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Abstract. Given an algebra of pseudo-di¤erential operators on a manifold, an el-

liptic element is said to be a reduction of orders, if it induces isomorphisms of Sobolev

spaces with a corresponding shift of smoothness. Reductions of orders on a manifold

with boundary refer to boundary value problems. We employ specific smooth symbols

of arbitrary real orders and with parameters, and we show that the associated operators

induce isomorphisms between Sobolev spaces on a given manifold with boundary. Such

operators for integer orders have the transmission property and belong to the calculus of

Boutet de Monvel [1], cf. also [9]. In general, they fit to the algebra of boundary value

problems without the transmission property in the sense of [17] and [24]. Order reducing

elements of the present kind are useful for constructing parametrices of mixed elliptic

problems.

We show that order reducing symbols have the Volterra property and are parabolic

of anisotropy 1; analogous relations are formulated for arbitrary anisotropies. We then

investigate parameter-dependent operators, apply a kernel cut-o¤ construction with re-

spect to the parameter and show that corresponding holomorphic operator-valued Mellin

symbols reduce orders in weighted Sobolev spaces on a cone with boundary. We finally

construct order reducing operators on a compact manifold with conical singularities and

boundary.

Introduction.

Reductions of orders in problems for elliptic partial di¤erential equations are useful

for many purposes, e.g., for constructing parametrices, or in the index theory. The case

of operators on a closed compact Cy manifold is standard and particularly simple. To

reduce orders on a compact Cy manifold X with boundary Y , we have to take into

account the specific influence of Y to the operations and to the choice of Sobolev spaces

on X that we wish to reduce to L2ðXÞ. For pseudo-di¤erential operators of integer

order with the transmission property at the boundary there are order reducing operators

that refer to the scale H sðXÞ of standard Sobolev spaces on X , cf. Boutet de Monvel [1],

or Grubb [9] for specific constructions. Other variants of reductions have been used by

numerous authors, in particular, by Eskin [5], Schneider [18], Duduchava and Speck [4],

or Schulze and Seiler [24]. While the construction in [5] as well as that in [9] reduces

smoothness of standard Sobolev spaces to zero, the choice of [24] also works in Sobolev

spaces with arbitrary weights at the boundary.

In the first part of the present paper we show that the analogues of symbols from

[9] of arbitrary order m A R give rise to operators that reduce the smoothness of standard
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Sobolev spaces by m. In addition, we show that the order reducing symbols have the

Volterra property and are parabolic of anisotropy 1, cf. Piriou [15], or Krainer [13].

Moreover, using a result of Burenkov, Schulze, and Tarkhanov [2] we establish a relation

to operator-valued symbols on the boundary in the framework of twisted homogeneity,

cf. [23].

In the second part we apply our order reducing operators in parameter-dependent

form and obtain order reductions in weighted cone Sobolev spaces, based on the Mellin

transform in axial direction. In addition, we apply the kernel cut-o¤ construction from

[21] and show that such reductions are possible in terms of holomorphic operator-valued

Mellin symbols. These results also yield order reducing operators on a compact mani-

fold with conical singularities and boundary.

Let us finally note that there are many ways to construct order reducing operators

that are pseudo-di¤erential in the interior of a manifold with boundary. A specific

aspect of our investigation is that we find reductions of orders that fit into pseudo-

di¤erential algebras with a specific boundary symbolic structure that is compatible with

algebraic operations. Moreover, our construction for manifolds with conical singu-

larities belongs to a successive procedure of generating analogous operators for weighted

Sobolev spaces on manifolds with higher geometric singularities in the respective higher

corner algebras, cf. [22], though this is not explicitly carried out here. A motivation

of our approach is to express parametrices of general elliptic problems on such corner

configurations, especially mixed problems, within a complete pseudo-di¤erential calculus,

cf. the author’s joint article [11]. This concerns the case of smooth interfaces (where

boundary conditions have their jump) as well as that of interfaces with conical sin-

gularities.

The authors thank Thomas Krainer (University of Potsdam) for valuable remarks

on the manuscript.

1. Local constructions.

1.1. Order reducing symbols.

Let U JR
m be an open set, and let SmðU � R

nÞ denote the space of Hörmander’s

symbols of order m A R, i.e., the set of all aðx; xÞ A CyðU � R
nÞ such that

jDa
xD

b
xaðx; xÞja chxim�jbj ð1Þ

for all ðx; xÞ A K � R
n for arbitrary K HHU and multi-indices a A N

m, b A N
n,

with constants c ¼ cða; b;KÞ > 0; here, as usual, hxi :¼ ð1þ jxj2Þ1=2. Moreover, let

S
m
clðU � R

nÞ denote the subspace of all classical symbols of order m, i.e., there are

functions aðm�jÞðx; xÞ A CyðU � ðRnnf0gÞÞ, aðm�jÞðx; lxÞ ¼ lm�jaðm�jÞðx; xÞ for all ðx; xÞ A

U � ðRnnf0gÞ and all l A Rþ, j A N , such that

aðx; xÞ � wðxÞ
XN

j¼0

aðm�jÞðx; xÞ A S m�ðNþ1ÞðU � R
nÞ

for all N A N . Here, wðxÞ is an arbitrary excision function, i.e., any wðxÞ A CyðRnÞ that

equals 0 in a neighbourhood of x ¼ 0 and 1 for jxj > R for some R > 0. If a notation

or a result is true both in the classical and the general case, we write ‘‘(cl)’’ as subscript.

We are interested in this section in a particular class of symbols of order m that may
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be used for m A Z in the calculus of pseudo-di¤erential boundary value problems with

the transmission property, cf. Boutet de Monvel [1], Rempel and Schulze [16], or Grubb

[10]. We take, in particular, symbols from [9] of the following form. Set x ¼ ðy; tÞ

for y ¼ ðy1; . . . ; yn�1Þ A R
n�1, t A R, with covariables x ¼ ðh; tÞ. Choose an element

j A SðRÞ, such that jð0Þ ¼ 1 and suppF�1jHR� (where F is the Fourier transform on

R). It is easy to see that such functions j exist. We now set

rm�ðh; tÞ :¼ j
t

Chhi

� �

hhi� it

� �m

; ð2Þ

m A R, for any constant C > 0. For our purposes we need the following properties:

Proposition 1.1. (i) rm�ðh; tÞ A S
m
clðR

nÞ,

(ii) rm�ðh; tÞ is elliptic of order m A R for a su‰ciently large choice of C > 0 and

extends with respect to t to the upper complex half-plane tþ iy, y > 0, as a

holomorphic function that is Cy for yb 0, such that

jrm�ðh; tþ iyÞja cð1þ jhj þ jtj þ yÞm ð3Þ

for all ðh; t; yÞ A R
n�1 � R� Rþ for a constant c > 0.

(iii) The constant C > 0 in (ii) can be chosen in such a way that

jrm�ðh; tþ iyÞjb ~ccð1þ jhj þ jtj þ yÞm ð4Þ

for all ðh; t; yÞ A R
n�1 � R� Rþ for a constant ~cc > 0.

Proof. (i) Let us set pðxÞ :¼ hxi�1r�ðxÞ. By virtue of r�ðxÞ A S1
clðR

nÞ, cf. [19] or

[23] we have pðxÞ A S0
clðR

nÞ. Moreover, the symbol pðxÞ is elliptic of order zero, and

we have pðxÞ0 0 for all x A R
n, cf. the arguments for assertions (ii), (iii) below. To

show that rm�ðxÞ is classical we write rm�ðxÞ ¼ hximpmðxÞ. Because of hxim A S
m
clðR

nÞ it

su‰ces to show that pmðxÞ A S0
clðR

nÞ. For every fixed x A R
n we have by Cauchy’s

theorem

pmðxÞ ¼
1

2pi

ð

L

lm

ðl� pðxÞÞ
dl ð5Þ

for any curve L in the complex plane, where l� pðxÞ does not vanish for all x A R
n

(such a curve always exists as we see from relation (6) below). Note that l !

