A classification of *Q*-curves with complex multiplication

By Tetsuo Nakamura

(Received Jan. 31, 2002) (Revised Dec. 16, 2002)

Abstract. Let *H* be the Hilbert class field of an imaginary quadratic field *K*. An elliptic curve *E* over *H* with complex multiplication by *K* is called a *Q*-curve if *E* is isogenous over *H* to all its Galois conjugates. We classify *Q*-curves over *H*, relating them with the cohomology group $H^2(H/Q, \pm 1)$. The structures of the abelian varieties over *Q* obtained from *Q*-curves by restriction of scalars are investigated.

1. Introduction.

Let *K* be an imaginary quadratic field and *H* the Hilbert class field of *K*. Let *E* be an elliptic curve over *H* with complex multiplication by *K*. We say that *E* is a *Q*-curve if *E* and E^{σ} are isogenous over *H* for all $\sigma \in \text{Gal}(H/Q)$. Denote by ψ_E the Hecke character of *H* associated with *E*. Then *E* is a *Q*-curve if and only if $\psi_E = \psi_E^{\sigma}$ for all $\sigma \in \text{Gal}(H/Q)$.

As in the case without complex multiplication (see $[\mathbf{Q}]$), we attach to a \mathbf{Q} -curve E a two-cocycle class $c(E) \in H^2(H/\mathbf{Q}, K^{\times})$. For \mathbf{Q} -curves E, E', we see that c(E) = c(E') if and only if $\psi_E = \psi_{E'} \cdot \chi \circ N_{K/\mathbf{Q}}$ with a quadratic Dirichlet character χ . Let Γ be the subset of $H^2(H/\mathbf{Q}, K^{\times})$ consisting of c(E) for all \mathbf{Q} -curves E over H. We show that there exists a bijection between Γ and a subspace Y of $H^2(H/\mathbf{Q}, \pm 1)$ over F_2 . Relating Y to an embedding problem associated with the exact sequence

$$1 \rightarrow \pm 1 \rightarrow G \rightarrow \operatorname{Gal}(H/Q) \rightarrow 1,$$

we characterize the structure of Y and, as a consequence, we obtain that $\dim_{F_2} Y = t(t-1)/2$, where t is the number of distinct prime factors of the discriminant of K. In some case where K is called exceptional, there are no **Q**-curves with complex multiplication over H. Replacing H by the ring class field of conductor 2, we obtain a similar classification of **Q**-curves (Theorem 2).

The abelian variety $B = R_{H/K}E$ obtained by restriction of scalars from a Q-curve E can be defined over Q. The structures of the endomorphism algebras $R = \operatorname{End}_Q B \otimes Q$ are studied according to this classification (Section 5). Some examples are discussed in the last section.

NOTATION. Throughout the paper we fix the following notation. *K*: an imaginary quadratic field of discriminant $D \neq -3, -4$. *t*: the number of distinct primes dividing *D*.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11G05; Secondary 11G10, 11G15. Key Words and Phrases. Q-curve, elliptic curve, complex multiplication, embedding problem, restriction of scalars.

- H: the Hilbert class field of K.
- Cl_K : the ideal class group of K.

g: $\operatorname{Gal}(H/K)$.

- ρ : the complex conjugation.
- j_E : the *j*-invariant of an elliptic curve E.

All *Q*-curves treated in this paper are assumed to have complex multiplication. The symbol "dim" always refers to the dimension over F_2 . Galois cohomology groups $H^{i}(\text{Gal}(M/L), A)$ are denoted by $H^{i}(M/L, A)$. We call K exceptional if the discriminant D of K is of the form

$$D = -4p_1 \cdots p_{t-1} \quad (t \ge 2)$$

where p_1, \ldots, p_{t-1} are primes satisfying $p_1 \equiv \cdots \equiv p_{t-1} \equiv 1 \mod 4$.

2. Quadratic characters of local unit groups of K.

Let p be a rational prime and p a prime ideal of K dividing p. Denote by $U_{\rm p}$ the group of local units for \mathfrak{p} and put $U_p = \prod_{\mathfrak{p}|p} U_{\mathfrak{p}}$. Let X_p be the set of characters $\lambda: U_p \to \pm 1$. We regard X_p as a vector space over F_2 . The complex conjugation ρ acts on X_p and put $X_p^0 = \{\lambda \in X_p \mid \lambda^\rho = \lambda\}$. We shall determine a basis of X_p .

1) p is odd. Denote by $\kappa_p: \mathbb{Z}_p^{\times} \to \pm 1$ the unique non-trivial character and put $\lambda_p = \kappa_p \circ N_{K/Q}.$

PROPOSITION 1. (i) Suppose that p splits in K, i.e. $(p) = \mathfrak{p}\mathfrak{p}^{\rho}$. Let $\lambda_{\mathfrak{p}} : U_{\mathfrak{p}} \cong \mathbb{Z}_{p}^{\times} \to \mathbb{Z}_{p}$ ± 1 be the unique non-trivial character. Then $\lambda_{\mathfrak{p}}\lambda_{\mathfrak{p}}^{\rho} = \kappa_{p} \circ N_{K/\mathbf{Q}}$ and $X_{p} = \langle \lambda_{\mathfrak{p}}, \lambda_{\mathfrak{p}}^{\rho} \rangle$ and $X_p^0 = \langle \lambda_p \rangle.$

(ii) If p is inert in K, then $X_p = X_p^0 = \langle \lambda_p \rangle$. (iii) If p is ramified in K, then there exists a unique non-trivial character η_p such that $\eta_p(-1) = (-1)^{(p-1)/2}$ and $X_p = X_p^0 = \langle \eta_p \rangle$.

2) p = 2. Let κ_4, κ_8 be the characters of \mathbb{Z}_2^{\times} satisfying

$$\kappa_4(n) = (-1)^{(n-1)/2}, \quad \kappa_8(n) = (-1)^{(n^2-1)/8}$$
 for odd integers *n*.

We put $\varepsilon_4 = \kappa_4 \circ N_{K/Q}$, $\varepsilon_8 = \kappa_8 \circ N_{K/Q}$.

If 2 is inert in K, we have

$$U_2/U_2^2 = \langle -1, 1+2\omega, 1+4\omega \rangle \cong (\mathbb{Z}/2\mathbb{Z})^3$$
 with $\omega^2 + \omega + 1 = 0$.

Define $v \in X_2$ by Ker $v = \langle 1 + 2\omega, 1 + 4\omega \rangle$. We have $vv^{\rho} = \varepsilon_4$.

If 2 is ramified in K, put D = 4m. If m is odd, we have

$$U_2/U_2^2 = \langle \sqrt{m}, 3 - 2\sqrt{m}, 5 \rangle \cong (\mathbb{Z}/2\mathbb{Z})^3.$$

We define v and $\eta_{-4} \in X_2$ by Ker $v = \langle \sqrt{m}, 3 - 2\sqrt{m} \rangle$ and Ker $\eta_{-4} = \langle 3 - 2\sqrt{m}, 5 \rangle$. Then $vv^{\rho} = \varepsilon_8$, $\eta_{-4} = \eta_{-4}^{\rho}$, $\eta_{-4}(-1) = 1$. If *m* is even, we have

$$U_2/U_2^2 = \langle 1 + \sqrt{m}, -1, 5 \rangle \cong (\mathbb{Z}/2\mathbb{Z})^3.$$

Define η_8 and $\eta_{-8} \in X_2$ by Ker $\eta_8 = \langle 1 + \sqrt{m}, -1 \rangle$ and Ker $\eta_{-8} = \langle 1 + \sqrt{m}, -5 \rangle$. Then if $D/8 \equiv 1 \mod 4$, we have $\eta_8^{\rho} = \eta_8$, $\eta_{-8}\eta_{-8}^{\rho} = \varepsilon_4$ and if $D/8 \equiv -1 \mod 4$, we have $\eta_{-8}^{\rho} = \eta_{-8}, \ \eta_8 \eta_8^{\rho} = \varepsilon_4$. Notation being as above, we obtain

PROPOSITION 2. (i) Assume that 2 splits in K, i.e. $(2) = \mathfrak{mm}^{\rho}$. Let $j: U_2 \rightarrow U_{\mathfrak{m}} \cong \mathbb{Z}_2^{\times}$ be the projection and put $v = \kappa_4 \circ j$, $\mu = \kappa_8 \circ j$. Then we have $X_2 = \langle v, \mu, \varepsilon_4 = vv^{\rho}, \varepsilon_8 = \mu\mu^{\rho} \rangle$ and $X_2^0 = \langle \varepsilon_4, \varepsilon_8 \rangle$.

