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Abstract. Given an algebra of pseudo-differential operators on a manifold, an el-
liptic element is said to be a reduction of orders, if it induces isomorphisms of Sobolev
spaces with a corresponding shift of smoothness. Reductions of orders on a manifold
with boundary refer to boundary value problems. We employ specific smooth symbols
of arbitrary real orders and with parameters, and we show that the associated operators
induce isomorphisms between Sobolev spaces on a given manifold with boundary. Such
operators for integer orders have the transmission property and belong to the calculus of
Boutet de Monvel , cf. also @ In general, they fit to the algebra of boundary value
problems without the transmission property in the sense of and . Order reducing
elements of the present kind are useful for constructing parametrices of mixed elliptic
problems.

We show that order reducing symbols have the Volterra property and are parabolic
of anisotropy 1; analogous relations are formulated for arbitrary anisotropies. We then
investigate parameter-dependent operators, apply a kernel cut-off construction with re-
spect to the parameter and show that corresponding holomorphic operator-valued Mellin
symbols reduce orders in weighted Sobolev spaces on a cone with boundary. We finally
construct order reducing operators on a compact manifold with conical singularities and
boundary.

Introduction.

Reductions of orders in problems for elliptic partial differential equations are useful
for many purposes, e.g., for constructing parametrices, or in the index theory. The case
of operators on a closed compact C* manifold is standard and particularly simple. To
reduce orders on a compact C* manifold X with boundary Y, we have to take into
account the specific influence of Y to the operations and to the choice of Sobolev spaces
on X that we wish to reduce to L?>(X). For pseudo-differential operators of integer
order with the transmission property at the boundary there are order reducing operators
that refer to the scale H*(X) of standard Sobolev spaces on X, cf. Boutet de Monvel [1],
or Grubb [9] for specific constructions. Other variants of reductions have been used by
numerous authors, in particular, by Eskin [5], Schneider [18], Duduchava and Speck [4],
or Schulze and Seiler [24]. While the construction in [5] as well as that in [9] reduces
smoothness of standard Sobolev spaces to zero, the choice of also works in Sobolev
spaces with arbitrary weights at the boundary.

In the first part of the present paper we show that the analogues of symbols from
[9] of arbitrary order u € R give rise to operators that reduce the smoothness of standard
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Sobolev spaces by u. In addition, we show that the order reducing symbols have the
Volterra property and are parabolic of anisotropy 1, cf. Piriou [15], or Krainer [13].
Moreover, using a result of Burenkov, Schulze, and Tarkhanov [2] we establish a relation
to operator-valued symbols on the boundary in the framework of twisted homogeneity,
cf. [23].

In the second part we apply our order reducing operators in parameter-dependent
form and obtain order reductions in weighted cone Sobolev spaces, based on the Mellin
transform in axial direction. In addition, we apply the kernel cut-off construction from
and show that such reductions are possible in terms of holomorphic operator-valued
Mellin symbols. These results also yield order reducing operators on a compact mani-
fold with conical singularities and boundary.

Let us finally note that there are many ways to construct order reducing operators
that are pseudo-differential in the interior of a manifold with boundary. A specific
aspect of our investigation is that we find reductions of orders that fit into pseudo-
differential algebras with a specific boundary symbolic structure that is compatible with
algebraic operations. Moreover, our construction for manifolds with conical singu-
larities belongs to a successive procedure of generating analogous operators for weighted
Sobolev spaces on manifolds with higher geometric singularities in the respective higher
corner algebras, cf. [22], though this is not explicitly carried out here. A motivation
of our approach is to express parametrices of general elliptic problems on such corner
configurations, especially mixed problems, within a complete pseudo-differential calculus,
cf. the author’s joint article [11]. This concerns the case of smooth interfaces (where
boundary conditions have their jump) as well as that of interfaces with conical sin-
gularities.

The authors thank Thomas Krainer (University of Potsdam) for valuable remarks
on the manuscript.

1. Local constructions.

1.1. Order reducing symbols.
Let U = R™ be an open set, and let S#(U x R") denote the space of Hormander’s
symbols of order u e R, i.e., the set of all a(x,&) e C*(U x R") such that

|D:Da(x,&)| < eV (1)
for all (x,&)e K x R" for arbitrary K << U and multi-indices o e N", fe N",
with constants ¢ = ¢(a, 8, K) > 0; here, as usual, <&>:=(1+|¢[*)"%  Moreover, let
SH(U x R") denote the subspace of all classical symbols of order u, i.., there are
functions a(,_;(x,&) € C*(U x (R"\{0})), agu—j(x,A) = i“_ja(ﬂ,j)(x, &) for all (x,¢&) e
U x (R"\{0}) and all Ae R, je N, such that
N

a(x,&) = 2(E)Y " agup(x,&) e SNT(U x R")
j=0
for all N e N. Here, y(¢) is an arbitrary excision function, i.e., any y(&) € C*(R") that
equals 0 in a neighbourhood of £ =0 and 1 for || > R for some R > 0. If a notation
or a result is true both in the classical and the general case, we write ““(cl)”” as subscript.
We are interested in this section in a particular class of symbols of order x that may
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be used for e Z in the calculus of pseudo-differential boundary value problems with
the transmission property, cf. Boutet de Monvel [1], Rempel and Schulze [16], or Grubb
[10]. We take, in particular, symbols from [9] of the following form. Set x = (y,1)
for y=(y,...,y,.1) € R"', teR, with covariables ¢ = (5,7). Choose an element
9 € (R), such that ¢(0) = 1 and supp F~'¢ = R_ (where F is the Fourier transform on
R). 1t is easy to see that such functions ¢ exist. We now set

rt(n,7) = (<C< >><77> )ﬂ, (2)

we R, for any constant C > 0. For our purposes we need the following properties:

ProposITION 1.1. (i) r#(n,7) € S4(R"),

(i) r#(n,7) is elliptic of order e R for a sufficiently large choice of C >0 and
extends with respect to t to the upper complex half-plane ©+ i0, 0 > 0, as a
holomorphic function that is C* for 0 >0, such that

[r*(n,t +i0)| < c(1 + |n| + || + 6)* (3)

for all (n,7,0) e R"' x Rx R, for a constant ¢ > 0.
(i) The constant C >0 in (ii) can be chosen in such a way that

| (n, 7 +i0)| = (1 + [n| + |z| + 0)" (4)
for all (y,7,0) e R"' x R x R, for a constant ¢ > 0.

