say that the singular fiber X is normally minimal.

Lemma 1.0.1. Let p : M ! D be a normally minimal degeneration of complex

curves of genus g ðgb1Þ. Suppose that C : M ! D� Dy is a deformation family of

p : M ! D such that pt : Mt ! Dt ðt0 0Þ has at least two normally minimal singular

fibers. Then C : M ! D� Dy is a splitting family of p : M ! D.

Proof. We first show the statement for the case gb 2. Let pr : Mr ! D be the

relatively minimal model of p : M ! D, and let Cr : Mr ! D� Dy be the deformation
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family of pr, which is determined from C . Suppose that Y1 and Y2 are normally

minimal singular fibers of pt : Mt ! Dt. Then after blowing down, the image of Yi

ði ¼ 1; 2Þ in Mr; t :¼ C�1
r ðD� ftgÞ has a nontrivial topological monodromy because the

topological monodromy of pt around Yi is nontrivial (see [Im] and also [MM2]) and

a topological monodromy does not change after blowing down. So the image of Yi in

Mr; t is a singular fiber. Hence Cr is a splitting family, and thus by definition, C is a

splitting family. This proves the assertion for the case gb 2. When g ¼ 1, this

argument is also valid except that Y1 or Y2 is a multiple of a smooth elliptic curve, that

is, a singular fiber of the form mY, where Y is a smooth elliptic curve and mb 2 is an

integer. We note that this singular fiber has the trivial topological monodromy.

Now we consider the remaining case, that is, Y1 or Y2 is a multiple of a smooth

elliptic curve. Notice that a multiple of a smooth elliptic curve is relatively minimal (it

contains no projective line at all), and so its image in Mr; t is also singular, yielding the

proof of the assertion. r

2. Atomic degenerations.

In this section, we exhibit two types of atomic degenerations.

Theorem 2.0.2. Let p : M ! D be a degeneration of curves such that the singular

fiber X is either (I) a reduced curve with one node, or (II) a multiple of a smooth curve of

multiplicity at least 2. Then p : M ! D is atomic.

We notice that in the type (I), X has one or two irreducible components, in the later

case, two smooth irreducible components intersecting at one point transversally. The

type (II) means that X is of the form mY, where mb 2, and Y is a smooth curve.

Remark 2.0.3. We remark that the proof of Theorem 2.0.2 carries over to ar-

bitrary dimensions to show that a degeneration of type (II) is atomic, i.e. letting

p : M ! D be a degeneration of compact complex manifolds of arbitrary dimension, if

the singular fiber X is a multiple of a smooth complex manifold, then p : M ! D is

atomic.

We first demonstrate that if X is a reduced curve with one node, then p : M ! D is

atomic. We prove this by contradiction. Assume that C : M ! D� Dy is a splitting

family of p which splits X into X1;X2; . . . ;Xl ðlb 2Þ. We notice that a deformation of

a node is either equisingular or smoothing. Hence Xi is an equisingular deformation

of X , and so it is also a reduced curve with one node. Since M is di¤eomorphic to

Mt, we have wðMÞ ¼ wðMtÞ, where wðMÞ stands for the topological Euler characteristic

of M. From this equation, by the same argument as in [BPV] p. 97 we deduce the

following relation of Euler characteristics:

wðX Þ � ð2� 2gÞ ¼
Xl

i¼1

½wðXiÞ � ð2� 2gÞ�:ð2:0:1Þ

Since X and X1;X2; . . . ;Xl are reduced curves with one node, we have

wðX Þ ¼ wðX1Þ ¼ � � � ¼ wðXlÞ ¼ 2� 2gþ 1:

Then (2.0.1) implies that 1 ¼ l, which gives the contradiction.
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Note. We can also show the above statement purely analytically by the computa-

tion of Ext1ðW1
X ;OX Þ (cf. [Pa1]). In fact, if X splits into X1;X2; . . . ;Xl ðlb 2Þ, then the

node (A1-singularity) of X splits into l nodes. However, an A1-singularity does not

admit any splitting. This gives a contradiction.

3. The Proof of Theorem 2.0.2 for the type (II).

Next, we shall demonstrate that if X is a multiple mY of a smooth curve Y, then

p : M ! D is atomic. The proof is quite intricate and long, so we separate the

statement into several claims to clarify the main step of the proof; for a deformation

pt : Mt ! Dt of p : M ! D, we first construct an unramified covering pt : ~MMt ! Mt, and

then show that the Stein factorization of pt � pt factors through a smooth family over a

disk.

Preparation. First, we construct an unramified cyclic m-covering of M. For this

purpose, we consider a line bundle L ¼ OMðYÞ on M. Notice that Lnm GOM , because

mY is the principal divisor defined by the holomorphic function p. We set Fs :¼ p�1ðsÞ

(so F0 ¼ mY). Then L has the following properties:

(i) For s0 0, the restriction LjFs is the trivial bundle on Fs, and

(ii) the restriction LjY is a line bundle on Y such that ðLjYÞ
nm GOY.

Next, we take an open covering M ¼ 6
a
Ua, and let Ua � C be local trivializations

of L with coordinates ðza; zaÞ A Ua � C . We take a non-vanishing holomorphic section

t ¼ ftag of Lnð�mÞ GOM . Equations taðzaÞz
m
a þ 1 ¼ 0 define a smooth hypersurface ~MM

in L because these equations are compatible with the transition functions of L. The

map f : ~MM ! M given by f ðza; zaÞ ¼ za is an unramified cyclic m-covering. From the

properties of the line bundle L,

(i) for s0 0, f �1ðFsÞ has m connected components such that each connected

component is di¤eomorphic to Fs, and

(ii) ~YY :¼ f �1ðYÞ is connected, and f j ~YY : ~YY ! Y is an unramified cyclic m-

covering.

In order to show that p : M ! D is atomic, we shall prove that for an arbitrary de-

formation family C : M ! D� Dy of p, the map pt : Mt ! Dt has a unique singular

fiber, and it is of the form mYt, where Yt is di¤eomorphic to Y. For this purpose,

we first construct an unramified cyclic covering of M; notice that M is di¤eomorphic to

M � Dy, and the map ~MM � Dy ! M � Dy, ðx; tÞ 7! ð f ðxÞ; tÞ is an unramified cyclic m-

covering. Thus we have an unramified cyclic m-covering r : ~MM ! M, where we give

the complex structure on ~MM induced from that on M by r. (This is possible, because

r is unramified.) By construction, setting ~MMt :¼ r�1ðMtÞ, the restriction pt : ~MMt ! Mt

of r to ~MMt is also an unramified cyclic m-covering. Applying the Stein factorization

to the map pt � pt : ~MMt ! Dt, we obtain a commutative diagram

~MMt ���!
pt

Mt

~ppt

?
?
?
y

?
?
?
y
pt

~DDt ���!
pt

Dt;

ð3:0:2Þ

where (1) ~DDt is a smooth curve and pt is an m-covering, and (2) ~ppt : ~MMt ! ~DDt is a

proper surjective map such that all fibers are (topologically) connected. Note that the
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Stein Factorization Theorem asserts that since ~MMt is normal, ~DDt is also normal (e.g. [GR]

p. 213). As is well known, any normal curve, hence ~DDt, is smooth. We also notice

that since pt is a cyclic covering, pt is also a cyclic covering. Indeed, let ~gg be a

generator of the covering transformation group of pt, and for x A ~DDt, set

Fx :¼ ~pp�1
t ðxÞ. From the commutativity of the above diagram, ~ggðFxÞ for arbitrary x is

also a fiber of ~ppt, say Fy where y A ~DDt. Defining an automorphism g on ~DDt by gx ¼ y,

then g generates the covering transformation group of pt, implying that pt is a cyclic

covering.

Proof. After the above preparation, we prove Theorem 2.0.2 for the type (II).

The key ingredients of the proof are the following two claims, which together imply that

the Stein factorization (3.0.2) is nothing but the stable reduction of pt : Mt ! Dt. In

what follows, we always assume that jtj is su‰ciently small. r

Claim A. ~ppt : ~MMt ! ~DDt is a smooth family, i.e. all fibers of ~ppt are smooth.

Claim B. ~DDt is an open disk.

Assuming Claims A and B for a moment, we will verify that pt : Mt ! Dt has only one

singular fiber, and it is of the form mYt. First, we note the following.

Lemma 3.0.4. Suppose that p : ~DD ! D is a cyclic m-covering, where ~DD and D are

open unit disks. Then the covering transformation group fixes exactly one point in ~DD,

and p is given by the map z 7! zm possibly after coordinate change.