(ii) If 2 is inert in \overline{K} , then we have $X_2 = \langle v, \varepsilon_4 = vv^{\rho}, \varepsilon_8 \rangle$ and $X_2^0 = \langle \varepsilon_4, \varepsilon_8 \rangle$.

(iii) Assume 2 is ramified in K. If $D/4 \ (\neq -1)$ is odd, we have $X_2 = \langle v, \eta_{-4}, \varepsilon_8 = vv^{\rho} \rangle$ and $X_2^0 = \langle \eta_{-4}, \varepsilon_8 \rangle$. If D/4 is even, we have

$$\begin{split} \eta_8(-1) &= 1, \quad \eta_{-8}(-1) = -1, \quad X_2 = \langle \eta_8, \eta_{-8}, \varepsilon_4 \rangle, \\ X_2^0 &= \begin{cases} \langle \eta_8, \varepsilon_4 = \eta_{-8} \eta_{-8}^{\rho} \rangle, & \text{if } D/8 \equiv 1 \mod 4 \\ \langle \eta_{-8}, \varepsilon_4 = \eta_8 \eta_8^{\rho} \rangle, & \text{if } D/8 \equiv -1 \mod 4. \end{cases} \end{split}$$

3. An embedding problem associated with the Hilbert class field.

An element γ of the Galois cohomology group $H^2(H/Q, \pm 1)$ corresponds to an equivalence class of group extensions

(1)
$$1 \to \pm 1 \to G \to \operatorname{Gal}(H/Q) \to 1.$$

If there exists a quadratic extension k of H such that k/Q is Galois and the natural map $\operatorname{Gal}(k/Q) \to \operatorname{Gal}(H/Q)$ corresponds to the epimorphism in (1), we say that an embedding problem $(H/Q, \pm 1, \gamma)$ has a solution k.

Let Y be the set of $\gamma \in H^2(H/Q, \pm 1)$ such that $(H/Q, \pm 1, \gamma)$ has a solution. We see that Y is a F_2 -subspace of $H^2(H/Q, \pm 1)$. Write $g = \text{Gal}(H/K) \cong \text{Cl}_K$ and denote by $\text{Ext}(g, \pm 1)$ the elements of $H^2(g, \pm 1)$ corresponding to extensions of g by $\{\pm 1\}$ that are abelian groups. The vector space over F_2 of bilinear alternating forms on g/g^2 is denoted by Alt(g). Then we have an exact sequence

$$0 \to \operatorname{Ext}(\mathfrak{g}, \pm 1) \to H^2(\mathfrak{g}, \pm 1) \to \operatorname{Alt}(\mathfrak{g}) \to 0.$$

By [M, §1], dim Ext($\mathfrak{g}, \pm 1$) = t - 1, dim $H^2(\mathfrak{g}, \pm 1) = t(t - 1)/2$, since dim $\mathfrak{g}/\mathfrak{g}^2 = t - 1$ (t is the number of distinct primes dividing the discriminant of K).

Let res: $H^2(H/Q, \pm 1) \to H^2(g, \pm 1)$ be the restriction map and put $Y_0 = \{\gamma \in Y \mid \operatorname{res}(\gamma) \in \operatorname{Ext}(g, \pm 1)\}$. Let k be a solution of $(H/Q, \pm 1, \gamma)$ with $\gamma \in Y_0$. Then k is a quadratic extension of H such that k/Q is Galois and k/K is abelian. We denote by

$$U_K = \prod_p U_p$$

the maximal compact subgroup of the idele group I_K of K and by K_{∞}^{\times} the archimedean part of I_K . Let $\chi = \chi_{k/H}$ be the character of I_H corresponding to k/H. Since k/K is abelian, there is a non-trivial character

$$\theta: U_K K^{\times} K_{\infty}^{\times} \to \pm 1$$

such that $\chi = \theta \circ N_{H/K}$ and $\theta(K^{\times}K_{\infty}^{\times}) = 1$; hence θ is determined by its restriction on U_K . Since k/Q is Galois, we have $\chi^{\rho} = \chi$ and this means that $\theta^{\rho} = \theta$. Conversely for any non-trivial character $\theta : U_K \to \pm 1$ such that

$$\theta^{\rho} = \theta$$
 and $\theta(-1) = 1$,

 $\chi = \theta \circ N_{H/K}$ determines a solution k of $(H/Q, \pm 1, \gamma)$ for some $\gamma \in Y_0$.

T. NAKAMURA

PROPOSITION 3. If K is exceptional (see §1), we have dim $Y_0 = t$. Otherwise we have dim $Y_0 = t - 1$.

PROOF. Let W be the set of characters $\theta: U_K \to \pm 1$ such that $\theta^{\rho} = \theta$ and $\theta(-1) = 1$. Denote by W_0 the set of $\theta \in W$ of the form $\theta = \kappa \circ N_{K/Q}$ with a quadratic Dirichlet character κ . Noting that the characters in W_0 exactly correspond to the trivial class in $H^2(H/Q, \pm 1)$, we obtain $Y_0 \cong W/W_0$. For a rational prime l, we denote by l^* the prime discriminant defined as follows;

$$l^* = \begin{cases} (-1)^{(l-1)/2}l, & \text{if } l \text{ is odd} \\ -4,8 \text{ or } -8, & \text{if } l = 2. \end{cases}$$

We have the unique decomposition of D into prime discriminants:

$$D = p_1^* \cdots p_r^* q_1^* \cdots q_s^* \quad (t = r + s)$$

where p_1^*, \ldots, p_r^* are positive discriminants or -4 and q_1^*, \ldots, q_s^* are negative discriminants except -4. If l^* appears in the above decomposition, we define

$$\theta_l = \begin{cases} \eta_l, & \text{if } l \text{ is odd} \\ \eta_{l^*}, & \text{if } l = 2, \end{cases}$$

where η_l are defined in Proposition 1 and 2. Composing with the projection $U_K \to U_l$, we also regard θ_l as a character of U_K . From Proposition 1 and 2 one deduces that $\theta_{p_1}, \ldots, \theta_{p_r}, \theta_{q_1}\theta_{q_2}, \ldots, \theta_{q_l}\theta_{q_s}$ generate W/W_0 and considering their conductors, they are linearly independent. This completes the proof.

Theorem 1. $\dim(Y/Y_0) = (t-1)(t-2)/2$.

PROOF. If $t \le 2$, then Alt(g) = (0), so that $Y = Y_0$ and our statement holds. Assume $t \ge 3$. Composing the natural map

$$H^2(\mathfrak{g},\pm 1) \to H^2(\mathfrak{g},\pm 1)/\operatorname{Ext}(\mathfrak{g},\pm 1) \cong \operatorname{Alt}(\mathfrak{g})$$

with the restriction map $Y \subset H^2(H/\mathbf{Q}, \pm 1) \to H^2(\mathfrak{g}, \pm 1)$, we obtain a linear map $g: Y \to \operatorname{Alt}(\mathfrak{g})$. Since $\operatorname{Ker} g = Y_0$ and $\dim \operatorname{Alt}(\mathfrak{g}) = (t-1)(t-2)/2$, it suffices to show that g is surjective. Let $D = \prod_{i=1}^{t} p_i^*$ be the decomposition of D into prime discriminants. We may suppose that p_1, \ldots, p_{t-1} are odd primes. The genus field H_0 of K is $K(\sqrt{p_1^*}, \ldots, \sqrt{p_{t-1}^*})$ and $\operatorname{Gal}(H_0/K) \cong \mathfrak{g}/\mathfrak{g}^2 \cong (\mathbb{Z}/2\mathbb{Z})^{t-1}$. Let s_1, \ldots, s_{t-1} be elements of $\mathfrak{g}/\mathfrak{g}^2$ such that

$$s_i(\sqrt{p_i^*}) = -\sqrt{p_i^*}, \quad s_i(\sqrt{p_j^*}) = \sqrt{p_j^*} \quad (i \neq j).$$

Clearly $\{s_1, \ldots, s_{t-1}\}$ is a basis of g/g^2 . For $i, j \ (1 \le i < j \le t-1)$, let $f_{i,j}$ denote an element of Alt(g) satisfying

$$f_{i,j}(s_i, s_j) = 1$$
 and $f_{i,j}(s_k, s_l) = 0$ if $(i, j) \neq (k, l)$ and $k < l$.

