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Abstract. Let H be the Hilbert class field of an imaginary quadratic field K . An

elliptic curve E over H with complex multiplication by K is called a Q-curve if E is

isogenous over H to all its Galois conjugates. We classify Q-curves over H, relating

them with the cohomology group H 2ðH=Q;G1Þ. The structures of the abelian varieties

over Q obtained from Q-curves by restriction of scalars are investigated.

1. Introduction.

Let K be an imaginary quadratic field and H the Hilbert class field of K . Let E be

an elliptic curve over H with complex multiplication by K . We say that E is a Q-curve

if E and E s are isogenous over H for all s A GalðH=QÞ. Denote by cE the Hecke

character of H associated with E. Then E is a Q-curve if and only if cE ¼ cs
E for all

s A GalðH=QÞ.

As in the case without complex multiplication (see [Q]), we attach to a Q-curve E a

two-cocycle class cðEÞ A H 2ðH=Q;K�Þ. For Q-curves E;E 0, we see that cðEÞ ¼ cðE 0Þ if

and only if cE ¼ cE 0 � w �NK=Q with a quadratic Dirichlet character w. Let G be the

subset of H 2ðH=Q;K�Þ consisting of cðEÞ for all Q-curves E over H. We show that

there exists a bijection between G and a subspace Y of H 2ðH=Q;G1Þ over F2. Relating

Y to an embedding problem associated with the exact sequence

1 !G1 ! G ! GalðH=QÞ ! 1;

we characterize the structure of Y and, as a consequence, we obtain that dimF2
Y ¼

tðt� 1Þ=2, where t is the number of distinct prime factors of the discriminant of K . In

some case where K is called exceptional, there are no Q-curves with complex multi-

plication over H. Replacing H by the ring class field of conductor 2, we obtain a

similar classification of Q-curves (Theorem 2).

The abelian variety B ¼ RH=KE obtained by restriction of scalars from a Q-curve E

can be defined over Q. The structures of the endomorphism algebras R ¼ EndQ BnQ

are studied according to this classification (Section 5). Some examples are discussed in

the last section.

Notation. Throughout the paper we fix the following notation.

K : an imaginary quadratic field of discriminant D0�3;�4.

t: the number of distinct primes dividing D.
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H: the Hilbert class field of K .

ClK : the ideal class group of K .

g: GalðH=KÞ.
r: the complex conjugation.

jE : the j-invariant of an elliptic curve E.

All Q-curves treated in this paper are assumed to have complex multiplication. The

symbol ‘‘dim’’ always refers to the dimension over F2. Galois cohomology groups

H iðGalðM=LÞ;AÞ are denoted by H iðM=L;AÞ. We call K exceptional if the discrim-

inant D of K is of the form

D ¼ �4p1 � � � pt�1 ðtb 2Þ

where p1; . . . ; pt�1 are primes satisfying p1 1 � � �1 pt�1 1 1 mod 4.

2. Quadratic characters of local unit groups of K .

Let p be a rational prime and p a prime ideal of K dividing p. Denote by Up

the group of local units for p and put Up ¼
Q

pjp Up. Let Xp be the set of characters

l : Up !G1. We regard Xp as a vector space over F2. The complex conjugation r

acts on Xp and put X 0
p ¼ fl A Xp j lr ¼ lg. We shall determine a basis of Xp.

1) p is odd. Denote by kp : Z
�
p !G1 the unique non-trivial character and put

lp ¼ kp �NK=Q.

Proposition 1. (i) Suppose that p splits in K, i.e. ðpÞ ¼ pp
r. Let lp : Up GZ�

p !
G1 be the unique non-trivial character. Then lpl

r
p
¼ kp �NK=Q and Xp ¼ hlp; l

r
p
i and

X 0
p ¼ hlpi.

(ii) If p is inert in K, then Xp ¼ X 0
p ¼ hlpi.

(iii) If p is ramified in K, then there exists a unique non-trivial character hp such

that hpð�1Þ ¼ ð�1Þðp�1Þ=2
and Xp ¼ X 0

p ¼ hhpi.

2) p ¼ 2. Let k4; k8 be the characters of Z�
2 satisfying

k4ðnÞ ¼ ð�1Þðn�1Þ=2; k8ðnÞ ¼ ð�1Þðn2�1Þ=8 for odd integers n:

We put e4 ¼ k4 �NK=Q, e8 ¼ k8 �NK=Q.

If 2 is inert in K , we have

U2=U
2
2 ¼ h�1; 1þ 2o; 1þ 4oiG ðZ=2Z Þ3 with o2 þ oþ 1 ¼ 0:

Define n A X2 by Ker n ¼ h1þ 2o; 1þ 4oi. We have nnr ¼ e4.

If 2 is ramified in K , put D ¼ 4m. If m is odd, we have

U2=U
2
2 ¼ h

ffiffiffiffi

m
p

; 3� 2
ffiffiffiffi

m
p

; 5iG ðZ=2Z Þ3:

We define n and h�4 A X2 by Ker n ¼ h
ffiffiffiffi

m
p

; 3� 2
ffiffiffiffi

m
p

i and Ker h�4 ¼ h3� 2
ffiffiffiffi

m
p

; 5i.

Then nnr ¼ e8, h�4 ¼ h
r
�4, h�4ð�1Þ ¼ 1. If m is even, we have

U2=U
2
2 ¼ h1þ

ffiffiffiffi

m
p

;�1; 5iG ðZ=2Z Þ3:

Define h8 and h�8 A X2 by Ker h8 ¼ h1þ ffiffiffiffi

m
p

;�1i and Ker h�8 ¼ h1þ ffiffiffiffi

m
p

;�5i. Then

if D=81 1 mod 4, we have h
r
8 ¼ h8, h�8h

r
�8 ¼ e4 and if D=81�1 mod 4, we have

h
r
�8 ¼ h�8, h8h

r
8 ¼ e4. Notation being as above, we obtain
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Proposition 2. (i) Assume that 2 splits in K , i.e. ð2Þ ¼ mm
r. Let j : U2 !

Um GZ�
2 be the projection and put n ¼ k4 � j, m ¼ k8 � j. Then we have X2 ¼ hn; m;

e4 ¼ nnr; e8 ¼ mmri and X 0
2 ¼ he4; e8i.

(ii) If 2 is inert in K, then we have X2 ¼ hn; e4 ¼ nnr; e8i and X 0
2 ¼ he4; e8i.