Proof. Let g : ~DD ! ~DD be a generator of the covering transformation group. Then

g is an element of Autð ~DDÞ, which is isomorphic to the fractional linear transformation

group PSL2ðRÞ of the unit disk (Poincaré disk). From gm ¼ 1, the transformation g

is an elliptic element. Thus it fixes exactly one point in ~DD, and g is of the form

z 7! e2pi=mz possibly after coordinate change. Thus p : ~DD ! D is given by z 7! zm.

r

Now we complete the proof of the theorem. By Claim A, ~ppt : ~MMt ! ~DDt is

a smooth family. Let ~ggt be a generator of the covering transformation group of the

unramified cyclic m-covering ~MMt ! M t. By the construction of the Stein factorization

of pt � pt, the transformation ~ggt determines a generator gt of the covering transformation

group of the cyclic m-covering ~DDt ! Dt such that the following diagram commutes:

~MMt ���!
~ggt ~MMt

~ppt

?
?
?
y

?
?
?
y

~ppt

~DDt ���!
gt ~DDt

ð3:0:3Þ

Namely, the pair ð~ggt; gtÞ generates an equivariant Zm-action on ~ppt : ~MMt ! ~DDt, and pt :

Mt ! Dt is the quotient of ~ppt : ~MMt ! ~DDt by this action. Recall that Dt is a disk, while

by Claim B, ~DDt is also a disk. Noting that any open disk is biholomorphic to the

unit one, we apply Lemma 3.0.4 to the cyclic m-covering ~DDt ! Dt, and see that gt
fixes exactly one point, say ~xxt on ~DDt. From the commutativity of the diagram (3.0.3),

we have
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Lemma 3.0.5. The ~ggt-action on ~MMt stabilizes precisely one fiber ~YYt :¼ ~pp�1
t ð~xxtÞ, and

except this fiber, this action cyclically permutes the m fibers in each orbit.

~YYt H ~MMt ���!
~ggt ~YYt H ~MMt

~ppt

?
?
?
y

?
?
?
y

~ppt

~xxt A ~DDt ���!
gt

~xxt A ~DDt

As pt : Mt ! Dt is the quotient of the smooth family ~ppt : ~MMt ! ~DDt by the equivariant

Zm-action, it follows from Lemma 3.0.5 that pt : Mt ! Dt has a unique singular fiber

over the point xt :¼ ptð~xxtÞ. This fiber is a multiple of a smooth curve, because
~MMt ! Mt is unramified cyclic, so in particular, the Zm-action on ~YYt is an unramified

cyclic action. Namely, the singular fiber of pt : Mt ! Dt is mYt, where Yt is the image

of ~YYt under the quotient map (the multiplicity equals the order m of the ~ggt-action on
~YYt). Finally, we claim that Yt di¤eomorphic to Y. In fact, the restriction of C to

6
t
Yt is a smooth family over the ‘underlying’ reduced curve Dred of the discriminant of

C . (Note that Dred is a disk. See Remark 3.1.3 below.) By Ehresmann’s Theorem,

any fiber Yt is di¤eomorphic to Y0 ¼ Y. Thus, assuming Claims A and B, we proved

Theorem 2.0.2, and so it remains to demonstrate these claims.

3.1. Proof of Claim A.

We start with preparation. Let X1;X2; . . . ;Xd be the singular fibers of pt :

Mt ! Dt, and set xi :¼ ptðXiÞ. We introduce notation associated to the basic diagram:

~MMt ���!
pt

Mt

~ppt

?
?
?
y

?
?
?
y
pt

~DDt ���!
pt

Dt

ð3:1:1Þ

We set p�1
t ðxiÞ :¼ f~xx

ð1Þ
i ; ~xx

ð2Þ
i ; . . . ; ~xx

ðNiÞ
i g, and let ri be the ramification index of ~xx

ð jÞ
i (so

pt : z 7! zri around ~xx
ð jÞ
i ), where we remark that ri does not depend on j because pt :

~DDt ! Dt is a cyclic covering. Since the covering degree of pt :
~DDt ! Dt is m, we have

m ¼ ri � #ðp
�1
t ðxiÞÞ ¼ riNi:ð3:1:2Þ

For a fiber ~XX
ð jÞ
i :¼ ~pp�1

t ð~xx
ð jÞ
i Þ, we write ~XX

ð jÞ
i ¼ ~aai ~YY

ð jÞ
i , where ~aai is a positive integer and

~YY
ð jÞ
i is not a multiple divisor, i.e. gcdfcoe‰cients of ~YY

ð jÞ
i g ¼ 1. Note that ~aai does

not depend on j, because pt :
~DDt ! Dt is a cyclic covering. Next, recalling that Xi is a

singular fiber of pt : Mt ! Dt, we write Xi ¼ aiYi, where ai is a positive integer and Yi is

not a multiple divisor. Notice that

ðpt � ~pptÞ
�1ðxiÞ ¼ ri~aai ~YY

ð jÞ
i :ð3:1:3Þ

As pt is unramified, the fiber of pt � pt : ~MMt ! Dt over the point xi is a multiple fiber

of multiplicity ai. (The fiber ðpt � ptÞ
�1ðxiÞ is not connected; there are Ni connected
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components.) Thus from the commutativity of the diagram (3.1.1), together with

(3.1.3), we have

ai ¼ ri~aai:ð3:1:4Þ

We notice

Lemma 3.1.1. m~aai ¼ Niai.

Proof. Indeed, m~aai ¼ riNi~aai ¼ aiNi, where the first and second equalities follow

from (3.1.2) and (3.1.4) respectively. r

Next, we note that if there is a singular fiber of ~ppt, then it is a fiber over some

~xx
ð jÞ
i . Indeed, if ~XX is a singular fiber of ~ppt, then the image ptð ~XX Þ is a singular fiber of

pt. Therefore, to prove Claim A, it is enough to demonstrate that for any ~xx
ð jÞ
i , the fiber

~XX
ð jÞ
i ¼ ~pp�1

t ð~xx
ð jÞ
i Þ is smooth.

Now we shall show that all ~XX
ð jÞ
i are smooth. Although the proof is involved, the

essential part of the idea is to relate the singular fibers of pt � pt and the singular fiber of

p0 � p0. Namely, using the diagram

~MM !
r
M !

C
D� Dy

;

we relate the singular fibers of the following two diagrams (‘embedded’ in the above

diagram) by taking the limit t ! 0:

~MMt !
pt

Mt !
pt

Dt and ~MM0 !
p0

M0 !
pt

D0:

Step 1. We consider the discriminant DHD� Dy of C ; it is a plane curve in

D� Dy through ð0; 0Þ defined as the locus where the rank of the di¤erential dC is not

maximal. Topologically, D is

fðs; tÞ A D� Dy
: C�1ðs; tÞ is singularg;

but possibly non-reduced. For our discussion, we rather use the underlying reduced

curve Dred of D. By the Weierstrass Preparation Theorem, Dred is defined by a

Weierstrass polynomial

sn þ cn�1ðtÞs
n�1 þ cn�2ðtÞs

n�2 þ � � � þ c0ðtÞ ¼ 0;ð3:1:5Þ

where ciðtÞ is a holomorphic function with cið0Þ ¼ 0. By the definition of underlying

reduced curves, this equation contains no multiple root, in other words, the discriminant

DðtÞ of the above Weierstrass polynomial does not vanish identically (but possibly

vanishes for some t). Now we claim that n ¼ d, where d is the number of the singular

fibers of pt : Mt ! Dt. Indeed, when t ¼ 0, (3.1.5) is sn ¼ 0, which clearly has a mul-

tiple root, so Dð0Þ ¼ 0. Since zeroes of the holomorphic function DðtÞ are isolated, DðtÞ

does not vanish for su‰ciently small t ðt0 0Þ. Consequently, (3.1.5) has n distinct

roots, and so pt has precisely n singular fibers, implying that n ¼ d. This verifies the

claim, and we have
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Dred ¼ fsd þ cd�1ðtÞs
d�1 þ cd�2ðtÞs

d�2 þ � � � þ c0ðtÞ ¼ 0g:ð3:1:6Þ

Next, we define a ramified d-covering f : Dred ! Dy by ðs; tÞ 7! t. Then

f�1ðtÞ ¼
d distinct points for t0 0

a multiple point sd ¼ 0 for t ¼ 0:

�

Step 2. To relate the singular fibers of pt � pt and p0 � p0, we consider the hy-

persurface ~HH :¼ ðC � rÞ�1ðDredÞ in the complex 3-manifold ~MM. For the remainder of

the proof, to emphasize the parameter t, we use ‘precise’ notation ~XX
ð jÞ
i; t instead of ~XX

ð jÞ
i

etc. Notice that

HV ~MMt ¼
the disjoint union of all ~XX

ð jÞ
i; t for t0 0

dm ~YY for t ¼ 0;

(

ð3:1:7Þ

where we can see HV ~MM0 ¼ dm ~YY as follows. Since p�1
0 ð0Þ ¼ mY and p0 is unramified

(locally biholomorphic), we have ðp0 � p0Þ
�1ð0Þ ¼ m ~YY, hence the fiber of p0 � p0 over the

multiple point sd ¼ 0 is dm ~YY, and so HV ~MM0 ¼ dm ~YY.