Then $\{f_{i,j} | 1 \le i < j \le t-1\}$ forms a basis of Alt(g). Therefore it suffices to show that for each $f_{i,j}$, there exists a quadratic extension k/H such that k is a solution of the embedding problem $(H/Q, \pm 1, \gamma)$ with $g(\gamma) = f_{i,j}$. For a number field M and given

elements $a, b \in M^{\times}$, we denote by $(a, b) \in Br_2(M) = H^2(Gal(\overline{M}/M), \pm 1)$ the class of the quaternion algebra over M generated by two elements I, J with

$$I^2 = a, \quad J^2 = b, \quad JI = -IJ.$$

We claim that there exists $\gamma \in Y$ such that $g(\gamma) = f_{1,2}$. If one of (p_1^*, p_2^*) , $(p_1^*, p_1^* p_2^*)$ or $(p_2^*, p_1^* p_2^*)$ is trivial in Br₂(Q), then there exists a Galois extension M_0/Q containing $Q(\sqrt{p_1^*}, \sqrt{p_2^*})$ such that Gal (M_0/Q) is isomorphic to the dihedral group D_4 of degree 8 (cf. [J-Y, p. 177]). Put

$$L = K(\sqrt{p_1^*}, \sqrt{p_2^*}), \quad M = M_0 K, \quad k = M_0 H.$$

Obviously k is Galois over Q and Gal(k/Q) defines an element $\gamma \in Y$. We have the following commutative diagram with exact rows:

Let $f = g(\gamma) \in Alt(\mathfrak{g})$. Since $Gal(M/K) \cong D_4$, we obtain $f(s_1, s_2) = 1$. We see that Ker $\mu \cong$ Ker v and Ker v in g/g^2 is $\langle s_3, \ldots, s_{t-1} \rangle$. Hence it follows that $f(s_i, s_i) = 0$ for $3 \le j \le t-1$. This means $g(\gamma) = f_{1,2}$, as desired. If $p_1 \equiv p_2 \equiv -1 \mod 4$, then $(p_1^*, p_1^*p_2^*)$ or $(p_2^*, p_1^*p_2^*)$ is trivial in Br₂(**Q**). Therefore we may suppose that $p_1(=p_1^*) \equiv$ 1 mod 4. If p_2 splits in $Q(\sqrt{p_1})$, then (p_1, p_2^*) is trivial in $Br_2(Q)$. Consequently, we may suppose that p_2 is inert in $Q(\sqrt{p_1})$. Since $L_1 = K(\sqrt{p_1})/K$ is unramified, we see that the Hilbert symbol $((p_1, p_2^*)/l)$ is trivial for each place l of K. This implies that (p_1, p_2^*) is trivial in $Br_2(K)$, so that there exist $a, b \in K^{\times}$ satisfying $p_2^* = a^2 - b^2 p_1$. Let \mathfrak{p}_2 be the prime ideal of K dividing p_2 . Then \mathfrak{p}_2 is inert in L_1 and let \mathfrak{P}_2 be the prime ideal of L_1 dividing \mathfrak{p}_2 . Put $\alpha = a + b\sqrt{p_1} \in L_1$. Since $N_{L_1/K}(\alpha^{-1}\mathfrak{P}_2) = \mathfrak{o}_K$, there is an ideal \mathfrak{A} in L_1 such that $\alpha^{-1}\mathfrak{P}_2 = \mathfrak{A}/\mathfrak{A}^{\tau}$ where τ is the generator of $\operatorname{Gal}(L_1/K)$. Choose an odd prime ideal \mathfrak{L} of degree 1 in L_1 which belongs to the ideal class of \mathfrak{A} . Then $\mathfrak{P}_2\mathfrak{L}^{\tau}/\mathfrak{L}$ is a principal ideal (β) and $N_{L_1/K}(\beta) = N_{L_1/K}(\alpha) = p_2^*$. Therefore $M = L_1(\sqrt{\beta}, \sqrt{p_2^*})$ is a D_4 -extension of K containing $K(\sqrt{p_1}, \sqrt{p_2^*})$. Moreover, it is now easy to check that Gal(MH/K) determines an element $\delta \in H^2(\mathfrak{g}, \pm 1)$ which corresponds to $f_{1,2}$. We note that

$$(\beta\beta^{\rho}) = N_{L_1/\mathcal{Q}(\sqrt{p_1})}(\mathfrak{P}_2\mathfrak{L}^{\tau}/\mathfrak{L}) = (p_2l)/(\mathfrak{L}\mathfrak{L}^{\rho})^2,$$

where *l* is the rational prime contained in \mathfrak{L} . Since the class number of $Q(\sqrt{p_1})$ is odd, $\mathfrak{L}\mathfrak{L}^{\rho}$ is principal, so that $\beta\beta^{\rho} = p_2 la^2$ with $a \in Q(\sqrt{p_1})$. Admitting the following lemma, our proof will be completed immediately.

LEMMA 1. There exists an abelian extension $H(\sqrt{c})$ $(c \in H)$ over K such that $cc^{\rho}\beta\beta^{\rho} \in H^{\times 2}$.

Put $k = H(\sqrt{\beta c})$. Notice that k is Galois over Q, since $H(\sqrt{\beta}) = MH$ is Galois over K. Since $Gal(H(\sqrt{c})/K)$ corresponds to an element $\delta_0 \in Ext(g, \pm 1)$, we see that Gal(k/Q) corresponds to $\gamma \in H^2(H/Q, \pm 1)$ such that $res(\gamma) = \delta + \delta_0$; thus $g(\gamma) = f_{1,2}$, as claimed. Applying the same arguments for any $f_{i,j}$, our proof of Theorem 1 is completed.

PROOF OF LEMMA 1. For a non-trivial character $\chi: U_K \to \pm 1$ satisfying $\chi(-1) = 1$, there exists the unique quadratic extension $H(\sqrt{c})$ over H such that $\chi \circ N_{H/K}$ is the character of I_H corresponding to $H(\sqrt{c})/H$ and $H(\sqrt{c})/K$ is abelian. We need to choose $c \in H^{\times}$ such that $cc^{\rho} \in (-1)^{(p_2-1)/2} lH^{\times 2}$. Thus it suffices to show that χ can be chosen such that $\chi \chi^{\rho} = \kappa \circ N_{K/Q}$, where κ is the quadratic Dirichlet character corresponding to a quadratic field $S = Q(\sqrt{(-1)^{(p_2-1)/2} ln})$ for some $n \in \mathbb{Z}$ with $\sqrt{n} \in H$. We consider cases.

1) If $p_2 \equiv l \equiv -1 \mod 4$, let l be a prime of K dividing l and put $\chi = \lambda_1 \eta_{p_2}$, where λ_1, η_{p_2} are those defined in Proposition 1. We have $\chi \chi^{\rho} = \kappa_l \circ N_{K/Q}$ and $S = Q(\sqrt{-l})$.

2) Assume $p_2 \equiv -1 \mod 4$ and $l \equiv 1 \mod 4$. If *D* is odd, put $\chi = \lambda_1 \eta_{p_2} v$ with *v* defined in Proposition 2. Then $\chi \chi^{\rho} = \kappa_l \kappa_4 \circ N_{K/Q}$ and $S = Q(\sqrt{-l})$. If D = 4m with an odd integer *m*, put $\chi = \lambda_1$. Then $S = Q(\sqrt{l})$. Since $\sqrt{-1} \in H$, this satisfies our requirement. If D = 8m with $m \equiv 1 \mod 4$, put $\chi = \lambda_1 \eta_{p_2} \eta_{-8}$ and if D = 8m with $m \equiv -1 \mod 4$, put $\chi = \lambda_1 \eta_8$. Then we have $\chi \chi^{\rho} = (\kappa_l \kappa_4) \circ N_{K/Q}$.