(iii) Assume 2 is ramified in K. If D=4 ð0�1Þ is odd, we have X2 ¼ hn; h�4;

e8 ¼ nnri and X 0
2 ¼ hh�4; e8i. If D=4 is even, we have

h8ð�1Þ ¼ 1; h�8ð�1Þ ¼ �1; X2 ¼ hh8; h�8; e4i;

X 0
2 ¼

hh8; e4 ¼ h�8h
r
�8i; if D=81 1 mod 4

hh�8; e4 ¼ h8h
r
8i; if D=81�1 mod 4:

�

3. An embedding problem associated with the Hilbert class field.

An element g of the Galois cohomology group H 2ðH=Q;G1Þ corresponds to an

equivalence class of group extensions

1 !G1 ! G ! GalðH=QÞ ! 1:ð1Þ

If there exists a quadratic extension k of H such that k=Q is Galois and the natural

map Galðk=QÞ ! GalðH=QÞ corresponds to the epimorphism in (1), we say that an

embedding problem ðH=Q;G1; gÞ has a solution k.

Let Y be the set of g A H 2ðH=Q;G1Þ such that ðH=Q;G1; gÞ has a solution. We

see that Y is a F2-subspace of H 2ðH=Q;G1Þ. Write g ¼ GalðH=KÞGClK and denote

by Extðg;G1Þ the elements of H 2ðg;G1Þ corresponding to extensions of g by fG1g that

are abelian groups. The vector space over F2 of bilinear alternating forms on g=g2 is

denoted by AltðgÞ. Then we have an exact sequence

0 ! Extðg;G1Þ ! H 2ðg;G1Þ ! AltðgÞ ! 0:

By [M, §1], dimExtðg;G1Þ ¼ t� 1, dimH 2ðg;G1Þ ¼ tðt� 1Þ=2, since dim g=g2 ¼ t� 1 (t

is the number of distinct primes dividing the discriminant of K).

Let res: H 2ðH=Q;G1Þ ! H 2ðg;G1Þ be the restriction map and put Y0 ¼ fg A Y j

resðgÞ A Extðg;G1Þg. Let k be a solution of ðH=Q;G1; gÞ with g A Y0. Then k is a

quadratic extension of H such that k=Q is Galois and k=K is abelian. We denote by

UK ¼
Y

p

Up

the maximal compact subgroup of the idele group IK of K and by K�
y the archimedean

part of IK . Let w ¼ wk=H be the character of IH corresponding to k=H. Since k=K is

abelian, there is a non-trivial character

y : UKK
�K�

y !G1

such that w ¼ y �NH=K and yðK�K�
yÞ ¼ 1; hence y is determined by its restriction on

UK . Since k=Q is Galois, we have wr ¼ w and this means that yr ¼ y. Conversely for

any non-trivial character y : UK !G1 such that

yr ¼ y and yð�1Þ ¼ 1;

w ¼ y �NH=K determines a solution k of ðH=Q;G1; gÞ for some g A Y0.
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Proposition 3. If K is exceptional (see §1), we have dimY0 ¼ t. Otherwise we

have dimY0 ¼ t� 1.

Proof. Let W be the set of characters y : UK !G1 such that yr ¼ y and

yð�1Þ ¼ 1. Denote by W0 the set of y A W of the form y ¼ k �NK=Q with a quadratic

Dirichlet character k. Noting that the characters in W0 exactly correspond to the trivial

class in H 2ðH=Q;G1Þ, we obtain Y0 GW=W0. For a rational prime l, we denote by l �

the prime discriminant defined as follows;

l � ¼
ð�1Þðl�1Þ=2

l; if l is odd

�4; 8 or �8; if l ¼ 2:

�

We have the unique decomposition of D into prime discriminants:

D ¼ p�
1 � � � p

�
r q

�
1 � � � q

�
s ðt ¼ rþ sÞ

where p�
1 ; . . . ; p

�
r are positive discriminants or �4 and q�

1 ; . . . ; q
�
s are negative discrim-

inants except �4. If l � appears in the above decomposition, we define

yl ¼
hl ; if l is odd

hl � ; if l ¼ 2;

�

where hl are defined in Proposition 1 and 2. Composing with the projection UK ! Ul ,

we also regard yl as a character of UK . From Proposition 1 and 2 one deduces that

yp1 ; . . . ; ypr , yq1yq2 ; . . . ; yq1yqs generate W=W0 and considering their conductors, they are

linearly independent. This completes the proof. r

Theorem 1. dimðY=Y0Þ ¼ ðt� 1Þðt� 2Þ=2.

Proof. If ta 2, then AltðgÞ ¼ ð0Þ, so that Y ¼ Y0 and our statement holds.

Assume tb 3. Composing the natural map

H 2ðg;G1Þ ! H 2ðg;G1Þ=Extðg;G1ÞGAltðgÞ

with the restriction map Y HH 2ðH=Q;G1Þ ! H 2ðg;G1Þ, we obtain a linear map

g : Y ! AltðgÞ. Since Ker g ¼ Y0 and dimAltðgÞ ¼ ðt� 1Þðt� 2Þ=2, it su‰ces to show

that g is surjective. Let D ¼
Q t

i¼1 p
�
i be the decomposition of D into prime discrim-

inants. We may suppose that p1; . . . ; pt�1 are odd primes. The genus field H0 of K is

Kð
ffiffiffiffiffiffi

p�
1

p

; . . . ;
ffiffiffiffiffiffiffiffiffi

p�
t�1

p

Þ and GalðH0=KÞG g=g2 G ðZ=2Z Þ t�1. Let s1; . . . ; st�1 be elements

of g=g2 such that

sið
ffiffiffiffiffiffi

p�
i

p

Þ ¼ �
ffiffiffiffiffiffi

p�
i

p

; sið
ffiffiffiffiffiffi

p�
j

q

Þ ¼
ffiffiffiffiffiffi

p�
j

q

ði0 jÞ:

Clearly fs1; . . . ; st�1g is a basis of g=g2. For i; j ð1a i < ja t� 1Þ, let fi; j denote an

element of AltðgÞ satisfying

fi; jðsi; sjÞ ¼ 1 and fi; jðsk; slÞ ¼ 0 if ði; jÞ0 ðk; lÞ and k < l:

Then f fi; j j 1a i < ja t� 1g forms a basis of AltðgÞ. Therefore it su‰ces to show that

for each fi; j, there exists a quadratic extension k=H such that k is a solution of the

embedding problem ðH=Q;G1; gÞ with gðgÞ ¼ fi; j. For a number field M and given
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elements a; b A M�, we denote by ða; bÞ A Br2ðMÞ ¼ H 2ðGalðM=MÞ;G1Þ the class of the

quaternion algebra over M generated by two elements I ; J with

I 2 ¼ a; J 2 ¼ b; JI ¼ �IJ:

We claim that there exists g A Y such that gðgÞ ¼ f1;2. If one of ðp�
1 ; p

�
2 Þ;

ðp�
1 ; p

�
1p

�
2 Þ or ðp�

2 ; p
�
1p

�
2 Þ is trivial in Br2ðQÞ, then there exists a Galois extension M0=Q

containing Qð
ffiffiffiffiffiffi

p�
1

p

;
ffiffiffiffiffiffi

p�
2

p

Þ such that GalðM0=QÞ is isomorphic to the dihedral group D4

of degree 8 (cf. [J-Y, p. 177]). Put

L ¼ Kð
ffiffiffiffiffiffi

p�
1

p

;
ffiffiffiffiffiffi

p�
2

p

Þ; M ¼ M0K ; k ¼ M0H:

Obviously k is Galois over Q and Galðk=QÞ defines an element g A Y . We have the

following commutative diagram with exact rows:

1 ���! GalðM=LÞ ���! GalðM=KÞ ���! GalðL=KÞ ���! 1

o

x
?
?
?

m

x
?
?
?

n

x
?
?
?

1 ���! Galðk=HÞ ���! Galðk=KÞ ���! g ���! 1:

Let f ¼ gðgÞ A AltðgÞ. Since GalðM=KÞGD4, we obtain f ðs1; s2Þ ¼ 1. We see that

Ker mGKer n and Ker n in g=g2 is hs3; . . . ; st�1i. Hence it follows that f ðsi; sjÞ ¼ 0

for 3a ja t� 1. This means gðgÞ ¼ f1;2, as desired. If p1 1 p2 1�1 mod 4, then

ðp�
1 ; p

�
1p

�
2 Þ or ðp�

2 ; p
�
1p

�
2 Þ is trivial in Br2ðQÞ. Therefore we may suppose that p1ð¼ p�

1 Þ1
1 mod 4. If p2 splits in Qð ffiffiffiffiffi

p1
p Þ, then ðp1; p�

2 Þ is trivial in Br2ðQÞ. Consequently, we

may suppose that p2 is inert in Qð ffiffiffiffiffi
p1

p Þ. Since L1 ¼ Kð ffiffiffiffiffi
p1

p Þ=K is unramified, we see

that the Hilbert symbol ððp1; p�
2 Þ=lÞ is trivial for each place l of K . This implies that

ðp1; p�
2 Þ is trivial in Br2ðKÞ, so that there exist a; b A K� satisfying p�

2 ¼ a2 � b2p1. Let

p2 be the prime ideal of K dividing p2. Then p2 is inert in L1 and let P2 be the prime

ideal of L1 dividing p2. Put a ¼ aþ b
ffiffiffiffiffi
p1

p
A L1. Since NL1=Kða�1P2Þ ¼ oK , there is

an ideal A in L1 such that a�1P2 ¼ A=At where t is the generator of GalðL1=KÞ.
Choose an odd prime ideal L of degree 1 in L1 which belongs to the ideal class of

A. Then P2L
t=L is a principal ideal ðbÞ and NL1=KðbÞ ¼ NL1=KðaÞ ¼ p�

2 . Therefore

M ¼ L1ð
ffiffiffi

b
p

;
ffiffiffiffiffiffi

p�
2

p

Þ is a D4-extension of K containing Kð ffiffiffiffiffi
p1

p
;

ffiffiffiffiffiffi

p�
2

p

Þ. Moreover, it is

now easy to check that GalðMH=KÞ determines an element d A H 2ðg;G1Þ which corre-

sponds to f1;2. We note that

ðbbrÞ ¼ NL1=Qð ffiffiffiffi
p1

p ÞðP2L
t=LÞ ¼ ðp2lÞ=ðLLrÞ2;

where l is the rational prime contained in L. Since the class number of Qð ffiffiffiffiffi
p1

p Þ is odd,
LLr is principal, so that bbr ¼ p2la

2 with a A Qð ffiffiffiffiffi
p1

p Þ. Admitting the following lemma,

our proof will be completed immediately.

Lemma 1. There exists an abelian extension Hð ffiffiffi

c
p Þ ðc A HÞ over K such that

ccrbb r A H�2.

Put k ¼ Hð
ffiffiffiffiffi

bc
p

Þ. Notice that k is Galois over Q, since Hð
ffiffiffi

b
p

Þ ¼ MH is Galois

over K . Since GalðHð ffiffiffi

c
p Þ=KÞ corresponds to an element d0 A Extðg;G1Þ, we see that

Galðk=QÞ corresponds to g A H 2ðH=Q;G1Þ such that resðgÞ ¼ dþ d0; thus gðgÞ ¼ f1;2,

as claimed. Applying the same arguements for any fi; j, our proof of Theorem 1 is

completed. r

A classification of Q-curves with complex multiplication 639



Proof of Lemma 1. For a non-trivial character w : UK !G1 satisfying wð�1Þ ¼ 1,

there exists the unique quadratic extension Hð ffiffiffi

c
p Þ over H such that w �NH=K is the

character of IH corresponding to Hð ffiffiffi

c
p Þ=H and Hð ffiffiffi

c
p Þ=K is abelian. We need to

choose c A H� such that ccr A ð�1Þðp2�1Þ=2
lH�2. Thus it su‰ces to show that w can be

chosen such that wwr ¼ k �NK=Q, where k is the quadratic Dirichlet character corre-

sponding to a quadratic field S ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�1Þðp2�1Þ=2
ln

q

Þ for some n A Z with
ffiffiffi

n
p

A H.

We consider cases.

1) If p2 1 l1�1 mod 4, let l be a prime of K dividing l and put w ¼ llhp2 , where

ll; hp2 are those defined in Proposition 1. We have wwr ¼ kl �NK=Q and S ¼ Qð
ffiffiffiffiffiffi

�l
p

Þ.
2) Assume p2 1�1 mod 4 and l1 1 mod 4. If D is odd, put w ¼ llhp2n with n

defined in Proposition 2. Then wwr ¼ klk4 �NK=Q and S ¼ Qð
ffiffiffiffiffiffi

�l
p

Þ. If D ¼ 4m with

an odd integer m, put w ¼ ll. Then S ¼ Qð
ffiffi

l
p

Þ. Since
ffiffiffiffiffiffiffi

�1
p

A H, this satisfies our

requirement. If D ¼ 8m with m1 1 mod 4, put w ¼ llhp2h�8 and if D ¼ 8m with

m1�1 mod 4, put w ¼ llh8. Then we have wwr ¼ ðklk4Þ �NK=Q.

