A classification of Q-curves with complex multiplication

By Tetsuo Nakamura

(Received Jan. 31, 2002)
(Revised Dec. 16, 2002)

Abstract

Let H be the Hilbert class field of an imaginary quadratic field K. An elliptic curve E over H with complex multiplication by K is called a Q-curve if E is isogenous over H to all its Galois conjugates. We classify \boldsymbol{Q}-curves over H, relating them with the cohomology group $H^{2}(H / \mathbf{Q}, \pm 1)$. The structures of the abelian varieties over \boldsymbol{Q} obtained from \boldsymbol{Q}-curves by restriction of scalars are investigated.

1. Introduction.

Let K be an imaginary quadratic field and H the Hilbert class field of K. Let E be an elliptic curve over H with complex multiplication by K. We say that E is a \boldsymbol{Q}-curve if E and E^{σ} are isogenous over H for all $\sigma \in \operatorname{Gal}(H / \boldsymbol{Q})$. Denote by ψ_{E} the Hecke character of H associated with E. Then E is a \boldsymbol{Q}-curve if and only if $\psi_{E}=\psi_{E}^{\sigma}$ for all $\sigma \in \operatorname{Gal}(H / \boldsymbol{Q})$.

As in the case without complex multiplication (see $[\mathbf{Q}]$), we attach to a \boldsymbol{Q}-curve E a two-cocycle class $c(E) \in H^{2}\left(H / \boldsymbol{Q}, K^{\times}\right)$. For \boldsymbol{Q}-curves E, E^{\prime}, we see that $c(E)=c\left(E^{\prime}\right)$ if and only if $\psi_{E}=\psi_{E^{\prime}} \cdot \chi \circ N_{K / Q}$ with a quadratic Dirichlet character χ. Let Γ be the subset of $H^{2}\left(H / \boldsymbol{Q}, K^{\times}\right)$consisting of $c(E)$ for all \boldsymbol{Q}-curves E over H. We show that there exists a bijection between Γ and a subspace Y of $H^{2}(H / \boldsymbol{Q}, \pm 1)$ over \boldsymbol{F}_{2}. Relating Y to an embedding problem associated with the exact sequence

$$
1 \rightarrow \pm 1 \rightarrow G \rightarrow \operatorname{Gal}(H / \boldsymbol{Q}) \rightarrow 1
$$

we characterize the structure of Y and, as a consequence, we obtain that $\operatorname{dim}_{\boldsymbol{F}_{2}} Y=$ $t(t-1) / 2$, where t is the number of distinct prime factors of the discriminant of K. In some case where K is called exceptional, there are no Q-curves with complex multiplication over H. Replacing H by the ring class field of conductor 2, we obtain a similar classification of \boldsymbol{Q}-curves (Theorem 2).

The abelian variety $B=R_{H / K} E$ obtained by restriction of scalars from a Q-curve E can be defined over \boldsymbol{Q}. The structures of the endomorphism algebras $R=\operatorname{End}_{\boldsymbol{Q}} B \otimes \boldsymbol{Q}$ are studied according to this classification (Section 5). Some examples are discussed in the last section.

Notation. Throughout the paper we fix the following notation.
K : an imaginary quadratic field of discriminant $D \neq-3,-4$.
t : the number of distinct primes dividing D.

[^0]H : the Hilbert class field of K.
Cl_{K} : the ideal class group of K.
$\mathrm{g}: \operatorname{Gal}(H / K)$.
ρ : the complex conjugation.
j_{E} : the j-invariant of an elliptic curve E.
All Q-curves treated in this paper are assumed to have complex multiplication. The symbol "dim" always refers to the dimension over \boldsymbol{F}_{2}. Galois cohomology groups $H^{i}(\operatorname{Gal}(M / L), A)$ are denoted by $H^{i}(M / L, A)$. We call K exceptional if the discriminant D of K is of the form
$$
D=-4 p_{1} \cdots p_{t-1} \quad(t \geq 2)
$$
where p_{1}, \ldots, p_{t-1} are primes satisfying $p_{1} \equiv \cdots \equiv p_{t-1} \equiv 1 \bmod 4$.

2. Quadratic characters of local unit groups of K.

Let p be a rational prime and \mathfrak{p} a prime ideal of K dividing p. Denote by U_{p} the group of local units for \mathfrak{p} and put $U_{p}=\prod_{\mathfrak{p} \mid p} U_{p}$. Let X_{p} be the set of characters $\lambda: U_{p} \rightarrow \pm 1$. We regard X_{p} as a vector space over \boldsymbol{F}_{2}. The complex conjugation ρ acts on X_{p} and put $X_{p}^{0}=\left\{\lambda \in X_{p} \mid \lambda^{\rho}=\lambda\right\}$. We shall determine a basis of X_{p}.

1) p is odd. Denote by $\kappa_{p}: \boldsymbol{Z}_{p}^{\times} \rightarrow \pm 1$ the unique non-trivial character and put $\lambda_{p}=\kappa_{p} \circ N_{K / Q}$.

Proposition 1. (i) Suppose that p splits in K, i.e. $(p)=\mathfrak{p p}^{p}$. Let $\lambda_{p}: U_{p} \cong \boldsymbol{Z}_{p}^{\times} \rightarrow$ ± 1 be the unique non-trivial character. Then $\lambda_{p} \lambda_{\mathfrak{p}}^{\rho}=\kappa_{p} \circ N_{K / Q}$ and $X_{p}=\left\langle\lambda_{p}, \lambda_{\mathfrak{p}}^{\rho}\right\rangle$ and $X_{p}^{0}=\left\langle\lambda_{p}\right\rangle$.
(ii) If p is inert in K, then $X_{p}=X_{p}^{0}=\left\langle\lambda_{p}\right\rangle$.
(iii) If p is ramified in K, then there exists a unique non-trivial character η_{p} such that $\eta_{p}(-1)=(-1)^{(p-1) / 2}$ and $X_{p}=X_{p}^{0}=\left\langle\eta_{p}\right\rangle$.
2) $p=2$. Let κ_{4}, κ_{8} be the characters of $\boldsymbol{Z}_{2}^{\times}$satisfying

$$
\kappa_{4}(n)=(-1)^{(n-1) / 2}, \quad \kappa_{8}(n)=(-1)^{\left(n^{2}-1\right) / 8} \quad \text { for odd integers } n .
$$

We put $\varepsilon_{4}=\kappa_{4} \circ N_{K / \boldsymbol{Q}}, \varepsilon_{8}=\kappa_{8} \circ N_{K / \boldsymbol{Q}}$.
If 2 is inert in K, we have

$$
U_{2} / U_{2}^{2}=\langle-1,1+2 \omega, 1+4 \omega\rangle \cong(\boldsymbol{Z} / 2 \boldsymbol{Z})^{3} \quad \text { with } \omega^{2}+\omega+1=0
$$

Define $v \in X_{2}$ by Ker $v=\langle 1+2 \omega, 1+4 \omega\rangle$. We have $v v^{\rho}=\varepsilon_{4}$.
If 2 is ramified in K, put $D=4 m$. If m is odd, we have

$$
U_{2} / U_{2}^{2}=\langle\sqrt{m}, 3-2 \sqrt{m}, 5\rangle \cong(\boldsymbol{Z} / 2 \boldsymbol{Z})^{3}
$$

We define v and $\eta_{-4} \in X_{2}$ by $\operatorname{Ker} v=\langle\sqrt{m}, 3-2 \sqrt{m}\rangle$ and $\operatorname{Ker} \eta_{-4}=\langle 3-2 \sqrt{m}, 5\rangle$. Then $v v^{\rho}=\varepsilon_{8}, \eta_{-4}=\eta_{-4}^{\rho}, \eta_{-4}(-1)=1$. If m is even, we have

$$
U_{2} / U_{2}^{2}=\langle 1+\sqrt{m},-1,5\rangle \cong(\boldsymbol{Z} / 2 \boldsymbol{Z})^{3} .
$$

Define η_{8} and $\eta_{-8} \in X_{2}$ by $\operatorname{Ker} \eta_{8}=\langle 1+\sqrt{m},-1\rangle$ and $\operatorname{Ker} \eta_{-8}=\langle 1+\sqrt{m},-5\rangle$. Then if $D / 8 \equiv 1 \bmod 4$, we have $\eta_{8}^{\rho}=\eta_{8}, \eta_{-8} \eta_{-8}^{\rho}=\varepsilon_{4}$ and if $D / 8 \equiv-1 \bmod 4$, we have $\eta_{-8}^{\rho}=\eta_{-8}, \eta_{8} \eta_{8}^{\rho}=\varepsilon_{4}$. Notation being as above, we obtain

Proposition 2. (i) Assume that 2 splits in K, i.e. (2) $=\mathfrak{m m t}^{p}$. Let $j: U_{2} \rightarrow$ $U_{\mathfrak{m}} \cong \boldsymbol{Z}_{2}^{\times}$be the projection and put $v=\kappa_{4} \circ j, \mu=\kappa_{8} \circ j$. Then we have $X_{2}=\langle v, \mu$, $\left.\varepsilon_{4}=\nu \nu^{\rho}, \varepsilon_{8}=\mu \mu^{\rho}\right\rangle$ and $X_{2}^{0}=\left\langle\varepsilon_{4}, \varepsilon_{8}\right\rangle$.
(ii) If 2 is inert in K, then we have $X_{2}=\left\langle v, \varepsilon_{4}=v v^{\rho}, \varepsilon_{8}\right\rangle$ and $X_{2}^{0}=\left\langle\varepsilon_{4}, \varepsilon_{8}\right\rangle$.
(iii) Assume 2 is ramified in K. If $D / 4(\neq-1)$ is odd, we have $X_{2}=\left\langle v, \eta_{-4}\right.$, $\left.\varepsilon_{8}=v v^{\rho}\right\rangle$ and $X_{2}^{0}=\left\langle\eta_{-4}, \varepsilon_{8}\right\rangle$. If $D / 4$ is even, we have

$$
\begin{aligned}
& \eta_{8}(-1)=1, \quad \eta_{-8}(-1)=-1, \quad X_{2}=\left\langle\eta_{8}, \eta_{-8}, \varepsilon_{4}\right\rangle, \\
& X_{2}^{0}= \begin{cases}\left\langle\eta_{8}, \varepsilon_{4}=\eta_{-8} \eta_{-8}^{\rho}\right\rangle, & \text { if } D / 8 \equiv 1 \bmod 4 \\
\left\langle\eta_{-8}, \varepsilon_{4}=\eta_{8} \eta_{8}^{\rho}\right\rangle, & \text { if } D / 8 \equiv-1 \bmod 4 .\end{cases}
\end{aligned}
$$