3) Assume $p_2 \equiv 1 \mod 4$. We claim that it is always possible to choose β such that $l \equiv 1 \mod 4$. We put

$$K_0 = K(\sqrt{-1}), \quad L_0 = L_1(\sqrt{-1}) = K(\sqrt{p_1}, \sqrt{-1})$$

and let σ and τ be generators of $\operatorname{Gal}(L_0/L_1)$ and $\operatorname{Gal}(L_0/K_0)$, respectively. Decompose p_2 as $\pi\pi^{\sigma}$ in $\mathcal{Q}(\sqrt{-1})$. There exists a prime ideal \mathfrak{P}_0 in L_0 such that $N_{L_0/K_0}(\mathfrak{P}_0) = (\pi)$. Since (p_1, π) is trivial in $\operatorname{Br}_2(K_0)$, there is an $\alpha_1 \in L_0$ such that $N_{L_0/K_0}(\alpha_1) = \pi$. This implies that there exists a prime ideal \mathfrak{L}_0 in L_0 of degree 1 such that $\mathfrak{P}_0 \mathfrak{L}_0^{\tau}/\mathfrak{L}_0$ is principal. Putting

$$\mathfrak{P}_2 = N_{L_0/L_1}(\mathfrak{P}_0), \quad \mathfrak{L} = N_{L_0/L_1}(\mathfrak{L}_0),$$

we see that $\mathfrak{P}_2\mathfrak{L}^{\tau}/\mathfrak{L}$ is a principal ideal (β) with $N_{L_1/K}(\beta) = N_{L_0/K}(\alpha_1) = p_2$. By the choice of \mathfrak{L}_0 , the rational prime l in \mathfrak{L} satisfies $l \equiv 1 \mod 4$, as claimed. Therefore $\chi = \lambda_1$ satisfies our requirement.

4. Elliptic *Q*-curves with complex multiplication.

Let *L* be a Galois extension over *Q* containing *H*. An elliptic curve *E* over *L* with complex multiplication by *K* is called a *Q*-curve if E^{σ} and *E* are isogenous over *L* for all $\sigma \in \text{Gal}(L/Q)$. Let ψ_E be the Hecke character of the idele group I_L of *L* associated with *E*. Then *E* is a *Q*-curve if and only if $\psi_E = \psi_E^{\sigma}$ for all $\sigma \in \text{Gal}(L/Q)$ (cf. [G, §11]). For a *Q*-curve *E* over *L*, choose isogenies $\varphi_{\sigma} : E^{\sigma} \to E$ for $\sigma \in \text{Gal}(L/Q)$. Then

$$c(\sigma, au)=arphi_{\sigma}arphi_{ au}^{\sigma}(arphi_{\sigma au})^{-1}\in K^{ imes}$$

defines a two-cocycle and the cohomology class of $\{c(\sigma, \tau)\}$ in $H^2(L/\mathbf{Q}, K^{\times})$ depends only on the curve E, and not on the isogenies φ_{σ} chosen. We will denote by c(E)this cohomology class. Let us denote by Γ_L the subset of $H^2(L/\mathbf{Q}, K^{\times})$ consisting of elements of the form c(E) for all \mathbf{Q} -curves E over L. Furthermore, we denote by Y_L the subspace of $H^2(L/\mathbf{Q}, \pm 1)$ consisting of all γ such that the embedding problems $(L/\mathbf{Q}, \pm 1, \gamma)$ are solvable. **PROPOSITION 4.** If Γ_L is not empty, then Y_L operates on Γ_L simply transitively in an obvious manner. For Q-curves E and E', we have c(E) = c(E') if and only if $\psi_E = \psi_{E'} \cdot \kappa \circ N_{L/Q}$, where κ is a quadratic Dirichlet character.

PROOF. For Q-curves E and E' over L, there exists an isogeny $\lambda : E \to E'$ defined over a finite extension of L. For each $\sigma \in \operatorname{Gal}(\overline{L}/L)$, we have $\lambda^{\sigma} = \lambda v(\sigma)$ with $v(\sigma) \in K^{\times}$. Since $\lambda^{\sigma^n} = \lambda$ for sufficiently large n, we have $v(\sigma)^n = 1$, so that $v(\sigma) = \pm 1$. This means that if E and E' are not isogenous over L, there exists the unique quadratic extension k over L such that λ is defined over k. We also see that E and E' are isogenous over k^{σ} for all $\sigma \in \operatorname{Gal}(L/Q)$, because E and E' are Q-curves; hence k is Galois over Q. Therefore the Galois group $\operatorname{Gal}(k/Q)$ determines a cohomology class $\gamma = \{\gamma(\sigma, \tau)\} \in$ $H^2(L/Q, \pm 1)$; thus $\gamma \in Y_L$. For each $\sigma \in \operatorname{Gal}(L/Q)$, choose an extension $\tilde{\sigma} \in \operatorname{Gal}(k/Q)$ of σ . Then $\gamma(\sigma, \tau) = \lambda^{\tilde{\sigma}\tilde{\tau}}/\lambda^{\tilde{\sigma}\tilde{\tau}}$ for $\sigma, \tau \in \operatorname{Gal}(L/Q)$. One can find isogenies

$$\varphi_{\sigma}: E^{\sigma} \to E, \quad \varphi'_{\sigma}: E'^{\sigma} \to E'$$

such that $\lambda \varphi_{\sigma} = \varphi'_{\sigma} \lambda^{\tilde{\sigma}}$. Then by a short computation, we obtain

$$c(E) = c(E')\gamma.$$

Now we claim that the natural map

$$H^2(L/\boldsymbol{Q},\pm 1) \to H^2(L/\boldsymbol{Q},K^{\times})$$

is injective. From the exact sequence

$$1 \to \pm 1 \to K^{\times} \to K^{\times 2} \to 1$$

it suffices to show that $H^1(L/Q, K^{\times 2}) = (0)$. This follows easily from the restriction-inflation sequence

$$0 \to H^1(K/\mathcal{Q}, K^{\times 2}) \to H^1(L/\mathcal{Q}, K^{\times 2}) \to H^1(L/K, K^{\times 2}),$$

since $H^1(K/Q, K^{\times 2}) = (0)$ and $H^1(L/K, K^{\times 2}) = \text{Hom}(\text{Gal}(L/K), K^{\times 2}) = (0)$. If c(E) = c(E') and E and E' are not isogenous over L, let k be the quadratic extension of L stated as above. Then the group extension

$$1 \to \pm 1 \to \operatorname{Gal}(k/\mathbf{Q}) \to \operatorname{Gal}(L/\mathbf{Q}) \to 1$$

splits, which implies that the character associated with k/L is of the form $\kappa \circ N_{L/Q}$ with a quadratic Dirichlet character κ . Since E' is isogenous to the twist of E with respect to k/L, the last statement is clear.

In [S] a class of elliptic curves (more generally abelian varieties) with complex multiplication whose Hecke characters satisfy a certain condition are studied. We recall briefly what we need here.

For an integer $f \ge 1$, let $H^{(f)}$ denote the ring class field of K of conductor f. Let

$$U_{K,f} = \{ u \in U_K \, | \, u(\mathbf{Z} + f \mathfrak{o}_K) = \mathbf{Z} + f \mathfrak{o}_K \}.$$

Then $P = U_{K,f}K^{\times}K_{\infty}^{\times}$ is the subgroup of I_K corresponding to $H^{(f)}$ by class field theory. Let E be an elliptic curve over $H^{(f)}$ with End $E = \mathbb{Z} + f\mathfrak{o}_K$. Let us consider the following condition on the Hecke character ψ_E of E (see [S, Theorem 4]). (Sh) There exists a Hecke character $\phi: U_{K,f}K^{\times}K_{\infty}^{\times} \to \mathbb{C}^{\times}$ such that $\psi_E = \phi \circ N_{H^{(f)}/K}$.

Here ϕ must satisfy the following conditions:

(3)
$$\phi(K^{\times}) = 1, \quad \phi(y) = y^{-1} \text{ for every } y \in K_{\infty}^{\times},$$

(4)
$$\phi(U_{K,f}) = \pm 1$$
 and $\phi(-1) = -1$ for $-1 \in U_{K,f}$.