PrOOF. (i) Let us set p(&) := (&>~ 'r_(&). By virtue of r_(&) e SL(R"), cf. or
we have p(&) e SY(R"). Moreover, the symbol p(&) is elliptic of order zero, and
we have p(&) # 0 for all ¢ e R", cf. the arguments for assertions (ii), (iii) below. To
show that r#(&) is classical we write r# (&) = (&) p#(&). Because of (&) e S4H(R") it
suffices to show that p#(&) e SY(R"). For every fixed & e R" we have by Cauchy’s
theorem

PO =g | (5
2mi Jp, (2= p(<))
for any curve L in the complex plane, where 1 — p(¢) does not vanish for all & e R”
(such a curve always exists as we see from relation (6) below). Note that 1 —
(A—p(&)”" represents a continuous map L — SY(R"). Formula (5) easily yields
pr(&) e Sy (R”) In fact, the integral can be written as a limit of finite integral sums of
the form Z ~(2mi)” lxljffN(ALN —p(f))_léjw with points 4; y € L belonging to the i-th
interval of the corresponding partition of the curve, where max{|0; n|,j=1,...,N} — 0
as N — oo. We then get convergence in the Fréchet space S3(R").
(i), (i) For the case # =1 we first write

T+ 0 0 i(ci0) (CpY)
<C<n>> | ety a

for Y(t) e #(R), suppy < R_, f_oo W(t)dt = 1. This shows that r_(#,7) extends to a
holomorphic function in 7+ i, § > 0. Moreover, we have
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T+it9)'
<c¢ for all (,7)eR", 0>0,
'¢<C<n> 1 %)

for some constant ¢; > 0. This yields
r-(n, 7 +i0)] < c2(1 + |n| + |z| + 0) (6)

for all (#,7) e R", 6 = 0, for some ¢; > 0. In the proof below, cf. relation (7), we will
show that r_(n,7+i0) # 0 for all (y,7) e R", 0 >0. Thus log(r_(y,7v+i0)) is well-
defined as a holomorphic function in 7+ if for 0 > 0 by the branch of the logarithm
that is real for positive arguments. This gives us an extension of r*(&) in 7+ i6, 0 > 0,
by

r(n,t+1i0) = oHlog(r-(n,7+i0))

Now relation (6) immediately implies estimate (3) for x# > 0 for a suitable constant ¢ > 0
and estimate (4) for u <0 for a suitable constant ¢ > 0.

We now show that r#(#,7) is elliptic for a sufficiently large C > 0. To this end,
it suffices to consider the case u=1. We have

r-(n7) _ ., 2@/C<m) — ¢(0) p(z/C<np) — 9(0) T
{ny —it iy — it v/ C<n C(<{ny — i)

where || < (1/C)|(p(z/C<n)) —9(0))/(zr/C{n))|. For fixed &¢>0 there exists a
0(¢) > 0 such that |o| < (1/C)(|¢'(0)| +¢) for |t/<{n)| <d(e) and |a| < (1/C)(2¢1/(¢))
for |t/C{n>| =d(e). Now it follows easily that |x| < g for a constant ¢ <1 for all
(n,7) e R", when C > 0 is sufficiently large. We thus obtain

r-(n, D) = (1 = )[<n> = it| = 3¢S (7)

for some ¢3 > 0. This yields estimate (3) for x < 0 and 0 = 0 and estimate (4) for 4 > 0
and # = 0. Analogous calculations go through for 7+ i0, 6 > 0, where || in the esti-
mates is to be replaced by || + 0. O

py =1+ =1+a,

REMARK 1.2. Let us set
rit(n,7) == rt(n,7) (8)

(the complex conjugate) for every u € R. We then have an analogue of [Proposition 1.
with the only exception that extensions with respect to t concern the lower complex half-
plane.

PROPOSITION 1.3.  For ue Z the symbols 1t (&) have the transmission property at
t=0.

Proor. First recall that a symbol a(&) € S4(R") of integer order u (here, with
constant coefficients) is said to have the transmission property at t =0 if

a(n,<nyt) e S{(R!) @, H, for &= (,7),

where H, ;= Ht ® H- ® H', H* := {F(e*u) :ue (R+)}, with H' being the space of
all polynomials in 7. In the present case the symbol
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T M
r(n, <{nyt) = <rp (E) - if)

belongs to SS(R,’;’I) ®, (H~ @® H') which is an immediate consequence of (¢p(z/C)—
it e H @ H' for any pueZ. O

1.2. Actions in Sobolev spaces.

We now turn to pseudo-differential actions between Sobolev spaces in the half-
space H*(RY):= H*(R")|g:, where R :={(y,t)eR":1e R} Furthermore, we set
H3(R") = {ue H*(R") :suppu = R".}. We use the fact, that for every s € R there is a
continuous extension operator -

o : H'(R") — H*(R")

such that r*oef =id on the space H°(RY); here, r*f :=f
SHU x U x R"), U< R" open, is any symbol, we set

R"- If p(x,x',¢&) e

Op(pu(x) i= [ [/ pl ' put) ', de = (2m) " de
first for u e C;°(U), and then extended to Sobolev spaces.

The following lemma is standard:

LeMMA 1.4. Let ue ¥ (R"), such that suppu S R". Then the Fourier transform
Fu(n,t) extends with respect to t to a holomorphic function in t + i for 6 > 0 that is C*
for 0 >0, and for every N € N there is a constant cy > 0, such that

(1+ [+ |2| + 0) ¥ |Fu(y, 7 +i0)| < cy. 9)
LemMA 1.5. The operators Op(rﬂ_‘r), W€ R, induce continuous operators
Op(ry) : Hi(R%) — Hy (R
for all se R.