3. An embedding problem associated with the Hilbert class field.

An element γ of the Galois cohomology group $H^{2}(H / \boldsymbol{Q}, \pm 1)$ corresponds to an equivalence class of group extensions

$$
\begin{equation*}
1 \rightarrow \pm 1 \rightarrow G \rightarrow \operatorname{Gal}(H / \boldsymbol{Q}) \rightarrow 1 \tag{1}
\end{equation*}
$$

If there exists a quadratic extension k of H such that k / \boldsymbol{Q} is Galois and the natural map $\operatorname{Gal}(k / \boldsymbol{Q}) \rightarrow \operatorname{Gal}(H / \boldsymbol{Q})$ corresponds to the epimorphism in (1), we say that an embedding problem $(H / \boldsymbol{Q}, \pm 1, \gamma)$ has a solution k.

Let Y be the set of $\gamma \in H^{2}(H / \boldsymbol{Q}, \pm 1)$ such that $(H / \boldsymbol{Q}, \pm 1, \gamma)$ has a solution. We see that Y is a \boldsymbol{F}_{2}-subspace of $H^{2}(H / \boldsymbol{Q}, \pm 1)$. Write $\mathfrak{g}=\operatorname{Gal}(H / K) \cong \mathrm{Cl}_{K}$ and denote by $\operatorname{Ext}(\mathfrak{g}, \pm 1)$ the elements of $H^{2}(\mathfrak{g}, \pm 1)$ corresponding to extensions of \mathfrak{g} by $\{ \pm 1\}$ that are abelian groups. The vector space over \boldsymbol{F}_{2} of bilinear alternating forms on $\mathfrak{g} / \mathfrak{g}^{2}$ is denoted by $\operatorname{Alt}(\mathfrak{g})$. Then we have an exact sequence

$$
0 \rightarrow \operatorname{Ext}(\mathfrak{g}, \pm 1) \rightarrow H^{2}(\mathfrak{g}, \pm 1) \rightarrow \operatorname{Alt}(\mathfrak{g}) \rightarrow 0
$$

By $[\mathbf{M}, \S 1], \operatorname{dim} \operatorname{Ext}(\mathfrak{g}, \pm 1)=t-1, \operatorname{dim} H^{2}(\mathfrak{g}, \pm 1)=t(t-1) / 2$, since $\operatorname{dim} \mathfrak{g} / \mathfrak{g}^{2}=t-1(t$ is the number of distinct primes dividing the discriminant of K).

Let res: $H^{2}(H / \boldsymbol{Q}, \pm 1) \rightarrow H^{2}(\mathfrak{g}, \pm 1)$ be the restriction map and put $Y_{0}=\{\gamma \in Y \mid$ $\operatorname{res}(\gamma) \in \operatorname{Ext}(\mathfrak{g}, \pm 1)\}$. Let k be a solution of $(H / \boldsymbol{Q}, \pm 1, \gamma)$ with $\gamma \in Y_{0}$. Then k is a quadratic extension of H such that k / \boldsymbol{Q} is Galois and k / K is abelian. We denote by

$$
U_{K}=\prod_{p} U_{p}
$$

the maximal compact subgroup of the idele group I_{K} of K and by K_{∞}^{\times}the archimedean part of I_{K}. Let $\chi=\chi_{k / H}$ be the character of I_{H} corresponding to k / H. Since k / K is abelian, there is a non-trivial character

$$
\theta: U_{K} K^{\times} K_{\infty}^{\times} \rightarrow \pm 1
$$

such that $\chi=\theta \circ N_{H / K}$ and $\theta\left(K^{\times} K_{\infty}^{\times}\right)=1$; hence θ is determined by its restriction on U_{K}. Since k / \boldsymbol{Q} is Galois, we have $\chi^{\rho}=\chi$ and this means that $\theta^{\rho}=\theta$. Conversely for any non-trivial character $\theta: U_{K} \rightarrow \pm 1$ such that

$$
\theta^{\rho}=\theta \quad \text { and } \quad \theta(-1)=1
$$

$\chi=\theta \circ N_{H / K}$ determines a solution k of $(H / \boldsymbol{Q}, \pm 1, \gamma)$ for some $\gamma \in Y_{0}$.

Proposition 3. If K is exceptional (see §1), we have $\operatorname{dim} Y_{0}=t$. Otherwise we have $\operatorname{dim} Y_{0}=t-1$.

Proof. Let W be the set of characters $\theta: U_{K} \rightarrow \pm 1$ such that $\theta^{\rho}=\theta$ and $\theta(-1)=1$. Denote by W_{0} the set of $\theta \in W$ of the form $\theta=\kappa \circ N_{K / Q}$ with a quadratic Dirichlet character κ. Noting that the characters in W_{0} exactly correspond to the trivial class in $H^{2}(H / \boldsymbol{Q}, \pm 1)$, we obtain $Y_{0} \cong W / W_{0}$. For a rational prime l, we denote by l^{*} the prime discriminant defined as follows;

$$
l^{*}= \begin{cases}(-1)^{(l-1) / 2} l, & \text { if } l \text { is odd } \\ -4,8 \text { or }-8, & \text { if } l=2 .\end{cases}
$$

We have the unique decomposition of D into prime discriminants:

$$
D=p_{1}^{*} \cdots p_{r}^{*} q_{1}^{*} \cdots q_{s}^{*} \quad(t=r+s)
$$

where $p_{1}^{*}, \ldots, p_{r}^{*}$ are positive discriminants or -4 and $q_{1}^{*}, \ldots, q_{s}^{*}$ are negative discriminants except -4 . If l^{*} appears in the above decomposition, we define

$$
\theta_{l}= \begin{cases}\eta_{l}, & \text { if } l \text { is odd } \\ \eta_{l^{*}}, & \text { if } l=2,\end{cases}
$$

where η_{l} are defined in Proposition 1 and 2. Composing with the projection $U_{K} \rightarrow U_{l}$, we also regard θ_{l} as a character of U_{K}. From Proposition 1 and 2 one deduces that $\theta_{p_{1}}, \ldots, \theta_{p_{r}}, \theta_{q_{1}} \theta_{q_{2}}, \ldots, \theta_{q_{1}} \theta_{q_{s}}$ generate W / W_{0} and considering their conductors, they are linearly independent. This completes the proof.

Theorem 1. $\operatorname{dim}\left(Y / Y_{0}\right)=(t-1)(t-2) / 2$.
Proof. If $t \leq 2$, then $\operatorname{Alt}(\mathfrak{g})=(0)$, so that $Y=Y_{0}$ and our statement holds. Assume $t \geq 3$. Composing the natural map

$$
H^{2}(\mathfrak{g}, \pm 1) \rightarrow H^{2}(\mathfrak{g}, \pm 1) / \operatorname{Ext}(\mathfrak{g}, \pm 1) \cong \operatorname{Alt}(\mathfrak{g})
$$

with the restriction map $Y \subset H^{2}(H / \boldsymbol{Q}, \pm 1) \rightarrow H^{2}(\mathfrak{g}, \pm 1)$, we obtain a linear map $g: Y \rightarrow \operatorname{Alt}(\mathfrak{g})$. Since $\operatorname{Ker} g=Y_{0}$ and $\operatorname{dim} \operatorname{Alt}(\mathfrak{g})=(t-1)(t-2) / 2$, it suffices to show that g is surjective. Let $D=\prod_{i=1}^{t} p_{i}^{*}$ be the decomposition of D into prime discriminants. We may suppose that p_{1}, \ldots, p_{t-1} are odd primes. The genus field H_{0} of K is $K\left(\sqrt{p_{1}^{*}}, \ldots, \sqrt{p_{t-1}^{*}}\right)$ and $\operatorname{Gal}\left(H_{0} / K\right) \cong \mathfrak{g} / \mathfrak{g}^{2} \cong(\boldsymbol{Z} / 2 \boldsymbol{Z})^{t-1}$. Let s_{1}, \ldots, s_{t-1} be elements of $\mathfrak{g} / \mathfrak{g}^{2}$ such that

$$
s_{i}\left(\sqrt{p_{i}^{*}}\right)=-\sqrt{p_{i}^{*}}, \quad s_{i}\left(\sqrt{p_{j}^{*}}\right)=\sqrt{p_{j}^{*}} \quad(i \neq j) .
$$

Clearly $\left\{s_{1}, \ldots, s_{t-1}\right\}$ is a basis of $\mathfrak{g} / \mathfrak{g}^{2}$. For $i, j(1 \leq i<j \leq t-1)$, let $f_{i, j}$ denote an element of $\operatorname{Alt}(\mathfrak{g})$ satisfying

$$
f_{i, j}\left(s_{i}, s_{j}\right)=1 \quad \text { and } \quad f_{i, j}\left(s_{k}, s_{l}\right)=0 \quad \text { if }(i, j) \neq(k, l) \text { and } k<l .
$$