By the first equation of (3.1.7), our goal is to show that HV ~MMt is smooth for

all t0 0. To demonstrate this, fixing an arbitrary point y A ~YY ð¼ p�1
0 ðYÞÞ, we take

local coordinates ðz1; z2; tÞ around y in ~MM such that z1 ¼ t ¼ 0 locally defines ~YY.

(Note: By the definition of deformation families, pr2 �C : M ! D� Dy ! Dy is a sub-

mersion. Since r is unramified, pr2 �C � r : ~MM ! Dy is also a submersion. By the

Implicit Function Theorem, we may ‘lift’ t A Dy to a coordinate of ~MM.)

Let f ðz1; z2; tÞ ¼ 0 be a defining equation of ~HH around y in ~MM. For later dis-

cussion, we use the notation ftðz1; z2Þ instead of f ðz1; z2; tÞ. By the first equation of

(3.1.7), ~HHVMt ¼
‘

d

i¼1ð
‘Ni

j¼1
~XX
ð jÞ
i; t Þ (disjoint union) and ~XX

ð jÞ
i; t ¼ ai ~YY

ð jÞ
i; t , so we have a fac-

torization

ft ¼
Y

d

i¼1

f ai
i; t ; where fi; t ¼

Y

Ni

j¼1

g
ð jÞ
i; t ;ð3:1:8Þ

and g
ð jÞ
i; t ¼ 0 defines ~YY

ð jÞ
i; t locally. By the second equation of (3.1.7), f0ðz1; z2Þ ¼ zdm1 ,

hence setting t ¼ 0 in (3.1.8), we have

zdm1 ¼ f0 ¼
Y

d

i¼1

f ai
i;0;ð3:1:9Þ

and so we may express g
ð jÞ
i;0 ðz1; z2Þ ¼ z

d
ð jÞ
i

1 � u
ð jÞ
i ðz1; z2Þ, where d

ð jÞ
i is a positive integer and

u
ð jÞ
i is a non-vanishing holomorphic function. By the comparison of the degrees of z1 in

(3.1.9), we have

dm ¼
X

d

i¼1

aiðd
ð1Þ
i þ d

ð2Þ
i þ � � � þ d

ðNiÞ
i Þ:ð3:1:10Þ

Now we show the key lemma.

Lemma 3.1.2. ~aai ¼ d
ð1Þ
i ¼ d

ð2Þ
i ¼ � � � ¼ d

ðNiÞ
i ¼ 1 for i ¼ 1; 2; . . . ;d.
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Proof. From (3.1.10), we note

dm ¼
Xd

i¼1

aiðd
ð1Þ
i þ d

ð2Þ
i þ � � � þ d

ðNiÞ
i Þð3:1:11Þ

b

Xd

i¼1

aiNi

¼
Xd

i¼1

~aaim;

where the second inequality follows from d
ð1Þ
i ; d

ð2Þ
i ; . . . ; d

ðNiÞ
i b1 and the last equality

follows from Lemma 3.1.1. Thus we have dmb
P

d

i¼1 ~aaim, which implies that ~aa1 ¼

~aa2 ¼ � � � ¼ ~aad ¼ 1, and this inequality is an equality. In particular, (3.1.11) is also an

equality, and so d
ð1Þ
i ¼ d

ð2Þ
i ¼ � � � ¼ d

ðNiÞ
i ¼ 1. This completes the proof. r

Now, it is immediate to complete the proof of Claim A. From ~aai ¼ 1, we have
~XX
ð jÞ
i; t ¼ ~YY

ð jÞ
i; t . On the other hand, from ~dd

ð jÞ
i ¼ 1, ~YY

ð jÞ
i;0 is smooth, because it is locally

defined by z1 � u
ð jÞ
i ðz1; z2Þ ¼ 0. Thus for su‰ciently small t; ~YY

ð jÞ
i; t is smooth, and so

~XX
ð jÞ
i; t ¼ ~YY

ð jÞ
i; t is smooth. This completes the proof of Claim A.

Remark 3.1.3. If d ¼ 1, i.e. pt : Mt ! Dt has only one singular fiber, then Dred ¼

fsþ c0ðtÞ ¼ 0g (see (3.1.6)) is a disk in D� Dy.

(It may be worth to point out that we did not use the Stein factorization of the map

C � r; it factors through a normal surface S, which possibly has a singularity. In

contrast, the Stein factorization for a map from a normal total space to a curve neces-

sarily factors through a smooth curve, which is much easier to be treated. See [GR]

p. 213 for details.)

3.2. Proof of Claim B.

We shall show Claim B asserting that ~DDt is a disk, for which we will apply a

topological argument. By shrinking Mt;
~MMt;Dt and ~DDt, we regard them as closed

manifolds with boundary. We first take di¤eomorphisms ft : M0 ! Mt and ft :

qD0 ! qDt which make the following diagram commute (for the existence of ft, see

Lemma 3.3.2 below):

qM0 ���!
ft

qMt

p0

?
?
?
y

?
?
?
y
pt

qD0 ���!
ft

qDt

(Namely, the restriction of ft to the boundary qM0 is fiber-preserving.) Recall that we

constructed pt : ~MMt ! Mt from p0 : ~MM0 ! M0 via the di¤eomorphism ft : M0 ! Mt.

Hence there is a natural di¤eomorphism Ft :
~MM0 ! ~MMt, which is a lifting of ft (that is,

Ft � pt ¼ p0 � ft), and the restriction of Ft to q ~MM0 is fiber-preserving, i.e. the following

diagram commutes
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q ~MM0 ���!
Ft

q ~MMt

~pp0

?
?
?
y

?
?
?
y

~ppt

q ~DD0 ���!
Ft

q ~DDt;

where Ft is a di¤eomorphism. Now we fix a fiber C0 :¼ ~pp�1
0 ðy0Þ, where y0 A q ~DD0, and

let i0 : C0 ,! ~MM0 be the natural embedding. Then Ct :¼ FtðC0Þ is a fiber of ~ppt over

yt :¼ Ftðy0Þ A q ~DDt, and let it : Ct ,! ~MMt be the natural embedding:

C0 H q ~MM0 ���!
Ft

Ct H q ~MMt

~pp0

?
?
?
y

?
?
?
y

~ppt

y0 A q ~DDt ���!
Ft

yt A q ~DDt

After this preparation, we can demonstrate that ~DDt is a disk. Note that ~DDt is a real

compact surface with a connected boundary isomorphic to S1. (By the construction of
~MMt, the boundary q ~MMt is connected, and so q ~DDt is connected.) Thus if the genus of ~DDt

is g, then ~DDt is homotopically equivalent to the bouquet S1
4S1

4 � � �4S1 of 2g circles,

and so

p1ð ~DDtÞ ¼ Z � Z � � � � � Z
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

2g

; the free group of rank 2g:

Hence it su‰ces to show that p1ð ~DDtÞ ¼ 1. For this, we first take the homotopy exact

sequence associated to the di¤erentiable fiber bundle ~pp0 :
~MM0 ! ~DD0, where we note that

by Ehresmann’s Theorem, a smooth family is a di¤erentiable fiber bundle:

p2ð ~DD0Þ ! p1ðC0Þ !
i0�

p1ð ~MM0Þ ! p1ð ~DD0Þ ! 1

Next, noting that from Claim A, ~ppt : ~MMt ! ~DDt is a di¤erentiable fiber bundle, so we may

take the homotopy exact sequence associated to it:

p2ð ~DDtÞ ! p1ðCtÞ !
it�

p1ð ~MMtÞ ! p1ð ~DDtÞ ! 1

The following commutative diagram relates the above two homotopy exact sequences:

p2ð ~DD0Þ ���! p1ðC0Þ ���!
i0�

p1ð ~MM0Þ ���! p1ð ~DD0Þ ���! 1
?
?
?
y

?
?
?
y

p2ð ~DDtÞ ���! p1ðCtÞ ���!
it�

p1ð ~MMtÞ ���! p1ð ~DDtÞ ���! 1;

ð3:2:1Þ

where the vertical arrows are induced by Ft. Since ~DD0 is a disk, we have p1ð ~DD0Þ ¼

p2ð ~DD0Þ ¼ 1, and so i0� is an isomorphism. Two vertical arrows are also isomorphisms,

because they are induced by the di¤eomorphism Ft. From the commutativity of the

diagram (3.2.1), we see that it� is an isomorphism, and so the exactness of the bottom

horizontal sequence of (3.2.1) implies that p1ð ~DDtÞ ¼ 1 and so ~DDt is a disk.

