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Abstract. For a topological dynamical system S ¼ ðX ; sÞ where s is a homeomor-

phism in an arbitrary compact Hausdor¤ space X , we consider the noncommutative hulls

and kernels with respect to the action s in the associated C �-algebra AðSÞ. We show

that several ideals important for the structure of AðSÞ have the form of such kernels and

give topological characterizations of their hulls from the behavior of orbits in the dy-

namical system.

1. Introduction.

Let X be a compact Hausdor¤ space and CðXÞ be the algebra of all complex

valued continuous functions on X . For a subset S of X the kernel kðSÞ in CðXÞ is the

closed ideal of CðXÞ defined as

kðSÞ ¼ f f A CðX Þ j f jS ¼ 0g:

On the other hand, the hull of a closed ideal I of CðX Þ, hðIÞ is defined as

hðIÞ ¼ fx A X j f ðxÞ ¼ 0 Ef A Ig;

which naturally turns out to be a closed subset of X . These notions have been playing

basic roles in functional analysis.

Moreover, regarding CðXÞ as the prototype of commutative unital C �-algebras, we

can replace CðX Þ by a noncommutative unital C �-algebra A with its dual ÂA (with hull-

kernel topology) instead of the space X , and look for the role for this generalization.

We regard these things as hull-kernels without actions or as simple minded noncom-

mutative versions of hull-kernels.

The purpose of this article is to discuss hulls and kernels with an action on the

space X , that is, actual noncommutative versions of hulls and kernels (written hereafter

as Hulls and Kernels) in the homeomorphism algebra AðSÞ. This algebra is the C �-

crossed product constructed from a topological dynamical system S ¼ ðX ; sÞ where s

is a homeomorphism on a compact Hausdor¤ space X . These notions stem originally

from the article [18] in the context of C �-crossed products by amenable discrete groups.

We however modify the arguments there in a more suitable way fitted to the algebra

AðSÞ. Here contrary to the case of usual hull-kernels without actions, not every closed

ideal of AðSÞ is expressed as such a Kernel. We shall show most important ideals for
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the structure of the C �-algebra AðSÞ can be expressed as such Kernels and give topo-

logical characterizations of their Hulls. Those ideals belong to rather elementary classes

of ideals from the point of view of C �-theory, but their Hulls play important roles in

dynamical systems. Actually, our main results (Theorems 4.3 and 4.7) show how the

behavior of orbits yields compact operators in the images of infinite dimensional irreducible

representations.

2. Notations and preliminaries.

Throughout this paper we consider a topological dynamical system S ¼ ðX ; sÞ on

an arbitrary (not necessarily metrizable) compact Hausdor¤ space X with single homeo-

morphism s. With the automorphism a on CðXÞ defined by að f ÞðxÞ ¼ f ðs�1xÞ, we

write the C �-crossed product CðXÞ �a Z as AðSÞ and call it a homeomorphism C �-

algebra. We denote the generating unitary element of AðSÞ by d and the canonical

projection of norm one from AðSÞ to CðXÞ by E. Write usual n-th Fourier coe‰cient

of an element a of AðSÞ as aðnÞ, which is defined as aðnÞ ¼ Eðad�nÞ.

A representation of AðSÞ is written as ~pp ¼ p� u, where p means a representation of

CðXÞ as the restriction of ~pp to CðXÞ and u ¼ ~ppðdÞ a unitary element on a representing

Hilbert space such that

pðaðaÞÞ ¼ upðaÞu� ¼ AduðpðaÞÞ:

Through our discussions, we shall often make use of the dynamical system Sp ¼

ðXp; spÞ derived from a representation ~pp ¼ p� u. As explained in [13, p. 26], we define

this dynamical system as

Xp ¼ hðp�1ð0ÞÞ and sp ¼ sjXp;

where hðp�1ð0ÞÞ means the standard hull of the kernel ideal of p in CðX Þ and Xp turns

out to be a closed invariant subset of X . It is then easily seen that this system Sp is

topologically conjugate to the dynamical system S 0
p ¼ ðX 0

p; s
0
pÞ where X 0

p is the spec-

trum of pðCðX ÞÞ and the map s 0
p is the homeomorphism of X 0

p induced from the au-

tomorphism Adu on pðCðXÞÞ. Thus we identify these two dynamical systems. Note

that in this identification the action of pð f Þ on the space X 0
p is regarded simply as the

restriction of the function f to the set Xp.