3) Assume p2 1 1 mod 4. We claim that it is always possible to choose b such

that l1 1 mod 4. We put

K0 ¼ Kð
ffiffiffiffiffiffiffi

�1
p

Þ; L0 ¼ L1ð
ffiffiffiffiffiffiffi

�1
p

Þ ¼ Kð ffiffiffiffiffi

p1
p

;
ffiffiffiffiffiffiffi

�1
p

Þ

and let s and t be generators of GalðL0=L1Þ and GalðL0=K0Þ, respectively. Decompose

p2 as pps in Qð
ffiffiffiffiffiffiffi

�1
p

Þ. There exists a prime ideal P0 in L0 such that NL0=K0
ðP0Þ ¼ ðpÞ.

Since ðp1; pÞ is trivial in Br2ðK0Þ, there is an a1 A L0 such that NL0=K0
ða1Þ ¼ p. This

implies that there exists a prime ideal L0 in L0 of degree 1 such that P0L
t
0=L0 is

principal. Putting

P2 ¼ NL0=L1
ðP0Þ; L ¼ NL0=L1

ðL0Þ;

we see that P2L
t=L is a principal ideal ðbÞ with NL1=KðbÞ ¼ NL0=Kða1Þ ¼ p2. By the

choice of L0, the rational prime l in L satisfies l1 1 mod 4, as claimed. Therefore

w ¼ ll satisfies our requirement.

4. Elliptic Q-curves with complex multiplication.

Let L be a Galois extension over Q containing H. An elliptic curve E over L with

complex multiplication by K is called a Q-curve if E s and E are isogenous over L for all

s A GalðL=QÞ. Let cE be the Hecke character of the idele group IL of L associated

with E. Then E is a Q-curve if and only if cE ¼ cs
E for all s A GalðL=QÞ (cf. [G, §11]).

For a Q-curve E over L, choose isogenies js : E
s ! E for s A GalðL=QÞ. Then

cðs; tÞ ¼ jsj
s
t ðjstÞ

�1
A K�

defines a two-cocycle and the cohomology class of fcðs; tÞg in H 2ðL=Q;K�Þ depends

only on the curve E, and not on the isogenies js chosen. We will denote by cðEÞ
this cohomology class. Let us denote by GL the subset of H 2ðL=Q;K�Þ consisting

of elements of the form cðEÞ for all Q-curves E over L. Furthermore, we denote by

YL the subspace of H 2ðL=Q;G1Þ consisting of all g such that the embedding problems

ðL=Q;G1; gÞ are solvable.
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Proposition 4. If GL is not empty, then YL operates on GL simply transitively in

an obvious manner. For Q-curves E and E 0, we have cðEÞ ¼ cðE 0Þ if and only if cE ¼

cE 0 � k �NL=Q, where k is a quadratic Dirichlet character.

Proof. For Q-curves E and E 0 over L, there exists an isogeny l : E ! E 0 defined

over a finite extension of L. For each s A GalðL=LÞ, we have ls ¼ lvðsÞ with vðsÞ A K�.

Since ls n

¼ l for su‰ciently large n, we have vðsÞn ¼ 1, so that vðsÞ ¼G1. This means

that if E and E 0 are not isogenous over L, there exists the unique quadratic extension

k over L such that l is defined over k. We also see that E and E 0 are isogenous over

ks for all s A GalðL=QÞ, because E and E 0 are Q-curves; hence k is Galois over Q.

Therefore the Galois group Galðk=QÞ determines a cohomology class g ¼ fgðs; tÞg A

H 2ðL=Q;G1Þ; thus g A YL. For each s A GalðL=QÞ, choose an extension ~ss A Galðk=QÞ

of s. Then gðs; tÞ ¼ l~ss~tt=lste for s; t A GalðL=QÞ. One can find isogenies

js : E
s ! E; j 0

s : E
0s ! E 0

such that ljs ¼ j 0
sl

~ss. Then by a short computation, we obtain

cðEÞ ¼ cðE 0Þg:

Now we claim that the natural map

H 2ðL=Q;G1Þ ! H 2ðL=Q;K�Þ

is injective. From the exact sequence

1 !G1 ! K� ! K�2 ! 1

it su‰ces to show that H 1ðL=Q;K�2Þ ¼ ð0Þ. This follows easily from the restriction-

inflation sequence

0 ! H 1ðK=Q;K�2Þ ! H 1ðL=Q;K�2Þ ! H 1ðL=K ;K�2Þ;

since H 1ðK=Q;K�2Þ ¼ ð0Þ and H 1ðL=K ;K�2Þ ¼ HomðGalðL=KÞ;K�2Þ ¼ ð0Þ. If cðEÞ ¼

cðE 0Þ and E and E 0 are not isogenous over L, let k be the quadratic extension of L

stated as above. Then the group extension

1 !G1 ! Galðk=QÞ ! GalðL=QÞ ! 1

splits, which implies that the character associated with k=L is of the form k �NL=Q with

a quadratic Dirichlet character k. Since E 0 is isogenous to the twist of E with respect

to k=L, the last statement is clear. r

In [S] a class of elliptic curves (more generally abelian varieties) with complex

multiplication whose Hecke characters satisfy a certain condition are studied. We recall

briefly what we need here.

For an integer f b 1, let Hð f Þ denote the ring class field of K of conductor f . Let

UK ; f ¼ fu A UK j uðZ þ f oKÞ ¼ Z þ f oKg:

Then P ¼ UK ; fK
�K�

y
is the subgroup of IK corresponding to Hð f Þ by class field theory.

Let E be an elliptic curve over Hð f Þ with EndE ¼ Z þ f oK . Let us consider the fol-

lowing condition on the Hecke character cE of E (see [S, Theorem 4]).
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(Sh) There exists a Hecke character f : UK; fK
�K�

y
! C� such that cE ¼

f �NHð f Þ=K .