Proor. First, as a consequence of [Proposition 1.1 and Remark 1.2, r are standard
symbols of order x; then the operators Op(rk) : H*(R") — H**(R") are continuous for
all se R. Thus it remains to show that suppu < R” implies supp Op(ri)u = R"™. Let
us consider, for instance, minus symbols; the plus-cas_e 1s analogous and will be d;opped.
The arguments are, in fact, the same as in Eskin’s book, but for completeness we shall
recall the main steps here. Because #(R"):= % (R")|z, is dense in H{(R"), it suf-
fices to assume u € (R"). By virtue of [Proposition 1.1 and [Lemma 1.4 the function
r(n, T+ i0)Fu(n, 7 + i0) is holomorphic in # > 0 and continuous for 0 > 0. Applying
Cauchy’s Theorem we can write

Op(™ u(y. 1) = (20) " | M2 < 1 i0) Fun, =+ 6) dnde
Rn

for every 0 > 0. Using (3) and (9) we obtain

|Op(r*)u(y, t)| < cJ e U1+ || + |z| + 0)*|Fu(y,t + i0)| dndr < ée™" (10)
Rn
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for some constants ¢,¢ > 0. It follows that Op(r*)u(y,t) = 0 for t > 0 when we pass in
(10) to the limit 6 — +oc0. O

PROPOSITION 1.6.  The operators R  :=1*Op(rf)ef, ue R, induce isomorphisms

RY - HY(RL) — H“(R") (11)

+,5 " x

for all s € R (they do not depend on the choice of the extension operator e}), and we have
(R, =1*0p(ry)es,.

Proor. Let consider R*
omitted.

Let el : H*(R"}) — H*(R") be any continuous extension operator. Then the con-
tinuity of

; the case of plus-operators is analogous and will be

,82

R*: H'(R") — H**(R")

for every s e R is evident. Let us show that R”%_  for any choice of ej_y is a right
inverse of R* . In fact, we have for ue H*#(RY)

- _ ot ot W\t g, — 1) ot +
R R7* u=r1"0p(rt)e t"Op(r_*)el u =1"Op(r*)Op(r_*) el u+1"Op(rt)v, (12)

I

where v = (efr* — 1)Op(r—*)e ,u e Hj(R"). By we have supp Op(r#)v <
R", ie., r"Op(r*)v =0. The first summand on the right hand side of (12) equals
riel M=u. Inan analogous manner we can show that R” ' has a left inverse, i.e., we
have calculated the inverse (Rﬁ,s)fl as asserted. Finally, the action

r"Op(rf)e] : H*(R) — H**(R")
is independent of the choice of e, since for any other choice & we have
r"Op(r*) (e} — & )u=r"Op(r*)v =0
for v=(e] — €/ ue HJ(R"). ]
Let us define a linear map
et H'(R}) — &'(R")
for s > —1/2 by setting

f(x) for teR.

()= {70 o SR = () S € HRL)

This allows us to apply Op(r£) in R" to e*f in the distributional sense.
In the following we use the fact that operators e* : H*(R",) — H*(R") (extensions
by zero) are a possible choice of ef for all se R, —1/2 <s<1/2.

PROPOSITION 1.7.  The operators R% :=r*Op(rk)e*, ue R, induce isomorphisms

RY . H'(R%) — H*™(RY) (13)
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for all se R, s > —1/2, and we have (Rf{)_l =r*0p(r{")e , for s —u<-1/2, (R’i)_1 =
r*Op(r-")e* for s —u>—1/2.

Proor. As noted before, by virtue of [Proposition 1.6 it suffices to consider the
case s > 1/2. Let us discuss the case of R¥; the plus-case is completely analogous.
For s —u < —1/2 we have for ue H**(RY)

" Op(r*)e"r Op(r—*)el u=r"Op(r*)e/r*Op(r*)e/ u

u u

+17Op(r*)(e* — ej)r+0p(r:")ej_ﬂu.

Because of s>1/2 we have v:=r"Op(r-*)el ue H'(R) and hence e*ve H'(R"),
efve HS(R") = H(R"), ie., (e" —e/)ve H)(R"). This gives us r"Op(r*)(e" — e/ )v
= 0, and we see from the proof [Proposition 1.6 that r*Op(r=*)e{ , is a right inverse of
R*. Moreover, for f'e H°(R'!) we have

" Op(r-*)el 1" Op(r*)e™f = r*Op(r_*)e/ ,r Op(r*)e/f

u s—p

+1"Op(r_*)el

s

W0p(r) (e —ef)f.

Because of (et —e)f e H)(R") we have as before r"Op(rf)(et —el)f =0, ie.,
rtOp(r#)el, is a left inverse of R*. It remains to consider the case s—u>1/2;
because for 1/2 >s—pu> —1/2 we may replace e™ by ej_ﬂ anyway. We have for
ue H*R")

" Op(r*)e " Op(r*)e*u = r* Op(r*)e" r* Op(r—*)e/ u

s—p
because 17Op(r=#)(e;, —€")u =0 by the same arguments as before. Moreover, v :=
rtOp(r-*)el_u € H*(R}), s > 1/2, and we have again r"Op(r*)(ef —e")v=0. It fol-
lows altogether

r Op(r*)etrtop(r_*)etu = r+Op(rﬁ)ejr+Op(r:")ej_ﬂu = u.

Thus the operator r*Op(r—#)e™ is a right inverse of rfop(r#)e™. It is also a left inverse,
because the consideration is now symmetric, due to s > 1/2, s —u>1/2. O

ReMARK 1.8. We will employ below symbols in parameter-dependent form, i.e.,
where 5 € R"™! is replaced by (i,2) € R"' x R’ for some I. According to Propositions
and [.7 we then have parameter-dependent operators R; (1) and R% (/) that define

isomorphisms and [13), respectively, for every /e R’

1.3. A relation to classical Volterra symbols.

If U< C'is an open set and E a Fréchet space, .o/ (U, E) denotes the space of all
holomorphic functions in U with values in E (the space .«/(U, E) is endowed with the
Fréchet topology that is immediate by the definition).

DEFINITION 1.9. Let us set Hy :={t+ilcC:1cR,0cR.}. We then define
S(lél) (2 R Hy) for pe R’_ Q < R"™!' open, to be the space of all elements
h(y,n,t+1i0) e C*(2 x R"' x Hy) with the following properties:

() h(y,nt+i0)e/(He,C*(Q x R,
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(i) h(y,n,7+i0) eS(’:l)(Q x R"' xR, x R, ), ie., h is a classical symbol of
order u in the covariables (n,7,0) for (5,0) varying in R" and 0 in R..