Now suppose ~pp ¼ p� u is particularly an irreducible representation induced by a

point x of X . This is the irreducible representation following GNS-construction by a

pure state extension j of mx to AðSÞ, where mx means the point evaluation on CðXÞ at

x. Then by [13, Proposition 4.3] we see that pð f Þ ¼ 0 if and only if f vanishes on the

orbit OðxÞ of x. Hence the set Xp turns out to be OðxÞ, closure of OðxÞ.

We write PerðsÞ the set of all periodic points and AperðsÞ the set of all aperiodic

points. We say that a system S is topologically free if AperðsÞ is dense in X . This

class is wide enough to cover almost all reasonable dynamical systems. Nevertheless

the structure of this class is quite compatible with the theory of C �-algebras and we find

many significant results for this class as seen from [13]. We call a system S is topo-

logically transitive if for any pair of open subets of X ; fU ;Vg, there exists an integer n

such that snðUÞVV 0q. When X is metrizable this property is known to be equiv-

alent to the fact that there exists a point with dense orbit.
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The algebra AðSÞ is known to be the closed linear span of the generalized poly-

nomials f
Pn

�n fkd
kg over CðX Þ so that every element of AðSÞ can be approximated by

those polynomials. In our arguments however, we need approximating polynomials

whose coe‰cients are specified enough to consist of linear modification of Fourier co-

e‰cients of the original element. Thus, for this purpose, the following noncommutative

version of Fejér’s theorem of Cèsaro mean is quite useful (cf. [16]).

Theorem A. The n-th generalized Cèsaro mean of an element a,

snðaÞ ¼
X

n

�n

1�
j jj

nþ 1

� �

að jÞd j

converges to a in norm.

We remark that for each summability kernel in Fourier analysis such as de la

Vallée Poussin kernel and Jackson kernel etc. we obtain the corresponding approxi-

mation sequence converging to a in norm ([16]).

Henceforth we mean an ideal of AðSÞ a closed ideal if no confusion arises. For

the irreducible representations induced by the points of X , we notice that if x is an

aperiodic point the pure state extension j to AðSÞ is unique, whereas if y is a periodic

point the set of pure state extensions is parametrized by the torus as fjy;lg. Hence we

denote their associated irreducible representations as ~ppx and ~ppy;l respectively. Further-

more, by [13, Theorem 4.4 and remark afterwards] their kernels are determined by the

orbit only if x is aperiodic and by the orbit together with the parameter l if y is a

periodic point. Therefore we denote those kernels as PðxÞ and Pðy; lÞ. Besides, we

write by QðyÞ the intersection of those kernels fPðy; lÞg with all parameters. For all

these things we refer to [12], [13].

3. Basic properties of noncommutative hulls and kernels in the homeomorphism

algebra AðSÞ.

Let S be a subset of X and define the closed set KerðSÞ in AðSÞ as

KerðSÞ ¼ fa A AðSÞ j aðnÞðxÞ ¼ 0 Ex A S; n A Zg:

By definition, KerðSÞ is a closed subspace of AðSÞ.

For a closed ideal I of AðSÞ, define the closed set, HullðIÞ, in X as

HullðIÞ ¼ fx A X j aðnÞðxÞ ¼ 0 a A I ; n A Zg

¼ fx A X jEðaÞðxÞ ¼ 0 a A Ig:

We regard these sets as Hulls and Kernels with the action s on X , or a on CðX Þ,

and call them noncommutative Hulls and Kernels.

On the other hand, we write usual kernels and hulls for CðX Þ as we mentioned

before. Namely,

kðSÞ ¼ f f A CðX Þ j f ðxÞ ¼ 0 Ex A Sg
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and for a closed ideal J of CðXÞ

hðJÞ ¼ fx A X j f ðxÞ ¼ 0 Ef A Jg:

Let S be the closure of S in X . We have then as is well known,

hðkðSÞÞ ¼ S; and kðhðJÞÞ ¼ J:

Now comparing with the case of simple minded generalization, it is not so obvious

to see the properties of KerðSÞ and HullðIÞ. We however still have the following facts

known before in [18].