ðl� pðxÞÞ�1 represents a continuous map L ! S0
clðR

nÞ. Formula (5) easily yields

pmðxÞ A S0
clðR

nÞ. In fact, the integral can be written as a limit of finite integral sums of

the form
PN

j¼1ð2piÞ
�1
l
m
j;Nðlj;N � pðxÞÞ�1

dj;N with points lj;N A L belonging to the i-th

interval of the corresponding partition of the curve, where maxfjdj;N j; j ¼ 1; . . . ;Ng ! 0

as N ! y. We then get convergence in the Fréchet space S0
clðR

nÞ.

(ii), (iii) For the case m ¼ 1 we first write

j
tþ iy

Chhi

� �

¼

ð0

�y

e�iðtþiyÞðChhiÞ�1
tcðtÞ dt

for cðtÞ A SðRÞ, suppcHR�,
Ð 0

�y
cðtÞ dt ¼ 1. This shows that r�ðh; tÞ extends to a

holomorphic function in tþ iy, y > 0. Moreover, we have
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j
tþ iy

Chhi

� ��

�

�

�

�

�

�

�

a c1 for all ðh; tÞ A R
n; yb 0;

for some constant c1 > 0. This yields

jr�ðh; tþ iyÞja c2ð1þ jhj þ jtj þ yÞ ð6Þ

for all ðh; tÞ A R
n, yb 0, for some c2 > 0. In the proof below, cf. relation (7), we will

show that r�ðh; tþ iyÞ0 0 for all ðh; tÞ A R
n, yb 0. Thus logðr�ðh; tþ iyÞÞ is well-

defined as a holomorphic function in tþ iy for y > 0 by the branch of the logarithm

that is real for positive arguments. This gives us an extension of rm�ðxÞ in tþ iy, y > 0,

by

rm�ðh; tþ iyÞ ¼ em logðr�ðh; tþiyÞÞ:

Now relation (6) immediately implies estimate (3) for mb 0 for a suitable constant c > 0

and estimate (4) for ma 0 for a suitable constant ~cc > 0.

We now show that rm�ðh; tÞ is elliptic for a su‰ciently large C > 0. To this end,

it su‰ces to consider the case m ¼ 1. We have

r�ðh; tÞ

hhi� it
¼ 1þ

jðt=ChhiÞ � jð0Þ

hhi� it
hhi ¼ 1þ

jðt=ChhiÞ � jð0Þ

t=Chhi

t

Cðhhi� itÞ
¼ 1þ a;

where jaja ð1=CÞjðjðt=ChhiÞ � jð0ÞÞ=ðt=ChhiÞj. For fixed e > 0 there exists a

dðeÞ > 0 such that jaja ð1=CÞðjj 0ð0Þj þ eÞ for jt=hhij < dðeÞ and jaja ð1=CÞð2c1=dðeÞÞ

for jt=Chhijb dðeÞ. Now it follows easily that jaj < q for a constant q < 1 for all

ðh; tÞ A R
n, when C > 0 is su‰ciently large. We thus obtain

jr�ðh; tÞjb ð1� qÞjhhi� itjb c3hxi ð7Þ

for some c3 > 0. This yields estimate (3) for ma 0 and y ¼ 0 and estimate (4) for mb 0

and y ¼ 0. Analogous calculations go through for tþ iy, y > 0, where jtj in the esti-

mates is to be replaced by jtj þ y. r

Remark 1.2. Let us set

r
m
þðh; tÞ :¼ rm�ðh; tÞ ð8Þ

(the complex conjugate) for every m A R. We then have an analogue of Proposition 1.1

with the only exception that extensions with respect to t concern the lower complex half-

plane.

Proposition 1.3. For m A Z the symbols r
m
HðxÞ have the transmission property at

t ¼ 0.

Proof. First recall that a symbol aðxÞ A S
m
clðR

nÞ of integer order m (here, with

constant coe‰cients) is said to have the transmission property at t ¼ 0 if

aðh; hhitÞ A S
m
clðR

n�1
h Þ n̂np Ht for x ¼ ðh; tÞ;

where Ht :¼ Hþ lH� lH 0, HG
:¼ fFðeGuÞ : u A SðRGÞg, with H 0 being the space of

all polynomials in t. In the present case the symbol
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rm�ðh; hhitÞ ¼ hhim j
t

C

� �

� it

� �m

belongs to S
m
clðR

n�1
h Þ n̂np ðH

� lH 0Þ which is an immediate consequence of ðjðt=CÞ�

itÞm A H� lH 0 for any m A Z. r

1.2. Actions in Sobolev spaces.

We now turn to pseudo-di¤erential actions between Sobolev spaces in the half-

space H sðRn
GÞ :¼ H sðRnÞj

R
n
G
, where R

n
G :¼ fðy; tÞ A R

n
: t A RGg. Furthermore, we set

H s
0ðR

n
GÞ ¼ fu A H sðRnÞ : supp uJR

n
Gg. We use the fact, that for every s A R there is a

continuous extension operator

eGs : H sðRn
GÞ ! H sðRnÞ

such that rG � eGs ¼ id on the space H sðRn
GÞ; here, rGf :¼ f j

R
n
G
. If pðx; x 0; xÞ A

S mðU �U � R
nÞ, UJR

n open, is any symbol, we set

OpðpÞuðxÞ :¼

ðð

e iðx�x 0Þxpðx; x 0; xÞuðx 0Þ dx 0
�dx; �dx :¼ ð2pÞ�n

dx

first for u A Cy
0 ðUÞ, and then extended to Sobolev spaces.

The following lemma is standard:

Lemma 1.4. Let u A SðRnÞ, such that supp uJR
n
�. Then the Fourier transform

Fuðh; tÞ extends with respect to t to a holomorphic function in tþ iy for y > 0 that is Cy

for yb 0, and for every N A N there is a constant cN > 0, such that

ð1þ jhj þ jtj þ yÞN jFuðh; tþ iyÞja cN : ð9Þ

Lemma 1.5. The operators OpðrmGÞ, m A R, induce continuous operators

OpðrmGÞ : H
s
0ðR

n
GÞ ! H

s�m
0 ðRn

GÞ

for all s A R.

Proof. First, as a consequence of Proposition 1.1 and Remark 1.2, rmG are standard

symbols of order m; then the operators OpðrmGÞ : H
sðRnÞ ! H s�mðRnÞ are continuous for

all s A R. Thus it remains to show that supp uJR
n
G implies suppOpðrmGÞuJR

n
G. Let

us consider, for instance, minus symbols; the plus-case is analogous and will be dropped.

The arguments are, in fact, the same as in Eskin’s book, but for completeness we shall

recall the main steps here. Because SðRn
�Þ :¼ SðRnÞj

R n
�

is dense in H s
0ðR

n
�Þ, it suf-

fices to assume u A SðRn
�Þ. By virtue of Proposition 1.1 and Lemma 1.4 the function

rm�ðh; tþ iyÞFuðh; tþ iyÞ is holomorphic in y > 0 and continuous for yb 0. Applying

Cauchy’s Theorem we can write

Opðrm�Þuðy; tÞ ¼ ð2pÞ�n

ð

R
n

e iyhþitðtþiyÞrm�ðh; tþ iyÞFuðh; tþ iyÞ dhdt

for every yb 0. Using (3) and (9) we obtain

jOpðrm�Þuðy; tÞja c

ð

R
n

e�tyð1þ jhj þ jtj þ yÞmjFuðh; tþ iyÞj dhdta ~cce�ty ð10Þ

Reduction of orders in boundary value problems 69



for some constants c; ~cc > 0. It follows that Opðrm�Þuðy; tÞ ¼ 0 for t > 0 when we pass in

(10) to the limit y ! þy. r

Proposition 1.6. The operators R
m
H; s :¼ rGOpðrmHÞeGs , m A R, induce isomorphisms

R
m
H; s : H

sðRn
G
Þ ! H s�mðRn

G
Þ ð11Þ

for all s A R (they do not depend on the choice of the extension operator eGs ), and we have

ðRm
H; sÞ

�1 ¼ rGOpðr�m
H ÞeGs�m.