Here f must satisfy the following conditions:

fðK�Þ ¼ 1; fðyÞ ¼ y�1 for every y A K�
y
;ð3Þ

fðUK ; f Þ ¼G1 and fð�1Þ ¼ �1 for �1 A UK ; f :ð4Þ

If cE satisfies (Sh), then clearly cE ¼ cs
E for all s A GalðHð f Þ=KÞ. Conversely from a

character f : UK; f !G1 with fð�1Þ ¼ �1, extending it on P ¼ UK ; fK
�K�

y
by (3), we

obtain c ¼ f �NHð f Þ=K , which is a Hecke character of an elliptic curve E over Hð f Þ.
Furthermore in this case E is a Q-curve if and only if fr ¼ f on UK ; f (cf. [S,

Proposition 9]).

Assume first that K is not exceptional. If D has a prime divisor q with q1

�1 mod 4, we put f ¼ hq : UK !G1 where hq is the local character defined in Prop-

osition 1. Here we view hq as a character of UK by composing with the projection

UK ! Uq. Otherwise since D is of the form 8m with m1�1 mod 4, we put f ¼ h�8,

where h�8 is defined in Proposition 2. Then f satisfies

fð�1Þ ¼ �1; fr ¼ f:ð5Þ

Therefore there exists a Q-curve over H.

Next assume that K is exceptional. Then there is no character f : UK !G1 sat-

isfying (5). This follows from the fact that if a local character y : Up !G1 satisfies

yr ¼ y, we have yð�1Þ ¼ 1 by Proposition 1 and 2.

The following assertion is stated in [G, §11] without proof.

Proposition 5. If K is exceptional, there are no Q-curves over H.

Proof. Choose a rational prime q such that q splits in K and q1�1 mod 4. Let

lq : Uq !G1 be as in Proposition 1 where qjq. We put l ¼ lq � pr where pr : UK ! Uq

is the projection. Then l determines an elliptic curve E1 over H with cE1
¼ l �NH=K .

Clearly E1 is not a Q-curve over H, since c
r
E1
=cE1

¼ lql
r
q
�NH=K ¼ kq �NH=Q. (It is

a Q-curve over Hð ffiffiffiffiffiffiffi�q
p Þ.) Now assume that a Q-curve E over H exists. Put w1 ¼

cE1
=cE . Then w1 is a quadratic character of IH and it determines a quadratic extension

k1 of H which is Galois over K . Since g : Y ! AltðgÞ is surjective as shown in the

proof of Theorem 1, there exists a quadratic extension k of H which is Galois over Q

such that Galðk=KÞ and Galðk1=KÞ correspond to the same element in AltðgÞ. This

means that denoting by w the character associated with k=H, ww1 corresponds to a

quadratic extension of H which is abelian over K , i.e. ww1 ¼ y �NH=K with a character

y : UK !G1. Put c ¼ cE � w. We easily find that c ¼ ðlyÞ �NH=K and cr ¼ c, since

c
r
E ¼ cE and wr ¼ w; this implies that f ¼ ly : UK !G1 satisfies (5). As remarked

above, this is impossible if K is exceptional. r

Applying Theorem 1, we obtain the following result concerning a classification of

Q-curves.

Theorem 2. If K is not exceptional, the cohomology classes cðEÞ classify isogeny

classes of Q-curves over H into 2 tðt�1Þ=2 classes. Among them there are 2 t�1 classes
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whose Hecke characters satisfy (Sh). If K is exceptional, take Hð2Þ, the ring class field

of K of conductor 2, instead of H. Then exactly the same statements hold for isogeny

classes of Q-curves over Hð2Þ.

Proof. Let the notation be as in Proposition 3. The first statement is clear by

Theorem 1 and Proposition 3. Let E0 be a Q-curve over H such that cE0
satisfies (Sh).

Then cðE0Þg ðg A Y0Þ correspond to those Q-curves whose Hecke characters satisfy (Sh).

Next assume that K is exceptional. Let m denote the prime ideal of the local

completion of K at 2 and put

Pð2Þ ¼
Y

p02

Up � ð1þm2ÞK� � K�
y:

Then Pð2Þ is the subgroup of IK corresponding to Hð2Þ by class field theory. Let

y : 1þm2 !G1 denote the character such that Ker y ¼ 1þm3 and put f ¼ y � j, where

j :
Q

p02 Up � ð1þm2Þ ! 1þm2 is the projection. Then f �NHð2Þ=K is a Hecke char-

acter of a Q-curve over Hð2Þ, since fr ¼ f. Therefore a Q-curve over Hð2Þ exists. Let

g 0 ¼ GalðHð2Þ=KÞ and put Y 0
0 ¼ fg A YHð2Þ j resðgÞ A Extðg 0;G1Þg. It su‰ces to show that

dimY 0
0 ¼ t� 1 and dimYHð2Þ ¼ tðt� 1Þ=2. If a non-trivial local character l : 1þm2 !

G1 satisfies lð�1Þ ¼ 1 and lr ¼ l, we see easily that l ¼ k8 �NK=Q. As in the proof of

Proposition 3,

yp1 ; . . . ; ypt�1
ðD=4 ¼ �p1 � � � pt�1Þ

form a basis of W=W0; hence dimY 0
0 ¼ t� 1. Note that v ¼ ð1þ

ffiffiffiffiffiffiffiffiffi

D=4
p

Þ2=2 is prime

to 2 and v B 1þm2. Then we see that the class containing the ideal n with n2 ¼ ð2Þ

has order 4 in IK=P
ð2Þ. This shows that g 0=g 02

G g=g2; hence we obtain dimðYHð2Þ=Y 0
0Þ ¼

dimAltðg 0Þ ¼ ðt� 1Þðt� 2Þ=2 by Theorem 1. r

5. Restriction of scalars of Q-curves.

In this section we suppose that K is non-exceptional. Let E be a Q-curve over H.

Let us denote by B ¼ RH=KðEÞ the abelian variety obtained from E by restriction of

scalars from H to K . It is an abelian variety defined over K of dimension hK ¼ ½H : K �.

Since E is defined over Qð jEÞ (cf. [G, Theorem 10.1.3]), we have

BGRQð jEÞ=QðEÞnK;

so that B is defined over Q. Concerning the structure of the endomorphism algebra

R0 ¼ EndQðBÞnQ we obtain

Theorem 3. Let R0 ¼ EndQðBÞnQ be as above and hK the class number of K.