Proposition 3.1. (1) If S is an invariant subset of X, then KerðSÞ becomes a closed

ideal of AðSÞ. Moreover, it is a closed linear span of generalized polynomials over the

subalgebra kðSÞ of CðX Þ written as JðkðSÞÞ.

(2) HullðIÞ is a closed invariant subset of X.

We give a part of the proof for completeness.

In order to show the property of ideal for KerðSÞ, take an element a of KerðSÞ and

an arbitrary element b of AðSÞ. Then the generalized Cesàro mean of a; snðaÞ (clearly

contained in KerðSÞ), converges to a in norm, hence bsnðaÞ and snðaÞb converge to ba

and ab, respectively. On the other hand, we see by definition that EðKerðSÞÞ ¼ kðSÞ,

which is apparantly contained in KerðSÞ. Now since

bsnðaÞ ¼
X

n

�n

1�
j jj

nþ 1

� �

bað jÞd j where að jÞ A kðSÞ;

we have for any integer k

ðbsnðaÞÞðkÞðxÞ ¼ EðbsnðaÞd
?kÞðxÞ ¼

X

n

�n

1�
j jj

nþ 1

� �

bðk � jÞðxÞað jÞðs j�kðxÞÞ:

Hence if S is invariant the element bsnðaÞ belongs to KerðSÞ, and similarly snðaÞb,

too. Thus, both ba and ab belong to KerðSÞ.

For the assertion (2), we just note that for a point x in HullðIÞ we have

aðnÞðs�1xÞ ¼ aðaÞðnÞðxÞ ¼ 0;

because aðaÞ belongs to I as well as a.

Henceforth, throughout this paper, we always mean KerðSÞ the closed ideal of

AðSÞ defined by an invariant subset S of X .

For our noncommutative Hulls and Kernels we have also by definition

HullðKerðSÞÞ ¼ S:

On the contrary, the ideal KerðHullðIÞÞ for a closed ideal I of AðSÞ contains I by

definition, but the inclusion may happen to be strict. In fact, sometimes we meet a

much worse situaton such as

KerðHullðIÞÞ ¼ AðSÞ:
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In fact, if we take a primitive ideal Pðy; lÞ, the kernel of the finite dimensional irre-

ducible representation ~ppy;l, it is known that

EðPðy; lÞÞ ¼ CðX Þ; hence HullðPðy; lÞÞ ¼ q:

Thus its Kernel becomes the whole algebra.

Let I be a closed ideal of AðSÞ. Then the module properties of the projection

E implies that the image EðIÞ becomes an ideal of CðX Þ (not necessarily closed). In

general we do not know whether this ideal is a proper ideal or not. The case where

this ideal is included in I is an extremely good situation for I , and it happens to be the

ideal having the form of noncommutative kernel. Since our coming discussions heavily

depend on the structure of the ideal KerðSÞ, we summarize here the related results for

readers convenience, which are a little modifications of [16, Theorem 2]. However, we

have to confirm first the following elementary fact because it is closely related to the

assertion (1) of the theorem.

Namely, let S be a closed invariant subset of X , and consider the restricted dy-

namical system SS ¼ ðS; sSÞ where sS means the restriction of s to S. We have then

the �-homomorphism r from CðXÞ to CðSÞ by restriction and the automorphism aS
defined naturally on CðSÞ. Therefore, denoting the generating unitary in the homeo-

morphism algbra AðSSÞ by dS we obtain a �-homomorphism ~rr ¼ r� dS from AðSÞ to

AðSSÞ in such a way that

r � EðaÞ ¼ ES � ~rrðaÞ:

Here the kernel of this homomorphism ~rr coincides naturally with the ideal KerðSÞ.

Theorem 3.2. The following assertions are equivalent for a closed ideal I of AðSÞ:

(1) EðIÞH I , consequently the quotient algebra AðSÞ=I becomes the crossed prod-

uct qðCðX ÞÞ �aI Z where q is the quotient homomorphism and aI is the automorphism of

qðCðXÞÞ defined as aI ðqðaÞÞ ¼ qðaðaÞÞ.