Proof. Let consider Rm
�; s; the case of plus-operators is analogous and will be

omitted.

Let eþs : H sðRn
þÞ ! H sðRnÞ be any continuous extension operator. Then the con-

tinuity of

Rm
�; s : H

sðRn
þÞ ! H s�mðRn

þÞ

for every s A R is evident. Let us show that R�m
�; s�m for any choice of eþs�m is a right

inverse of Rm
�; s. In fact, we have for u A H s�mðRn

þÞ

Rm
�; sR

�m
�; s�mu ¼ rþOpðrm�Þe

þ
s r

þOpðr�m
� Þeþs�mu ¼ rþOpðrm�ÞOpðr�m

� Þ eþs�muþ rþOpðrm�Þv; ð12Þ

where v ¼ ðeþs r
þ � 1ÞOpðr�m

� Þeþs�mu A H s
0ðR

n
�Þ. By Lemma 1.5 we have suppOpðrm�ÞvH

R
n
�, i.e., rþOpðrm�Þv ¼ 0. The first summand on the right hand side of (12) equals

rþeþs�mu ¼ u. In an analogous manner we can show that Rm
�; s has a left inverse, i.e., we

have calculated the inverse ðRm
�; sÞ

�1 as asserted. Finally, the action

rþOpðrm�Þe
þ
s : H sðRn

þÞ ! H s�mðRn
þÞ

is independent of the choice of e sþ, since for any other choice ~eeþs we have

rþOpðrm�Þðe
þ
s � ~eeþs Þu ¼ rþOpðrm�Þv ¼ 0

for v ¼ ðeþs � ~eeþs Þu A H s
0ðR

n
�Þ. r

Let us define a linear map

eG : H sðRn
G
Þ ! S

0ðRnÞ

for s > �1=2 by setting

eGf ðxÞ :¼
f ðxÞ for t A RG

0 for t A RH

�

; x ¼ ðy; tÞ; f ðxÞ A H sðRn
G
Þ:

This allows us to apply OpðrmHÞ in R
n to eGf in the distributional sense.

In the following we use the fact that operators eG : H sðRn
G
Þ ! H sðRnÞ (extensions

by zero) are a possible choice of eGs for all s A R, �1=2 < s < 1=2.

Proposition 1.7. The operators R
m
H :¼ rGOpðrmHÞeG, m A R, induce isomorphisms

R
m
H : H sðRn

G
Þ ! H s�mðRn

G
Þ ð13Þ
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for all s A R, s>�1=2, and we have ðRm
HÞ�1 ¼ rGOpðr�m

H ÞeGs�m for s� ma�1=2, ðRm
HÞ�1 ¼

rGOpðr�m
H ÞeG for s� m > �1=2.

Proof. As noted before, by virtue of Proposition 1.6, it su‰ces to consider the

case sb 1=2. Let us discuss the case of Rm
�; the plus-case is completely analogous.

For s� ma�1=2 we have for u A H s�mðRn
þÞ

rþOpðrm�Þe
þrþOpðr�m

� Þeþs�mu ¼ rþOpðrm�Þe
þ
s r

þOpðr�m
� Þeþs�mu

þ rþOpðrm�Þðe
þ � eþs Þr

þOpðr�m
� Þeþs�mu:

Because of sb 1=2 we have v :¼ rþOpðr�m
� Þeþs�mu A H 0ðRn

þÞ and hence eþv A H 0ðRnÞ,

eþs v A H sðRnÞHH 0ðRnÞ, i.e., ðeþ � eþs Þv A H 0
0 ðR

n
�Þ. This gives us rþOpðrm�Þðe

þ � eþs Þv

¼ 0, and we see from the proof Proposition 1.6 that rþOpðr�m
� Þeþs�m is a right inverse of

Rm
�. Moreover, for f A H sðRn

þÞ we have

rþOpðr�m
� Þeþs�mr

þOpðrm�Þe
þf ¼ rþOpðr�m

� Þeþs�mr
þOpðrm�Þe

þ
s f

þ rþOpðr�m
� Þeþs�mr

þOpðrm�Þðe
þ � eþs Þ f :

Because of ðeþ � eþs Þ f A H 0
0 ðR

n
�Þ we have as before rþOpðrm�Þðe

þ � eþs Þf ¼ 0, i.e.,

rþOpðr�m
� Þeþs�m is a left inverse of Rm

�. It remains to consider the case s� mb 1=2;

because for 1=2 > s� m > �1=2 we may replace eþ by eþs�m anyway. We have for

u A H s�mðRn
þÞ

rþOpðrm�Þe
þrþOpðr�m

� Þeþu ¼ rþOpðrm�Þe
þrþOpðr�m

� Þeþs�mu

because rþOpðr�m
� Þðeþs�m � eþÞu ¼ 0 by the same arguments as before. Moreover, v :¼

rþOpðr�m
� Þeþs�mu A H sðRn

þÞ, sb 1=2, and we have again rþOpðrm�Þðe
þ
s � eþÞv ¼ 0. It fol-

lows altogether

rþOpðrm�Þe
þrþopðr�m

� Þeþu ¼ rþOpðrm�Þe
þ
s r

þOpðr�m
� Þeþs�mu ¼ u:

Thus the operator rþOpðr�m
� Þeþ is a right inverse of rþopðrm�Þe

þ. It is also a left inverse,

because the consideration is now symmetric, due to sb 1=2, s� mb 1=2. r

Remark 1.8. We will employ below symbols in parameter-dependent form, i.e.,

where h A R
n�1 is replaced by ðh; lÞ A R

n�1 � R
l for some l. According to Propositions

1.6 and 1.7 we then have parameter-dependent operators R
m
H; sðlÞ and R

m
HðlÞ that define

isomorphisms (11) and (13), respectively, for every l A R
l .

1.3. A relation to classical Volterra symbols.

If U JC
l is an open set and E a Fréchet space, AðU ;EÞ denotes the space of all

holomorphic functions in U with values in E (the space AðU ;EÞ is endowed with the

Fréchet topology that is immediate by the definition).

Definition 1.9. Let us set HG :¼ ftþ iy A C : t A R; y A RGg. We then define

S
m

ðclÞðW� R
n�1 �HGÞ for m A R, WJR

n�1 open, to be the space of all elements

hðy; h; tþ iyÞ A CyðW� R
n�1 �HGÞ with the following properties:

(i) hðy; h; tþ iyÞ A AðHG;C
yðW� R

n�1
h ÞÞ,
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(ii) hðy; h; tþ iyÞ A S
m

ðclÞðW� R
n�1 � Rt � Rþ;yÞ, i.e., h is a classical symbol of

order m in the covariables ðh; t; yÞ for ðh; yÞ varying in R
n and y in RG.

The set

S
m
clðW� R

nÞG :¼ fpðy; h; tÞ :¼ hðy; h; tþ iyÞjy¼0 :

hðy; h; tþ iyÞ A S
m
clðW� R

n�1 �HHÞg ð14Þ

coincides with corresponding spaces of Volterra (for the case H�) and anti-Volterra (for

the case Hþ) symbols of anisotropy 1 and order m A R, cf. Piriou [15], or Krainer [12].

Recall (to motivate the notation) that the inverse ðitþ jxj2Þ�1 of the anisotropic ho-

mogeneous principal symbol of the heat operator �Dþ qt (which is of anisotropy 2 and

order 2) is Volterra in the classical sense; in particular, it extends to R
n �H�.