The center Z0 of R0 is a field of degree h0 over Q and R0 GM2mðZ0Þ or R0 GM2m�1ðD0Þ,

where D0 is a division quaternion algebra over Z0 and hK ¼ 22mh0. R0 is commutative if

and only if cE satisfies (Sh).

Proof. We recall some facts on the structure of R ¼ EndKðBÞnQ (cf. [G, §15]

and [N]). For s A g ¼ GalðH=KÞ, one can choose a prime ideal p of K , of degree 1,

prime to the conductor of cE such that s ¼ s�1
p , where sp is the Frobenius auto-

morphism of H=K at p. Let P be a prime of H lying over p and p the rational prime
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in p. Then there exists an isogeny (a p-multiplication in the sense of [S-T, §7])

uðpÞ : E s ! E such that uðpÞ modP is the p-th power Frobenius map (see [Si, II

Proposition 5.3]). Let tðpÞ be the corresponding K-endomorphism of B. If s is of

order n, we have

cEðPÞ ¼ tðpÞn A K�; pn ¼ ðcEðPÞÞ:ð6Þ

Take js ¼ uðpÞ and ts ¼ tðpÞ for each s A g. Then R is the twisted group algebra

K cðEÞ½g� ¼
P

s A g Kts over K subject to the relation

tstt ¼ cðs; tÞtst for s; t A g

where cðEÞ ¼ fcðs; tÞg is the two-cocycle attached to fjsg (see Section 4).

The complex conjugation r operates on R and R0 ¼ fa A R j rðaÞ ¼ ag. Changing

E by some E s if necessary, we may assume that rðEÞ ¼ E. By transport of structure,

rðuðpÞÞ : E sr ¼ E rs�1

¼ E s�1

! E is a pr-multiplication whose reduction modPr is

the p-th power Frobenius map. This implies that rðtðpÞÞ ¼ tðprÞ. Moreover, since

ppr ¼ ðpÞ we have

tðpÞtðprÞ ¼Gp; R0 VKðtðpÞÞ ¼ QðsðpÞÞ;ð7Þ

where sðpÞ ¼ tðpÞ þ tðprÞ.

Now we have tstt ¼ f ðs; tÞttts, where f ðs; tÞ ¼ cðs; tÞcðt; sÞ�1 is the alternating

form on g associated with cðEÞ. Let g0ðI g2Þ be the kernel of f . If g0 g0, then g=g0
is an orthogonal sum of hyperbolic planes T1; . . . ;Tm; each Ti is two dimensional and

f induces on Ti a non-degenerate alternating form. Choose xi; yi 2 g such that they

induce a basis of Ti, and define hi ¼ hxi; yi; g0i. Then Z ¼
P

s A g0
Kts is the center of

R and the subalgebra Di ¼
P

s A hi
Kts of R is a quaternion algebra over Z. We have

R ¼ D1 n � � �nZ Dm

and hK ¼ 22mh0 with ½Z : K � ¼ h0 (see [N, Theorem 3]). Furthermore it easily follows:

Z0 ¼ fa A Z j rðaÞ ¼ ag is the center of R0, D
0
i ¼ fa A Di j rðaÞ ¼ ag are quaternion alge-

bras over Z0 and R0 ¼ D0
1 n � � �nZ0

D0
m. Observe that ½Z0 : Q� ¼ ½Z : K � ¼ h0 and R

is commutative if and only if R0 is commutative. Then our assertion can be proved

exactly in the same manner as Theorem 3 in [N]. r

Proposition 6. Let E;E 0 be Q-curves over H and put:

B ¼ RH=KðEÞ; B 0 ¼ RH=KðE
0Þ; R0 ¼ EndQðBÞnQ; R 0

0 ¼ EndQðB
0ÞnQ:

Then if cðEÞ ¼ cðE 0Þ, we have R0 GR 0
0. Conversely if R0 is commutative and R0 GR 0

0,

we have cðEÞ ¼ cðE 0Þ.

Proof. If cðEÞ ¼ cðE 0Þ, then cE ¼ cE 0 � k �NH=Q with a quadratic Dirichlet char-

acter k by Proposition 4. Let k0 be the corresponding quadratic field to k. We may

assume that k0 is di¤erent from K and jE ¼ jE 0 . Then E and E 0 are isomorphic over

k0ð jEÞ (see [G, Theorem 10.2.1]), so that B and B 0 are isomorphic over k0. Since k0-

endomorphism algebra of B is R0, we obtain R0 GR 0
0.

Now assume that R0 is commutative and R0 GR 0
0. By Theorem 3 cE and cE 0

satisfy (Sh), i.e.
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cE ¼ f �NH=K ; cE 0 ¼ f 0 �NH=K

with characters f; f 0 of IK . We see that B is of CM-type over K , f is the Hecke

character of B over K and

EndKðBÞnQ ¼ R0KGKðffðaÞ j a A ClKgÞ:

Here Hecke characters are also viewed as functions of ideals. Since R0K and R 0
0K are

K-isomorphic, the maximal ð2; . . . ; 2Þ subextension L over K contained in R0K coincide

with that in R 0
0K . We have L ¼ KðffðaÞ j a A ClK ½2�gÞ, where ClK ½2� ¼ fa A ClK j

a
2 ¼ 1g. Observe that the map ClK ½2� C a ! fðaÞ2 A K�=K�2 is injective, since a

2 ¼
ðfðaÞ2Þ by (6). In particular we have

ffiffiffiffiffiffiffi

�1
p

B L. We may assume that E and E 0 are
not isogenous over H but isogenous over a quadratic extension k of H. Put x ¼ f=f 0.
Then x is a character of the idele class group CK of K and x �NH=K is the character

associated with k=H. Therefore k=H is abelian. Let N and N 0 be the norm subgroups

in CK corresponding to H and k, respectively.

Claim. CK=N
0ðGGalðk=KÞÞGD�N=N 0 with a subgroup D of CK=N

0 such that

DGClK .

We have only to show the corresponding assertion for the 2-Sylow subgroup of

CK=N
0. Let a be any ideal in K of even order n in ClK , which is prime to the

conductor of f. We have fðanÞ ¼ f 0ðanÞxðanÞ A K . If xðanÞ ¼ �1, then by assumption

we have
ffiffiffiffiffiffiffi

�1
p

A R0K , which is a contradiction. Therefore xðanÞ ¼ 1. Let a1; . . . ; ar be

a set of ideals of K such that they form a set of independent generators for the 2-Sylow

subgroup of ClK and denote by D 0 the subgroup of CK=N
0 generated by a1; . . . ; ar.