The set
SS(Q X Rn)J_r = {p(yai//?T) = h(y7}7>f+ i0)|9:0 :
h(y,n,t+i0) € S(Q x R"" x Hz)} (14)

coincides with corresponding spaces of Volterra (for the case H_) and anti-Volterra (for
the case H.) symbols of anisotropy 1 and order u € R, cf. Piriou [15], or Krainer [12].
Recall (to motivate the notation) that the inverse (it + |&|*)”" of the anisotropic ho-
mogeneous principal symbol of the heat operator —A + 0, (which is of anisotropy 2 and
order 2) is Volterra in the classical sense; in particular, it extends to R" x H _.

Let S4(R"' x Hy) (S!{(R"),) denote the subspace of elements of S/(2 x R"' x
H.) (S4(2 x R"),) that are independent of y.

The following theorem is valid for arbitrary u e R.

THEOREM 1.10. (i) We have
i (n,t+i0) € SH(R"" x H=).

(i) ri(n, v+ 10) is elliptic of order u with respect to the covariables (n,7,0), i.e., for
the homogeneous principal symbols

T+ i0

Cln|

oy (r')(n,7,0) = w( )Inl —i(z+i0), oy(ri)(n,7,0) = oy (r*)(n, 7, 0)

of % of order p in (n,7,0) e R x H:\{0} we have

oy (ri)(n,7,0) #0.
Proor. (i) Let us consider, for instance, the minus-case. First we verify that
r(n,t+1i0) € S*(R)™" x R. x Ry)

(the space on the right of the latter relation is to be interpreted as a symbol space in the
variables (7,7,0) € R"' x R x R, ignoring the aspect of holomorphy). It suffices to
consider the case u =1 for similar reasons as in the proof of [Proposition 1.1 (here we
use, in particular, that r“(y, 7+ i0) #0 for all (y,7,0) € R" x R, and for all u, cf.
[Proposition 1.1 (iii). Because of —it+0¢e S'(R" x R,) it suffices to prove that

0 B
p(n,7,0) == e (TCZQ e SH(R" x R).

Since we have ¢=Ff for a function fe9%(R) supported in R_, we get
o((r+i0)/C) e ST™(R x R,) by for the case n=1. From Proposition
2.2.1 of the substitution

p(n,7,0) — p(n, <npz, <n)0)

induces continuous maps
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S#

(R X Rx Ry) — S{iy (R"™") ®, Sty (R x Ry)

for all ue R, both for classical and general symbols.
In the present case we obviously have
T+ 10
C

p(n, <y, <n0) = <f7><0< ) € SHR"™) @, S;” (R x Ry).
Then, since the second factor is of order —oo, p(#,7,0) itself is a classical symbol of first
order.

(i) For the proof that r#(#n,t + i0) is elliptic of order u it suffices again to consider
the case u = 1. From |[Proposition 1.1 we know that there is a constant ¢ > 0 such that

[r*(n,t+i0)] > c(1 + || + |z| + 0)*

for all (,7,0) e R" x R,. Together with assertion (i) we conclude that r# (5,7 + i0) is
elliptic of order x4 in the sense of symbols in S4(R" x R.). ]

REMARK 1.11. The considerations so far have a direct generalisation to anisotropic
symbols of arbitrary anisotropy /€ N\{0}. Setting, for instance,

T o\
75(7%‘[)1 = <¢<C<77>1> <77> - ZT)

we get a corresponding version of [Proposition 1.1 when we replace |5| by |;7|[ in the
estimates (3) and (4), respectively. The analogous plus-symbols r% (5,7), are then par-
abolic of order u and anisotropy / in the sense of the work of Krainer [13]. Note that
Piriou required / to be an even number.

1.4. Interpretation as operator-valued symbols.

Given a symbol a(x,&) e S“(U x R"), U < R" open, U :=Q x R>(y,t), we can
carry out the pseudo-differential action in ¢ (with the covariable 7) and then obtain a
family of operators Op(a)(y,n): C°(R) — C*(R). Let us assume that a(y,t,7,7) is
independent of ¢ for |#| > ¢ for a constant ¢ > 0. Then Op(a)(y,n) extends to a family
of continuous operators

Op(a)(y,n) : H'(R) — H"*(R) (15)

for every se R, (y,7)€Q x R"™'. We now employ operator-valued symbols in the
following sense:

Let E be a Hilbert space and {r;}, g, be a strongly continuous group of iso-
morphisms xs : E — E, ksk, = K5, for all 6,pe R,. In particular, for E := H*(R), we
set

(rcsu) (1) := 6'2u(dr), JeR,,

for arbitrary s € R.

If (E,{xs}scr.) (E, {%s}s. r.) are Hilbert spaces with strongly continuous group
actions in that sense, S*(Q x R%; E,E) for e R, Q = R” open, denotes the set of all
a(y,n) e C*(Q x RY, #(E,E)) such that
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||K<,7>{D“D/3a(y, 7’])}1(?(,7>||$(E7E) < eyt

for all (y,n) e K x R? for arbitrary K —c< Q and multi-indices o« € N?, fe N9, with
constants ¢ = c¢(«,,K) > 0

Further, let S (Q x (R7\{0}); E,E) denote the set of all f(y,5)e C*(Q x
(R\{0}), Z(E,E)) such that

f(v,0n) = 6"%sf (y,m)ics"

for all 6 e Ry, (y,17) € 2 x (R1\{0}). Finally, S4(2 x R% E,E) (the space of classical
symbols) is defined to be the subspace of all a(y,5) e S*(2 x R?; E,E) such that there
are elements a(,_;(y,n) € S“7(Q x (RI\{0}); E,E) such that

N
a(y,n) = x(n)>_ agy(y,n) € S*"N(Q x R E, E)
7=0

for all N e N. The subclass of elements of S*

() (Q x RY; E, E) that are independent of y
will be denoted by S(‘él)(R";E,E).

ExampLE 1.12. Let E:= H*(R), E:= H*(R,), both endowed with the groups
ks 1 u(t) — 82u(dr), 6 > 0. Then we have for the restriction operator r* : H*(R) —
H°(R.) the homogeneity r* = xsrx;! for all § >0, and hence, r* e SY(R"'; H*(R),
H(R,)).

ProposiTiION 1.13 ([23]). Let a(x,&) € SH(Q x R x R") be independent of t for
|t| > ¢ for some ¢>0. Then we have Op(a)(y,n) € S*(2 x R""'; H(R), H*"*(R)) for
all se R. In addition, if a is independent of t, Op(a)(y,n) is classical.