Let S
m
clðR

n�1 �HGÞ ðS m
clðR

nÞGÞ denote the subspace of elements of S
m
clðW� R

n�1 �

HGÞ ðS m
clðW� R

nÞGÞ that are independent of y.

The following theorem is valid for arbitrary m A R.

Theorem 1.10. (i) We have

r
m
Gðh; tþ iyÞ A S

m
clðR

n�1 �HHÞ:

(ii) r
m
Gðh; tþ iyÞ is elliptic of order m with respect to the covariables ðh; t; yÞ, i.e., for

the homogeneous principal symbols

scðr
m
�Þðh; t; yÞ ¼ j

tþ iy

Cjhj

� �

jhj � iðtþ iyÞ; scðr
m
þÞðh; t; yÞ ¼ scðrm�Þðh; t; yÞ

of r
m
H of order m in ðh; t; yÞ A R

n�1 �HHnf0g we have

scðr
m
GÞðh; t; yÞ0 0:

Proof. (i) Let us consider, for instance, the minus-case. First we verify that

rm�ðh; tþ iyÞ A SmðRn�1
h � Rt � RyÞ

(the space on the right of the latter relation is to be interpreted as a symbol space in the

variables ðh; t; yÞ A R
n�1 � R� Rþ ignoring the aspect of holomorphy). It su‰ces to

consider the case m ¼ 1 for similar reasons as in the proof of Proposition 1.1 (here we

use, in particular, that rm�ðh; tþ iyÞ0 0 for all ðh; t; yÞ A R
n � Rþ and for all m, cf.

Proposition 1.1 (iii). Because of �itþ y A S1ðRn � RþÞ it su‰ces to prove that

pðh; t; yÞ :¼ hhij
tþ iy

Chhi

� �

A S1
clðR

n � RþÞ:

Since we have j ¼ Ff for a function f A SðRÞ supported in R�, we get

jððtþ iyÞ=CÞ A S�yðR� RþÞ by Lemma 1.4 for the case n ¼ 1. From Proposition

2.2.1 of [24] the substitution

pðh; t; yÞ ! pðh; hhit; hhiyÞ

induces continuous maps
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S
m

ðclÞðR
n�1 � R� RþÞ ! S

m

ðclÞðR
n�1Þ n̂np S

m

ðclÞðR� RþÞ

for all m A R, both for classical and general symbols.

In the present case we obviously have

pðh; hhit; hhiyÞ ¼ hhij
tþ iy

C

� �

A S1
clðR

n�1Þ n̂np S
�y
cl ðR� RþÞ:

Then, since the second factor is of order �y, pðh; t; yÞ itself is a classical symbol of first

order.

(ii) For the proof that rm�ðh; tþ iyÞ is elliptic of order m it su‰ces again to consider

the case m ¼ 1. From Proposition 1.1 we know that there is a constant c > 0 such that

jrm�ðh; tþ iyÞjb cð1þ jhj þ jtj þ yÞm

for all ðh; t; yÞ A R
n � Rþ. Together with assertion (i) we conclude that rm�ðh; tþ iyÞ is

elliptic of order m in the sense of symbols in S
m
clðR

n � RþÞ. r

Remark 1.11. The considerations so far have a direct generalisation to anisotropic

symbols of arbitrary anisotropy l A Nnf0g. Setting, for instance,

rm�ðh; tÞl :¼ j
t

Chhi l

� �

hhi l � it

� �m

we get a corresponding version of Proposition 1.1 when we replace jhj by jhj l in the

estimates (3) and (4), respectively. The analogous plus-symbols r
m
þðh; tÞl are then par-

abolic of order m and anisotropy l in the sense of the work of Krainer [13]. Note that

Piriou [15] required l to be an even number.

1.4. Interpretation as operator-valued symbols.

Given a symbol aðx; xÞ A S mðU � R
nÞ, UJR

n open, U :¼ W� R C ðy; tÞ, we can

carry out the pseudo-di¤erential action in t (with the covariable t) and then obtain a

family of operators OpðaÞðy; hÞ : Cy
0 ðRÞ ! CyðRÞ. Let us assume that aðy; t; h; tÞ is

independent of t for jtj > c for a constant c > 0. Then OpðaÞðy; hÞ extends to a family

of continuous operators

OpðaÞðy; hÞ : H sðRÞ ! H s�mðRÞ ð15Þ

for every s A R, ðy; hÞ A W� R
n�1. We now employ operator-valued symbols in the

following sense:

Let E be a Hilbert space and fkdgd ARþ
be a strongly continuous group of iso-

morphisms kd : E ! E, kdkr ¼ kdr for all d; r A Rþ. In particular, for E :¼ H sðRÞ, we

set

ðkduÞðtÞ :¼ d1=2uðdtÞ; d A Rþ;

for arbitrary s A R.

If ðE; fkdgd ARþ
Þ; ð ~EE; f~kkdgd ARþ

Þ are Hilbert spaces with strongly continuous group

actions in that sense, S mðW� R
q;E; ~EEÞ for m A R, WJR

p open, denotes the set of all

aðy; hÞ A CyðW� R
q;LðE; ~EEÞÞ such that
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k~kk�1
hhifD

a
yD

b
haðy; hÞgkhhikLðE; ~EEÞa chhim�jbj

for all ðy; hÞ A K � R
q for arbitrary KHHW and multi-indices a A N

p, b A N
q, with

constants c ¼ cða; b;KÞ > 0.

Further, let SðmÞðW� ðRqnf0gÞ;E; ~EEÞ denote the set of all f ðy; hÞ A CyðW�

ðRqnf0gÞ;LðE; ~EEÞÞ such that

f ðy; dhÞ ¼ dm ~kkd f ðy; hÞk
�1
d

for all d A Rþ, ðy; hÞ A W� ðRqnf0gÞ. Finally, S m
clðW� R

q;E; ~EEÞ (the space of classical

symbols) is defined to be the subspace of all aðy; hÞ A S mðW� R
q;E; ~EEÞ such that there

are elements aðm�jÞðy; hÞ A Sðm�jÞðW� ðRqnf0gÞ;E; ~EEÞ such that

aðy; hÞ � wðhÞ
XN

j¼0

aðm�jÞðy; hÞ A S m�ðNþ1ÞðW� R
q;E; ~EEÞ

for all N A N . The subclass of elements of S
m

ðclÞðW� R
q;E; ~EEÞ that are independent of y

will be denoted by S
m

ðclÞðR
q;E; ~EEÞ.

Example 1.12. Let E :¼ H sðRÞ, ~EE :¼ H sðRþÞ, both endowed with the groups

kd : uðtÞ ! d1=2uðdtÞ, d > 0. Then we have for the restriction operator rþ : H sðRÞ !

H sðRþÞ the homogeneity rþ ¼ kdr
þk�1

d for all d > 0, and hence, rþ A S0
clðR

n�1;H sðRÞ;

H sðRþÞÞ.

Proposition 1.13 ([23]). Let aðx; xÞ A SmðW� R� R
nÞ be independent of t for

jtj > c for some c > 0. Then we have OpðaÞðy; hÞ A SmðW� R
n�1;H sðRÞ;H s�mðRÞÞ for

all s A R. In addition, if a is independent of t, OpðaÞðy; hÞ is classical.

To apply such an observation analogously to Rþ, we need a specific choice of our

extension operators eGs that are compatible with the group action fkdgd ARþ
. To this end

we employ a result of [2] that says that eGs can be chosen in such a way that

kde
G
s ¼ eGs kd ð16Þ

for all d A Rþ; the action of kd on H sðRþÞ is also defined by kduðtÞ ¼ d1=2uðdtÞ.