Then $\left\{f_{i, j} \mid 1 \leq i<j \leq t-1\right\}$ forms a basis of $\operatorname{Alt}(\mathfrak{g})$. Therefore it suffices to show that for each $f_{i, j}$, there exists a quadratic extension k / H such that k is a solution of the embedding problem $(H / \boldsymbol{Q}, \pm 1, \gamma)$ with $g(\gamma)=f_{i, j}$. For a number field M and given
elements $a, b \in M^{\times}$, we denote by $(a, b) \in \operatorname{Br}_{2}(M)=H^{2}(\operatorname{Gal}(\bar{M} / M), \pm 1)$ the class of the quaternion algebra over M generated by two elements I, J with

$$
I^{2}=a, \quad J^{2}=b, \quad J I=-I J
$$

We claim that there exists $\gamma \in Y$ such that $g(\gamma)=f_{1,2}$. If one of $\left(p_{1}^{*}, p_{2}^{*}\right)$, $\left(p_{1}^{*}, p_{1}^{*} p_{2}^{*}\right)$ or $\left(p_{2}^{*}, p_{1}^{*} p_{2}^{*}\right)$ is trivial in $\operatorname{Br}_{2}(\boldsymbol{Q})$, then there exists a Galois extension M_{0} / \boldsymbol{Q} containing $\boldsymbol{Q}\left(\sqrt{p_{1}^{*}}, \sqrt{p_{2}^{*}}\right)$ such that $\operatorname{Gal}\left(M_{0} / \boldsymbol{Q}\right)$ is isomorphic to the dihedral group D_{4} of degree 8 (cf. [J-Y, p. 177]). Put

$$
L=K\left(\sqrt{p_{1}^{*}}, \sqrt{p_{2}^{*}}\right), \quad M=M_{0} K, \quad k=M_{0} H .
$$

Obviously k is Galois over \boldsymbol{Q} and $\operatorname{Gal}(k / \boldsymbol{Q})$ defines an element $\gamma \in Y$. We have the following commutative diagram with exact rows:

Let $f=g(\gamma) \in \operatorname{Alt}(\mathfrak{g})$. Since $\operatorname{Gal}(M / K) \cong D_{4}$, we obtain $f\left(s_{1}, s_{2}\right)=1$. We see that $\operatorname{Ker} \mu \cong \operatorname{Ker} v$ and $\operatorname{Ker} v$ in $\mathfrak{g} / \mathfrak{g}^{2}$ is $\left\langle s_{3}, \ldots, s_{t-1}\right\rangle$. Hence it follows that $f\left(s_{i}, s_{j}\right)=0$ for $3 \leq j \leq t-1$. This means $g(\gamma)=f_{1,2}$, as desired. If $p_{1} \equiv p_{2} \equiv-1 \bmod 4$, then $\left(p_{1}^{*}, p_{1}^{*} p_{2}^{*}\right)$ or $\left(p_{2}^{*}, p_{1}^{*} p_{2}^{*}\right)$ is trivial in $\operatorname{Br}_{2}(\boldsymbol{Q})$. Therefore we may suppose that $p_{1}\left(=p_{1}^{*}\right) \equiv$ $1 \bmod 4$. If p_{2} splits in $\boldsymbol{Q}\left(\sqrt{p_{1}}\right)$, then $\left(p_{1}, p_{2}^{*}\right)$ is trivial in $\operatorname{Br}_{2}(\boldsymbol{Q})$. Consequently, we may suppose that p_{2} is inert in $\boldsymbol{Q}\left(\sqrt{p_{1}}\right)$. Since $L_{1}=K\left(\sqrt{p_{1}}\right) / K$ is unramified, we see that the Hilbert symbol $\left(\left(p_{1}, p_{2}^{*}\right) / \mathrm{l}\right)$ is trivial for each place \mathbb{I} of K. This implies that $\left(p_{1}, p_{2}^{*}\right)$ is trivial in $\operatorname{Br}_{2}(K)$, so that there exist $a, b \in K^{\times}$satisfying $p_{2}^{*}=a^{2}-b^{2} p_{1}$. Let \mathfrak{p}_{2} be the prime ideal of K dividing p_{2}. Then \mathfrak{p}_{2} is inert in L_{1} and let \mathfrak{P}_{2} be the prime ideal of L_{1} dividing \mathfrak{p}_{2}. Put $\alpha=a+b \sqrt{p_{1}} \in L_{1}$. Since $N_{L_{1} / K}\left(\alpha^{-1} \mathfrak{P}_{2}\right)=\mathfrak{o}_{K}$, there is an ideal \mathfrak{H} in L_{1} such that $\alpha^{-1} \mathfrak{B}_{2}=\mathfrak{H} / \mathfrak{O}^{\tau}$ where τ is the generator of $\operatorname{Gal}\left(L_{1} / K\right)$. Choose an odd prime ideal \mathfrak{Z} of degree 1 in L_{1} which belongs to the ideal class of \mathfrak{A}. Then $\mathfrak{P}_{2} \mathfrak{L}^{\tau} / \mathfrak{Q}$ is a principal ideal (β) and $N_{L_{1} / K}(\beta)=N_{L_{1} / K}(\alpha)=p_{2}^{*}$. Therefore $M=L_{1}\left(\sqrt{\beta}, \sqrt{p_{2}^{*}}\right)$ is a D_{4}-extension of K containing $K\left(\sqrt{p_{1}}, \sqrt{p_{2}^{*}}\right)$. Moreover, it is now easy to check that $\operatorname{Gal}(M H / K)$ determines an element $\delta \in H^{2}(\mathfrak{g}, \pm 1)$ which corresponds to $f_{1,2}$. We note that

$$
\left(\beta \beta^{\rho}\right)=N_{L_{1} / \boldsymbol{Q}\left(\sqrt{p_{1}}\right)}\left(\mathfrak{P}_{2} \mathfrak{Q}^{\tau} / \mathfrak{L}\right)=\left(p_{2} l\right) /\left(\mathfrak{L}^{\rho}\right)^{2},
$$

where l is the rational prime contained in \mathcal{Q}. Since the class number of $\boldsymbol{Q}\left(\sqrt{p_{1}}\right)$ is odd, ${\mathfrak{L} \mathfrak{Q}^{\rho}}$ is principal, so that $\beta \beta^{\rho}=p_{2} l a^{2}$ with $a \in \boldsymbol{Q}\left(\sqrt{p_{1}}\right)$. Admitting the following lemma, our proof will be completed immediately.

Lemma 1. There exists an abelian extension $H(\sqrt{c})(c \in H)$ over K such that $c c^{\rho} \beta \beta^{\rho} \in H^{\times 2}$.

Put $k=H(\sqrt{\beta c})$. Notice that k is Galois over \boldsymbol{Q}, since $H(\sqrt{\beta})=M H$ is Galois over K. Since $\operatorname{Gal}(H(\sqrt{c}) / K)$ corresponds to an element $\delta_{0} \in \operatorname{Ext}(\mathfrak{g}, \pm 1)$, we see that $\operatorname{Gal}(k / \boldsymbol{Q})$ corresponds to $\gamma \in H^{2}(H / \boldsymbol{Q}, \pm 1)$ such that $\operatorname{res}(\gamma)=\delta+\delta_{0}$; thus $g(\gamma)=f_{1,2}$, as claimed. Applying the same arguements for any $f_{i, j}$, our proof of Theorem 1 is completed.

Proof of Lemma 1. For a non-trivial character $\chi: U_{K} \rightarrow \pm 1$ satisfying $\chi(-1)=1$, there exists the unique quadratic extension $H(\sqrt{c})$ over H such that $\chi \circ N_{H / K}$ is the character of I_{H} corresponding to $H(\sqrt{c}) / H$ and $H(\sqrt{c}) / K$ is abelian. We need to choose $c \in H^{\times}$such that $c c^{\rho} \in(-1)^{\left(p_{2}-1\right) / 2} l H^{\times 2}$. Thus it suffices to show that χ can be chosen such that $\chi \chi^{\rho}=\kappa \circ N_{K / Q}$, where κ is the quadratic Dirichlet character corresponding to a quadratic field $S=\boldsymbol{Q}\left(\sqrt{(-1)^{\left(p_{2}-1\right) / 2} l n}\right)$ for some $n \in \boldsymbol{Z}$ with $\sqrt{n} \in H$. We consider cases.