Hence the quotient algebra is naturally isomorphisc to the homeomorphism C �-

algebra AðSSÞ for S ¼ HullðIÞ;

(2)

I ¼ KerðHullðIÞÞ ¼ JðkðHullðIÞÞÞ:

Here the third term means the closed linear span of generalized polynomials over the ideal

of CðX Þ, kðHullðIÞÞ;

(3) I is invariant by the dual action âat,

(4) I is expressed as the intersection of families of primitive ideals fPðxaÞg and

fQðybÞg for aperiodic points fxag and periodic points fybg.

Here we recall that the dual action on AðSÞ is the one-parameter automorphism group

fâat j t A Tg induced by the covariant action,

âatð f Þ ¼ f ; âatðdÞ ¼ e2pitd:

We further remark that as consequences of the assertion (4) and [13, Corollary 5.1.B]

all ideals in AðSÞ have the form of Kernel if the dynamical system is free, that is, no

periodic points.
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We shall show one more basic fact.

Proposition 3.3. Let ~pp ¼ p� u be a topologically free representation of AðSÞ, that

is, the induce dynamical system Sp is topologically free. Then for a closed invariant set S

of X we have,

~ppðKerðSÞÞ ¼ KerðXp VSÞ in AðSpÞ:

Hence the image of KerðSÞ has the same form of Kernel in this case. Moreover, in

this case we have that

~pp
�1ð0Þ ¼ KerðXpÞ:

Proof. Note first by [13, Corollary 5.1A] we can identify ~ppðAðSÞÞ with AðSpÞ,

hence from the above theorem we have,

~ppðKerðSÞÞ ¼ ~ppðJðkðSÞÞÞ ¼ JðpðkðSÞÞÞ:

Here the action of pð f Þ on Xp is nothing but the restriction of pð f Þ to Xp. Therefore,

pðkðSÞÞ ¼ kðSÞ jXp ¼ kðS VXpÞ;

and

~ppðKerðSÞÞ ¼ JðkðS VXpÞÞ ¼ KerðS VXpÞ:

The last assertion immediately follows from [13, Proposition 5.2] and Theorem 3.2

(2). r

The following proposition asserts that we can apply the above result to an arbitrary

infinite dimensional irreducible representation of AðSÞ. Henceforth we shall often make

use of this result.

Proposition 3.4. If ~pp ¼ p� u is an infinite dimensional irreducible representation

of AðSÞ, then the dynamical system Sp becomes topologically free and we have the same

results as in the above Proposition 3.3.

Proof. Since ~pp is irreducible the dynamical system Sp ¼ ðXp; spÞ becomes topo-

logically transitive by [13, Proposition 4.4]. Moreover, the space Xp is an infinite set

(cf. [14, Proposition 3.4]). Thus, what we need is to show the assertion:

A topologically transitive dynamical system on an infinite set is topologically free.

The proof of this fact is just a combination of the arguments for the assertion

ðbÞ ) ðaÞ of [13, Proposition 2.2] and the ones in the proof of [13, Theorem 4.6], and

the result has been mentioned as [13, Corollary 5.1.B]. We however provide here the

whole proof for readers’ convenience because we shall often use this result in our coming

discussions. For the proof, we assume for notational convenience the system S ¼ ðX ; sÞ

itself is topologically transitive acting on an infinite set X .

Now suppose that AperðsÞ is not dense in X . Since a compact Hausdor¤ space is

regular we can find an open set U whose closure U is also disjoint from AperðsÞ. We

have then
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U ¼ 6
y

n¼1

ðPernðsÞVUÞ;

where

PernðsÞ ¼ fx A X j snx ¼ xg:

It follows by the category theorem there exists an integer n such that the set PernðsÞVU

contains an interior point. Let m be the smallest integer among such integers, then

we can say that the set of m-periodic points PermðsÞ contains an interior point in the

space U . Thus we finally see that the set PerðsÞ contains an interior point in X , and

the interior ðPermðsÞÞ
� becomes an non-empty invariant open subset of X . Therefore

it is dense in the space. Next take a point x in that interior and choose the compact

neighborhood V of x contained in PermðsÞ such that the set fs iðVÞg for 0a iam� 1

are mutually disjoint. It follows that the union 6m�1

i¼0
s
iðVÞ is an invariant closed

subset of X . Since PermðsÞ is dense, we have that

X ¼ 6
m�1

i¼0

s
iðVÞ:

Furthermore, if V contains another point y, choosing a smaller compact neighborhood

W of x that does not contain y, we reach the same conclusion,

X ¼ 6
m�1

i¼0

s
iðWÞ:

Therefore, X has to be OðxÞ for a m-periodic point x, a contradiction. The proof is

completed, and we can simply apply this result to the derived dynamical system Sp ¼

ðXp; spÞ. r

4. Topological characterizations of Hulls of structural Kernel ideals of AðSÞ.

In this main section we consider several ideals of AðSÞ, which play important role

for the structure of C �-algebra AðSÞ with the form of Kernels and give topological

characterizations of their Hulls in connection with orbit behavior of the dynamical

system.

As our first applications we reformulate our previous results [13, Theorem 4.6

(2)] and [16, Proposition 4] in a more transparent way. Namely let IF and Iy be the

intersection of all kernels of finite dimensional irreducible representations and infinite

dimentional irreducible representations, respectively. We have then,

Theorem 4.1. (1) IF ¼ KerðPerðsÞÞ, hence AðSÞ is residually finite dimensional

(su‰ciently many finite dimensional irreducible representations) if and only if PerðsÞ is

dense in X,

(2) Iy ¼ KerðAperðsÞÞ, hence the dynamical system S is topologically free if and

only if there exist su‰ciently many infinite dimensional irreducible representations, that is,

there exists a family of infinite dimensional irreducible representations which separates any

pair of elements of AðSÞ.
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It is worth to notice here that since the set of infinite dimensional irreducible repre-

sentations is usually quite bigger than the set of infinite dimensional irreducible rep-

resentations arising from aperiodic points, the equality of the second assertion is highly

nontrivial, whereas the first equality is more or less straightforward.

Proof of the assertion (2). Since Iy is clearly invariant by the dual action, by

Theorem 3.2 we may write as Iy ¼ KerðSÞ for an invariant closed subset S of X . We

assert that S ¼ AperðsÞ. Now as Iy is contained in KerðAperðsÞÞ the set S contains

AperðsÞ. Suppose S contains strictly the latter, and take a continuous function f

vanishing on AperðsÞ and not on S. There exists then an infinite dimensional irreduc-

ible representation ~pp ¼ p� u such that pð f Þ0 0. Now consider the dynamical system

Sp ¼ ðXp; spÞ, which turns out to be topologically free by Proposition 3.4. It follows

that pð f Þ does not vanish on the set AperðspÞ. Since pð f Þ jXp is identified with the

restriction f jXp, the function f does not vanish on AperðspÞ and not on AperðsÞ. This

is a contradiction. r

The advantage of these results lies at the point to show that the size of those

sets, PerðsÞ and AperðsÞ are invariant by isomorphisms between homeomorphism C �-

algebras. As of now, we are still very far from establishment of the general isomor-

phism theorem, which may tell us exact relations between two dynamical systems when

their associated homeomorphism C �-algebras are isomorphic each other.

We should notice here that the ideal KerðSÞ of AðSÞ for an invariant closed subset

of X might be understood as the C �-crossed product C0ðS
cÞ �a Z. This will be seen if

we consider the covariant representation of the system fC0ðS
cÞ; ag into the algebra AðSÞ

which is compatible with their canonical projections of norm one to C0ðS
cÞ and CðX Þ,

respectively. This is rather a standard notation (instead of KerðSÞ) in most literature.

When we meet those Kernel ideals corresponding with various invariant subsets, how-

ever, this kind of expression turns out to be somewhat inconvenient to discuss with,

particularly when we want to compare their locations in the algebra AðSÞ. This is the

main reason of our understanding and notations of Kerð�Þ and Hullð�Þ.

Next recall the definition of a recurrent point. Here we define a recurrent point

x if for every neighborhood U of x there exists a nonzero integer n such that snðxÞ is

in U . When X is metrizable, this means that there exists a subsequence fnig such that

either s
niðxÞ converge to x (positively recurrent) or s

�niðxÞ to x (negatively recurrent).