3.3. Supplement: Construction of di¤eomorphisms.

In this subsection, by a fiber bundle we always mean a di¤erentiable one. Suppose

that C : M ! D� D
y is a deformation family of p : M ! D. Note that the restriction
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ptjqMt
: qMt ! qDt is a fiber bundle. The following lemma may be known to the geo-

meters, but for the convenience of the reader, we include the proof. (Hereafter, for

consistency, we denote p0 : M0 ! D0 instead of p : M ! D.)

Lemma 3.3.1. There exists a di¤eomorphism ft : M0 ! Mt such that the restriction

ftjqM0
preserves fibers, that is, there exists a di¤eomorphism ft : qD0 ! qDt which makes

the following diagram commute:

qM0 ���!
ft

qMt

p0

?
?
?
y

?
?
?
y
pt

qD0 ���!
ft

qDt

Warning. Although the restriction of ft to the boundary qM0 commutes with

maps p0 and pt, this is not the case for ft itself.

Proof. For simplicity, we assume that D is the unit disk. We choose r1; r2 A R so

that 0 < r2 < r1 < 1, and define an open covering D� Dy ¼ Uin UUout, where

Uin :¼ fðs; tÞ A D� Dy
: jsj < r1g; Uout :¼ fðs; tÞ A D� Dy

: jsj > r2g:

We then take an open covering M ¼ Min UMout, where Min :¼ C�1ðUinÞ and Mout :¼

C�1ðUoutÞ. Taking r1 su‰ciently close to 1, we assume that Mout contains no singular

fiber, i.e. the restriction Cout :¼ C j
Mout

is a fiber bundle. In particular, Cout is a sub-

mersion. Hence there exists a vector field vout on Mout such that

dCoutðvoutÞ ¼
q

qt
:ð3:3:1Þ

Similarly, we set Cin :¼ C j
Min

. By the definition of deformation families, the composite

map pr2 �Cin : Min ! Dy is a fiber bundle with smooth complex surfaces as fibers, and

so a submersion. Thus there exists a vector field vin on Min such that

dðpr2 �CinÞðvinÞ ¼
q

qt
:ð3:3:2Þ

Notice that in (3.3.1), q=qt is a vector field on D� Dy, while in (3.3.2), it is a vector field

on Dy. We shall ‘patch’ two vector fields vin and vout by a partition of unity, and define

a vector field v on M; we first define open subsets U 0
in HUin (resp. U 0

out HUout) as

follows. Take r 01; r
0
2 A R satisfying 0 < r 01 < r2 < r1 < r 02 < 1, and set

U 0
in :¼ fðs; tÞ A D� Dy

: jsj < r 01g; U 0
out :¼ fðs; tÞ A D� Dy

: jsj > r 02g:

Notice that U 0
in VU 0

out ¼ q. Now we put M
0
in :¼ C�1ðU 0

inÞ and M
0
out :¼ C�1ðU 0

outÞ.

Then M
0
in VM

0
out ¼ q. Using a partition of unity, we can construct a vector field v on

M such that

v ¼
vin on M

0
in

vout on M
0
out:

�

Finally, we integrate the vector field v on M to obtain a one-parameter family of

di¤eomorphisms ft : M0 ! Mt with the desired property. r
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4. Topological monodromies and singular fibers.

Before we the proceed to state splitting criteria, we briefly review the relation be-

tween the topological monodromies and the configurations of singular fibers (see [MM2]

and [Ta,II] for details). First, we recall the topological monodromy of a degeneration

p : M ! D. For this purpose, it is convenient to consider M and D as manifolds with

boundary, so D is the closed unit disk. We write qD ¼ fe iy : 0a ya 2pg, and set

Cy :¼ p�1ðe iyÞ. Using a partition of unity, we construct a vector field v on qM such

that dpðvÞ ¼ q=qy. Then the integration of v yields a one-parameter family of di¤eo-

morphisms hy : C0 ! Cy (see Figure 1). In particular, h2p is a self-homeomorphism of

C0. Setting h :¼ h2p, we refer to h as the topological monodromy of p : M ! D.

Topological monodromies are very special homeomorphisms; they are either pe-

riodic or pseudo-periodic (see [MM2], and also [Im]). Recall that a homeomorphism

h of a curve C is (1) periodic if for some positive integer m, hm is isotopic to the

identity, and (2) pseudo-periodic if for some loops l1; l2; . . . ; ln on C, the restriction h

on Cnfl1; l2; . . . ; lng is periodic. (In [MM2], periodic homeomorphisms are considered

to be special cases of pseudo-periodic homeomorphisms by taking fl1; l2; . . . ; lng ¼ q.

However for our discussion it is convenient to distinguish periodic homeomorphisms

from pseudo-periodic ones.) According to whether the topological monodromy is peri-

odic or pseudo-periodic, the singular fiber is stellar (star-shaped) or constellar (con-

stellation-shaped). In some sense, a constellar singular fiber is obtained by ‘bonding’

stellar ones (see [MM2] and [Ta,II]).

Remark 4.0.2. Based on a topological argument, Matsumoto and Montesinos

[MM2] showed that the configuration of the singular fiber of a degeneration is com-

pletely determined by its topological monodromy. In [Ta,II], we gave an algebro-

geometric proof for their results, and clarified the relation between topological mono-

dromies and quotient singularities.

Now the followings are the simplest examples for periodic and pseudo-periodic ho-

meomorphisms respectively:

D

Figure 1.
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Example 4.0.3 (Periodic). h is an unramified periodic homeomorphism, that is, the

quotient map C ! C=hhi is an unramified cyclic covering.

Example 4.0.4 (Pseudo-periodic). h is a right Dehn twist along a simple closed

loop l on C, so the restriction of h to Cnl is isotopic to the identity.

A degeneration with the topological monodromy in Example 4.0.3 has a singular fiber

mY, where m is the order of h, and Y is a smooth curve which is the quotient of C

by the action of h. On the other hand, the singular fiber of a degeneration with the

topological monodromy in Example 4.0.3 is a reduced curve with one node (this node

is obtained by ‘pinching’ l on C). By Theorem 2.0.2, both of these degenerations are

atomic. Namely, all degenerations with the simplest topological monodromies are

atomic. To the contrary, if the topological monodromy is ‘complicated’, what can we

say about splittability? In this case, the singular fiber is also complicated, so the reader

may imagine that they are not atomic (complicated objects should not be atoms!). In

the later half of this paper, we will show that this guess is true.

5. Splitting criteria via configurations, I.

In this and subsequent sections, we will give splitting criteria of degenerations in

terms of configurations of their singular fibers. As a consequence of these criteria,

we will see that many degenerations with constellar singular fibers always admit splitting

families. We point out that these criteria are powerful for determining atomic de-

generations by induction with respect to genus g (see §6.3 for details).

In the discussion below, we often use the realization of M as the graph of p; for

a degeneration p : M ! D, the graph of p is defined by

GraphðpÞ ¼ fðx; sÞ A M � D : pðxÞ � s ¼ 0g:

Of course, GraphðpÞ is a smooth hypersurface in M � D, and M is canonically isomor-

phic to GraphðpÞ by x A M 7! ðx; pðxÞÞ A M � D. Under this isomorphism, the map

p : M ! D corresponds to the projection ðx; sÞ A GraphðpÞ 7! s A D. In the discussion

below, we identify GraphðpÞ with M via the canonical isomorphism, and we write M

instead of GraphðpÞ.

5.1. Criterion in terms of nodes.

In this subsection, we shall provide splitting criteria in terms of some singularity

on the singular fiber.