1) If $p_{2} \equiv l \equiv-1 \bmod 4$, let I be a prime of K dividing l and put $\chi=\lambda_{1} \eta_{p_{2}}$, where $\lambda_{1}, \eta_{p_{2}}$ are those defined in Proposition 1. We have $\chi \chi^{\rho}=\kappa_{l} \circ N_{K / \boldsymbol{Q}}$ and $S=\boldsymbol{Q}(\sqrt{-l})$.
2) Assume $p_{2} \equiv-1 \bmod 4$ and $l \equiv 1 \bmod 4$. If D is odd, put $\chi=\lambda_{1} \eta_{p_{2}} v$ with v defined in Proposition 2. Then $\chi \chi^{\rho}=\kappa_{l} \kappa_{4} \circ N_{K / Q}$ and $S=\boldsymbol{Q}(\sqrt{-l})$. If $D=4 m$ with an odd integer m, put $\chi=\lambda_{\mathrm{I}}$. Then $S=\boldsymbol{Q}(\sqrt{l})$. Since $\sqrt{-1} \in H$, this satisfies our requirement. If $D=8 m$ with $m \equiv 1 \bmod 4$, put $\chi=\lambda_{1} \eta_{p_{2}} \eta_{-8}$ and if $D=8 m$ with $m \equiv-1 \bmod 4$, put $\chi=\lambda_{1} \eta_{8}$. Then we have $\chi \chi^{\rho}=\left(\kappa_{l} \kappa_{4}\right) \circ N_{K / Q}$.
3) Assume $p_{2} \equiv 1 \bmod 4$. We claim that it is always possible to choose β such that $l \equiv 1 \bmod 4$. We put

$$
K_{0}=K(\sqrt{-1}), \quad L_{0}=L_{1}(\sqrt{-1})=K\left(\sqrt{p_{1}}, \sqrt{-1}\right)
$$

and let σ and τ be generators of $\operatorname{Gal}\left(L_{0} / L_{1}\right)$ and $\operatorname{Gal}\left(L_{0} / K_{0}\right)$, respectively. Decompose p_{2} as $\pi \pi^{\sigma}$ in $\boldsymbol{Q}(\sqrt{-1})$. There exists a prime ideal \mathfrak{P}_{0} in L_{0} such that $N_{L_{0} / K_{0}}\left(\mathfrak{P}_{0}\right)=(\pi)$. Since $\left(p_{1}, \pi\right)$ is trivial in $\operatorname{Br}_{2}\left(K_{0}\right)$, there is an $\alpha_{1} \in L_{0}$ such that $N_{L_{0} / K_{0}}\left(\alpha_{1}\right)=\pi$. This implies that there exists a prime ideal \mathfrak{L}_{0} in L_{0} of degree 1 such that $\mathfrak{P}_{0} \mathfrak{L}_{0}^{\tau} / \mathfrak{L}_{0}$ is principal. Putting

$$
\mathfrak{P}_{2}=N_{L_{0} / L_{1}}\left(\mathfrak{P}_{0}\right), \quad \mathfrak{L}=N_{L_{0} / L_{1}}\left(\mathfrak{L}_{0}\right),
$$

we see that $\mathfrak{P}_{2} \mathfrak{Q}^{\tau} / \mathfrak{L}$ is a principal ideal (β) with $N_{L_{1} / K}(\beta)=N_{L_{0} / K}\left(\alpha_{1}\right)=p_{2}$. By the choice of \mathfrak{L}_{0}, the rational prime l in \mathfrak{L} satisfies $l \equiv 1 \bmod 4$, as claimed. Therefore $\chi=\lambda_{\mathrm{I}}$ satisfies our requirement.

4. Elliptic Q-curves with complex multiplication.

Let L be a Galois extension over \boldsymbol{Q} containing H. An elliptic curve E over L with complex multiplication by K is called a Q-curve if E^{σ} and E are isogenous over L for all $\sigma \in \operatorname{Gal}(L / \boldsymbol{Q})$. Let ψ_{E} be the Hecke character of the idele group I_{L} of L associated with E. Then E is a \boldsymbol{Q}-curve if and only if $\psi_{E}=\psi_{E}^{\sigma}$ for all $\sigma \in \operatorname{Gal}(L / \boldsymbol{Q})$ (cf. [G, §11]). For a \boldsymbol{Q}-curve E over L, choose isogenies $\varphi_{\sigma}: E^{\sigma} \rightarrow E$ for $\sigma \in \operatorname{Gal}(L / \boldsymbol{Q})$. Then

$$
c(\sigma, \tau)=\varphi_{\sigma} \varphi_{\tau}^{\sigma}\left(\varphi_{\sigma \tau}\right)^{-1} \in K^{\times}
$$

defines a two-cocycle and the cohomology class of $\{c(\sigma, \tau)\}$ in $H^{2}\left(L / \boldsymbol{Q}, K^{\times}\right)$depends only on the curve E, and not on the isogenies φ_{σ} chosen. We will denote by $c(E)$ this cohomology class. Let us denote by Γ_{L} the subset of $H^{2}\left(L / \boldsymbol{Q}, K^{\times}\right)$consisting of elements of the form $c(E)$ for all \boldsymbol{Q}-curves E over L. Furthermore, we denote by Y_{L} the subspace of $H^{2}(L / \boldsymbol{Q}, \pm 1)$ consisting of all γ such that the embedding problems $(L / \boldsymbol{Q}, \pm 1, \gamma)$ are solvable.

Proposition 4. If Γ_{L} is not empty, then Y_{L} operates on Γ_{L} simply transitively in an obvious manner. For \boldsymbol{Q}-curves E and E^{\prime}, we have $c(E)=c\left(E^{\prime}\right)$ if and only if $\psi_{E}=$ $\psi_{E^{\prime}} \cdot \kappa \circ N_{L / \boldsymbol{Q}}$, where κ is a quadratic Dirichlet character.

Proof. For \boldsymbol{Q}-curves E and E^{\prime} over L, there exists an isogeny $\lambda: E \rightarrow E^{\prime}$ defined over a finite extension of L. For each $\sigma \in \operatorname{Gal}(\bar{L} / L)$, we have $\lambda^{\sigma}=\lambda v(\sigma)$ with $v(\sigma) \in K^{\times}$. Since $\lambda^{\sigma^{n}}=\lambda$ for sufficiently large n, we have $v(\sigma)^{n}=1$, so that $v(\sigma)= \pm 1$. This means that if E and E^{\prime} are not isogenous over L, there exists the unique quadratic extension k over L such that λ is defined over k. We also see that E and E^{\prime} are isogenous over k^{σ} for all $\sigma \in \operatorname{Gal}(L / \boldsymbol{Q})$, because E and E^{\prime} are \boldsymbol{Q}-curves; hence k is Galois over \boldsymbol{Q}. Therefore the Galois group $\operatorname{Gal}(k / \boldsymbol{Q})$ determines a cohomology class $\gamma=\{\gamma(\sigma, \tau)\} \in$ $H^{2}(L / \boldsymbol{Q}, \pm 1)$; thus $\gamma \in Y_{L}$. For each $\sigma \in \operatorname{Gal}(L / \boldsymbol{Q})$, choose an extension $\tilde{\sigma} \in \operatorname{Gal}(k / \boldsymbol{Q})$ of σ. Then $\gamma(\sigma, \tau)=\lambda^{\tilde{\sigma} \tilde{\tau}} / \lambda^{\widetilde{\sigma} \tau}$ for $\sigma, \tau \in \operatorname{Gal}(L / \boldsymbol{Q})$. One can find isogenies

$$
\varphi_{\sigma}: E^{\sigma} \rightarrow E, \quad \varphi_{\sigma}^{\prime}: E^{\prime \sigma} \rightarrow E^{\prime}
$$

such that $\lambda \varphi_{\sigma}=\varphi_{\sigma}^{\prime} \lambda^{\tilde{\sigma}}$. Then by a short computation, we obtain

$$
c(E)=c\left(E^{\prime}\right) \gamma
$$

Now we claim that the natural map

$$
H^{2}(L / \boldsymbol{Q}, \pm 1) \rightarrow H^{2}\left(L / \boldsymbol{Q}, K^{\times}\right)
$$

is injective. From the exact sequence

$$
1 \rightarrow \pm 1 \rightarrow K^{\times} \rightarrow K^{\times 2} \rightarrow 1
$$

it suffices to show that $H^{1}\left(L / \boldsymbol{Q}, K^{\times 2}\right)=(0)$. This follows easily from the restrictioninflation sequence

$$
0 \rightarrow H^{1}\left(K / \boldsymbol{Q}, K^{\times 2}\right) \rightarrow H^{1}\left(L / \boldsymbol{Q}, K^{\times 2}\right) \rightarrow H^{1}\left(L / K, K^{\times 2}\right)
$$

since $H^{1}\left(K / \boldsymbol{Q}, K^{\times 2}\right)=(0)$ and $H^{1}\left(L / K, K^{\times 2}\right)=\operatorname{Hom}\left(\operatorname{Gal}(L / K), K^{\times 2}\right)=(0) . \quad$ If $c(E)=$ $c\left(E^{\prime}\right)$ and E and E^{\prime} are not isogenous over L, let k be the quadratic extension of L stated as above. Then the group extension

$$
1 \rightarrow \pm 1 \rightarrow \operatorname{Gal}(k / \boldsymbol{Q}) \rightarrow \operatorname{Gal}(L / \boldsymbol{Q}) \rightarrow 1
$$

splits, which implies that the character associated with k / L is of the form $\kappa \circ N_{L / Q}$ with a quadratic Dirichlet character κ. Since E^{\prime} is isogenous to the twist of E with respect to k / L, the last statement is clear.

In [S] a class of elliptic curves (more generally abelian varieties) with complex multiplication whose Hecke characters satisfy a certain condition are studied. We recall briefly what we need here.

For an integer $f \geq 1$, let $H^{(f)}$ denote the ring class field of K of conductor f. Let

$$
U_{K, f}=\left\{u \in U_{K} \mid u\left(\boldsymbol{Z}+f \mathfrak{v}_{K}\right)=\boldsymbol{Z}+f \mathfrak{o}_{K}\right\} .
$$

Then $P=U_{K, f} K^{\times} K_{\infty}^{\times}$is the subgroup of I_{K} corresponding to $H^{(f)}$ by class field theory. Let E be an elliptic curve over $H^{(f)}$ with End $E=\boldsymbol{Z}+f \mathfrak{o}_{K}$. Let us consider the following condition on the Hecke character ψ_{E} of E (see [S, Theorem 4]).
(Sh) There exists a Hecke character $\phi: U_{K, f} K^{\times} K_{\infty}^{\times} \rightarrow C^{\times}$such that $\psi_{E}=$ $\phi \circ N_{H^{(f)} / K}$.