To apply such an observation analogously to R, we need a specific choice of our
extension operators e;" that are compatible with the group action {xs}s.g, . To this end
we employ a result of [2] that says that ef can be chosen in such a way that

ngsi = e;ixg (16)
for all 6 € R.; the action of xs on H*(R,) is also defined by rsu(t) = 0"%u(d1).

THEOREM 1.14. If el is an extension operator with the property (16), for every
p(y,n,7) € SH(Q x R") we have

r*Op(p)(y,n)el € SL(Q x R HY(R,), H* “(R..))

for every s,ueR. For s> —1/2 and p(y,n,7) € SH(2 x R")_ we have an analogous
relation when we replace e} by e*.

Proor. The symbol r*Op(p)(y,n)e is a composition of the operator-valued
symbols e € S(?I(R,;’_I;HS(RQ,HS(R)), cf. relation (16), Op(p)(y,n) e S4(Q x R";
H*(R), H**(R)), cf. [Proposition 1.13, and the restriction r* may be interpreted as
rt e Sgl(R”’l;H STH(R), H*"*(R,)), cf. Example 1.12. The second assertion follows sim-
ilarly to the proof of [Proposition 1.7. ]
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REMARK 1.15. The pseudo-differential operator € := Op,(e]) : H*(R}) — H*(R")
is an extension operator in R', i.e., r*€[ =id on H*(R"), and for p(y,n,7) € S4(Q2 x R")
we have

Op, (r*Op,(p)(y,n)e;) = 17O0p, ,(p)&;.

1.5. Further elements of the local calculus.
We now apply [Definition 1.9 and notation in the variants

SH

(e (2 X R x H,) and Sen (2 % R,

i.e., where the covariable # € R""! is replaced by (,4) € R"'*!. In particular, we have
the (17, 4)-dependent versions r/ (17, 4,7) of the symbols (2) and (8), respectively.

ExampLE 1.16. Let J(») e C*(Q)@R"'®R"! be an (n—1) x (n — 1)-matrix
function on £ with real-valued entries. Then we have

pr(vm, A7) =i (J(¥)m, 2,7) € S5(Q x R™) .

Tueorem 1.17 ([12]). Let p;(y,n,7,4) GS(‘::I)].(Q X R”H)i, je€N, be an arbitrary
sequence. Then there is a p(y,n,7,1) € S(‘él)(Q X R”H)i such that

N
p— ij c S,u—(N—H)(Q > Rn+l>i7
=0

for every N € N, and p is unique modulo a symbol in the +-class of order —oo.

ExampLE 1.18. Let y:Q — Q be a diffeomorphism. Then the asymptotic sum-
mation for the symbol push-forward (belonging to the push-forward of associated
pseudo-differential operators under the map @ x [0,1) — Q x [0,1), (y,1) — (x(»),1))
can be carried out in S4(Q x R™"),. 1In fact, according to the standard formula in
coordinate substitutions for pseudo-&ifferential operators, the sum has the form

P I ., _ _
p<y7’77)~>7:)|j;:x(y) ~ Z a(aﬂ)p(y’ td){(y)ﬂ,i,f)@a(y,ﬂ),

geN"LTT

where @,(y,7j) = D3¢
in 7 of degree < |«|/2.

oy for 6(y,z) = x(z) — x(») — dx(y)(z — y) are polynomials

REMARK 1.19. Let y: Q — Q be a diffeomorphism, and let g and § be Riemannian
metrics on Q and Q, respectively, such that the associated pairings between sections
of cotangent bundles are invariant in the sense g,(17;,7,) = g5(#;,%,) for y = x(y) and
;= ’d)((y)_lnj, j=1,2. Consider symbols (5, ,7) on Q, and r“ (5}, 2,7) on Q with
|| and |77| belonging to g and g, respectively. Then, applying the symbol push-forward
of Example 1.18 to p(y,#n,4,7) :=r*(n,4,7) we have

(3,71, 2, 7) = r* (7, 4,7) mod S%1(Q x R"™)_.

Let L=*(2 x R,)_ denote the space of all integral operators
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Cu(y, t)zJ J ey, 6,y u(y' 1) di'dy’,
QJ—w0

ue Cy (2 x R), the kernel of which belongs to C*(2 x R x Q x R), where c¢(y,t, ', 1)
has the Volterra property, i.e., ¢(y,t,»',t') =0 whenever ¢t <. The space of these
operators is Fréchet in a natural way, and we can form L~*(Qx R.;R") :=
SR, L= *(Q x R.)_). We now define the space

Li(Q x R;RY)_:={Op(p) + C: p(p,1,7) € SH(RQ x R™)_,
CeL *(QxR.;R" 1.

In an analogous manner we can define L%(Q x R.;R" .. Note that the elements of
Li(Q x RJF;RZ)1 correspond to parameter-dependent Volterra and anti-Volterra op-
erators that are (modulo smoothing operators) translation invariant with respect to .
We could have defined analogous operators with smooth dependence on ¢ also in

general; more details may be found in Krainer [12].

DerNiTION  1.20. (i) Let Hp (2 x R), seR, defined to be the set of
all ue2'(Q2xR) such that ¢ue H*(R") for every pe C(2). Moreover, let
H o2 x R), s € R, denote the subspace of all Hj (2 x R) such that u(y,7) =0

comp

for all ye (2\K) x R for some K cc Q.
(i) Set

H§ 1o y) (2 x Ry) == {u € Hyo( ) (2 x R) : suppu = Q x Ry },
(X Ry) = Hypn (2 X R)NHG 100, (2 X Ry).
Moreover, let

Hﬁ)c(y)(Q X Ry):= Hli)c(y)(g X R)|Q><Ri’

H’ QX Ry) = Hi,)(2 X R)|gup, -

comp(y comp
For every p(y,n,7,A) € S4(L2 x R™") we have families of continuous operators

( )()“) Comp (‘Q X R) - Hlsoc&u )(‘Q X R)

for all se R. There are canonical embeddings

Hno)(2 X R) — H*(R"),  Hiyo (@ x Ry) — HY(RL).

comp comp

Thus, to ue H; omp(y) (2 x R;) we may apply extension operators €*. In particular, we

get well-defined families of continuous operators

FOP(P) (A& + Hipp()(@ X Ry) — HIL (@ x Ry), (17)

comp

s € R, for every p e S5(Q x R™! ). Similar mappings can be considered for the opposite
side.
As before, we mainly consider minus-symbols. The plus-case will be analogous.
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PROPOSITION 1.21. Let p € SH(Q x R™)_; then the operator (17) is independent of
the specific choice of the extension operator €.