Theorem 1.14. If eþs is an extension operator with the property (16), for every

pðy; h; tÞ A S
m
clðW� R

nÞ we have

rþOpðpÞðy; hÞeþs A S
m
clðW� R

n�1;H sðRþÞ;H
s�mðRþÞÞ

for every s; m A R. For s > �1=2 and pðy; h; tÞ A S
m
clðW� R

nÞ� we have an analogous

relation when we replace eþs by eþ.

Proof. The symbol rþOpðpÞðy; hÞeþs is a composition of the operator-valued

symbols eþs A S0
clðR

n�1
h ;H sðRþÞ;H

sðRÞÞ, cf. relation (16), OpðpÞðy; hÞ A S
m
clðW� R

n�1;

H sðRÞ;H s�mðRÞÞ, cf. Proposition 1.13, and the restriction rþ may be interpreted as

rþ A S0
clðR

n�1;H s�mðRÞ;H s�mðRþÞÞ, cf. Example 1.12. The second assertion follows sim-

ilarly to the proof of Proposition 1.7. r
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Remark 1.15. The pseudo-di¤erential operator ~eeþs :¼ Opyðe
þ
s Þ : H

sðRn
þÞ ! H sðRnÞ

is an extension operator in R
n
þ, i.e., r

þ~eeþs ¼ id on H sðRn
þÞ, and for pðy; h; tÞ A S

m
clðW�R

nÞ

we have

Opyðr
þOptðpÞðy; hÞe

þ
s Þ ¼ rþOpy; tðpÞ~ee

þ
s :

1.5. Further elements of the local calculus.

We now apply Definition 1.9 and notation (14) in the variants

S
m

ðclÞðW� R
n�1þl �HGÞ and S

m

ðclÞðW� R
nþlÞG;

i.e., where the covariable h A R
n�1 is replaced by ðh; lÞ A R

n�1þl . In particular, we have

the ðh; lÞ-dependent versions r
m
Gðh; l; tÞ of the symbols (2) and (8), respectively.

Example 1.16. Let JðyÞ A CyðWÞnR
n�1 nR

n�1 be an ðn� 1Þ � ðn� 1Þ-matrix

function on W with real-valued entries. Then we have

pGðy; h; l; tÞ :¼ r
m
GðJðyÞh; l; tÞ A S

m
clðW� R

nþlÞG:

Theorem 1.17 ([12]). Let pjðy; h; t; lÞ A S
m�j

ðclÞ ðW� R
nþlÞG, j A N , be an arbitrary

sequence. Then there is a pðy; h; t; lÞ A S
m

ðclÞðW� R
nþlÞG such that

p�
XN

j¼0

pj A S m�ðNþ1ÞðW� R
nþlÞG;

for every N A N , and p is unique modulo a symbol in the G-class of order �y.

Example 1.18. Let w : W ! ~WW be a di¤eomorphism. Then the asymptotic sum-

mation for the symbol push-forward (belonging to the push-forward of associated

pseudo-di¤erential operators under the map W� ½0; 1Þ ! ~WW� ½0; 1Þ, ðy; tÞ ! ðwðyÞ; tÞ)

can be carried out in S
m
clðW� R

nþlÞG. In fact, according to the standard formula in

coordinate substitutions for pseudo-di¤erential operators, the sum has the form

~ppð~yy; ~hh; l; tÞj
~yy¼wðyÞ @

X

a AN n�1

1

a!
ðqa

h Þpðy;
tdwðyÞ~hh; l; tÞFaðy; ~hhÞ;

where Faðy; ~hhÞ ¼ Da
ye

idðy; zÞ~hhjz¼y for dðy; zÞ ¼ wðzÞ � wðyÞ � dwðyÞðz� yÞ are polynomials

in ~hh of degreea jaj=2.

Remark 1.19. Let w : W ! ~WW be a di¤eomorphism, and let g and ~gg be Riemannian

metrics on W and ~WW, respectively, such that the associated pairings between sections

of cotangent bundles are invariant in the sense gyðh1; h2Þ ¼ ~gg~yyð~hh1; ~hh2Þ for ~yy ¼ wðyÞ and

~hhj ¼
tdwðyÞ�1

hj, j ¼ 1; 2. Consider symbols rm�ðh; l; tÞ on W, and rm�ð~hh; l; tÞ on ~WW with

jhj and j~hhj belonging to g and ~gg, respectively. Then, applying the symbol push-forward

of Example 1.18 to pðy; h; l; tÞ :¼ rm�ðh; l; tÞ we have

~ppð~yy; ~hh; l; tÞ ¼ rm�ð~hh; l; tÞ modS m�1
cl ð ~WW� R

nþlÞ�:

Let L�yðW� RþÞ� denote the space of all integral operators
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Cuðy; tÞ ¼

ð
W

ðy
�y

cðy; t; y 0
; t 0Þuðy 0

; t 0Þ dt 0dy 0
;

u A Cy
0 ðW� RÞ, the kernel of which belongs to CyðW� R�W� RÞ, where cðy; t; y 0

; t 0Þ

has the Volterra property, i.e., cðy; t; y 0
; t 0Þ ¼ 0 whenever ta t 0. The space of these

operators is Fréchet in a natural way, and we can form L�yðW� Rþ;R
lÞ� :¼

SðR l
;L�yðW� RþÞ�Þ. We now define the space

L
m
clðW� Rþ;R

lÞ� :¼ fOpðpÞ þ C : pðy; t; tÞ A S
m
clðW� R

nþlÞ�;

C A L�yðW� Rþ;R
lÞ�g:

In an analogous manner we can define L
m
clðW� Rþ;R

lÞþ. Note that the elements of

L
m
clðW� Rþ;R

lÞH correspond to parameter-dependent Volterra and anti-Volterra op-

erators that are (modulo smoothing operators) translation invariant with respect to t.

We could have defined analogous operators with smooth dependence on t also in

general; more details may be found in Krainer [12].

Definition 1.20. (i) Let H s
locðyÞðW� RÞ, s A R, defined to be the set of

all u A D
0ðW� RÞ such that ju A H sðRnÞ for every j A Cy

0 ðWÞ. Moreover, let

H s
compðyÞðW� RÞ, s A R, denote the subspace of all H s

locðyÞðW� RÞ such that uðy; tÞ ¼ 0

for all y A ðWnKÞ � R for some KHHW.

(ii) Set

H s
0; locðyÞðW� RGÞ :¼ fu A H s

locðyÞðW� RÞ : supp uJW� RGg;

H s
0; compðyÞðW� RGÞ :¼ H s

compðyÞðW� RÞVH s
0; locðyÞðW� RGÞ:

Moreover, let

H s
locðyÞðW� RGÞ :¼ H s

locðyÞðW� RÞjW�RG
;

H s
compðyÞðW� RGÞ :¼ H s

compðyÞðW� RÞjW�RG
:

For every pðy; h; t; lÞ A S
m
clðW� R

nþlÞ we have families of continuous operators

OpðpÞðlÞ : H s
compðyÞðW� RÞ ! H

s�m

locðyÞðW� RÞ

for all s A R. There are canonical embeddings

H s
compðyÞðW� RÞ ,! H sðRnÞ; H s

compðyÞðW� RGÞ ,! H sðRn
GÞ:

Thus, to u A H s
compðyÞðW� RGÞ we may apply extension operators ~eeGs . In particular, we

get well-defined families of continuous operators

rþOpðpÞðlÞ~eeþs : H s
compðyÞðW� RþÞ ! H

s�m

locðyÞðW� RþÞ; ð17Þ

s A R, for every p A S
m
clðW� R

nþlÞ. Similar mappings can be considered for the opposite

side.

As before, we mainly consider minus-symbols. The plus-case will be analogous.
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Proposition 1.21. Let p A S
m
clðW� R

nþlÞ�; then the operator (17) is independent of

the specific choice of the extension operator ~eeþs .