Here ϕ must satisfy the following conditions:

$$
\begin{gather*}
\phi\left(K^{\times}\right)=1, \quad \phi(y)=y^{-1} \quad \text { for every } y \in K_{\infty}^{\times}, \tag{3}\\
\phi\left(U_{K, f}\right)= \pm 1 \quad \text { and } \quad \phi(-1)=-1 \quad \text { for }-1 \in U_{K, f} . \tag{4}
\end{gather*}
$$

If ψ_{E} satisfies (Sh), then clearly $\psi_{E}=\psi_{E}^{\sigma}$ for all $\sigma \in \operatorname{Gal}\left(H^{(f)} / K\right)$. Conversely from a character $\phi: U_{K, f} \rightarrow \pm 1$ with $\phi(-1)=-1$, extending it on $P=U_{K, f} K^{\times} K_{\infty}^{\times}$by (3), we obtain $\psi=\phi \circ N_{H^{(f)} / K}$, which is a Hecke character of an elliptic curve E over $H^{(f)}$. Furthermore in this case E is a \boldsymbol{Q}-curve if and only if $\phi^{\rho}=\phi$ on $U_{K, f}$ (cf. [\mathbf{S}, Proposition 9]).

Assume first that K is not exceptional. If D has a prime divisor q with $q \equiv$ $-1 \bmod 4$, we put $\phi=\eta_{q}: U_{K} \rightarrow \pm 1$ where η_{q} is the local character defined in Proposition 1. Here we view η_{q} as a character of U_{K} by composing with the projection $U_{K} \rightarrow U_{q}$. Otherwise since D is of the form $8 m$ with $m \equiv-1 \bmod 4$, we put $\phi=\eta_{-8}$, where η_{-8} is defined in Proposition 2. Then ϕ satisfies

$$
\begin{equation*}
\phi(-1)=-1, \quad \phi^{\rho}=\phi \tag{5}
\end{equation*}
$$

Therefore there exists a \boldsymbol{Q}-curve over H.
Next assume that K is exceptional. Then there is no character $\phi: U_{K} \rightarrow \pm 1$ satisfying (5). This follows from the fact that if a local character $\theta: U_{p} \rightarrow \pm 1$ satisfies $\theta^{\rho}=\theta$, we have $\theta(-1)=1$ by Proposition 1 and 2 .

The following assertion is stated in [G, §11] without proof.
Proposition 5. If K is exceptional, there are no Q-curves over H.
Proof. Choose a rational prime q such that q splits in K and $q \equiv-1 \bmod 4$. Let $\lambda_{\mathrm{q}}: U_{\mathfrak{q}} \rightarrow \pm 1$ be as in Proposition 1 where $\mathfrak{q} \mid q$. We put $\lambda=\lambda_{\mathrm{q}} \circ p r$ where $p r: U_{K} \rightarrow U_{\mathfrak{q}}$ is the projection. Then λ determines an elliptic curve E_{1} over H with $\psi_{E_{1}}=\lambda \circ N_{H / K}$. Clearly E_{1} is not a \boldsymbol{Q}-curve over H, since $\psi_{E_{1}}^{\rho} / \psi_{E_{1}}=\lambda_{q} \lambda_{\boldsymbol{q}}^{\rho} \circ N_{H / K}=\kappa_{q} \circ N_{H / \boldsymbol{Q}}$. (It is a \boldsymbol{Q}-curve over $H(\sqrt{-q})$.) Now assume that a \boldsymbol{Q}-curve E over H exists. Put $\chi_{1}=$ $\psi_{E_{1}} / \psi_{E}$. Then χ_{1} is a quadratic character of I_{H} and it determines a quadratic extension k_{1} of H which is Galois over K. Since $g: Y \rightarrow \operatorname{Alt}(\mathfrak{g})$ is surjective as shown in the proof of Theorem 1, there exists a quadratic extension k of H which is Galois over \boldsymbol{Q} such that $\operatorname{Gal}(k / K)$ and $\operatorname{Gal}\left(k_{1} / K\right)$ correspond to the same element in $\operatorname{Alt}(\mathfrak{g})$. This means that denoting by χ the character associated with $k / H, \chi \chi_{1}$ corresponds to a quadratic extension of H which is abelian over K, i.e. $\chi \chi_{1}=\theta \circ N_{H / K}$ with a character $\theta: U_{K} \rightarrow \pm 1$. Put $\psi=\psi_{E} \cdot \chi$. We easily find that $\psi=(\lambda \theta) \circ N_{H / K}$ and $\psi^{\rho}=\psi$, since $\psi_{E}^{\rho}=\psi_{E}$ and $\chi^{\rho}=\chi$; this implies that $\phi=\lambda \theta: U_{K} \rightarrow \pm 1$ satisfies (5). As remarked above, this is impossible if K is exceptional.

Applying Theorem 1, we obtain the following result concerning a classification of \boldsymbol{Q}-curves.

Theorem 2. If K is not exceptional, the cohomology classes $c(E)$ classify isogeny classes of \boldsymbol{Q}-curves over H into $2^{t(t-1) / 2}$ classes. Among them there are 2^{t-1} classes
whose Hecke characters satisfy (Sh). If K is exceptional, take $H^{(2)}$, the ring class field of K of conductor 2, instead of H. Then exactly the same statements hold for isogeny classes of \boldsymbol{Q}-curves over $\boldsymbol{H}^{(2)}$.

Proof. Let the notation be as in Proposition 3. The first statement is clear by Theorem 1 and Proposition 3. Let E_{0} be a \boldsymbol{Q}-curve over H such that $\psi_{E_{0}}$ satisfies (Sh). Then $c\left(E_{0}\right) \gamma\left(\gamma \in Y_{0}\right)$ correspond to those \boldsymbol{Q}-curves whose Hecke characters satisfy (Sh).

Next assume that K is exceptional. Let \mathfrak{m} denote the prime ideal of the local completion of K at 2 and put

$$
P^{(2)}=\prod_{p \neq 2} U_{p} \cdot\left(1+\mathfrak{m}^{2}\right) K^{\times} \cdot K_{\infty}^{\times} .
$$

Then $P^{(2)}$ is the subgroup of I_{K} corresponding to $H^{(2)}$ by class field theory. Let $\theta: 1+\mathfrak{m}^{2} \rightarrow \pm 1$ denote the character such that $\operatorname{Ker} \theta=1+\mathfrak{m}^{3}$ and put $\phi=\theta \circ j$, where $j: \prod_{p \neq 2} U_{p} \cdot\left(1+\mathfrak{m}^{2}\right) \rightarrow 1+\mathfrak{m}^{2}$ is the projection. Then $\phi \circ N_{H^{(2)} / K}$ is a Hecke character of a Q-curve over $H^{(2)}$, since $\phi^{\rho}=\phi$. Therefore a \boldsymbol{Q}-curve over $H^{(2)}$ exists. Let $\mathfrak{g}^{\prime}=\operatorname{Gal}\left(H^{(2)} / K\right)$ and put $Y_{0}^{\prime}=\left\{\gamma \in Y_{H^{(2)}} \mid \operatorname{res}(\gamma) \in \operatorname{Ext}\left(\mathfrak{g}^{\prime}, \pm 1\right)\right\}$. It suffices to show that $\operatorname{dim} Y_{0}^{\prime}=t-1$ and $\operatorname{dim} Y_{H^{(2)}}=t(t-1) / 2$. If a non-trivial local character $\lambda: 1+\mathfrak{m}^{2} \rightarrow$ ± 1 satisfies $\lambda(-1)=1$ and $\lambda^{\rho}=\lambda$, we see easily that $\lambda=\kappa_{8} \circ N_{K / \boldsymbol{Q}}$. As in the proof of Proposition 3,

$$
\theta_{p_{1}}, \ldots, \theta_{p_{t-1}} \quad\left(D / 4=-p_{1} \cdots p_{t-1}\right)
$$

form a basis of W / W_{0}; hence $\operatorname{dim} Y_{0}^{\prime}=t-1$. Note that $v=(1+\sqrt{D / 4})^{2} / 2$ is prime to 2 and $v \notin 1+\mathfrak{m}^{2}$. Then we see that the class containing the ideal \mathfrak{n} with $\mathfrak{n}^{2}=(2)$ has order 4 in $I_{K} / P^{(2)}$. This shows that $\mathfrak{g}^{\prime} / \mathfrak{g}^{\prime 2} \cong \mathfrak{g} / \mathfrak{g}^{2}$; hence we obtain $\operatorname{dim}\left(Y_{H^{(2)}} / Y_{0}^{\prime}\right)=$ $\operatorname{dim} \operatorname{Alt}\left(\mathfrak{g}^{\prime}\right)=(t-1)(t-2) / 2$ by Theorem 1.

5. Restriction of scalars of Q-curves.

In this section we suppose that K is non-exceptional. Let E be a Q-curve over H. Let us denote by $B=R_{H / K}(E)$ the abelian variety obtained from E by restriction of scalars from H to K. It is an abelian variety defined over K of dimension $h_{K}=[H: K]$. Since E is defined over $\boldsymbol{Q}\left(j_{E}\right)$ (cf. [G, Theorem 10.1.3]), we have

$$
B \cong R_{Q\left(j_{E}\right) / \boldsymbol{Q}}(E) \otimes K
$$

so that B is defined over \boldsymbol{Q}. Concerning the structure of the endomorphism algebra $R_{0}=\operatorname{End}_{\boldsymbol{Q}}(B) \otimes \boldsymbol{Q}$ we obtain

Theorem 3. Let $R_{0}=\operatorname{End} \boldsymbol{Q}(B) \otimes \boldsymbol{Q}$ be as above and h_{K} the class number of K. The center Z_{0} of R_{0} is a field of degree h_{0} over \boldsymbol{Q} and $R_{0} \cong M_{2^{m}}\left(Z_{0}\right)$ or $R_{0} \cong M_{2^{m-1}}\left(D_{0}\right)$, where D_{0} is a division quaternion algebra over Z_{0} and $h_{K}=2^{2 m} h_{0} . \quad R_{0}$ is commutative if and only if ψ_{E} satisfies (Sh).