It is to be noticed here that two other definitions of recurrent points are used in

literature (for instance cf. [6, p. 129]). Namely, call a point x recurrent if it is either

positively recurrent or both positively and negatively recurrent. We however employ

the above definition in [1, p. 674] as the one which is most compatible with C �-

theory.

Now denote the set of all recurrent points by cðsÞ, whose closure is known to be

as the Birkho¤ center or simply called the center. When X is metrizable it is known

that the set cðsÞ is always nonempty, but this is also true for a dynamical system on an

arbitrary compact space.

We call a C �-algebra of type 1 if every irreducible representation contains a non-

zero compact operator (hence contains all compact operators by irreducibility). By

Sakai’s result [8] this definition is equivalent to that of postliminality given in [3] as well
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as the usual definition of a C �-algebra of type 1 (every representation generates a von

Neumann algebra of type 1).

Now there are many literatures to discuss when the algebra AðSÞ becomes an

algebra of type 1 in the broad context of transformation group C �-algebras. Those

results are however formulated towards the theory of operator algebras and not for

dynamical systems themselves. Thus even for our simplest dynamical systems (single

homeomorphism on a compact space) it is often hard to see whether or not a given

dynamical system yields the algebra AðSÞ of type 1.

Now recall that a C �-algebra A always contains the largest ideal K of type 1 such

that the quotient algebra A=K has no nonzero ideal of type 1. We denote by KðsÞ this

ideal in AðSÞ. In [2] when X is metrizable, we have precisely determined the size of

the ideal KðsÞ in AðSÞ, from which we can easily see when the algebra becomes of type

one. We shall reinforth the arguments there in terms of our Hull-Kernels and clarify

the point where metrizability comes in.

Let ~pp ¼ p� u be an irreducible representation of AðSÞ on a Hilbert space H.

Denote the algebra of all compact operators on H by CðHÞ. The following propo-

sition is the refined version of the key result, [2, Proposition 1], without the restriction of

metrizability.

Proposition 4.2. The image ~ppðAðSÞÞ contains the algebra of compact operators,

CðHÞ, if and only if there exists a point x not belonging to the set cðsÞnPerðsÞ with dense

orbit in the space Xp.

This point x becomes necessarily an isolated point of Xp.

We give here the whole proof for completeness.

Proof. We first note that in case of an irreducible representation of AðSÞ it is

finite dimensional if and only if Xp is a finite set by [14, Proposition 3.4]. Thus for the

proof we may assume that Xp is an infinite set.

ð)Þ. From the above assumption, the dynamical system Sp is topologically free,

hence by [13, Theorem 5.4 (2)] (with Proposition 3.4 and [13, Corollary 5.1.A]) the in-

tersection of pðCðXÞÞ and CðHÞ contains a nonzero selfadjoint element pð f Þ. Take a

spectral projection p of pð f Þ which is naturally contained in ~ppðAðSÞÞ. It follows by

[13, Theorem 5.4 (3)] together with the property of spectral projections that p belongs

to pðCðXÞÞ. Let S be the support of p in Xp, then it is an open and closed set.

Moreover as p is finite dimensional S must consist of isolated points of finite number.

Now take a point x in S, then the orbit OðxÞ is an invariant open (infinite) set. Hence

it has to be dense because Sp is topologically transitive ([13, Proposition 4.4]), and since

x is an isolated point it can not be a recurrent point.

ð(Þ. Let x be the point in Xp with dense orbit which is not a recurrent point.

Then x has to be an isolated point of Xp. Let p be the characteristic function of fxg.

We have then for any a in ~ppðAðSÞÞ and g in pðCðXÞÞ,

papg ¼ gðxÞpap ¼ gpap:

Therefore, by [13, Theorem 5.4 (3)], pap belongs to pðCðXÞÞ and

pap ¼ lp for some scalar l:
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This shows p is a minimal projection of ~ppðAðSÞÞ. Now since this image is strongly

dense in BðHÞ it becomes a minimal projection of BðHÞ, and it is one dimensional. It

follows that the image of AðSÞ contains CðHÞ because of the irreducibility of ~pp. This

completes the proof. r

A prototype of a dynamical system on a non-metrizable comapct space satisfying

the above condition is the topologically transitive free dynamical system ðbZ; sÞ dis-

cussed in [12, Example 3.3.2], where bZ is the Čech compactification of the integer

group Z and s is the extension of the simple shift on Z to bZ.