The arguments are completely analogous to those in Proposition 1.6.

Remark 1.22. Applying Theorem 1.14 to a symbol pðy; h; t; lÞ A S
m
clðW� R

nþlÞ we

get an operator-valued symbol

rþopðpÞðy; h; lÞeþs A S
m
clðW� R

n�1þl ;H sðRþÞ;H
s�mðRþÞÞ:

For pðy; h; t; lÞ A S
m
clðW� R

nþlÞ� and s > �1=2 we have an analogous relation, when we

replace eþs by eþ, the corresponding extensions by zero. This is a parameter-dependent

analogue of Theorem 1.14.

2. Operators on a manifold with boundary.

2.1. Global reduction of orders.

Let X be an oriented compact Cy manifold with boundary Y , and let 2X denote

the double of X , obtained by gluing together two copies Xþ;X� of X along their

common boundary Y (we then identify X with Xþ). Choose a collar neighbourhood V

of Y in X with a global splitting of variables into ðy; tÞ for y A Y , t A ½0; 1Þ, and fix a

system of charts

wj : Uj ! R
n
þ; j ¼ 1; . . . ;L; ð18Þ

wj : Uj ! R
n; j ¼ Lþ 1; . . . ;N ð19Þ

on X with coordinate neighbourhoods Uj on X , such that Uj VY 0q for j ¼ 1; . . . ;L,

and Uj VY ¼ q for j ¼ Lþ 1; . . . ;N, where Uj ¼ U 0
j � ½0; 1Þ, j ¼ 1; . . . ;L, for an open

covering fU 0
1; . . . ;U

0
Lg of Y by coordinate neighbourhoods. Assume for convenience

that the functions ~yyðy; tÞ and ~ttðy; tÞ in the transition di¤eomorphisms wjw
�1
k : Rn

þ ! R
n
þ,

ðy; tÞ ! ð~yyðy; tÞ; ~ttðy; tÞÞ, are independent of t for small t for j ¼ 1; . . . ;L. Let us fix a

Riemannian metric on 2X that restricts in a tubular neighbourhoodGY � ð�1; 1Þ of Y

to a corresponding product metric with a Riemannian metric g on Y and the standard

metric on ð�1; 1Þ. Absolute values of covectors h in local coordinates near Y will be

taken with respect to g, cf. also Remark 1.19. We now consider local parameter-

dependent symbols

~rrm�ðt; x; lÞ :¼ rm�ðx; lÞ
oðtÞ

hx; limð1�oðtÞÞ

on R
n, where oðtÞ is a cut-o¤ function (i.e., o A Cy

0 ðRþÞ, o1 1 near t ¼ 0). Here, Rn

is regarded as the double of R
n
þ in connection with charts (18). Moreover, for the

charts (19) we take symbols hx; lim.

Let fj1; . . . ; jNg be a partition of unity on X , subordinate to fU1; . . . ;UNg, and

let fc1; . . . ;cNg be a system of functions cj A Cy
0 ðUjÞ that equal 1 on supp jj. The

charts (18) near the boundary will be chosen as restrictions of charts ~wwj :
~UUj ! R

n for

the double ~UUj :¼ 2Uj to Uj, j ¼ 1; . . . ;L. Then the sets ~UU1; . . . ; ~UUL cover a tubular

neighbourhood of Y of the form Y � ð�1; 1Þ; let ~XX denote the union of X with that

tubular neighbourhood. Moreover, let ~jjj A Cy
0 ð ~UUjÞ be functions such that ~jjjjUj

¼ jj
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for j ¼ 1; . . . ;L, and let ~ccj A Cy
0 ð ~UUjÞ be functions that equal 1 on supp ~jjj, and satisfy

~ccjjUj
¼ cj, j ¼ 1; . . . ;L. In addition we assume the functions ~jjj and ~ccj to be inde-

pendent of t for jtj < e for some e > 0. We now form global parameter-dependent

pseudo-di¤erential operators on ~XX by

~RRmðlÞ :¼
XL

j¼1

~jjjð ~ww
�1
j Þ�Opð~rrm�ÞðlÞ

~ccj þ
XN

j¼Lþ1

jjðw
�1
j Þ�Opðhx; limÞcj: ð20Þ

The operator family (20) (extended by zero to 2Xn ~XX ) then belongs to L
m
clð2X ;R lÞ.

Concerning terminology, in particular, for the space L
m
clðM;R lÞ of classical parameter-

dependent pseudo-di¤erential operators of order m A R on a Cy manifold M, we refer to

[23].

If M is a closed compact Cy manifold, H sðMÞ denotes the standard Sobolev

space on M of smoothness s A R. Set H sðXÞ :¼ rþH sð2XÞ with rþ being the restriction

to intX , and let eþs : H sðXÞ ! H sð2XÞ denote any continuous extension operator (i.e.,

rþ � eþs ¼ id on the space H sðX Þ). Moreover, for s > �1=2 we define eþ to be the

extension from intX to 2X by zero.

The operator

RmðlÞ :¼ rþ ~RRmðlÞeþs : H sðXÞ ! H s�mðXÞ ð21Þ

is continuous for all s A R (and every fixed l) and does not depend on the choice of

eþs . Moreover, because of Proposition 1.7 we have RmðlÞ ¼ rþ ~RRmðlÞeþ for s > �1=2.

Theorem 2.1. There exists a constant c > 0 such that operator (21) induces iso-

morphisms for all jlj > c, s A R.

Proof. Because of our assumptions on the charts and the localising functions ~jjj
and ~ccj in (20) we may apply Remark 1.19; then the operators of the family RmðlÞ have

the following properties: For j ¼ 1; . . . ;L the operators

R
m
j ðlÞ :¼ ðwjÞ�R

mðlÞ in R
n
þ

have the form

R
m
j ðlÞu ¼ rþOpðrm�ÞðlÞe

þ
s uþ TjðlÞu

on functions u A H sðRn
þÞ that vanish for ðy; tÞ B K � ð0; eÞ for some KHHR

n�1 and

e > 0 su‰ciently small, where TjðlÞ A L
m�1
cl ðW� Rþ;R

lÞ� is a parameter-dependent

family of order m� 1. Moreover, R
m
j ðlÞ :¼ ðwjÞ�R

mðlÞ for arbitrary j ¼ 1; . . . ;N acts

on functions u A H sðRn
þÞ for j ¼ 1; . . . ;L and on u A H sðRnÞ for j ¼ Lþ 1; . . . ;N with

compact support as standard classical parameter-dependent elliptic operators of the class

L
m
clðR

n
þ;R

lÞ and L
m
clðR

n;R lÞ, respectively. We now define the system of Leibniz inverses

of the local parameter-dependent symbols of the operators R
m
j ðlÞ and pass to associated

operators P
�m
j ðlÞ in R

n
þ or R

n, according to the cases 1a jaL and Lþ 1a jaN,

respectively. For 1a jaL we can choose PjðlÞ in such a way that

P
�m
j ðlÞu ¼ rþOpðr�m

� ÞðlÞeþs�muþ SjðlÞu
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on functions u A H s�mðRn
þÞ with support in K � ½0; eÞ for some KHHR

n�1 and e > 0

su‰ciently small, and an element SjðlÞ A L
�m�1
cl ðW� Rþ;R

lÞ�. Globally, we form the

operator family

P�mðlÞ :¼
XN

j¼1

jjðw
�1
j Þ�P

�m
j ðlÞcj

and obtain

P�mðlÞRmðlÞ ¼ I � ClðlÞ; ð22Þ

RmðlÞP�mðlÞ ¼ I � CrðlÞ; ð23Þ

where ClðlÞ and CrðlÞ are operator families in SðR l
;LðH sðXÞ;CyðX ÞÞÞ for all s A R.

To see the invertibility of RmðlÞ for large jlj we consider, for instance, relation (22).