Proof. We recall some facts on the structure of $R=\operatorname{End}_{K}(B) \otimes \boldsymbol{Q}$ (cf. [G, §15] and $[\mathbf{N}]]$. For $\sigma \in \mathfrak{g}=\operatorname{Gal}(H / K)$, one can choose a prime ideal \mathfrak{p} of K, of degree 1, prime to the conductor of ψ_{E} such that $\sigma=\sigma_{\mathfrak{p}}^{-1}$, where $\sigma_{\mathfrak{p}}$ is the Frobenius automorphism of H / K at \mathfrak{p}. Let \mathfrak{P} be a prime of H lying over \mathfrak{p} and p the rational prime
in \mathfrak{p}. Then there exists an isogeny (a \mathfrak{p}-multiplication in the sense of [$\mathbf{S - T}, \S 7]$) $u(\mathfrak{p}): E^{\sigma} \rightarrow E$ such that $u(\mathfrak{p}) \bmod \mathfrak{P}$ is the p-th power Frobenius map (see [$\mathbf{S i}$, II Proposition 5.3]). Let $t(\mathfrak{p})$ be the corresponding K-endomorphism of B. If σ is of order n, we have

$$
\begin{equation*}
\psi_{E}(\mathfrak{P})=t(\mathfrak{p})^{n} \in K^{\times}, \quad \mathfrak{p}^{n}=\left(\psi_{E}(\mathfrak{P})\right) . \tag{6}
\end{equation*}
$$

Take $\varphi_{\sigma}=u(\mathfrak{p})$ and $t_{\sigma}=t(\mathfrak{p})$ for each $\sigma \in \mathfrak{g}$. Then R is the twisted group algebra $K^{c(E)}[\mathfrak{g}]=\sum_{\sigma \in \mathfrak{g}} K t_{\sigma}$ over K subject to the relation

$$
t_{\sigma} t_{\tau}=c(\sigma, \tau) t_{\sigma \tau} \quad \text { for } \sigma, \tau \in \mathfrak{g}
$$

where $c(E)=\{c(\sigma, \tau)\}$ is the two-cocycle attached to $\left\{\varphi_{\sigma}\right\}$ (see Section 4).
The complex conjugation ρ operates on R and $R_{0}=\{\alpha \in R \mid \rho(\alpha)=\alpha\}$. Changing E by some E^{σ} if necessary, we may assume that $\rho(E)=E$. By transport of structure, $\rho(u(\mathfrak{p})): E^{\sigma \rho}=E^{\rho \sigma^{-1}}=E^{\sigma^{-1}} \rightarrow E$ is a \mathfrak{p}^{ρ}-multiplication whose reduction $\bmod \mathfrak{P}^{\rho}$ is the p-th power Frobenius map. This implies that $\rho(t(\mathfrak{p}))=t\left(\mathfrak{p}^{\rho}\right)$. Moreover, since $\mathfrak{p p}^{\rho}=(p)$ we have

$$
\begin{equation*}
t(\mathfrak{p}) t\left(\mathfrak{p}^{p}\right)= \pm p, \quad R_{0} \cap K(t(\mathfrak{p}))=\boldsymbol{Q}(s(\mathfrak{p})), \tag{7}
\end{equation*}
$$

where $s(\mathfrak{p})=t(\mathfrak{p})+t\left(\mathfrak{p}^{\rho}\right)$.
Now we have $t_{\sigma} t_{\tau}=f(\sigma, \tau) t_{\tau} t_{\sigma}$, where $f(\sigma, \tau)=c(\sigma, \tau) c(\tau, \sigma)^{-1}$ is the alternating form on \mathfrak{g} associated with $c(E)$. Let $\mathfrak{g}_{0}\left(\supset \mathfrak{g}^{2}\right)$ be the kernel of f. If $\mathfrak{g} \neq \mathfrak{g}_{0}$, then $\mathfrak{g} / \mathfrak{g}_{0}$ is an orthogonal sum of hyperbolic planes T_{1}, \ldots, T_{m}; each T_{i} is two dimensional and f induces on T_{i} a non-degenerate alternating form. Choose $x_{i}, y_{i} \in \mathfrak{g}$ such that they induce a basis of T_{i}, and define $\mathfrak{h}_{i}=\left\langle x_{i}, y_{i}, \mathfrak{g}_{0}\right\rangle$. Then $Z=\sum_{\sigma \in \mathfrak{g}_{0}} K t_{\sigma}$ is the center of R and the subalgebra $D_{i}=\sum_{\sigma \in \mathfrak{h}_{i}} K t_{\sigma}$ of R is a quaternion algebra over Z. We have

$$
R=D_{1} \otimes \cdots \otimes_{Z} D_{m}
$$

and $h_{K}=2^{2 m} h_{0}$ with $[Z: K]=h_{0}$ (see [\mathbf{N}, Theorem 3] $]$. Furthermore it easily follows: $Z_{0}=\{\alpha \in Z \mid \rho(\alpha)=\alpha\}$ is the center of $R_{0}, D_{i}^{0}=\left\{\alpha \in D_{i} \mid \rho(\alpha)=\alpha\right\}$ are quaternion algebras over Z_{0} and $R_{0}=D_{1}^{0} \otimes \cdots \otimes_{Z_{0}} D_{m}^{0}$. Observe that $\left[Z_{0}: Q\right]=[Z: K]=h_{0}$ and R is commutative if and only if R_{0} is commutative. Then our assertion can be proved exactly in the same manner as Theorem 3 in $[\mathbf{N}]$.

Proposition 6. Let E, E^{\prime} be \boldsymbol{Q}-curves over H and put:

$$
B=R_{H / K}(E), \quad B^{\prime}=R_{H / K}\left(E^{\prime}\right), \quad R_{0}=\operatorname{End}_{\boldsymbol{Q}}(B) \otimes \boldsymbol{Q}, \quad R_{0}^{\prime}=\operatorname{End}_{\boldsymbol{Q}}\left(B^{\prime}\right) \otimes \boldsymbol{Q}
$$

Then if $c(E)=c\left(E^{\prime}\right)$, we have $R_{0} \cong R_{0}^{\prime}$. Conversely if R_{0} is commutative and $R_{0} \cong R_{0}^{\prime}$, we have $c(E)=c\left(E^{\prime}\right)$.

Proof. If $c(E)=c\left(E^{\prime}\right)$, then $\psi_{E}=\psi_{E^{\prime}} \cdot \kappa \circ N_{H / Q}$ with a quadratic Dirichlet character κ by Proposition 4. Let k_{0} be the corresponding quadratic field to κ. We may assume that k_{0} is different from K and $j_{E}=j_{E^{\prime}}$. Then E and E^{\prime} are isomorphic over $k_{0}\left(j_{E}\right)$ (see [G, Theorem 10.2.1]), so that B and B^{\prime} are isomorphic over k_{0}. Since $k_{0}{ }^{-}$ endomorphism algebra of B is R_{0}, we obtain $R_{0} \cong R_{0}^{\prime}$.

Now assume that R_{0} is commutative and $R_{0} \cong R_{0}^{\prime}$. By Theorem 3 ψ_{E} and $\psi_{E^{\prime}}$ satisfy (Sh), i.e.

$$
\psi_{E}=\phi \circ N_{H / K}, \quad \psi_{E^{\prime}}=\phi^{\prime} \circ N_{H / K}
$$

with characters ϕ, ϕ^{\prime} of I_{K}. We see that B is of CM-type over K, ϕ is the Hecke character of B over K and

$$
\operatorname{End}_{K}(B) \otimes \boldsymbol{Q}=R_{0} K \cong K\left(\left\{\phi(\mathfrak{a}) \mid \mathfrak{a} \in \mathrm{Cl}_{K}\right\}\right)
$$

Here Hecke characters are also viewed as functions of ideals. Since $R_{0} K$ and $R_{0}^{\prime} K$ are K-isomorphic, the maximal $(2, \ldots, 2)$ subextension L over K contained in $R_{0} K$ coincide with that in $R_{0}^{\prime} K$. We have $L=K\left(\left\{\phi(\mathfrak{a}) \mid \mathfrak{a} \in \mathrm{Cl}_{K}[2]\right\}\right)$, where $\mathrm{Cl}_{K}[2]=\left\{\mathfrak{a} \in \mathrm{Cl}_{K} \mid\right.$ $\left.\mathfrak{a}^{2}=1\right\}$. Observe that the map $\mathrm{Cl}_{K}[2] \ni \mathfrak{a} \rightarrow \phi(\mathfrak{a})^{2} \in K^{\times} / K^{\times 2}$ is injective, since $\mathfrak{a}^{2}=$ $\left(\phi(\mathfrak{a})^{2}\right)$ by (6). In particular we have $\sqrt{-1} \notin L$. We may assume that E and E^{\prime} are not isogenous over H but isogenous over a quadratic extension k of H. Put $\xi=\phi / \phi^{\prime}$. Then ξ is a character of the idele class group C_{K} of K and $\xi \circ N_{H / K}$ is the character associated with k / H. Therefore k / H is abelian. Let N and N^{\prime} be the norm subgroups in C_{K} corresponding to H and k, respectively.

CLAIM. $\quad C_{K} / N^{\prime}(\cong \operatorname{Gal}(k / K)) \cong \Delta \times N / N^{\prime}$ with a subgroup Δ of C_{K} / N^{\prime} such that $\Delta \cong \mathrm{Cl}_{K}$.