If ψ_E satisfies (Sh), then clearly $\psi_E = \psi_E^{\sigma}$ for all $\sigma \in \text{Gal}(H^{(f)}/K)$. Conversely from a character $\phi : U_{K,f} \to \pm 1$ with $\phi(-1) = -1$, extending it on $P = U_{K,f}K^{\times}K_{\infty}^{\times}$ by (3), we obtain $\psi = \phi \circ N_{H^{(f)}/K}$, which is a Hecke character of an elliptic curve E over $H^{(f)}$. Furthermore in this case E is a Q-curve if and only if $\phi^{\rho} = \phi$ on $U_{K,f}$ (cf. [S, Proposition 9]).

Assume first that K is not exceptional. If D has a prime divisor q with $q \equiv -1 \mod 4$, we put $\phi = \eta_q : U_K \to \pm 1$ where η_q is the local character defined in Proposition 1. Here we view η_q as a character of U_K by composing with the projection $U_K \to U_q$. Otherwise since D is of the form 8m with $m \equiv -1 \mod 4$, we put $\phi = \eta_{-8}$, where η_{-8} is defined in Proposition 2. Then ϕ satisfies

(5)
$$\phi(-1) = -1, \quad \phi^{\rho} = \phi.$$

Therefore there exists a Q-curve over H.

Next assume that K is exceptional. Then there is no character $\phi : U_K \to \pm 1$ satisfying (5). This follows from the fact that if a local character $\theta : U_p \to \pm 1$ satisfies $\theta^{\rho} = \theta$, we have $\theta(-1) = 1$ by Proposition 1 and 2.

The following assertion is stated in $[G, \S11]$ without proof.

PROPOSITION 5. If K is exceptional, there are no Q-curves over H.

PROOF. Choose a rational prime q such that q splits in K and $q \equiv -1 \mod 4$. Let $\lambda_q : U_q \to \pm 1$ be as in Proposition 1 where q|q. We put $\lambda = \lambda_q \circ pr$ where $pr : U_K \to U_q$ is the projection. Then λ determines an elliptic curve E_1 over H with $\psi_{E_1} = \lambda \circ N_{H/K}$. Clearly E_1 is not a **Q**-curve over H, since $\psi_{E_1}^\rho/\psi_{E_1} = \lambda_q \lambda_q^\rho \circ N_{H/K} = \kappa_q \circ N_{H/Q}$. (It is a **Q**-curve over $H(\sqrt{-q})$.) Now assume that a **Q**-curve E over H exists. Put $\chi_1 = \psi_{E_1}/\psi_E$. Then χ_1 is a quadratic character of I_H and it determines a quadratic extension k_1 of H which is Galois over K. Since $g : Y \to \text{Alt}(g)$ is surjective as shown in the proof of Theorem 1, there exists a quadratic extension k of H which is Galois over **Q** such that Gal(k/K) and $\text{Gal}(k_1/K)$ correspond to the same element in Alt(g). This means that denoting by χ the character associated with k/H, $\chi\chi_1$ corresponds to a quadratic extension of H which is abelian over K, i.e. $\chi\chi_1 = \theta \circ N_{H/K}$ with a character $\theta : U_K \to \pm 1$. Put $\psi = \psi_E \cdot \chi$. We easily find that $\psi = (\lambda \theta) \circ N_{H/K}$ and $\psi^\rho = \psi$, since $\psi_E^\rho = \psi_E$ and $\chi^\rho = \chi$; this implies that $\phi = \lambda \theta : U_K \to \pm 1$ satisfies (5). As remarked above, this is impossible if K is exceptional.

Applying Theorem 1, we obtain the following result concerning a classification of Q-curves.

THEOREM 2. If K is not exceptional, the cohomology classes c(E) classify isogeny classes of Q-curves over H into $2^{t(t-1)/2}$ classes. Among them there are 2^{t-1} classes

whose Hecke characters satisfy (Sh). If K is exceptional, take $H^{(2)}$, the ring class field of K of conductor 2, instead of H. Then exactly the same statements hold for isogeny classes of **Q**-curves over $H^{(2)}$.

PROOF. Let the notation be as in Proposition 3. The first statement is clear by Theorem 1 and Proposition 3. Let E_0 be a Q-curve over H such that ψ_{E_0} satisfies (Sh). Then $c(E_0)\gamma$ ($\gamma \in Y_0$) correspond to those Q-curves whose Hecke characters satisfy (Sh).

Next assume that K is exceptional. Let m denote the prime ideal of the local completion of K at 2 and put

$$P^{(2)} = \prod_{p \neq 2} U_p \cdot (1 + \mathfrak{m}^2) K^{\times} \cdot K_{\infty}^{\times}.$$

Then $P^{(2)}$ is the subgroup of I_K corresponding to $H^{(2)}$ by class field theory. Let $\theta: 1 + \mathfrak{m}^2 \to \pm 1$ denote the character such that $\operatorname{Ker} \theta = 1 + \mathfrak{m}^3$ and put $\phi = \theta \circ j$, where $j: \prod_{p \neq 2} U_p \cdot (1 + \mathfrak{m}^2) \to 1 + \mathfrak{m}^2$ is the projection. Then $\phi \circ N_{H^{(2)}/K}$ is a Hecke character of a Q-curve over $H^{(2)}$, since $\phi^{\rho} = \phi$. Therefore a Q-curve over $H^{(2)}$ exists. Let $g' = \operatorname{Gal}(H^{(2)}/K)$ and put $Y'_0 = \{\gamma \in Y_{H^{(2)}} | \operatorname{res}(\gamma) \in \operatorname{Ext}(g', \pm 1) \}$. It suffices to show that $\dim Y'_0 = t - 1$ and $\dim Y_{H^{(2)}} = t(t - 1)/2$. If a non-trivial local character $\lambda: 1 + \mathfrak{m}^2 \to \pm 1$ satisfies $\lambda(-1) = 1$ and $\lambda^{\rho} = \lambda$, we see easily that $\lambda = \kappa_8 \circ N_{K/Q}$. As in the proof of Proposition 3,

$$\theta_{p_1},\ldots,\theta_{p_{t-1}}$$
 $(D/4=-p_1\cdots p_{t-1})$

form a basis of W/W_0 ; hence dim $Y'_0 = t - 1$. Note that $v = (1 + \sqrt{D/4})^2/2$ is prime to 2 and $v \notin 1 + m^2$. Then we see that the class containing the ideal n with $n^2 = (2)$ has order 4 in $I_K/P^{(2)}$. This shows that $g'/g'^2 \cong g/g^2$; hence we obtain dim $(Y_{H^{(2)}}/Y'_0) =$ dim Alt(g') = (t-1)(t-2)/2 by Theorem 1.

5. Restriction of scalars of *Q*-curves.

In this section we suppose that K is non-exceptional. Let E be a Q-curve over H. Let us denote by $B = R_{H/K}(E)$ the abelian variety obtained from E by restriction of scalars from H to K. It is an abelian variety defined over K of dimension $h_K = [H : K]$. Since E is defined over $Q(j_E)$ (cf. [G, Theorem 10.1.3]), we have

$$B \cong R_{\mathcal{Q}(j_E)/\mathcal{Q}}(E) \otimes K,$$

so that B is defined over Q. Concerning the structure of the endomorphism algebra $R_0 = \operatorname{End}_Q(B) \otimes Q$ we obtain

THEOREM 3. Let $R_0 = \operatorname{End}_{\mathcal{Q}}(B) \otimes \mathcal{Q}$ be as above and h_K the class number of K. The center Z_0 of R_0 is a field of degree h_0 over \mathcal{Q} and $R_0 \cong M_{2^m}(Z_0)$ or $R_0 \cong M_{2^{m-1}}(D_0)$, where D_0 is a division quaternion algebra over Z_0 and $h_K = 2^{2m}h_0$. R_0 is commutative if and only if ψ_E satisfies (Sh).