The arguments are completely analogous to those in [Proposition 1.6

REMARK 1.22.  Applying Theorem 1.14 to a symbol p(y,7,7,1) € S5(Q x R™) we
get an operator-valued symbol

rrop(p)(y,n,A)e] € SR x R HS(R,),H ™R.)).

For p(y,n,7,4) € S4(Q x R™™)_and s > —1/2 we have an analogous relation, when we
replace e by e™, the corresponding extensions by zero. This is a parameter-dependent

analogue of [Theorem 1.14.

2. Operators on a manifold with boundary.

2.1. Global reduction of orders.

Let X be an oriented compact C* manifold with boundary Y, and let 2X denote
the double of X, obtained by gluing together two copies X, X_ of X along their
common boundary Y (we then identify X with X,). Choose a collar neighbourhood V'
of Y in X with a global splitting of variables into (y,?) for ye Y, t€0,1), and fix a
system of charts

)(j:Uj—>Rf_, j=1,...,L, (18)
LU —R", j=L+1,...,N (19)

on X with coordinate neighbourhoods U; on X, such that U;NY # & for j=1,... L,
and UNY = for j=L+1,...,N, where U; = Uj’ x[0,1), j=1,...,L, for an open
covering {U/,..., U]} of Y by coordinate neighbourhoods. Assume for convenience
that the functions y(y,7) and #(y,7) in the transition diffeomorphisms y;x,' : R — R,
(y, 1) — (p(,1),2(y, 1)), are independent of ¢ for small ¢z for j=1,...,L. Let us fix a
Riemannian metric on 2X that restricts in a tubular neighbourhood = Y x (—1,1) of Y
to a corresponding product metric with a Riemannian metric g on Y and the standard
metric on (—1,1). Absolute values of covectors # in local coordinates near Y will be
taken with respect to ¢, cf. also Remark 1.19. We now consider local parameter-
dependent symbols

fﬁ(l‘,f,i) = rﬁ(f’j‘)w([)<é7i>ﬂ(17w(t))

on R", where w(t) is a cut-off function (i.e., w € C°(R,}), = 1 near t = 0). Here, R"
is regarded as the double of R” in connection with charts (18). Moreover, for the
charts (19) we take symbols <{&, 1)*.

Let {¢,...,py} be a partition of unity on X, subordinate to {Uj,..., Uy}, and
let {y,..., ¥y} be a system of functions ; € C°(Uj) that equal 1 on suppg;. The
charts (18) near the boundary will be chosen as restrictions~of char~ts %+ Uy — R" for
the double U;:=2U; to U;, j=1,...,L. Then the sets Uj,...,Ur cover a tubular
neighbourhood of Y of the form Y x (—1,1); let X denote the union of X with that
tubular neighbourhood. Moreover, let ¢; Cy(U;) be functions such that 9ily, = v
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f~or j=1,...,L, and let lﬁj € CgO(U,) be functions that equal 1 on supp (?j, and satisfy
npj|Uf =y;, j=1,...,L. In addition we assume the functions ¢, and y; to be inde-
pendent of ¢ for |7 <& for some ¢ >0. We now form global parameter-dependent
pseudo-differential operators on X by

L N
Z¢' (% .0 (W + > (), 0p(<E, AW, (20)
Jj=1 Jj=L+1

The operator family (20) (extended by zero to 2X\X) then belongs to L4(2X :R").

Concerning terminology, in particular, for the space L. (M :R") of classical parameter-

dependent pseudo-differential operators of order € R on a C* manifold M, we refer to

23].

If M is a closed compact C* manifold, H*(M) denotes the standard Sobolev
space on M of smoothness s € R. Set H*(X) :=r"H*(2X) with r* being the restriction
to int X, and let e/ : H*(X) — H*(2X) denote any continuous extension operator (i.e.,
" oel =id on the space H*(X)). Moreover, for s> —1/2 we define et to be the
extension from intX to 2X by zero.

The operator

R*(2) :=r"R*(A)e] : H¥(X) — H**(X) (21)

is continuous for all se€ R (and every fixed A) and does not depend on the choice of
e]. Moreover, because of [Proposition 1.7 we have R*(A) =rtR*(A)e™ for s > —1/2.

THEOREM 2.1. There exists a constant ¢ > 0 such that operator (21) induces iso-
morphisms for all |1 > ¢, seR.

PrROOF. Because of our assumptions on the charts and the localising functions ¢;
and lp in (20) we may apply Remark 1.19; then the operators of the family R#(1) have
the following properties: For j=1,..., L the operators

R”(/l) (x )R”(/l) in R’
have the form

RE(Z)u = r*Op(r) (e u + Ty(A)u
on functions u € H*(R') that vanish for (y,7) ¢ K x (0,¢) for some K cc R"! and
¢ >0 sufficiently small, where T;(/) e Lé‘l_l(Q x R.;R")_ is a parameter-dependent
family of order u—1. Moreover, R}'(4):= (y;),R"(%) for arbitrary j=1,...,N acts
on functions u e H*(R") for j=1,...,L and on ue H*(R") for j=L+1,...,N with
compact support as standard classical parameter-dependent elliptic operators of the class

L4(R™; R") and LY(R"; R"), respectively. We now define the system of Leibniz inverses
of the local parameter-dependent symbols of the operators Rj‘ (4) and pass to associated
operators P, “(1) in R or R", according to the cases 1 < j<L and L+1< <N,

j
respectively. For 1 < j <L we can choose P;(4) in such a way that

P (Au=1"0p(r*) (e u+ S;(A)u
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on functions u € H*#(R") with support in K x [0,¢) for some K == R""' and ¢ >0
sufficiently small, and an element S;(4) € Lc_l"_l(Q x R.;R")_. Globally, we form the
operator family

and obtain
PR = 1 — Ci(A), (22)
RH(A)PH(A) =1— C,(), (23)

where Cj(1) and C,(1) are operator families in ¥ (R!, Z(H?*(X),C*(X))) for all s € R.
To see the invertibility of R#(A) for large |A| we consider, for instance, relation (22).
We have

NG 2 ar(x), 115x)) = by~

for every N € N, where b =b(N) > 0 is a suitable constant. We then conclude by a
Neumann series argument that

RM(J) : HY(X) — H*"(X) (24)

has a left inverse for |A| > ¢;. Analogously, using relation (23), we also have a right
inverse of (24) for |A| = ¢;. Thus (24) is invertible for |A| > ¢ = max(c1,c2). More-
over, a simple argument in terms of elliptic regularity shows that ker R“(4) and
coker R#(1) are independent of the choice of s. Thus, the constant ¢ is independent
of s. ]

2.2. Holomorphic families of order reducing operators.

We now turn to a construction that is of importance for the analysis of boundary
value problems (with or without the transmission property) on a manifold with conical
singularities. We consider order reducing symbols r* (&, 1) with parameter A€ R'.