We have only to show the corresponding assertion for the 2-Sylow subgroup of C_{K} / N^{\prime}. Let a be any ideal in K of even order n in Cl_{K}, which is prime to the conductor of ϕ. We have $\phi\left(\mathfrak{a}^{n}\right)=\phi^{\prime}\left(\mathfrak{a}^{n}\right) \xi\left(\mathfrak{a}^{n}\right) \in K$. If $\xi\left(\mathfrak{a}^{n}\right)=-1$, then by assumption we have $\sqrt{-1} \in R_{0} K$, which is a contradiction. Therefore $\xi\left(\mathfrak{a}^{n}\right)=1$. Let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ be a set of ideals of K such that they form a set of independent generators for the 2-Sylow subgroup of Cl_{K} and denote by Δ^{\prime} the subgroup of C_{K} / N^{\prime} generated by $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$. Since ξ is non-trivial on N / N^{\prime}, we have $\Delta^{\prime} \cap N / N^{\prime}=1$. Thus our claim is proved.

Let k_{0} be the quadratic extension of K which corresponds to Δ by class field theory and denote by ξ_{0} the character of I_{K} associated to k_{0} / K. Then we may assume that $\phi=\phi^{\prime} \xi_{0}$. Take any ideal \mathfrak{a} of K prime to the conductor of ϕ and ϕ^{\prime}. Then by (7) we have $R_{0} \cap K(\phi(\mathfrak{a}))=\boldsymbol{Q}(s)$ with $s=\phi(\mathfrak{a})+\phi\left(\mathfrak{a}^{\rho}\right): \boldsymbol{Q}(s)$ is totally real (resp. of CMtype) if and only if $\phi\left(\mathfrak{a a}^{\rho}\right)>0$ (resp. $\phi\left(\mathfrak{a} \mathfrak{a}^{\rho}\right)<0$). Therefore $R_{0} \cong R_{0}^{\prime}$ implies that $\xi_{0}\left(\mathfrak{a} \mathfrak{a}^{\rho}\right)=1$, hence $\xi_{0}=\xi_{0}^{\rho}$. This shows that $k_{0}=k_{0}^{\rho}$; thus k_{0} / \boldsymbol{Q} is Galois. Since $k_{0} \supset K$, we see that k_{0} / \boldsymbol{Q} is of type $(2,2)$. Hence we have $c(E)=c\left(E^{\prime}\right)$.

6. Examples.

First we consider non-exceptional case. For the sake of simplicity, we assume that K is an imaginary quadratic field of discriminant D such that $\mathrm{Cl}_{K} \cong \boldsymbol{Z} / 2 \boldsymbol{Z} \times \boldsymbol{Z} / 2 \boldsymbol{Z}$; hence in this case $t=3$ and the class number $h_{K}=4$.

Let ϕ_{0} be a character of U_{K} which satisfies the condition (5). Then as explained in Section 4, we obtain a Hecke character $\psi_{0}=\phi_{0} \circ N_{H / K}$ of I_{H}. Take any quadratic extension k of H such that k / \boldsymbol{Q} is Galois and denote by χ the character of I_{H} associated with it. We put $\psi=\psi_{0} \cdot \chi$. Now choose a prime ideal \mathfrak{p} of K such that \mathfrak{p} is of order 2 in Cl_{K} and prime to the conductor of ϕ_{0} and χ. Let L be the decomposition field of \mathfrak{p} in H and F be the subfield of L fixed by ρ. Then k / F is a Galois extension of degree 8. Let E_{0} and E_{1} be Q-curves such that $\psi_{E_{0}}=\psi_{0}$ and $\psi_{E_{1}}=\psi_{0} \cdot \chi$ and put

$$
B_{0}=R_{H / L}\left(E_{0}\right), \quad B_{1}=R_{H / L}\left(E_{1}\right) .
$$

Then they are abelian varieties of dimension 2 defined over F. Set:

$$
S=\operatorname{End}_{F}\left(B_{0}\right) \otimes \boldsymbol{Q}, \quad T=\operatorname{End}_{F}\left(B_{1}\right) \otimes \boldsymbol{Q} .
$$

Proposition 7. Notation being as above, put $s=\phi_{0}(\mathfrak{p})+\phi_{0}\left(\mathfrak{p}^{p}\right)$. Then S is a quadratic field $\boldsymbol{Q}(s)$. Write $S=\boldsymbol{Q}(\sqrt{n})$ and set:

$$
S^{\prime}=\boldsymbol{Q}(\sqrt{D / n}), \quad \bar{S}=\boldsymbol{Q}(\sqrt{-n}), \quad \overline{S^{\prime}}=\boldsymbol{Q}(\sqrt{-D / n}) .
$$

(1) Assume that k / L is an extension of type $(2,2)$. If k / F is abelian, we have $T=S$ and otherwise we have $T=S^{\prime}$.
(2) Assume that k / L is cyclic of order 4. If k / F is abelian, we have $T=\bar{S}$ and otherwise we have $T=\overline{S^{\prime}}$.

Proof. Since k / L is abelian, we can write $\chi=\chi^{\prime} \circ N_{H / L}$ for a character χ^{\prime} of I_{L}. Then $\psi=\phi \circ N_{H / L}$ with $\phi=\left(\phi_{0} \circ N_{L / K}\right) \cdot \chi^{\prime}$, so that ϕ is a Hecke character of B_{1} over L. By Artin map we may regard χ^{\prime} as a character of $\operatorname{Gal}(k / L)$. Let \mathfrak{P} be a prime ideal of L lying above \mathfrak{p} and we denote by σ the Frobenius automorphism in k / L associated with \mathfrak{P}. We have $\chi^{\prime}(\mathfrak{P})=\chi^{\prime}(\sigma)$,

$$
\phi(\mathfrak{P})^{2}=\phi_{0}(\mathfrak{p})^{2} \chi^{\prime}(\mathfrak{P})^{2} \quad \text { and } \quad \phi\left(\mathfrak{P P}^{\rho}\right)=\phi_{0}\left(\mathfrak{p p}^{\rho}\right) \chi^{\prime}\left(\mathfrak{P P}^{\rho}\right) .
$$

Let τ be the non-trivial automorphism of k over H. Note that $T=\boldsymbol{Q}\left(\phi(\mathfrak{P})+\phi\left(\mathfrak{P}^{\rho}\right)\right)$ and that T is totally real if and only if $\phi\left(\mathfrak{P} \mathfrak{P}^{\rho}\right)>0$.

In the case (1) we have $\chi^{\prime}(\mathfrak{P})^{2}=1$, hence $K T=K S$. If k / F is abelian, $\chi^{\prime}(\mathfrak{P})=$ $\chi^{\prime}\left(\mathfrak{P}^{\rho}\right)=\chi^{\prime}(\rho \sigma \rho)$. Thus $T=S$. If k / F is non-abelian, we have $\rho \sigma \rho=\sigma \tau$. Since $\chi^{\prime}(\tau)=-1$, we obtain $\chi^{\prime}\left(\mathfrak{P} \mathfrak{P}^{\rho}\right)=-1$, which shows $T=S^{\prime}$.

In the case (2) we have $\chi^{\prime}(\mathfrak{P})^{2}=-1$, hence $K T=K \bar{S}$. If k / F is abelian, $\chi^{\prime}\left(\mathfrak{P} \mathfrak{P}^{\rho}\right)=\chi^{\prime}(\mathfrak{P})^{2}=-1$ and hence $T=\bar{S}$. If k / F is non-abelian, we have $\chi^{\prime}\left(\mathfrak{P} \mathfrak{P}^{\rho}\right)=$ $\chi^{\prime}\left(\sigma^{2} \tau\right)=1$, which shows $T=\overline{S^{\prime}}$.

Now let us determine the endomorphism algebras $R_{0}=\operatorname{End}_{\boldsymbol{Q}}\left(R_{H / K}(E)\right) \otimes \boldsymbol{Q}$ for some \boldsymbol{Q}-curves E.

1) $D=-4 \cdot 3 \cdot 7$.

Let \mathfrak{p} and \mathfrak{p}^{\prime} be the prime ideals of K such that $\mathfrak{p}^{2}=(2+\sqrt{-21})$ and $\mathfrak{p}^{\prime 2}=$ $(10+\sqrt{-21})$. The decomposition field in H of \mathfrak{p} is $K(\sqrt{21})$ and that of \mathfrak{p}^{\prime} is $K(\sqrt{3})$. We see that Cl_{K} is generated by \mathfrak{p} and \mathfrak{p}^{\prime}. Let \mathfrak{q} be the prime ideal of K with $\mathfrak{q}^{2}=(3)$. Let ϕ_{0} be a character of I_{K} of conductor \mathfrak{q} such that

$$
\phi_{0}((\alpha))=\left(\frac{\alpha}{\mathfrak{q}}\right) \alpha \quad \text { for every } \alpha \in K^{\times}
$$

where (α / \mathfrak{q}) denotes the norm residue symbol. Then ϕ_{0} satisfies (5) and put $\psi_{0}=$ $\phi_{0} \circ N_{H / K}$. Using local characters (see $\S 2$), we define:

$$
\omega_{1}=\eta_{3} \eta_{7} \circ N_{H / K}, \quad \omega_{2}=\eta_{-4} \circ N_{H / K} .
$$

Since $(21,-3)$ is trivial in $\operatorname{Br}_{2}(\boldsymbol{Q})$, there exists a D_{4}-extension k_{0} over \boldsymbol{Q} containing $\boldsymbol{Q}(\sqrt{-3}, \sqrt{21})$. Let χ be the character of I_{H} associated with $k_{0} H / H$. Then by Theorem 2 , the equivalence classes of \boldsymbol{Q}-curves over H are exactly represented by the Hecke characters $\psi=\psi_{0} \omega, \omega \in\left\langle\omega_{1}, \omega_{2}, \chi\right\rangle$.
(a) $\psi=\psi_{0}$. A simple calculation shows that

$$
\phi_{0}\left(\mathfrak{p}^{2}\right)=-2-\sqrt{-21}=\left(\frac{\sqrt{6}-\sqrt{-14}}{2}\right)^{2} \quad \text { and } \quad \phi_{0}\left(\mathfrak{p p}^{\rho}\right)=\phi_{0}((5))=-5 .
$$