PROOF. We recall some facts on the structure of $R = \operatorname{End}_{K}(B) \otimes Q$ (cf. [G, §15] and [N]). For $\sigma \in \mathfrak{g} = \operatorname{Gal}(H/K)$, one can choose a prime ideal \mathfrak{p} of K, of degree 1, prime to the conductor of ψ_{E} such that $\sigma = \sigma_{\mathfrak{p}}^{-1}$, where $\sigma_{\mathfrak{p}}$ is the Frobenius automorphism of H/K at \mathfrak{p} . Let \mathfrak{P} be a prime of H lying over \mathfrak{p} and p the rational prime

in p. Then there exists an isogeny (a p-multiplication in the sense of [S-T, §7]) $u(\mathfrak{p}): E^{\sigma} \to E$ such that $u(\mathfrak{p}) \mod \mathfrak{P}$ is the *p*-th power Frobenius map (see [Si, II Proposition 5.3]). Let $t(\mathfrak{p})$ be the corresponding *K*-endomorphism of *B*. If σ is of order *n*, we have

(6)
$$\psi_E(\mathfrak{P}) = t(\mathfrak{p})^n \in K^{\times}, \quad \mathfrak{p}^n = (\psi_E(\mathfrak{P})).$$

Take $\varphi_{\sigma} = u(\mathfrak{p})$ and $t_{\sigma} = t(\mathfrak{p})$ for each $\sigma \in \mathfrak{g}$. Then *R* is the twisted group algebra $K^{c(E)}[\mathfrak{g}] = \sum_{\sigma \in \mathfrak{g}} Kt_{\sigma}$ over *K* subject to the relation

$$t_{\sigma}t_{\tau} = c(\sigma, \tau)t_{\sigma\tau} \quad \text{for } \sigma, \tau \in \mathfrak{g}$$

where $c(E) = \{c(\sigma, \tau)\}$ is the two-cocycle attached to $\{\varphi_{\sigma}\}$ (see Section 4).

The complex conjugation ρ operates on R and $R_0 = \{\alpha \in R \mid \rho(\alpha) = \alpha\}$. Changing E by some E^{σ} if necessary, we may assume that $\rho(E) = E$. By transport of structure, $\rho(u(\mathfrak{p})) : E^{\sigma\rho} = E^{\rho\sigma^{-1}} = E^{\sigma^{-1}} \to E$ is a \mathfrak{p}^{ρ} -multiplication whose reduction mod \mathfrak{P}^{ρ} is the *p*-th power Frobenius map. This implies that $\rho(t(\mathfrak{p})) = t(\mathfrak{p}^{\rho})$. Moreover, since $\mathfrak{p}\mathfrak{p}^{\rho} = (p)$ we have

(7)
$$t(\mathfrak{p})t(\mathfrak{p}^{\rho}) = \pm p, \quad R_0 \cap K(t(\mathfrak{p})) = \mathbf{Q}(s(\mathfrak{p})),$$

where $s(\mathfrak{p}) = t(\mathfrak{p}) + t(\mathfrak{p}^{\rho})$.

Now we have $t_{\sigma}t_{\tau} = f(\sigma,\tau)t_{\tau}t_{\sigma}$, where $f(\sigma,\tau) = c(\sigma,\tau)c(\tau,\sigma)^{-1}$ is the alternating form on g associated with c(E). Let $g_0(\supset g^2)$ be the kernel of f. If $g \neq g_0$, then g/g_0 is an orthogonal sum of hyperbolic planes T_1, \ldots, T_m ; each T_i is two dimensional and f induces on T_i a non-degenerate alternating form. Choose $x_i, y_i \in g$ such that they induce a basis of T_i , and define $\mathfrak{h}_i = \langle x_i, y_i, g_0 \rangle$. Then $Z = \sum_{\sigma \in g_0} Kt_{\sigma}$ is the center of R and the subalgebra $D_i = \sum_{\sigma \in \mathfrak{h}_i} Kt_{\sigma}$ of R is a quaternion algebra over Z. We have

$$R=D_1\otimes\cdots\otimes_Z D_m$$

and $h_K = 2^{2m}h_0$ with $[Z:K] = h_0$ (see [N, Theorem 3]). Furthermore it easily follows: $Z_0 = \{\alpha \in Z \mid \rho(\alpha) = \alpha\}$ is the center of R_0 , $D_i^0 = \{\alpha \in D_i \mid \rho(\alpha) = \alpha\}$ are quaternion algebras over Z_0 and $R_0 = D_1^0 \otimes \cdots \otimes_{Z_0} D_m^0$. Observe that $[Z_0: \mathbf{Q}] = [Z:K] = h_0$ and R is commutative if and only if R_0 is commutative. Then our assertion can be proved exactly in the same manner as Theorem 3 in [N].

PROPOSITION 6. Let E, E' be *Q*-curves over *H* and put:

$$B = R_{H/K}(E), \quad B' = R_{H/K}(E'), \quad R_0 = \operatorname{End}_{\boldsymbol{Q}}(B) \otimes \boldsymbol{Q}, \quad R'_0 = \operatorname{End}_{\boldsymbol{Q}}(B') \otimes \boldsymbol{Q}$$

Then if c(E) = c(E'), we have $R_0 \cong R'_0$. Conversely if R_0 is commutative and $R_0 \cong R'_0$, we have c(E) = c(E').

PROOF. If c(E) = c(E'), then $\psi_E = \psi_{E'} \cdot \kappa \circ N_{H/Q}$ with a quadratic Dirichlet character κ by Proposition 4. Let k_0 be the corresponding quadratic field to κ . We may assume that k_0 is different from K and $j_E = j_{E'}$. Then E and E' are isomorphic over $k_0(j_E)$ (see [**G**, Theorem 10.2.1]), so that B and B' are isomorphic over k_0 . Since k_0 -endomorphism algebra of B is R_0 , we obtain $R_0 \cong R'_0$.

Now assume that R_0 is commutative and $R_0 \cong R'_0$. By Theorem 3 ψ_E and $\psi_{E'}$ satisfy (Sh), i.e.

$$\psi_E = \phi \circ N_{H/K}, \quad \psi_{E'} = \phi' \circ N_{H/K}$$

with characters ϕ, ϕ' of I_K . We see that B is of CM-type over K, ϕ is the Hecke character of B over K and

$$\operatorname{End}_{K}(B) \otimes \boldsymbol{Q} = R_{0}K \cong K(\{\phi(\mathfrak{a}) \mid \mathfrak{a} \in \operatorname{Cl}_{K}\}).$$

Here Hecke characters are also viewed as functions of ideals. Since R_0K and R'_0K are *K*-isomorphic, the maximal (2, ..., 2) subextension *L* over *K* contained in R_0K coincide with that in R'_0K . We have $L = K(\{\phi(\mathfrak{a}) \mid \mathfrak{a} \in \operatorname{Cl}_K[2]\})$, where $\operatorname{Cl}_K[2] = \{\mathfrak{a} \in \operatorname{Cl}_K \mid \mathfrak{a}^2 = 1\}$. Observe that the map $\operatorname{Cl}_K[2] \ni \mathfrak{a} \to \phi(\mathfrak{a})^2 \in K^{\times}/K^{\times 2}$ is injective, since $\mathfrak{a}^2 = (\phi(\mathfrak{a})^2)$ by (6). In particular we have $\sqrt{-1} \notin L$. We may assume that *E* and *E'* are not isogenous over *H* but isogenous over a quadratic extension *k* of *H*. Put $\xi = \phi/\phi'$. Then ξ is a character of the idele class group C_K of *K* and $\xi \circ N_{H/K}$ is the character associated with k/H. Therefore k/H is abelian. Let *N* and *N'* be the norm subgroups in C_K corresponding to *H* and *k*, respectively.

CLAIM. $C_K/N' \cong \operatorname{Gal}(k/K) \cong \Delta \times N/N'$ with a subgroup Δ of C_K/N' such that $\Delta \cong \operatorname{Cl}_K$.