DErINITION 2.2. Let S(‘(‘:l)(U X RZ X Ci), ne R, U< R" open, denote the set of all

a(x,&,z) e LQ/(CI,S(’&)(U x R")) such that

a(x,&, 2+ i) € Sl (U x RZY)

for every f € R', uniformly in f € K for every K == R'. By S(’él) (R" x C') we denote
the subspace of elements that are independent of x.

Here we use the natural Fréchet topologies in the spaces S(fcl)(U X R").

The symbol spaces S(’él)(U x R" x C') have many properties as they are known in

analogous form from the spaces S(‘él)(U x R™.
We now recall a kernel cut-off construction for symbols a(x, &, 1) € S(’él)
which we specify below for our order reducing symbols.

Set

(U % Rn+l>
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k(a)(x,&,0) = Jeﬂa(x, E ) di;

here, the correspondence a(x,&, 1) — k(a)(x,&,{) is first considered for fixed (x,¢&) as a
map %' (R") — &' (R").

THEOREM 2.3. Let a(x,&, 1) € SV

() (U x RS, e R, and let p(() € Cf (R}).  Then

the expression

H(p)a(x,&,2) = Je"z%(ok(a)(x,é,o dr, (25)

(x,&,z) € U x R" x C! defines an element in S(‘él)(U x R" x C'), and the corresponding
map ¢ — H(p)a for fixed a represents a continuous operator

H(-): CF(R') — Sy (U x R" x CY).
In particular, if () e Cy° (Ré) is a cut-off function (ie., Yy =1 in a neighbourhood of
{=0) we have

G(X, 57 2‘) = H(lrb)a(x7 é?z)|lmz:0 mOd S_OO(U X RI’H—[)'

A proof of this result may be found in [21], see also [23], or Dorschfeldt [3]; alternative
arguments are given in Gil, Schulze, Seiler [8].

Notice that the kernel cut-off operators H(p) only act on the covariables A€ R’
while the other variables remain untouched. An inspection of the proof of
shows that H(p) preserves specific subspaces of symbols. In particular, we have the
following result:

PROPOSITION 2.4.  Let a(y,n, 2, +i0) € S{y (2 % R xH.) for ue R, Q = R"!
open, and let ¢({) € C(S’C‘(Ré). Then we have

H(p)a(y,n,z,t+10) € S(’él)(.Q x R" ' x C'x Hy)

(where the symbol space in the latter relation is defined in a similar manner as that in
Definition 2.2), and ¢ — H(¢p)a is continuous as a map

Cy (R — Sl (@ % R 'x C'x Hy,).

If y(O) e Cy (Ré) is a cut-off function, we have

a(y,n, 2t +i0) = HW)a(y,n,z,7+i0)|;,._, modS *(Q x R" ' x R' x H.).

REMARK 2.5. The kernel cut-off operators can alternatively be applied to sym-
bols a(y,;y,/l,f)eS(’él)(QxR””h; then H(p)a(y,n,z,7) again belongs to S(’él)(Qx
R"'xC'),. -

REMARK 2.6. As is known in connection with the proof of [Theorem 2.3, the
operator H () for a cut-off function y preserves ellipticity also in the variable z € C’,
i.e., ellipticity in the variables (& 1) e R™ implies ellipticity in (£, z) e R" x C ! uni-
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formly in Imz in compact subsets of R’. The same is true of symbols in S(’él)(Q X
R x H,). In particular, for a(y,n,1,1) := r*(n, 1,7) the symbol H(y)r"(y,z,1) is
elliptic in that sense. More precisely, to every K = R’ there is a C > 0 such that
H)r*(n,z,7+i0) is invertible for all (5,z,7+i0) € R" ' x R’ x K x H, and fulfills
estimates similarly to those in [Proposition 1.1

2.3. Operators on manifolds with conical singularities.

Another consequence of the kernel cut-off construction is that we can apply H(gp),
pe CL(R!), to operator families a(/) eL(‘él)(M :R!), where M is a closed compact
C” manifold. It suffices to apply H(p) to the corresponding local amplitude func-
tions, cf. [20], [23]. This gives us holomorphic functions 4(z) € <7 (C’ , Ligy(M)), where
h(A+if) e Lé‘cl)(M; R;l) for every f e R, uniformly in f € K for any K cc R’. Recall
that such constructions belong to the Mellin quantisation procedures for pseudo-
differential operators on (closed) manifolds with conical singularities without boundary.
In the present section we want to apply our order reducing results for analogous
constructions on manifolds with conical singularities where the base is a compact C*
manifold X with boundary.

Consider an operator family

RM(A, A), (26)

where the operators R*(,A) for (1,2) e R"* are constructed in an analogous manner as
the order reducing elements of that are of the form (21) (with A replaced by
(4,4)). Then, as a corollary of Theorem 2.1 we see that

R*(A,2) : H(X) — H""(X)

consists of isomorphisms for all s € R and all 2 € R’, when the absolute value of leR'is
sufficiently large.

THEOREM 2.7 ([20]). For every K cc R' there exists a C = C(K) >0 such that
Wiz, 0) = H(Y)RY(2, )

(with H () acting on the variable J.€ R' as before) is a holomorphic (in z = A+ iff € C)
family of continuous operators

W (J+if, ) : H(X) — H (X)),

that consists of isomorphisms for all s € R, for all z = 7.+ if8 for arbitrary € K, provided
|4 = C.