We have

kClðlÞkLðH sðX Þ;H sðXÞÞa bhli�N

for every N A N , where b ¼ bðNÞ > 0 is a suitable constant. We then conclude by a

Neumann series argument that

RmðlÞ : H sðXÞ ! H s�mðXÞ ð24Þ

has a left inverse for jljb c1. Analogously, using relation (23), we also have a right

inverse of (24) for jljb c2. Thus (24) is invertible for jljb c ¼ maxðc1; c2Þ. More-

over, a simple argument in terms of elliptic regularity shows that kerRmðlÞ and

cokerRmðlÞ are independent of the choice of s. Thus, the constant c is independent

of s. r

2.2. Holomorphic families of order reducing operators.

We now turn to a construction that is of importance for the analysis of boundary

value problems (with or without the transmission property) on a manifold with conical

singularities. We consider order reducing symbols rm�ðx; lÞ with parameter l A R
l .

Definition 2.2. Let S
m

ðclÞðU � R
n
x � C

l
zÞ, m A R, U JR

m open, denote the set of all

aðx; x; zÞ A AðC l
;S

m

ðclÞðU � R
nÞÞ such that

aðx; x; lþ ibÞ A S
m

ðclÞðU � R
nþl
x;l Þ

for every b A R
l , uniformly in b A K for every K HHR

l . By S
m

ðclÞðR
n � C

lÞ we denote

the subspace of elements that are independent of x.

Here we use the natural Fréchet topologies in the spaces S
m

ðclÞðU � R
nÞ.

The symbol spaces S
m

ðclÞðU � R
n � C

lÞ have many properties as they are known in

analogous form from the spaces S
m

ðclÞðU � R
nþlÞ.

We now recall a kernel cut-o¤ construction for symbols aðx; x; lÞ A S
m

ðclÞðU � R
nþlÞ

which we specify below for our order reducing symbols.

Set
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kðaÞðx; x; zÞ :¼

ð
e izlaðx; x; lÞ �dl;

here, the correspondence aðx; x; lÞ ! kðaÞðx; x; zÞ is first considered for fixed ðx; xÞ as a

map S
0ðR lÞ ! S

0ðR lÞ.

Theorem 2.3. Let aðx; x; lÞ A S
m

ðclÞðU � R
nþl
x;l Þ, m A R, and let jðzÞ A Cy

0 ðR l
zÞ. Then

the expression

HðjÞaðx; x; zÞ :¼

ð
e�izzjðzÞkðaÞðx; x; zÞ dz; ð25Þ

ðx; x; zÞ A U � R
n � C

l defines an element in S
m

ðclÞðU � R
n � C

lÞ, and the corresponding

map j ! HðjÞa for fixed a represents a continuous operator

Hð�Þ : Cy

0 ðR lÞ ! S
m

ðclÞðU � R
n � C

lÞ:

In particular, if cðzÞ A Cy
0 ðR l

zÞ is a cut-o¤ function (i.e., c1 1 in a neighbourhood of

z ¼ 0) we have

aðx; x; lÞ ¼ HðcÞaðx; x; zÞjIm z¼0 modS�yðU � R
nþlÞ:

A proof of this result may be found in [21], see also [23], or Dorschfeldt [3]; alternative

arguments are given in Gil, Schulze, Seiler [8].

Notice that the kernel cut-o¤ operators HðjÞ only act on the covariables l A R
l ,

while the other variables remain untouched. An inspection of the proof of Theorem 2.3

shows that HðjÞ preserves specific subspaces of symbols. In particular, we have the

following result:

Proposition 2.4. Let aðy; h; l; tþ iyÞ A S
m

ðclÞðW�R
n�1þl �HGÞ for m A R, WJR

n�1

open, and let jðzÞ A Cy
0 ðR l

zÞ. Then we have

HðjÞaðy; h; z; tþ iyÞ A S
m

ðclÞðW� R
n�1 � C

l �HGÞ

(where the symbol space in the latter relation is defined in a similar manner as that in

Definition 2.2), and j ! HðjÞa is continuous as a map

Cy

0 ðR lÞ ! S
m

ðclÞðW� R
n�1 � C

l �HGÞ:

If cðzÞ A Cy
0 ðR l

zÞ is a cut-o¤ function, we have

aðy; h; l; tþ iyÞ ¼ HðcÞaðy; h; z; tþ iyÞjIm z¼0 modS�yðW� R
n�1 � R

l �HGÞ:

Remark 2.5. The kernel cut-o¤ operators can alternatively be applied to sym-

bols aðy; h; l; tÞ A S
m

ðclÞðW� R
nþlÞ

G
; then HðjÞaðy; h; z; tÞ again belongs to S

m

ðclÞðW�

R
n�1 � C

lÞ
G
.

Remark 2.6. As is known in connection with the proof of Theorem 2.3, the

operator HðcÞ for a cut-o¤ function c preserves ellipticity also in the variable z A C
l ,

i.e., ellipticity in the variables ðx; lÞ A R
nþl implies ellipticity in ðx; zÞ A R

n � C
l , uni-
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formly in Im z in compact subsets of R
l . The same is true of symbols in S

m

ðclÞðW�

R
n�1þl �HGÞ. In particular, for aðy; h; l; tÞ :¼ rm�ðh; l; tÞ the symbol HðcÞrm�ðh; z; tÞ is

elliptic in that sense. More precisely, to every K HHR
l there is a C > 0 such that

HðcÞrm�ðh; z; tþ iyÞ is invertible for all ðh; z; tþ iyÞ A R
n�1 � R

l � K �Hþ and fulfills

estimates similarly to those in Proposition 1.1.

2.3. Operators on manifolds with conical singularities.

Another consequence of the kernel cut-o¤ construction is that we can apply HðjÞ,

j A Cy
0 ðR l

lÞ, to operator families aðlÞ A L
m

ðclÞðM;R l
lÞ, where M is a closed compact

Cy manifold. It su‰ces to apply HðjÞ to the corresponding local amplitude func-

tions, cf. [20], [23]. This gives us holomorphic functions hðzÞ A AðC l
;L

m

ðclÞðMÞÞ, where

hðlþ ibÞ A L
m

ðclÞðM;R l
lÞ for every b A R

l , uniformly in b A K for any KHHR
l . Recall

that such constructions belong to the Mellin quantisation procedures for pseudo-

di¤erential operators on (closed) manifolds with conical singularities without boundary.

In the present section we want to apply our order reducing results for analogous

constructions on manifolds with conical singularities where the base is a compact Cy

manifold X with boundary.

Consider an operator family

Rmðl; ~llÞ; ð26Þ

where the operators Rmðl; ~llÞ for ðl; ~llÞ A R
lþ~ll are constructed in an analogous manner as

the order reducing elements of Theorem 2.1 that are of the form (21) (with l replaced by

ðl; ~llÞ). Then, as a corollary of Theorem 2.1 we see that

Rmðl; ~llÞ : H sðXÞ ! H s�mðX Þ

consists of isomorphisms for all s A R and all l A R
l , when the absolute value of ~ll A R

~ll is

su‰ciently large.

Theorem 2.7 ([20]). For every KHHR
l there exists a ~CC ¼ ~CCðKÞ > 0 such that

hmðz; ~llÞ :¼ HðcÞRmðz; ~llÞ

(with HðcÞ acting on the variable l A R
l as before) is a holomorphic (in z ¼ lþ ib A C

l)

family of continuous operators

hmðlþ ib; ~llÞ : H sðX Þ ! H s�mðX Þ;

that consists of isomorphisms for all s A R, for all z ¼ lþ ib for arbitrary b A K, provided

j~lljb ~CC.