Therefore $\phi_{0}(\mathfrak{p})+\phi_{0}\left(\mathfrak{p}^{\rho}\right)= \pm \sqrt{-14}$. Similarly we have $\phi_{0}\left(\mathfrak{p}^{\prime}\right)+\phi_{0}\left(\mathfrak{p}^{\prime \rho}\right)= \pm \sqrt{-2}$, since $\phi_{0}\left(\mathfrak{p}^{\prime 2}\right)=((\sqrt{42}+\sqrt{-2}) / 2)^{2}$ and $\phi_{0}\left(\mathfrak{p}^{\prime} \mathfrak{p}^{\prime \rho}\right)=-11$. Hence $R_{0}=\boldsymbol{Q}(\sqrt{-2}, \sqrt{-14})$.
(b) $\psi=\psi_{0} \omega_{1}$. We have:

$$
\eta_{3} \eta_{7}\left(\mathfrak{p}^{2}\right)=-1, \quad \eta_{3} \eta_{7}((5))=1, \quad \eta_{3} \eta_{7}\left(\mathfrak{p}^{\prime 2}\right)=-1, \quad \eta_{3} \eta_{7}((11))=-1
$$

This implies $R_{0}=\boldsymbol{Q}(\sqrt{-6}, \sqrt{2})$.
(c) $\psi=\psi_{0} \cdot \chi$. We have:
$k_{0} H / K(\sqrt{21})$ is of type $(2,2)$ and $k_{0} H / \boldsymbol{Q}(\sqrt{21})$ is abelian;
$k_{0} H / K(\sqrt{3})$ is cyclic of order 4 and $k_{0} H / \boldsymbol{Q}(\sqrt{3})$ is non-abelian.
Applying Proposition 7, we obtain that R_{0} is a division quaternion algebra ($-42,-14$) over \boldsymbol{Q}.

The remaining cases are similarly computed and we have:

ψ	R_{0} (field)			
ψ_{0}	$\boldsymbol{Q}(\sqrt{-2}, \sqrt{-14})$			
$\psi_{0} \omega_{1}$	$\boldsymbol{Q}(\sqrt{-6}, \sqrt{2})$			
$\psi_{0} \omega_{2}$	$\boldsymbol{Q}(\sqrt{-6}, \sqrt{-42})$			
$\psi_{0} \omega_{1} \omega_{2}$	$\boldsymbol{Q}(\sqrt{-14}, \sqrt{-42})$	\quad	$\psi_{0} \chi$	$(-14,-42)$
:---:	:---:			
$\psi_{0} \omega_{1} \chi$	$(-6,42)$			
$\psi_{0} \omega_{2} \chi$	$(-6,-2)$			
$\psi_{0} \omega_{1} \omega_{2} \chi$	$(-14,2)$			

Remark. The division quaternion algebras $(-14,-42)$ and $(-6,-2)$ over \boldsymbol{Q} are isomorphic because they ramify at the same primes 2 and ∞. The quaternion algebras $(-6,42)$ and $(-14,2)$ are isomorphic to $M_{2}(\boldsymbol{Q})$.
2) $D=-3 \cdot 5 \cdot 13$.

Let \mathfrak{p} and \mathfrak{p}^{\prime} be the prime ideals of K such that $\mathfrak{p}^{2}=((1+\sqrt{D}) / 2)$ and $\mathfrak{p}^{\prime 2}=$ $((17+\sqrt{D}) / 2)$. The decomposition field in H of \mathfrak{p} is $K(\sqrt{65})$ and that of \mathfrak{p}^{\prime} is $K(\sqrt{5})$. We see that Cl_{K} is generated by \mathfrak{p} and \mathfrak{p}^{\prime}. Let \mathfrak{q} be the prime ideal of K with $\mathfrak{q}^{2}=(3)$. Let ϕ_{0} be a character of I_{K} of conductor q such that

$$
\phi_{0}((\alpha))=\left(\frac{\alpha}{q}\right) \alpha \quad \text { for every } \alpha \in K^{\times}
$$

and put $\psi_{0}=\phi_{0} \circ N_{H / K}$. As in Case 1) we define:

$$
\omega_{1}=\eta_{5} \circ j \circ N_{H / K}, \quad \omega_{2}=\eta_{13} \circ j \circ N_{H / K} .
$$

Since $(13,-3)$ is trivial in $\operatorname{Br}_{2}(\boldsymbol{Q})$, there exists a D_{4} extension k_{0} over \boldsymbol{Q} containing $\boldsymbol{Q}(\sqrt{-3}, \sqrt{13})$. Let χ be the character of I_{H} associated with $k_{0} H / H$. Then by Theorem 2 , the equivalence classes of \boldsymbol{Q}-curves over H are represented by the Hecke characters $\psi=\psi_{0} \omega, \omega \in\left\langle\omega_{1}, \omega_{2}, \chi\right\rangle$. By similar computations as in 1), we obtain:

ψ	R_{0} (field)
ψ_{0}	$\boldsymbol{Q}(\sqrt{13}, \sqrt{-5})$
$\psi_{0} \omega_{1}$	$\boldsymbol{Q}(\sqrt{-13}, \sqrt{-5})$
$\psi_{0} \omega_{2}$	$\boldsymbol{Q}(\sqrt{-13}, \sqrt{5})$
$\psi_{0} \omega_{1} \omega_{2}$	$\boldsymbol{Q}(\sqrt{13}, \sqrt{5})$

ψ	R_{0} (quaternion alg.)
$\psi_{0} \chi$	$(-15,-39)$
$\psi_{0} \omega_{1} \chi$	$(15,-39)$
$\psi_{0} \omega_{2} \chi$	$(15,39)$
$\psi_{0} \omega_{1} \omega_{2} \chi$	$(-15,39)$

Remark. The division quaternion algebras $(15,-39)$ and $(-15,39)$ over \boldsymbol{Q} are isomorphic because they ramify at the same primes 3 and 13 .

Next we give an example of exceptional case.
Let $K=\boldsymbol{Q}(\sqrt{-5})$. Then

$$
h_{K}=t=2, \quad H=K(\sqrt{-1}), \quad H^{(2)}=H(\sqrt{1+\sqrt{5}})
$$

In this case there exist two classes of \boldsymbol{Q}-curves over $H^{(2)}$ by Theorem 2. Let \mathfrak{m} be the prime ideal of K with $\mathrm{m}^{2}=(2)$. As in the proof of Theorem 2, there exists a \boldsymbol{Q}-curve E_{0} over $H^{(2)}$ such that $\psi_{E_{0}}=\phi_{0} \circ N_{H^{(2)} / K}$, where $\phi_{0}: U_{K, 2} \rightarrow \pm 1$ has conductor \mathfrak{m}^{3}. Let \mathfrak{q} be the prime ideal of K such that $\mathfrak{q}^{2}=(2+\sqrt{-5})$. The Frobenius automorphism associated with \mathfrak{q} in $\operatorname{Gal}\left(H^{(2)} / K\right)$ has order 4. We easily have

$$
\phi_{0}\left(\mathfrak{q}^{4}\right)=-(2+\sqrt{-5})^{2}, \quad \phi_{0}\left(\mathfrak{q} \mathfrak{q}^{\rho}\right)=-3 .
$$

Therefore we obtain

$$
\phi_{0}(\mathfrak{q})^{2}+\phi_{0}\left(\mathfrak{q}^{\rho}\right)^{2}= \pm 2 \sqrt{5}, \quad \phi_{0}(\mathfrak{q})+\phi_{0}\left(\mathfrak{q}^{\rho}\right)= \pm(\sqrt{-5} \mp \sqrt{-1}) .
$$

Hence we have $R_{0}=\operatorname{End} \boldsymbol{Q}\left(R_{H^{(2)} / K}\left(E_{0}\right)\right) \otimes \boldsymbol{Q} \cong H$. The other class of \boldsymbol{Q}-curves over $H^{(2)}$ is represented by a Hecke character $\left(\phi_{0} \cdot \eta_{5}\right) \circ N_{H^{(2)} / K}$. Computing similarly we find that $R_{0} \cong \boldsymbol{Q}(\sqrt{5}) \oplus \boldsymbol{Q}(\sqrt{5})$.

References

[G] B. H. Gross, Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Math., 776, Springer-Verlag, 1980.
[J-Y] L. U. Jensen and N. Yui, Quaternion extensions, In: Algebraic Geometry and Commutative Algebra, Vol. 1, Kinokuniya, Tokyo, 1988, 155-182.
[M] R. Massy, Construction de p-extensions Galoisiennes d'un corps de caractéristique différente de $p, \quad \mathbf{J}$. Algebra, 109 (1987), 508-535.
[N] T. Nakamura, Abelian varieties associated with elliptic curves with complex multiplication, Acta Arith., 97 (2001), 379-385.
[Q] J. Quer, Q-curves and abelian varieties of $G L_{2}$-type, Proc. London Math. Soc., 81 (2000), 285-317.
[S] G. Shimura, On the zeta function of an abelian variety with complex multiplication, Ann. of Math., 94 (1971), 504-533.
[S-T] G. Shimura and Y. Taniyama, Complex Multiplication of Abelian Varieties and its Application to Number Theory, Publ. Math. Soc. Japan, No. 6, Math. Soc. Japan, Tokyo, 1961.
[Si] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, 1994.

Tetsuo Nakamura

Mathematical Institute
Tohoku University
Sendai 980-8578
Japan
E-mail: nakamura@math.tohoku.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 11G05; Secondary 11G10, 11G15.
 Key Words and Phrases. Q-curve, elliptic curve, complex multiplication, embedding problem, restriction of scalars.