Definition 5.1.1. Let m be a positive integer. A singularity analytically isomor-

phic to

Vm :¼ fðx; yÞ A C
2
: xmym ¼ 0g

is called a multiple node of multiplicity m.

Note that when mb 2, Vm is non-reduced. By abuse of terminology, we also say that

the origin of Vm is a multiple node.

We consider a hypersurface M :¼ fðx; y; s; tÞ A C
4
: ðxyþ tÞm � s ¼ 0g, and define

a holomorphic map C : M ! C
2 by ðx; y; s; tÞ 7! ðs; tÞ. Clearly, C

�1ð0; 0Þ ¼ Vm, and
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so C is a two-parameter deformation family of Vm. Next, we shall compute the dis-

criminant of C . Since

qC

qx
¼ myðxyþ tÞm�1;

qC

qy
¼ mxðxyþ tÞm�1;

we have qC=qx ¼ qC=qy ¼ 0 if and only if either (1) x ¼ y ¼ 0 or (2) xyþ t ¼ 0. We

note that tm � s ¼ 0 for (1), and s ¼ 0 for (2).

Lemma 5.1.2. The discriminant of C consists of curves s ¼ tm and s ¼ 0 in C
2. To

be explicit, for t0 0,

(1) C
�1ðtm; tÞ is the disjoint union of m� 1 annuli and a node,

(2) C
�1ð0; tÞ is a multiple of an annulus of multiplicity m.

Proof. The fiber C
�1ðtm; tÞ ðt0 0Þ is defined by

xy½ðxyÞm�1 þ mC1ðxyÞm�2
tþ � � � þ mCiðxyÞm�i�1

t i þ � � � þ mC1t
m�1� ¼ 0:

This equation factorizes as xy
Qm�1

i¼1 ðxyþ aitÞ ¼ 0, where ai ¼ e2p
ffiffiffiffiffi

�1
p

i=m � 1 ði ¼
1; 2; . . . ;m� 1Þ are the solutions of

X m�1 þ mC1X
m�2 þ � � � þ mCiX

m�i�1 þ � � � þ mC1 ¼ 0;

that is, nonzero solutions of ðX þ 1Þm � 1 ¼ 0. Hence C
�1ðtm; tÞ ðt0 0Þ is the disjoint

union of a node xy ¼ 0 and m� 1 annuli xyþ ai ¼ 0 ði ¼ 1; 2; . . . ;m� 1Þ. On the

other hand, C
�1ð0; tÞ ¼ fðxyþ tÞm ¼ 0g is a multiple annulus of multiplicity m. r

Before proceeding we introduce a terminology.

Definition 5.1.3. A domain is called annular if it is biholomorphic to a domain of

the form

U ¼ fðx; yÞ A C
2
: r < jxj < 1; jyj < 1; jxyj < dg;

where r ð0 < r < 1Þ is su‰ciently close to 1 and d satisfies 0 < d < 1.

We note that an annular domain U is di¤eomorphic to the product of an annulus and

a disk.

Criterion 5.1.4. Let p : M ! D be normally minimal such that the singular fiber X

has a multiple node p of multiplicity at least 2. Then there exists a splitting family of

p : M ! D, which splits X into X1 and X2, where X1 is a reduced curve with one node and

Figrue 2.
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X2 is obtained from X by replacing the multiple node p with a multiple annulus (see Figure

6 for example).

Proof. If necessary, shrink M and D, i.e. consider p : M ! D ¼ fjsj < dg for some

d ð0 < d < 1Þ, and take an open covering M ¼ W0 UW1 (see Figure 3) such that

(1) W0 is an open set around p (hence W0 VX is the multiple node), given by

fðx; yÞ A C
2
: jxj < 1; jyj < 1; jxmymj < dg ðsee Figure 4Þ;

(2) W1 VX is ‘outside’ the multiple node, and

(3) pðW0Þ ¼ pðW1Þ ¼ D.

Notice that the boundary of W0 consists of two connected components respec-

tively defined by jxj ¼ 1 and jyj ¼ 1. (Each component is a solid torus.) Taking

r ð0 < r < 1Þ su‰ciently close to 1, we consider open sets:

U ¼ fðx; yÞ A W0 : r < jxj < 1g; V ¼ fðx; yÞ A W0 : r < jyj < 1g;

and then U and V are neighborhoods of boundary components of W0. See Figure 4.

Notice that U and V are annular domains (take d ¼ d1=m in Definition 5.1.3), and

pðUÞ ¼ pðVÞ ¼ D.

For the subsequent argument, we write U ¼ U0 and V ¼ V0, and then M is

obtained by patching W0 and W1 along U0 HW0 and U1 HW1 and along V0 HW0 and

V1 HW1 where U1 and V1 are annular domains in W1. We rewrite ðx; yÞ ¼ ðzb; zbÞ A

U0, then we have pðzb; zbÞ ¼ zmb z
m
b . Next, we take coordinates ðza; zaÞ A U1. Then

Figure 3.

Figure 4. U and V are respectively described by the gray and black bold lines (in the real 2-dimensional

figure, two gray lines are disconnected, but they are in fact connected; the same for two black lines).
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pðza; zaÞ ¼ zma faðza; zaÞ, where fa is a non-vanishing holomorphic function. As pðza; zaÞ

¼ pðzb; zbÞ, we have

zma faðza; zaÞ ¼ zmb z
m
b :

Note that the holomorphic function zmb z
m
b on the right has an m-th root zbzb, which is

a single-valued function. Thus zma fa also has a single valued m-th root function za f
1=m
a

such that za f
1=m
a ¼ zbzb. Rewriting za f

1=m
a by za, the gluing map of W0 and W1 along

U0 and U1 is of the form

za ¼ fabðzb; zbÞ; za ¼ zbzb;

where fab is holomorphic. Similarly, we may assume that the gluing map along V0 and

V1 is also of this form.

Now we define a smooth hypersurface M0 in W0 � D� Dy by

fðzb; zb; s; tÞ A W0 � D� Dy
: ðzbzb þ tÞm � s ¼ 0g:

We also define a smooth hypersurface M1 in W1 � D� Dy by

fðx; s; tÞ A W1 � D� Dy
: pðxÞ � s ¼ 0g:

Let Ci : Mi ! D� Dy ði ¼ 0; 1Þ be the natural projection. From Lemma 5.1.2, for

t0 0,

C�1
0 ðs; tÞ ¼

disjoint union of m� 1 annuli and a node; s ¼ tm;

a multiple annulus of multiplicity m; s ¼ 0:

�

ð5:1:1Þ

On the other hand, we have

C�1
1 ðs; tÞ ¼

X VW1; s ¼ 0;

smooth; otherwise.

�

ð5:1:2Þ

Now we glue M0 with M1 by

za ¼ fabðzb; zbÞ; za ¼ zbzb þ t

along U0 � Dy and U1 � Dy, and similarly along V0 � Dy and V1 � Dy. Note that this

gluing map transforms the defining equation of M0 to that of M1, and we obtain a

complex 3-manifold M. However we notice that the boundary of M0 is not patched

with that of M1, causing that the natural projection C : M ! D� Dy is not proper. (A

fiber on the boundary of M is a non-compact curve with boundary. See Figure 5.)

Figure 5. The region surrounded by dashed lines is Mt in a shrinked M.
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To avoid this situation, we need to retake smaller D. First note that

jzbzbj � jtja jzbzb þ tj:

Assuming that ðzb; zbÞ lies on the boundary, i.e. jzbzbj ¼ d1=m, together with jtj < e, we

have d1=m � ea jzbzb þ tj (recall the radius e of Dy is very small). Choose a positive

number d 0 satisfying d 0 < d1=m � e and set D ¼ fjsj < d 0g. Since d 0 < jzbzb þ tj, we may

shrink M so that the natural projection C : M ! D� Dy is proper. (Mt in the shrinked

M is described in Figure 5).

Finally we show that C : M ! D� Dy is a splitting family. Consider two fibers

X1 ¼ C�1ðtm; tÞ and X2 ¼ C�1ð0; tÞ. (X1 and X2 are fibers of pt : Mt ! Dt.) From

(5.1.1) and (5.1.2), X1 is a reduced curve with one node, and X2 is obtained from X

by replacing the multiple node with a multiple annulus, and no other singular fibers.