We have only to show the corresponding assertion for the 2-Sylow subgroup of C_K/N' . Let \mathfrak{a} be any ideal in K of even order n in Cl_K , which is prime to the conductor of ϕ . We have $\phi(\mathfrak{a}^n) = \phi'(\mathfrak{a}^n)\xi(\mathfrak{a}^n) \in K$. If $\xi(\mathfrak{a}^n) = -1$, then by assumption we have $\sqrt{-1} \in R_0 K$, which is a contradiction. Therefore $\xi(\mathfrak{a}^n) = 1$. Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_r$ be a set of ideals of K such that they form a set of independent generators for the 2-Sylow subgroup of Cl_K and denote by Δ' the subgroup of C_K/N' generated by $\mathfrak{a}_1, \ldots, \mathfrak{a}_r$. Since ξ is non-trivial on N/N', we have $\Delta' \cap N/N' = 1$. Thus our claim is proved.

Let k_0 be the quadratic extension of K which corresponds to Δ by class field theory and denote by ξ_0 the character of I_K associated to k_0/K . Then we may assume that $\phi = \phi'\xi_0$. Take any ideal \mathfrak{a} of K prime to the conductor of ϕ and ϕ' . Then by (7) we have $R_0 \cap K(\phi(\mathfrak{a})) = \mathbf{Q}(s)$ with $s = \phi(\mathfrak{a}) + \phi(\mathfrak{a}^{\rho})$: $\mathbf{Q}(s)$ is totally real (resp. of CMtype) if and only if $\phi(\mathfrak{a}\mathfrak{a}^{\rho}) > 0$ (resp. $\phi(\mathfrak{a}\mathfrak{a}^{\rho}) < 0$). Therefore $R_0 \cong R'_0$ implies that $\xi_0(\mathfrak{a}\mathfrak{a}^{\rho}) = 1$, hence $\xi_0 = \xi_0^{\rho}$. This shows that $k_0 = k_0^{\rho}$; thus k_0/\mathbf{Q} is Galois. Since $k_0 \supset K$, we see that k_0/\mathbf{Q} is of type (2,2). Hence we have c(E) = c(E').

6. Examples.

First we consider non-exceptional case. For the sake of simplicity, we assume that K is an imaginary quadratic field of discriminant D such that $Cl_K \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$; hence in this case t = 3 and the class number $h_K = 4$.

Let ϕ_0 be a character of U_K which satisfies the condition (5). Then as explained in Section 4, we obtain a Hecke character $\psi_0 = \phi_0 \circ N_{H/K}$ of I_H . Take any quadratic extension k of H such that k/Q is Galois and denote by χ the character of I_H associated with it. We put $\psi = \psi_0 \cdot \chi$. Now choose a prime ideal p of K such that p is of order 2 in Cl_K and prime to the conductor of ϕ_0 and χ . Let L be the decomposition field of p in H and F be the subfield of L fixed by ρ . Then k/F is a Galois extension of degree 8. Let E_0 and E_1 be Q-curves such that $\psi_{E_0} = \psi_0$ and $\psi_{E_1} = \psi_0 \cdot \chi$ and put

$$B_0 = R_{H/L}(E_0), \quad B_1 = R_{H/L}(E_1).$$

Then they are abelian varieties of dimension 2 defined over F. Set:

$$S = \operatorname{End}_F(B_0) \otimes Q, \quad T = \operatorname{End}_F(B_1) \otimes Q.$$

PROPOSITION 7. Notation being as above, put $s = \phi_0(\mathfrak{p}) + \phi_0(\mathfrak{p}^{\rho})$. Then S is a quadratic field Q(s). Write $S = Q(\sqrt{n})$ and set:

$$S' = \mathbf{Q}(\sqrt{D/n}), \quad \overline{S} = \mathbf{Q}(\sqrt{-n}), \quad \overline{S'} = \mathbf{Q}(\sqrt{-D/n}).$$

(1) Assume that k/L is an extension of type (2,2). If k/F is abelian, we have T = S and otherwise we have T = S'.

(2) Assume that k/L is cyclic of order 4. If k/F is abelian, we have $T = \overline{S}$ and otherwise we have $T = \overline{S'}$.

PROOF. Since k/L is abelian, we can write $\chi = \chi' \circ N_{H/L}$ for a character χ' of I_L . Then $\psi = \phi \circ N_{H/L}$ with $\phi = (\phi_0 \circ N_{L/K}) \cdot \chi'$, so that ϕ is a Hecke character of B_1 over L. By Artin map we may regard χ' as a character of $\operatorname{Gal}(k/L)$. Let \mathfrak{P} be a prime ideal of L lying above \mathfrak{p} and we denote by σ the Frobenius automorphism in k/L associated with \mathfrak{P} . We have $\chi'(\mathfrak{P}) = \chi'(\sigma)$,

$$\phi(\mathfrak{P})^2 = \phi_0(\mathfrak{p})^2 \chi'(\mathfrak{P})^2$$
 and $\phi(\mathfrak{P}\mathfrak{P}^{\rho}) = \phi_0(\mathfrak{p}\mathfrak{p}^{\rho})\chi'(\mathfrak{P}\mathfrak{P}^{\rho}).$

Let τ be the non-trivial automorphism of k over H. Note that $T = Q(\phi(\mathfrak{P}) + \phi(\mathfrak{P}^{\rho}))$ and that T is totally real if and only if $\phi(\mathfrak{PP}^{\rho}) > 0$.

In the case (1) we have $\chi'(\mathfrak{P})^2 = 1$, hence KT = KS. If k/F is abelian, $\chi'(\mathfrak{P}) = \chi'(\mathfrak{P}^{\rho}) = \chi'(\rho \sigma \rho)$. Thus T = S. If k/F is non-abelian, we have $\rho \sigma \rho = \sigma \tau$. Since $\chi'(\tau) = -1$, we obtain $\chi'(\mathfrak{P}\mathfrak{P}^{\rho}) = -1$, which shows T = S'.

In the case (2) we have $\chi'(\mathfrak{P})^2 = -1$, hence $KT = K\overline{S}$. If k/F is abelian, $\chi'(\mathfrak{PP}^{\rho}) = \chi'(\mathfrak{P})^2 = -1$ and hence $T = \overline{S}$. If k/F is non-abelian, we have $\chi'(\mathfrak{PP}^{\rho}) = \chi'(\sigma^2\tau) = 1$, which shows $T = \overline{S'}$.

Now let us determine the endomorphism algebras $R_0 = \operatorname{End}_{\mathcal{Q}}(R_{H/K}(E)) \otimes \mathcal{Q}$ for some \mathcal{Q} -curves E.

1) $D = -4 \cdot 3 \cdot 7$.

Let \mathfrak{p} and \mathfrak{p}' be the prime ideals of K such that $\mathfrak{p}^2 = (2 + \sqrt{-21})$ and $\mathfrak{p}'^2 = (10 + \sqrt{-21})$. The decomposition field in H of \mathfrak{p} is $K(\sqrt{21})$ and that of \mathfrak{p}' is $K(\sqrt{3})$. We see that Cl_K is generated by \mathfrak{p} and \mathfrak{p}' . Let \mathfrak{q} be the prime ideal of K with $\mathfrak{q}^2 = (3)$. Let ϕ_0 be a character of I_K of conductor \mathfrak{q} such that

$$\phi_0((lpha)) = \left(rac{lpha}{\mathfrak{q}}
ight) lpha \quad ext{for every } lpha \in K^{ imes},$$

where (α/\mathfrak{q}) denotes the norm residue symbol. Then ϕ_0 satisfies (5) and put $\psi_0 = \phi_0 \circ N_{H/K}$. Using local characters (see §2), we define:

$$\omega_1 = \eta_3 \eta_7 \circ N_{H/K}, \quad \omega_2 = \eta_{-4} \circ N_{H/K}$$

Since (21, -3) is trivial in $\operatorname{Br}_2(Q)$, there exists a D_4 -extension k_0 over Q containing $Q(\sqrt{-3}, \sqrt{21})$. Let χ be the character of I_H associated with k_0H/H . Then by Theorem 2, the equivalence classes of Q-curves over H are exactly represented by the Hecke characters $\psi = \psi_0 \omega$, $\omega \in \langle \omega_1, \omega_2, \chi \rangle$.