We now apply this result for the case l ¼ 1. A slight modification of the con-

structions allows us to interpret l A R as Im z for z A C , running on a line

Gb :¼ fz A C : Re z ¼ bg

for some b A R. There is then a simple modification of Theorem 2.7 with holomorphy

in the variable z ¼ b þ il. Instead of the compact set K we now take an interval

daRe za d 0 for some given da d 0. Choosing the above ~CC su‰ciently large, we find
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a family hmðz; ~llÞ that is holomorphic in z A C and parameter-dependent with parameter

ðz; ~llÞ A Gb � R
~ll for every b A R, such that

hmðz; ~llÞ : H sðX Þ ! H s�mðX Þ ð27Þ

is a family of isomorphisms for all z A C such that da ba d 0, provided j~lljb ~CC for

su‰ciently large ~CC ¼ ~CCðd; d 0Þ > 0. Let us now insert b ¼ ððnþ 1Þ=2Þ � g for n ¼ dimX .

Definition 2.8. The space H
s; gðX5Þ for s; g A R and X5

:¼ Rþ � X is defined to

be the completion of Cy
0 ðRþ;C

yðX ÞÞ with respect to the norm

1

2pi

ð

Gððnþ1Þ=2Þ�g

kh sðz; ~llÞðMuÞðzÞk2L2ðX Þ dz

( )1=2

for some fixed ~ll A R
~ll , j~lljb ~CC.

Remark 2.9. The space H
s; gðX5Þ is independent of the specific ~ll and of the other

involved data such as the cut-o¤ function c or the other ingredients of the family

Rsðl; ~llÞ from Section 2.1.

Now, as in the operator calculus for conical singularities on an open stretched cone

X5, here for a base X that is a smooth compact manifold with boundary, we have

reductions of orders in terms of Mellin pseudo-di¤erential operators as follows: Set

opd
MðhmÞð~llÞuðrÞ :¼

1

2pi

ð

G ð1=2Þ�d

ð

y

0

r

r 0

� ��z

hmðz; ~llÞuðr 0Þ
dr 0

r 0
dz;

d A R, first on u A Cy
0 ðRþ;C

yðX ÞÞ, and then extended to our Sobolev spaces. We then

have the following result:

Theorem 2.10. For every m A R and every da d 0 there is an operator family hmðz; ~llÞ

with the above-mentioned properties such that

op
g�ðn=2Þ
M ðhmÞð~llÞ : H s; gðX5Þ ! H

s�m; gðX5Þ ð28Þ

is a family of isomorphisms for all j~lljb ~CC ¼ ~CCðd; d 0Þ, for all s A R and for all g A R in the

interval ½ððnþ 1Þ=2Þ � d 0; ððnþ 1Þ=2Þ � d �.

Proof. By construction, the operators hmðz; ~llÞ define isomorphisms (27) for all z

in a su‰ciently wide strip da ba d 0 for any given da d 0, provided j~llj is su‰ciently

large. At the same time, hmðz; ~llÞ is an operator-valued Mellin symbol of order m

with constant coe‰cients, acting between Sobolev spaces on X . This shows that

op
g�ðn=2Þ
M ðhmÞð~llÞ ¼ rg�ðn=2Þop0

Mðhm
0 Þð

~llÞr�gþðn=2Þ for h
m
0 ðz;

~llÞ :¼ hmðz� gþ ðn=2Þ; ~llÞ defines

an invertible family of operators (28) for all g such that daReðz� gþ ðn=2ÞÞa d 0.

The Mellin operator op0
M refers to G1=2 ¼ fz : Re z ¼ 1=2g and hence we get iso-

morphisms for all weights g in the interval ½ððnþ 1Þ=2Þ � d 0; ððnþ 1Þ=2Þ � d �. r

Let B be a compact manifold with conical singularities and boundary, and let

B denote the associated stretched manifold, cf. [6] or [19] for the terminology. In

particular, we may double up B to a closed manifold 2B with conical singularities, and
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then the associated stretched manifold 2B is a compact Cy manifold with boundary. If

X is the base of the conical singularity of B which is a compact Cy manifold with

boundary, then we have 2X ¼ qð2BÞ. There is then a subset ð2BÞsing :¼ qð2BÞ of 2B,

and we set Bsing :¼ ð2BÞsing VB.

Let H
s; gð2BÞ, s; g A R, denote the scale of weighted Sobolev spaces on 2B, locally

modelled by H
s; gðð2XÞ5Þ near qð2BÞG2X and by H s

locð2Bnqð2BÞÞ outside qð2BÞ. Then

we get similar spaces H
s; gðBÞ :¼ H

s; gð2BÞj
B

on B.

Let o0;o1;o2 be cut-o¤ functions on B, that are restrictions of corresponding cut-

o¤ functions on 2B to B that equal 1 near qð2BÞ and are supported in a collar

neighbourhoodG ½0; 1Þ� qð2BÞ of qð2BÞ. Assume that o0o1 ¼ o0, o0o2 ¼ o2. More-

over, let D denote a compact Cy manifold with boundary, obtained by gluing together

B ¼: Bþ and another (stretched) manifold B� with conical singularity with boundary

such that Bþ; sing GB�; sing, by identifying corresponding points of the singular subsets.

An example for such a construction (though, for simplicity, with non-compact mani-

folds) is Bþ :¼ ½0;yÞ � X and B� :¼ ½�y; 0� � X ; then D :¼ R� X .

We now apply Theorem 2.1 to D in place of X and ðl; ~llÞ A R
lþ~ll instead of l. We

then get an order reducing family

Rmðl; ~llÞ : H sðDÞ ! H s�mðDÞ:

Moreover, let us apply Theorem 2.10 for ðl; ~llÞ instead of ~ll. Then we can form a

ðl; ~llÞ-dependent family of continuous operators

o0op
g�ðn=2Þ
M ðhmÞðl; ~llÞo1 þ ð1� o0ÞR

mðl; ~llÞð1� o2Þ

¼: S mðl; ~llÞ : Hs; gðBÞ ! H
s�m; gðBÞ ð29Þ

(the second summand on the left hand side is interpreted as an operator on B ¼ Bþ that

vanishes in a neighbourhood of Bsing).

Theorem 2.11. For every m A R and every da d 0 the operators (29) induce iso-

morphisms for all ~ll A R
~ll , j~lljb ~CC for a constant ~CC > 0, for all l A R

l , s A R and all g A R

in the interval ½ððnþ 1Þ=2Þ � d 0; ððnþ 1Þ=2Þ � d �.

This result is a corollary of Theorems 2.1 and 2.10 and of the technique of the proof

of Theorem 2.1 in connection of remainders in parameter-dependent parametrices that

behave as Schwartz functions in ðl; ~llÞ, cf. formulas (22), (23).

Remark 2.12. A manifold B with conical singularities and boundary is a corner

manifold with two independent axial directions. In direction normal to the boundary

our result concerns standard Sobolev spaces. If we ask a similar construction for spaces

with weights in normal direction, see [24], then we have, in fact, double weighted spaces.

Order reducing results in this framework are also desirable, though such constructions

are more voluminous. Corner operators of this type are then elliptic in a respective

corner pseudo-di¤erential algebra, see [22] or [7].

Let us finally note that reductions of orders on an infinite stretched cone X5 with

boundary are also of interest in another scale of weighted Sobolev spaces K
s; gðX5Þ
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instead of the ones in Theorem 2.10, defined by oK
s; gðX5Þ ¼ oH

s; gðX5Þ for any cut-

o¤ function oðrÞ and by the standard Sobolev spaces for large r. In this case, similarly

to the construction for Theorem 2.11, we glue together the operator (28) near r ¼ 0 with

another order reducing operator for the standard Sobolev spaces for large r. For the

latter part a variant of the calculus of boundary value problems without the transmission

property on a manifold with exits to infinity is to be applied (locally, in the half-space,

this corresponds to a refinement of Kumano-go’s calculus [14] in the variant of boundary

value problems).
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