As both of X1 and X2 are normally minimal, it follows from Lemma 1.0.1 that C :

M ! D� Dy is a splitting family, which splits X into X1 and X2. r

The above construction of C : M ! D� Dy also works for the case where p is

a multiple node of multiplicity 1. But C : M ! D� Dy is not necessarily a splitting

family of p : M ! D. This is exactly the case when X nfpg is smooth, i.e. X is a

reduced curve with one node. In which case, X2 ¼ C�1ð0; tÞ is a smooth fiber (in fact,

p is atomic by Theorem 2.0.2). Except this case, C : M ! D� Dy is a splitting family

of p : M ! D, which splits X into X1 and X2, where X1 is a reduced curve with one

node, and X2 is obtained from X by replacing the reduced node with an annulus.

Combined this result with Criterion 5.1.4, we have the following criterion.

Criterion 5.1.5. Let p : M ! D is normally minimal such that the singular fiber X

Figure 6. An example for Criterion 5.1.4. The vanishing cycles of the multiple node p A X are two disjoint

loops on a smooth fiber, and topologically X1 is obtained by pinching one of them.
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contains a multiple node (of multiplicity mb1Þ. Then p : M ! D is atomic if and only if

X is a reduced curve with one node.

Remark 5.1.6. In the construction of C in Criterion 5.1.4, we only used one

multiple node. When X has n multiple nodes pi ði ¼ 1; 2; . . . ; nÞ of multiplicity mi,

we can generalize the construction in Criterion 5.1.4 to construct a splitting family of

p : M ! D such that pt : Mt ! Dt contains singular fibers Xi ði ¼ 1; 2; . . . ; nÞ, which is

obtained from X by replacing the multiple node pi with the multiple annulus of

multiplicity mi.

5.2. Criterion in terms of plane curve singularities.

In this subsection, we always suppose that p : M ! D is relatively minimal (not

necessarily normally minimal). We will exhibit a splitting criterion in terms of plane

curve singularities on X . We begin by introducing some terminology. Assume that

the origin of V :¼ fðx; yÞ A C
2
: Fðx; yÞ ¼ 0g is a plane curve singularity. (Throughout

this paper, a plane curve singularity always means a reduced one.) For a positive integer

m, setting

Vm :¼ fðx; yÞ A C
2
: Fðx; yÞm ¼ 0g;

we say that Vm is a multiple plane curve singularity of multiplicity m. Instead of Vm, we

mainly use the notation mV , expressing Vm as a divisor.

Proposition 5.2.1. Suppose that there exists a point p A X such that a germ of p

in X is a multiple of a plane curve singularity and the multiplicity m is at least 2. Then

p : M ! D admits a splitting family.

Proof. The idea of the proof is similar to that of Criterion 5.1.4; first take an

open covering M ¼ W0 UW1 with the following properties (see Figure 7):

(1) W0 is a small neighborhood of p, so W0 VX is a germ of the multiple plane

curve singularity mV ,

(2) W1 VX is ‘outside’ mV ,

(3) pðW0Þ ¼ pðW1Þ ¼ D, and the intersection of W0 and W1 consists of disjoint

annular domains (see Definition 5.1.3).

To simplify the discussion, we only consider the case where the intersection of W0 and

W1 is one annular domain. So M is obtained by patching W0 and W1 along a pair of

annular domains, say, U0 HW0 and U1 HW1. (The argument below works for the

general case).

Figure 7.
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Take coordinates ðzb; zbÞ A W0. Then pðzb; zbÞ ¼ F ðzb; zbÞ
m where Fðzb; zbÞ ¼ 0

defines the plane curve singularity V . Next, we take coordinates ðza; zaÞ A U1, then

pðza; zaÞ ¼ zma uaðza; zaÞ
m for some non-vanishing holomorphic function ua. Rewriting

zau
1=m
a by za, we have pðza; zaÞ ¼ zma . Since pðza; zaÞ ¼ pðzb; zbÞ, we have zma ¼

F ðzb; zbÞ
m. As in the proof of Criterion 5.1.4, possibly after coordinate change, we

have za ¼ F ðzb; zbÞ. So the gluing map of W0 and W1 along U0 and U1 is of the form

za ¼ fabðzb; zbÞ; za ¼ Fðzb; zbÞ;

where fab is holomorphic. Next, we take a non-equisingular deformation of V :

Vt : Fðzb; zbÞ þ Gðzb; zb; tÞ ¼ 0; where G is holomorphic and Gðzb; zb; 0Þ ¼ 0:

For example, if V is a node (A1-singularity), take Gðzb; zb; tÞ :¼ t, and otherwise take

a Morsification of V , i.e. Vt ðt0 0Þ has only nodes (A1-singularities). Here recall that

any isolated hypersurface singularity always admits a Morsification. See, for example

Dimca [Di] p. 82. Next, we define a smooth hypersurface M0 in W0 � D� Dy by

fðzb; zb; s; tÞ A M0 � D� Dy
: ðFðzb; zbÞ þ Gðzb; zb; tÞÞ

m � s ¼ 0g:

Similarly, we define a smooth hypersurface M1 in W1 � D� Dy by

fðx; s; tÞ A W1 � D� Dy
: pðxÞ � s ¼ 0g:

We glue M0 with M1 along U0 � Dy and U1 � Dy by

za ¼ fabðzb; zbÞ; za ¼ F ðzb; zbÞ þ Gðzb; zb; tÞ;

which yields a complex 3-manifold M. We then shrink M in such a way that the

natural projection C : M ! D� Dy is proper (Remark 5.2.2 below). Notice that the

fiber X1 :¼ C�1ð0; tÞ is a singular fiber, which is obtained from X by replacing the mul-

tiple plane curve singularity mV with mVt. (To describe other singular fibers, it is

necessary to compute the discriminant of the family ðFðzb; zbÞ þ Gðzb; zb; tÞÞ
m � s ¼ 0.)

Since p : M ! D is relatively minimal, C : M ! D� Dy is a splitting family. r

Remark 5.2.2. Since Gðzb; zb; 0Þ ¼ 0, we may assume that jGðzb; zb; tÞj < g for

jtj < e where g is su‰ciently small. Then for ðzb; zbÞ on the boundary qM (hence

jF ðzb; zbÞ
mj ¼ d ¼ radiusðDÞ), the following inequalities hold:

d1=m � g < jFðzb; zbÞj � jGðzb; zb; tÞja jFðzb; zbÞ þ Gðzb; zb; tÞj:

Taking a positive integer d 0 satisfying d 0 < d1=m � g, we have

d 0 < jFðzb; zbÞ þ Gðzb; zb; tÞj:

We retake smaller D ¼ fjsj < d 0g. As in the proof of Criterion 5.1.4, we may shrink M

so that C : M ! D� Dy is proper.

In the assumption of the above proposition, if we replace mb 2 by m ¼ 1, what can

we say about the splittability of p : M ! D? Also in this case, the above construction

works, and we obtain a splitting family, except the case where p is a node and X np
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is smooth, i.e. X is a reduced curve with one node (this is an atomic case). Combined

with Proposition 5.2.1, we have the following result.

Criterion 5.2.3. Let p : M ! D be relatively minimal. Suppose that the singular

fiber X has a point p such that a germ of p in X is either

(1) a multiple of a plane curve singularity of multiplicity at least 2, or

(2) a plane curve singularity such that if it is a node, then X np is not smooth.

Then p : M ! D admits a splitting family.

6. Splitting criteria via configurations, II.

In this section, we shall present another type of splitting criteria in terms of exis-

tence of an irreducible component of multiplicity 1 satisfying a certain property.

6.1. Criterion in terms of connected components.

Criterion 6.1.1. Let p : M ! D be normally minimal. Suppose that the singular

fiber X contains an irreducible component Y0 of multiplicity 1 such that X nY0 is (to-

pologically) disconnected. Denote by Y1;Y2; . . . ;Yl ðlb 2Þ all connected components of

X nY0. Then p : M ! D admits a splitting family which splits X into X1;X2; . . . ;Xl ,

where Xi ði ¼ 1; 2; . . . ; lÞ is obtained from X by ‘smoothing’ Y1;Y2; . . . ;
�YYi; . . . ;Yl (see

Figure 8 for example). Here �YYi is the omission of Yi.

Proof. To avoid complicated notation, we only show the statement for the case

where Yi and Y0 intersects only at one point pi. (The construction below works for the

general case.) We take an open covering M ¼ W0 UW1 U � � �UWl (see Figure 9) such

that

(1) Wi VX ¼ Yi UDi, where Di HY0 is a disk around pi,

(2) W0 VX ¼ Y0nfD
0
1 UD 0

2 U � � �UD 0
lg, where D 0

i is a disk satisfying pi A D 0
i HDi,

Y

Figure 8. An example for Criterion 6.1.1.
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(3) pðW1Þ ¼ pðW2Þ ¼ � � � ¼ pðWlÞ ¼ D and the intersection of W0 and Wi ði ¼

1; 2; . . . ; lÞ is an annular domain (see Definition 5.1.3). So M is reconstructed

by patching W0 with Wi ði ¼ 1; 2; . . . ; lÞ along annular domains U0 HW0 and

Ui HWi.