Since x is non-trivial on N=N 0, we have D 0 VN=N 0 ¼ 1. Thus our claim is proved.

Let k0 be the quadratic extension of K which corresponds to D by class field theory

and denote by x0 the character of IK associated to k0=K . Then we may assume that

f ¼ f 0x0. Take any ideal a of K prime to the conductor of f and f 0. Then by (7)

we have R0 VKðfðaÞÞ ¼ QðsÞ with s ¼ fðaÞ þ fðarÞ: QðsÞ is totally real (resp. of CM-

type) if and only if fðaarÞ > 0 (resp. fðaarÞ < 0Þ. Therefore R0 GR 0
0 implies that

x0ðaarÞ ¼ 1, hence x0 ¼ x
r
0 . This shows that k0 ¼ k

r
0 ; thus k0=Q is Galois. Since

k0 IK , we see that k0=Q is of type ð2; 2Þ. Hence we have cðEÞ ¼ cðE 0Þ. r

6. Examples.

First we consider non-exceptional case. For the sake of simplicity, we assume that

K is an imaginary quadratic field of discriminant D such that ClK GZ=2Z � Z=2Z;

hence in this case t ¼ 3 and the class number hK ¼ 4.

Let f0 be a character of UK which satisfies the condition (5). Then as explained in

Section 4, we obtain a Hecke character c0 ¼ f0 �NH=K of IH . Take any quadratic

extension k of H such that k=Q is Galois and denote by w the character of IH associated

with it. We put c ¼ c0 � w. Now choose a prime ideal p of K such that p is of order 2

in ClK and prime to the conductor of f0 and w. Let L be the decomposition field of p

in H and F be the subfield of L fixed by r. Then k=F is a Galois extension of degree

8. Let E0 and E1 be Q-curves such that cE0
¼ c0 and cE1

¼ c0 � w and put

B0 ¼ RH=LðE0Þ; B1 ¼ RH=LðE1Þ:
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Then they are abelian varieties of dimension 2 defined over F . Set:

S ¼ EndF ðB0ÞnQ; T ¼ EndF ðB1ÞnQ:

Proposition 7. Notation being as above, put s ¼ f0ðpÞ þ f0ðprÞ. Then S is a

quadratic field QðsÞ. Write S ¼ Qð ffiffiffi

n
p Þ and set:

S 0 ¼ Qð
ffiffiffiffiffiffiffiffiffi

D=n
p

Þ; S ¼ Qð
ffiffiffiffiffiffiffi

�n
p

Þ; S 0 ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�D=n
p

Þ:

(1) Assume that k=L is an extension of type ð2; 2Þ. If k=F is abelian, we have

T ¼ S and otherwise we have T ¼ S 0.
(2) Assume that k=L is cyclic of order 4. If k=F is abelian, we have T ¼ S and

otherwise we have T ¼S 0.

Proof. Since k=L is abelian, we can write w ¼ w 0 �NH=L for a character w 0 of IL.
Then c ¼ f �NH=L with f ¼ ðf0 �NL=KÞ � w 0, so that f is a Hecke character of B1 over

L. By Artin map we may regard w 0 as a character of Galðk=LÞ. Let P be a prime

ideal of L lying above p and we denote by s the Frobenius automorphism in k=L

associated with P. We have w 0ðPÞ ¼ w 0ðsÞ,

fðPÞ2 ¼ f0ðpÞ2w 0ðPÞ2 and fðPPrÞ ¼ f0ðpprÞw 0ðPPrÞ:

Let t be the non-trivial automorphism of k over H. Note that T ¼ QðfðPÞ þ fðPrÞÞ
and that T is totally real if and only if fðPPrÞ > 0.

In the case (1) we have w 0ðPÞ2 ¼ 1, hence KT ¼ KS. If k=F is abelian, w 0ðPÞ ¼
w 0ðPrÞ ¼ w 0ðrsrÞ. Thus T ¼ S. If k=F is non-abelian, we have rsr ¼ st. Since

w 0ðtÞ ¼ �1, we obtain w 0ðPPrÞ ¼ �1, which shows T ¼ S 0.
In the case (2) we have w 0ðPÞ2 ¼ �1, hence KT ¼ KS. If k=F is abelian,

w 0ðPPrÞ ¼ w 0ðPÞ2 ¼ �1 and hence T ¼ S. If k=F is non-abelian, we have w 0ðPPrÞ ¼
w 0ðs2tÞ ¼ 1, which shows T ¼S 0. r

Now let us determine the endomorphism algebras R0 ¼ EndQðRH=KðEÞÞnQ for

some Q-curves E.

1) D ¼ �4 � 3 � 7.
Let p and p 0 be the prime ideals of K such that p2 ¼ ð2þ

ffiffiffiffiffiffiffiffiffi

�21
p

Þ and p 02 ¼
ð10þ

ffiffiffiffiffiffiffiffiffi

�21
p

Þ. The decomposition field in H of p is Kð
ffiffiffiffiffi

21
p

Þ and that of p 0 is Kð
ffiffiffi

3
p

Þ.
We see that ClK is generated by p and p 0. Let q be the prime ideal of K with q2 ¼ ð3Þ.
Let f0 be a character of IK of conductor q such that

f0ððaÞÞ ¼
a

q

� �

a for every a A K�;

where ða=qÞ denotes the norm residue symbol. Then f0 satisfies (5) and put c0 ¼
f0 �NH=K . Using local characters (see §2), we define:

o1 ¼ h3h7 �NH=K ; o2 ¼ h�4 �NH=K :

Since ð21;�3Þ is trivial in Br2ðQÞ, there exists a D4-extension k0 over Q containing

Qð
ffiffiffiffiffiffiffi

�3
p

;
ffiffiffiffiffi

21
p

Þ. Let w be the character of IH associated with k0H=H. Then by The-

orem 2, the equivalence classes of Q-curves over H are exactly represented by the Hecke

characters c ¼ c0o, o A ho1;o2; wi.
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(a) c ¼ c0. A simple calculation shows that

f0ðp2Þ ¼ �2�
ffiffiffiffiffiffiffiffiffi

�21
p

¼
ffiffiffi

6
p

�
ffiffiffiffiffiffiffiffiffi

�14
p

2

 !2

and f0ðpprÞ ¼ f0ðð5ÞÞ ¼ �5:

Therefore f0ðpÞ þ f0ðprÞ ¼G
ffiffiffiffiffiffiffiffiffi

�14
p

. Similarly we have f0ðp 0Þ þ f0ðp 0rÞ ¼G
ffiffiffiffiffiffiffi

�2
p

, since

f0ðp 02Þ ¼ ðð
ffiffiffiffiffi

42
p

þ
ffiffiffiffiffiffiffi

�2
p

Þ=2Þ2 and f0ðp 0
p
0rÞ ¼ �11. Hence R0 ¼ Qð

ffiffiffiffiffiffiffi

�2
p

;
ffiffiffiffiffiffiffiffiffi

�14
p

Þ.
(b) c ¼ c0o1. We have:

h3h7ðp2Þ ¼ �1; h3h7ðð5ÞÞ ¼ 1; h3h7ðp 02Þ ¼ �1; h3h7ðð11ÞÞ ¼ �1:

This implies R0 ¼ Qð
ffiffiffiffiffiffiffi

�6
p

;
ffiffiffi

2
p

Þ.
(c) c ¼ c0 � w. We have:

k0H=Kð
ffiffiffiffiffi

21
p

Þ is of type ð2; 2Þ and k0H=Qð
ffiffiffiffiffi

21
p

Þ is abelian;

k0H=Kð
ffiffiffi

3
p

Þ is cyclic of order 4 and k0H=Qð
ffiffiffi

3
p

Þ is non-abelian.

Applying Proposition 7, we obtain that R0 is a division quaternion algebra ð�42;�14Þ
over Q.

The remaining cases are similarly computed and we have:

c R0 (field) c R0 (quaternion alg.)

c0 Qð
ffiffiffiffiffiffiffi

�2
p

;
ffiffiffiffiffiffiffiffiffi

�14
p

Þ c0w ð�14;�42Þ
c0o1 Qð

ffiffiffiffiffiffiffi

�6
p

;
ffiffiffi

2
p

Þ c0o1w ð�6; 42Þ
c0o2 Qð

ffiffiffiffiffiffiffi

�6
p

;
ffiffiffiffiffiffiffiffiffi

�42
p

Þ c0o2w ð�6;�2Þ
c0o1o2 Qð

ffiffiffiffiffiffiffiffiffi

�14
p

;
ffiffiffiffiffiffiffiffiffi

�42
p

Þ c0o1o2w ð�14; 2Þ

Remark. The division quaternion algebras ð�14;�42Þ and ð�6;�2Þ over Q are

isomorphic because they ramify at the same primes 2 and y. The quaternion algebras

ð�6; 42Þ and ð�14; 2Þ are isomorphic to M2ðQÞ.
2) D ¼ �3 � 5 � 13.

Let p and p
0 be the prime ideals of K such that p

2 ¼ ðð1þ
ffiffiffiffi

D
p

Þ=2Þ and p
02 ¼

ðð17þ
ffiffiffiffi

D
p

Þ=2Þ. The decomposition field in H of p is Kð
ffiffiffiffiffi

65
p

Þ and that of p 0 is Kð
ffiffiffi

5
p

Þ.
We see that ClK is generated by p and p

0. Let q be the prime ideal of K with q
2 ¼ ð3Þ.

Let f0 be a character of IK of conductor q such that

f0ððaÞÞ ¼
a

q

� �

a for every a A K�

and put c0 ¼ f0 �NH=K . As in Case 1) we define:

o1 ¼ h5 � j �NH=K ; o2 ¼ h13 � j �NH=K :

Since ð13;�3Þ is trivial in Br2ðQÞ, there exists a D4 extension k0 over Q containing

Qð
ffiffiffiffiffiffiffi

�3
p

;
ffiffiffiffiffi

13
p

Þ. Let w be the character of IH associated with k0H=H. Then by

Theorem 2, the equivalence classes of Q-curves over H are represented by the Hecke

characters c ¼ c0o, o A ho1;o2; wi. By similar computations as in 1), we obtain:
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c R0 (field) c R0 (quaternion alg.)

c0 Qð
ffiffiffiffiffi

13
p

;
ffiffiffiffiffiffiffi

�5
p

Þ c0w ð�15;�39Þ
c0o1 Qð

ffiffiffiffiffiffiffiffiffi

�13
p

;
ffiffiffiffiffiffiffi

�5
p

Þ c0o1w ð15;�39Þ
c0o2 Qð

ffiffiffiffiffiffiffiffiffi

�13
p

;
ffiffiffi

5
p

Þ c0o2w ð15; 39Þ
c0o1o2 Qð

ffiffiffiffiffi

13
p

;
ffiffiffi

5
p

Þ c0o1o2w ð�15; 39Þ

Remark. The division quaternion algebras ð15;�39Þ and ð�15; 39Þ over Q are

isomorphic because they ramify at the same primes 3 and 13.

Next we give an example of exceptional case.

Let K ¼ Qð
ffiffiffiffiffiffiffi

�5
p

Þ. Then

hK ¼ t ¼ 2; H ¼ Kð
ffiffiffiffiffiffiffi

�1
p

Þ; Hð2Þ ¼ Hð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffi

5
pq

Þ:
In this case there exist two classes of Q-curves over Hð2Þ by Theorem 2. Let m be the

prime ideal of K with m
2 ¼ ð2Þ. As in the proof of Theorem 2, there exists a Q-curve

E0 over Hð2Þ such that cE0
¼ f0 �NHð2Þ=K , where f0 : UK ;2 !G1 has conductor m3. Let

q be the prime ideal of K such that q
2 ¼ ð2þ

ffiffiffiffiffiffiffi

�5
p

Þ. The Frobenius automorphism

associated with q in GalðHð2Þ=KÞ has order 4. We easily have

f0ðq4Þ ¼ �ð2þ
ffiffiffiffiffiffiffi

�5
p

Þ2; f0ðqqrÞ ¼ �3:

Therefore we obtain

f0ðqÞ2 þ f0ðqrÞ2 ¼G2
ffiffiffi

5
p

; f0ðqÞ þ f0ðqrÞ ¼Gð
ffiffiffiffiffiffiffi

�5
p

H
ffiffiffiffiffiffiffi

�1
p

Þ:
Hence we have R0 ¼ EndQðRHð2Þ=KðE0ÞÞnQGH. The other class of Q-curves over

Hð2Þ is represented by a Hecke character ðf0 � h5Þ �NHð2Þ=K . Computing similarly we

find that R0 GQð
ffiffiffi

5
p

ÞlQð
ffiffiffi

5
p

Þ.
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