(a) $\psi = \psi_0$. A simple calculation shows that

$$\phi_0(\mathfrak{p}^2) = -2 - \sqrt{-21} = \left(\frac{\sqrt{6} - \sqrt{-14}}{2}\right)^2$$
 and $\phi_0(\mathfrak{p}\mathfrak{p}^\rho) = \phi_0((5)) = -5.$

Therefore $\phi_0(\mathfrak{p}) + \phi_0(\mathfrak{p}^{\rho}) = \pm \sqrt{-14}$. Similarly we have $\phi_0(\mathfrak{p}') + \phi_0(\mathfrak{p}'^{\rho}) = \pm \sqrt{-2}$, since $\phi_0(\mathfrak{p}'^2) = ((\sqrt{42} + \sqrt{-2})/2)^2$ and $\phi_0(\mathfrak{p}'\mathfrak{p}'^{\rho}) = -11$. Hence $R_0 = \mathbf{Q}(\sqrt{-2}, \sqrt{-14})$. (b) $\psi = \psi_0 \omega_1$. We have:

$$\eta_3\eta_7(\mathfrak{p}^2) = -1, \quad \eta_3\eta_7((5)) = 1, \quad \eta_3\eta_7(\mathfrak{p}'^2) = -1, \quad \eta_3\eta_7((11)) = -1.$$

This implies $R_0 = \mathbf{Q}(\sqrt{-6}, \sqrt{2})$.

(c) $\psi = \psi_0 \cdot \chi$. We have:

 $k_0H/K(\sqrt{21})$ is of type (2,2) and $k_0H/Q(\sqrt{21})$ is abelian;

 $k_0H/K(\sqrt{3})$ is cyclic of order 4 and $k_0H/Q(\sqrt{3})$ is non-abelian.

Applying Proposition 7, we obtain that R_0 is a division quaternion algebra (-42, -14) over Q.

The remaining cases are similarly computed and we have:

ψ		R_0 (field)	ψ	R_0 (quaternion alg.)
ψ_0)	$Q(\sqrt{-2},\sqrt{-14})$	$\psi_0 \chi$	(-14, -42)
$\psi_0 c$	v_1	$Q(\sqrt{-6},\sqrt{2})$	$\psi_0 \omega_1 \chi$	(-6, 42)
$\psi_0 c$	v_2	$Q(\sqrt{-6},\sqrt{-42})$	$\psi_0 \omega_2 \chi$	(-6, -2)
$\psi_0\omega_1$	ω_2	$Q(\sqrt{-14},\sqrt{-42})$	$\psi_0 \omega_1 \omega_2 \chi$	(-14,2)

REMARK. The division quaternion algebras (-14, -42) and (-6, -2) over Q are isomorphic because they ramify at the same primes 2 and ∞ . The quaternion algebras (-6, 42) and (-14, 2) are isomorphic to $M_2(Q)$.

2) $D = -3 \cdot 5 \cdot 13$. Let \mathfrak{p} and \mathfrak{p}' be the prime ideals of K such that $\mathfrak{p}^2 = ((1 + \sqrt{D})/2)$ and $\mathfrak{p}'^2 = ((17 + \sqrt{D})/2)$. The decomposition field in H of \mathfrak{p} is $K(\sqrt{65})$ and that of \mathfrak{p}' is $K(\sqrt{5})$. We see that Cl_K is generated by \mathfrak{p} and \mathfrak{p}' . Let \mathfrak{q} be the prime ideal of K with $\mathfrak{q}^2 = (3)$. Let ϕ_0 be a character of I_K of conductor \mathfrak{q} such that

$$\phi_0((\alpha)) = \left(\frac{\alpha}{\mathfrak{q}}\right) \alpha$$
 for every $\alpha \in K^{\times}$

and put $\psi_0 = \phi_0 \circ N_{H/K}$. As in Case 1) we define:

$$\omega_1 = \eta_5 \circ j \circ N_{H/K}, \quad \omega_2 = \eta_{13} \circ j \circ N_{H/K}.$$

Since (13, -3) is trivial in $\operatorname{Br}_2(Q)$, there exists a D_4 extension k_0 over Q containing $Q(\sqrt{-3}, \sqrt{13})$. Let χ be the character of I_H associated with k_0H/H . Then by Theorem 2, the equivalence classes of Q-curves over H are represented by the Hecke characters $\psi = \psi_0 \omega$, $\omega \in \langle \omega_1, \omega_2, \chi \rangle$. By similar computations as in 1), we obtain:

ψ	R_0 (field)	ψ	R_0 (quaternion alg.)
ψ_0	$Q(\sqrt{13},\sqrt{-5})$	$\psi_0 \chi$	(-15, -39)
$\psi_0\omega_1$	$Q(\sqrt{-13},\sqrt{-5})$	$\psi_0\omega_1\chi$	(15, -39)
$\psi_0\omega_2$	$Q(\sqrt{-13},\sqrt{5})$	$\psi_0 \omega_2 \chi$	(15, 39)
$\psi_0 \omega_1 \omega_2$	$Q(\sqrt{13},\sqrt{5})$	$\psi_0 \omega_1 \omega_2 \chi$	(-15, 39)

REMARK. The division quaternion algebras (15, -39) and (-15, 39) over Q are isomorphic because they ramify at the same primes 3 and 13.

Next we give an example of exceptional case.

Let $K = Q(\sqrt{-5})$. Then

$$h_K = t = 2, \quad H = K(\sqrt{-1}), \quad H^{(2)} = H(\sqrt{1+\sqrt{5}}).$$

In this case there exist two classes of Q-curves over $H^{(2)}$ by Theorem 2. Let m be the prime ideal of K with $\mathfrak{m}^2 = (2)$. As in the proof of Theorem 2, there exists a Q-curve E_0 over $H^{(2)}$ such that $\psi_{E_0} = \phi_0 \circ N_{H^{(2)}/K}$, where $\phi_0 : U_{K,2} \to \pm 1$ has conductor \mathfrak{m}^3 . Let q be the prime ideal of K such that $\mathfrak{q}^2 = (2 + \sqrt{-5})$. The Frobenius automorphism associated with q in $\operatorname{Gal}(H^{(2)}/K)$ has order 4. We easily have

$$\phi_0(\mathfrak{q}^4) = -(2+\sqrt{-5})^2, \quad \phi_0(\mathfrak{q}\mathfrak{q}^\rho) = -3.$$

Therefore we obtain

$$\phi_0(\mathfrak{q})^2 + \phi_0(\mathfrak{q}^{\rho})^2 = \pm 2\sqrt{5}, \quad \phi_0(\mathfrak{q}) + \phi_0(\mathfrak{q}^{\rho}) = \pm(\sqrt{-5} \mp \sqrt{-1}).$$

Hence we have $R_0 = \operatorname{End}_{\mathbb{Q}}(R_{H^{(2)}/K}(E_0)) \otimes \mathbb{Q} \cong H$. The other class of \mathbb{Q} -curves over $H^{(2)}$ is represented by a Hecke character $(\phi_0 \cdot \eta_5) \circ N_{H^{(2)}/K}$. Computing similarly we find that $R_0 \cong \mathbb{Q}(\sqrt{5}) \oplus \mathbb{Q}(\sqrt{5})$.

References

- [G] B. H. Gross, Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Math., 776, Springer-Verlag, 1980.
- [J-Y] L. U. Jensen and N. Yui, Quaternion extensions, In: Algebraic Geometry and Commutative Algebra, Vol. 1, Kinokuniya, Tokyo, 1988, 155–182.
- [M] R. Massy, Construction de *p*-extensions Galoisiennes d'un corps de caractéristique différente de *p*, J. Algebra, **109** (1987), 508–535.
- [N] T. Nakamura, Abelian varieties associated with elliptic curves with complex multiplication, Acta Arith., 97 (2001), 379–385.
- [Q] J. Quer, Q-curves and abelian varieties of GL₂-type, Proc. London Math. Soc., 81 (2000), 285–317.
- [S] G. Shimura, On the zeta function of an abelian variety with complex multiplication, Ann. of Math., 94 (1971), 504–533.
- [S-T] G. Shimura and Y. Taniyama, Complex Multiplication of Abelian Varieties and its Application to Number Theory, Publ. Math. Soc. Japan, No. 6, Math. Soc. Japan, Tokyo, 1961.
- [Si] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, 1994.

Tetsuo NAKAMURA Mathematical Institute Tohoku University Sendai 980-8578 Japan

E-mail: nakamura@math.tohoku.ac.jp