Here we choose Wi so that Di (and so D 0
i
) are su‰ciently small.

For simplicity, we set Yþ
i
:¼ Yi UDi and Y�

0 :¼ Y0nfD
0
1 UD 0

2 U � � �UD 0
l
g (see Figure

10 for the case of Figure 9).

Now we shall construct a splitting family of p in the following steps: First,

construct complex 3-manifolds Mi ði ¼ 0; 1; . . . ; lÞ together with holomorphic maps Ci :

Mi ! D� Dy. Secondly, glue Mi together to construct a complex 3-manifold M so

that Ci ði ¼ 0; 1; . . . ; lÞ determine a holomorphic map C : M ! D� Dy. Finally, we

will show that C : M ! D� Dy is a splitting family of p.

Step 1. Construction of complex 3-manifolds M0;M1; . . . ;Ml .

We put m :¼ e2pi=l , and consider a smooth hypersurface Mi in Wi � D� Dy

ði ¼ 1; 2; . . . ; lÞ defined by

fðx; s; tÞ A Wi � D� Dy
: pðxÞ � sþ m i

t ¼ 0g:ð6:1:1Þ

Let Ci : Mi ! D� Dy be the natural projection. Then for t0 0, we have

C�1
i

ðs; tÞ ¼
Y

þ
i
; s ¼ m it;

smooth; otherwise.

�

ð6:1:2Þ

Next, we consider a smooth hypersurface M0 in W0 � D� Dy defined by

fðx; s; tÞ A W0 � D� Dy
: pðxÞ � s ¼ 0g:

Figure 9.

Y

Figure 10.
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Let C0 : M0 ! D� Dy be the natural projection. Then for t0 0, we have

C�1
0 ðs; tÞ ¼

Y�
0 ; s ¼ 0;

smooth; otherwise.

�

ð6:1:3Þ

(Note that Y�
0 is also smooth.)

Step 2. Gluing M0;M1; . . . ;Ml together.

Let ðza; zaÞ A U0 and ðzb; zbÞ A Ui be coordinates of annular domains. Denote by

mi the multiplicity of the irreducible component intersecting Y0 at pi. As the mul-

tiplicity of Y0 is 1, we may write

pðza; zaÞ ¼ za faðza; zaÞ; pðzb; zbÞ ¼ zmi

b zbgbðzb; zbÞ;

where fa and gb are non-vanishing holomorphic functions. Rewriting za fa by za (resp.

zbgb by zb), we have pðza; zaÞ ¼ za (resp. pðzb; zbÞ ¼ zmi

b zb). Since pðza; zaÞ ¼ pðzb; zbÞ,

we obtain a relation za ¼ zmi

b zb. Hence the gluing map of W0 and Wi along U0 and Ui

is of the form

za ¼ fabðzb; zbÞ; za ¼ zmi

b zb:

Next we glue M0 with Mi ði ¼ 1; 2; . . . ; lÞ along U0 � Dy and Ui � Dy by

za ¼ fabðzb; zbÞ; za ¼ zmi

b zb þ m it;

which yields a complex 3-manifold M because this map transforms the defining equation

of Mi to that of M0.

Shrink M so that the natural projection C : M ! D� Dy, ðx; s; tÞ 7! ðs; tÞ, is

proper. (Use a similar argument to the proof of Criterion 5.1.4 and Remark 5.2.2.) We

claim that C : M ! D� Dy is a splitting family. Indeed, from (6.1.2) and (6.1.3), for

t0 0,

C�1ðs; tÞ ¼
Xi; s ¼ m it;

smooth; otherwise,

�

where Xi is obtained from X by smoothing Yþ
1 ;Y

þ
2 ; . . . ;

�YY
þ

i ; . . . ;Y
þ
l . As Xi is normally

minimal, it follows from Lemma 1.0.1 that C : M ! D� Dy is a splitting family which

splits X into X1;X2; . . . ;Xl . This verifies our assertion. (Note: the discriminant of

C : M ! D� Dy is
Q l

i¼1ðs� m itÞ ¼ 0.) r

From the above construction, we can deduce some property of topological mono-

dromies. Let g be the topological monodromy of p : M ! D along a loop qD with

counterclockwise orientation, and gi be the topological monodromy around Xi in

pt : Mt ! Dt along the oriented loops li in a symmetric position as in Figure 11.

Then we have a relation g ¼ g1g2 � � � gl . Moreover the following holds.

Proposition 6.1.2. The topological monodromies g1; g2; . . . ; gl commute.

Proof. To show this, we slightly modify the above construction of C : M ! D�
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Dy; let s be an arbitrary permutation of the set f1; 2; . . . ; lg. Instead of Mi, we define

Ms; i as follows (cf. (6.1.1)):

Ms; i :¼ fðx; s; tÞ A Wi � D� Dy
: pðxÞ � sþ msðiÞt ¼ 0g;

while we take M0 as in the above construction:

fðx; s; tÞ A W0 � D� Dy
: pðxÞ � s ¼ 0g:

Then we glue M0 with Ms; i ði ¼ 1; 2; . . . ; lÞ by

za ¼ fabðzb; zbÞ; za ¼ zmi

b zb þ msðiÞt;

and obtain a complex 3-manifold Ms. The natural projection Cs : Ms ! D� Dy is

also splitting family which splits X into X1;X2; . . . ;Xl . But X1;X2; . . . ;Xl appears in

the order Xsð1Þ;Xsð2Þ; . . . ;XsðlÞ, hence we have a relation

g ¼ gsð1Þgsð2Þ � � � gsðlÞ:

Since s is an arbitrary permutation, it follows that g1; g2; . . . ; gl commute. r

Remark 6.1.3. In the construction of C in Criterion 6.1.1, we used only one irre-

ducible component of multiplicity 1. As is clear from the construction, we can similarly

construct a splitting family by using several irreducible components Y
ð1Þ
0 ;Y

ð2Þ
0 ; . . . ;Y

ðnÞ
0 of

multiplicity 1 simultaneously provided that X nfY
ð1Þ
0 UY

ð2Þ
0 U � � �UY

ðnÞ
0 g is disconnected.

More generally, in some cases, we can construct a splitting family by ‘mixing up’ all

constructions in this paper.

6.2. Inductive criterion.

Let p : M ! D be normally minimal such that its singular fiber X contains an

irreducible component Y0 of multiplicity 1. We suppose that X nY0 is connected. Also

in this case, we have some splitting criterion. To state our result, we need to introduce

some notation. Let Y :¼ X nY0 and let p1; p2; . . . ; pn be the intersection points of Y0

with other irreducible components of X . Take an open covering M ¼ W0 UW1 (see

Figure 12) such that

(1) W1 VX ¼ Y UD1 UD2 U � � �UDn, where Di HY0 is a disk around pi,

(2) W0 VX ¼ Y0nfD
0
1 UD 0

2 U � � �UD 0
ng, where D 0

i is a disk satisfying pi A D 0
i HDi,

(3) pðW0Þ ¼ pðW1Þ ¼ D and the intersection of W0 and W1 is a disjoint union of

annular domains.

D

Figure 11. The choice of loops (l ¼ 3 case).

S. Takamura140



Here, we choose W1 so that Di (and so D 0
i ) are su‰ciently small. For simplicity, we set

Yþ
:¼ Y UD1 UD2 U � � �UDn; Y�

0 :¼ Y0nfD
0
1 UD 0

2 U � � �UD 0
ng ðFigure 13Þ:

Criterion 6.2.1. Let p : M ! D be normally minimal such that the singular fiber X

contains an irreducible component Y0 of multiplicity 1. Let p1 : W1 ! D be the re-

striction of p to a tubular neighborhood W1 of X nY0 in M. Suppose that p1 : W1 !

D admits a splitting family C1 which splits Yþ
:¼ W1 VX into Yþ

1 ;Y
þ
2 ; . . . ;Y

þ
l . Then

p : M ! D admits a splitting family C which splits X into X1;X2; . . . ;Xl , where Xi is

obtained from Yþ
i by gluing Y�

0 along the boundary.