We now apply this result for the case / =1. A slight modification of the con-
structions allows us to interpret 1€ R as Imz for z e C, running on a line

Iy :={zeC:Rez=f}

for some fe R. There is then a simple modification of with holomorphy
in the variable z = f +il. Instead of the compact set K we now take an interval
d < Rez < d' for some given d < d’. Choosing the above C sufficiently large, we find
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a family h*(z, ):) that is holomorphic in z € C and parameter-dependent with parameter
(z,A) e Iy x R' for every fe R, such that

h(z,2) : H(X) — H**(X) (27)

is a family of isomorphisms for all ze C such that d < S < d’, provided |1 > C for
sufficiently large C = C(d,d’) > 0. Let us now insert f = ((n+1)/2) — y for n =dim X.

DErFINITION 2.8. The space #%7(X") for s,y € R and X" := R, x X is defined to
be the completion of C;°(R.,C* (X)) with respect to the norm

1/2
1 J I ’
oy 17° (2, A) (Mu)(2) || 22 x dZ}
{27” L ()72~ W

for some fixed 1 e R, 4] > C.

REMARK 2.9. The space #*"(X") is independent of the specific 1 and of the other
involved data such as the cut-off function  or the other ingredients of the family
R*(A,4) from Section 2.1.

Now, as in the operator calculus for conical singularities on an open stretched cone
X", here for a base X that is a smooth compact manifold with boundary, we have
reductions of orders in terms of Mellin pseudo-differential operators as follows: Set

op () (Ayur) = ﬁjﬁw [7() #e i

o\
o€R, first on ue C°(R;,C*(X)), and then extended to our Sobolev spaces. We then
have the following result:

THEOREM 2.10.  For every u € R and every d < d’ there is an operator family h*(z, }:)
with the above-mentioned properties such that

opy "WYY s H5T(XN) — AR (XN (28)

is a family of isomorphisms for all |i| > C = C(d,d"), for all se R and for all y € R in the
interval [(n+1)/2)—d',(n+1)/2) —d].

PROOF. By construction, the operators 4#(z, 1) define isomorphisms (27) for all z
in a sufficiently wide strip d < < d’ for any given d < d’, provided |1| is sufficiently
large. At the same time, h*(z, i) is an operator-valued Mellin symbol of order u
with constant coefficients, acting between Sobolev spaces on X. This shows that
opl "D (hrY(2) = = op, (W) (A)r WD for hl(z, ) := h#(z —y + (n/2),4) defines
an invertible family of operators for all y such that d <Re(z—y+ (n/2)) <d'.
The Mellin operator op), refers to I'y, ={z:Rez=1/2} and hence we get iso-
morphisms for all weights y in the interval [(n+1)/2) —d’,((n+1)/2) —d]. O

Let B be a compact manifold with conical singularities and boundary, and let
B denote the associated stretched manifold, cf. [6] or for the terminology. In
particular, we may double up B to a closed manifold 2B with conical singularities, and
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then the associated stretched manifold 2B is a compact C* manifold with boundary. If
X 1is the base of the conical singularity of B which is a compact C* manifold with
boundary, then we have 2X = 0(2B). There is then a subset (2B),, := d(2B) of 2B,
and we set By, := (2B)Sing N B.

Let #%7(2B), s,y € R, denote the scale of weighted Sobolev spaces on 2B, locally
modelled by #*7((2X)") near d(2B) =~ 2X and by H; .(2B\0(2B)) outside 6(2B). Then
we get similar spaces #*7(B) := #*7(2B)|z on B.

Let wg, w1, w; be cut-off functions on B, that are restrictions of corresponding cut-
off functions on 2B to B that equal 1 near J(2B) and are supported in a collar
neighbourhood =~ [0,1) x 0(2B) of d(2B). Assume that wyw; = wy, wow,; = w,. More-
over, let D denote a compact C* manifold with boundary, obtained by gluing together
B =: B, and another (stretched) manifold B_ with conical singularity with boundary
such that B gn, = B_ ne, by identifying corresponding points of the singular subsets.
An example for such a construction (though, for simplicity, with non-compact mani-
folds) is B :=[0,00) x X and B_ :=[—00,0] x X; then D:=R x X.

We now apply to D in place of X and (4, 1) € R instead of 2. We
then get an order reducing family

R*(J,2) : H(D) — H* (D).

Moreover, let us apply Theorem 2.10 for (4, Z) instead of 2. Then we can form a
(4, A4)-dependent family of continuous operators

wooply " (W) (2, W)y + (1 = wo) R (2, 2)(1 — )
=: S"(,2) : A (B) — A7 (B) (29)

(the second summand on the left hand side is interpreted as an operator on B = B that
vanishes in a neighbourhood of Bin,).

TraeorReM 2.11. For every pe R and every d < d’ the operators (29) induce iso-
morphisms for all 2 € R', |A| > C for a constant C > 0, for all ,€ R', s€ R and all y € R
in the interval [((n+1)/2) —d',(n+1)/2) —d].

This result is a corollary of Theorems 2.1 and and of the technique of the proof
of in connection of remainders in parameter-dependent parametrices that
behave as Schwartz functions in (4, 4), cf. formulas (22), (23).

REMARK 2.12. A manifold B with conical singularities and boundary is a corner
manifold with two independent axial directions. In direction normal to the boundary
our result concerns standard Sobolev spaces. If we ask a similar construction for spaces
with weights in normal direction, see [24], then we have, in fact, double weighted spaces.
Order reducing results in this framework are also desirable, though such constructions

are more voluminous. Corner operators of this type are then elliptic in a respective
corner pseudo-differential algebra, see or [7]

Let us finally note that reductions of orders on an infinite stretched cone X* with
boundary are also of interest in another scale of weighted Sobolev spaces #*7(X")
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instead of the ones in [Theorem 2.10, defined by w7 (X") = w#*7(X") for any cut-
off function w(r) and by the standard Sobolev spaces for large r. In this case, similarly
to the construction for [Theorem 2.11, we glue together the operator near r = 0 with
another order reducing operator for the standard Sobolev spaces for large r. For the
latter part a variant of the calculus of boundary value problems without the transmission
property on a manifold with exits to infinity is to be applied (locally, in the half-space,
this corresponds to a refinement of Kumano-go’s calculus in the variant of boundary
value problems).
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