Note. We note that p1 : W1 ! D is a degeneration of curves with boundary, for

which we may also define the notion of splitting families in the same way as for degen-

erations of compact curves.

Proof. Note that M is obtained by patching W0 and W1 along annular domains

U0 and Ui where Ui is an annular domain near pi. As in the proof of Criterion

6.1.1, we take coordinates ðza; zaÞ A U0 with pðza; zaÞ ¼ za, and also ðzb; zbÞ A Ui with

pðzb; zbÞ ¼ zmi

b zb such that the gluing map of U0 and Ui is of the form

za ¼ fabðzb; zbÞ; za ¼ zmi

b zb;

where fab is holomorphic. Now, letting C1 : M1 ! D� Dy be the splitting family of

p1 : W1 ! D in the assumption, we consider a map ~pp1 :¼ pr1 �C1 : M1 ! D, and then

realize M1 as the graph of ~pp1:

Y

Figure 12.

Y

Figure 13.
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M1 ¼ fðx; s; tÞ A W1 � D� Dy
: ~pp1ðx; tÞ � s ¼ 0g:

Notice that ~pp1ðx; 0Þ ¼ p1ðxÞ, hence we may express ~pp1ðx; tÞ ¼ p1ðxÞ þ h1ðx; tÞ, where

h1 is a holomorphic function satisfying h1ðx; 0Þ ¼ 0. Next, we define a smooth hy-

persurface M0 in W0 � D� Dy by

M0 ¼ fðx; s; tÞ A W0 � D� Dy
: pðxÞ � s ¼ 0g:

Finally we glue M0 with M1 along U0 � Dy and Ui � Dy by

za ¼ fabðzb; zbÞ; za ¼ zmi

b zb þ h1ðzb; zbÞ;

and we obtain a complex 3-manifold M. Shrink M in such a way that the natural

projection C : M ! D� Dy is proper. (Use a similar argument to the proof of Criterion

5.1.4 and Remark 5.2.2.) We claim that C : M ! D� Dy is a splitting family of

p. Indeed, if the fiber Yþ
k of C1 over a point xk A Dt is singular, then by construc-

tion, C�1ðxkÞ is obtained by gluing Yþ
k with Y�

0 along the boundary, and hence it is

singular. r

From p1 : W1 ! D in Criterion 6.2.1, we shall construct a degeneration p 0
: M 0 ! D

of compact curves, whose singular fiber X 0 is obtained from Yþ by replacing the disk Di

ði ¼ 1; 2; . . . ; nÞ with a projective line (see Figure 14), after that, we will restate Criterion

6.2.1 in terms of this degeneration. First, letting Ei be a disk, we glue W1 with

Ei � D ði ¼ 1; 2; . . . ; nÞ along Ui by

za ¼ fabðzb; zbÞ; za ¼ zmi

b zb;

where fab is as in the above proof, ðza; zaÞ A Ei � D and ðzb; zbÞ A Ui. Then we ob-

tain a complex surface M 0. Define a map p 0
: M 0 ! D by p 0jW1

¼ p, and

p 0jEi�Dðza; zaÞ ¼ za. By construction, the singular fiber of p 0 is obtained from Yþ by

replacing Di ði ¼ 1; 2; . . . ; nÞ with a projective line; two disks Di and Ei are glued to

become a projective line. Then Criterion 6.2.1 is restated as follows:

Criterion 6.2.1 0. If p 0
: M 0 ! D admits a splitting family, then p : M ! D also

admits a splitting family. (Note: By construction, the converse is true.)

Let g (resp. g 0) be the genus of a smooth fiber of p : M ! D (resp. p 0
: M 0 ! D). Ex-

cept the case where Y0 is a projective line intersecting other irreducible components at

only one point, we have g 0 < g, and so p 0
: M 0 ! D is a degeneration of curves of

lower genus. Indeed, let Y0 intersect other irreducible components at n points. By a

topological consideration, it is easy to see that

g ¼ g 0 þ ðn� 1Þ þ genusðY0Þ:ð6:2:1Þ

Figure 14.
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Hence we have g 0
< g, unless Y0 is a projective line intersecting other irreducible com-

ponents at only one point.

6.3. Consequence of splitting criteria.

In this subsection, we assume that any degeneration is normally minimal. The

splitting criteria obtained in this paper altogether imply that if the singular fiber X is

constellar, then in many cases, p : M ! D admits a splitting family. Taking into

account Theorem 2.0.2, it is interesting to know whether the following conjecture is true

or not (cf. Conjecture 6.3.1 0 below):

Conjecture 6.3.1. A degeneration is atomic if and only if its singular fiber is either

a reduced curve with one node, or a multiple of a smooth curve.

(This conjecture is valid for the genus 1 and 2 cases: for the genus 1 case, any atomic

fiber is either a rational curve with one node, or a multiple of a smooth elliptic curves

by [Mo], and for the genus 2 case, any atomic fiber is a reduced curve with one node

by [Ho] together with [AA].) Now we shall deduce a useful theorem from our splitting

criteria. Let Lg be a set of degenerations p : M ! D of curves of genus g such that

(1) the singular fiber X has a multiple node (here we exclude the case where X is a

reduced curve with only one node), or

(2) X contains an irreducible component Y0 of multiplicity 1 satisfying the fol-

lowing condition: if X nY0 is connected, then either genusðY0Þb1, or Y0 is a

projective line intersecting other irreducible components at at least two points.

As a consequence of our splitting criteria, we obtain the following.

Theorem 6.3.2. Suppose that Conjecture 6.3.1 is valid for genusa g� 1. If

p : M ! D is a degeneration in Lg, then p is not atomic.

Proof. First, by Criterion 5.1.5, if the singular fiber contains a multiple node, then

p admits a splitting family. Next, suppose that X contains an irreducible component

Y0 of multiplicity 1. If X nY0 is not connected, then p : M ! D has a splitting family

(Criterion 6.1.1). On the other hand, if X nY0 is connected, then under the assumption

of this theorem, we can apply Criterion 6.2.1 0, and see that p : M ! D admits a splitting

family except the case where Y0 is a projective line and it intersects other irreducible

components at only one point (cf. (6.2.1)). Hence the assertion follows. r

Thus if the assumption of this theorem is fulfilled (for example, g ¼ 3), to determine

atomic degenerations of curves of genus g, it is enough to investigate the splittability for

degenerations p : M ! D such that either

(A) X ¼ p
�1ð0Þ is stellar, or

(B) X is constellar and (B.1) X has no multiple node and (B.2) if X has

an irreducible component Y0 of multiplicity 1, then Y0 is a projective line

intersecting other irreducible components of X only at one point.

In the terminology of [Ta,II], a singular fiber in (B) is obtained by ‘bonding’ stellar

singular fibers such that any bonding of two branches is either ð�1Þ-bonding, or 0-

bonding of two branches with the same multiplicity at least 2. See also [MM2]. For

these cases, we can apply another method (construction of splitting families via barkable

sub-divisors), which is developed in [Ta,III].
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Discussion and open problems.

For higher genus cases, Conjecture 6.3.1 seems too optimistic. It is more rea-

sonable to replace ‘atomic’ with ‘absolutely atomic’, where a degeneration p : M ! D is

called absolutely atomic if all degenerations with the same topological type as p : M ! D

are atomic (for example, when X is a reduced curve with one node or a multiple of a

smooth curve. See Theorem 2.0.2).

Conjecture 6.3.1 0. A degeneration is absolutely atomic if and only if its singular

fiber is either a reduced curve with one node, or a multiple of a smooth curve.

In [Ta,III] we showed that this is valid for ga 5. We also point out that we can show

an analogous statement to Theorem 6.3.2 by the same argument.

Theorem 6.3.2 0. Suppose that Conjecture 6.3.1 0 is valid for genusa g� 1. If

p : M ! D is a degeneration in Lg, then p is not absolutely atomic.

It is plausible that for higher genus cases, there may be an atomic degeneration which

is not absolutely atomic. However, no examples have been known, and so we ask

Problem 6.3.3. Do there exist two degenerations p1 : M1 ! D and p2 : M2 ! D

with the same topological type such that p1 is atomic while p2 is not?

Note that for the genusb 2 case, there are degenerations with the same singular fiber,

but with di¤erent topological types [MM2]. Taking this into account, it is natural ask

the following problem analogous to Problem 6.3.3.

Problem 6.3.4. Do there exist two degenerations p1 : M1 ! D and p2 : M2 ! D

with the same singular fiber but with di¤erent topological types such that p1 is atomic

while p2 is not?
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