The next theorem is a reformulation of our previous result [2, Thorem 1] in terms of

Hulls.

Theorem 4.3. HullðKðsÞÞ contains the set cðsÞnPerðsÞ.

When X is metrizable we have the equality,

HullðKðsÞÞ ¼ cðsÞnPerðsÞ:

Proof. Note first that KðsÞ is invariant by the dual action, hence by Theorem 3.2

we can write it as

KðsÞ ¼ KerðHullðKðsÞÞÞ:

Put S ¼ HullðKðsÞÞ in short and take a point x in cðsÞnPerðsÞ. Then by the above

Proposition we see that the image of the irreducible representation ~ppx induced by x

can not contain any non-zero compact operator, and ~ppxðKðsÞÞ ¼ f0g. It follows from

Proposition 3.3 that

S VXpx ¼ Xpx ¼ OðxÞ:

Hence S contains Xpx , and x. Therefore, S contains the set cðsÞnPerðsÞ. Namely,

KðsÞHKerðcðsÞnPerðsÞÞ ¼ KerðcðsÞnPerðsÞÞ:

When X is metrizable we can show that the ideal KerðcðsÞnPerðsÞÞ itself is of type

1 (cf. [2]), hence the equality holds. r

Corollary 4.4. (1) If AðSÞ is of type 1, we have that cðsÞ ¼ PerðsÞ. The con-

verse holds when X is metrizable.

(2) If cðsÞnPerðsÞ is dense, then KðsÞ ¼ f0g i.e. AðSÞ is antiliminal. The converse

holds when X is metrizable.

The result exactly shows how AðSÞ di¤ers from being of type 1 in terms of dy-

namical systems, and we naturally see the meaning of the di¤erence cðsÞnPerðsÞ in C �-

algebra theory.

Although the preceeding proposition 4.2 holds without the countability assump-

tion for the space X , we do not know whether or not the metrizability is a crucial

obstruction in the theorem.

In our theory of the interplay between topological dynamics and theory of operator

algebras in a series of papers starting from the article [12], this is the first result for

which we need the countability restriction, whereas we meet abundance of examples of
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topological dynamical systems on hyperstonean spaces (highly non-metrizable) coming

from non-singular measurable dynamical systems on finite measure spaces. Therefore,

it is quite desirable not to put the countability assumption for relevant topological dy-

namical systems.

In the proof of the theorem, a main trouble in non-metrizable case is at the point

that for an irreducible representation ~pp we can not assume apriori the existence of a

point with dense orbit, whereas in case X being metrizable it is the consequence of the

equivalency between topological transitivity and dense orbit property. As it is noticed

in [15, Proposition 1.2], however, every (nontrivial) topologically transitive dynamical

system arising from a non-singular ergodic transformation on the non-atomic Lebesgue

space reveals a counter-example for this equivalency in non-metrizable case. Never-

theless, we have been still unable to find a counter-example or to obtain the equality

in the theorem without the metrizability assumption.

Henceforth though we do not know the converse of the above corollary, we call

a dynamical system S ¼ ðX ; sÞ of type 1 if cðsÞ ¼ PerðsÞ, that is, no proper recurrent

point. We often meet important examples of dynamical systems of type 1. The so-

called Morse-Smale dynamical systems on the circle are such examples of the systems of

type 1. In fact in this case the set of non-wandering points, WðsÞ, is a finite set and

naturally consists of only periodic points. Actually we can assert more:

Any homeomorphism on the circle admitting periodic points becomes of type 1,

hence in particular every orientation reversing homeomorphism is of type 1.

We refer our joint work [10] for detailed investigation of dynamical systems of

type 1.

A C �-algebra is said to be liminal if the image of every irreducible representation

consists of compact operators. Hence a unital liminal C �-algebra means that all of its

irreducible representation are finite dimensional.

Next, recall that in a C �-algebra there always exists the largest liminal ideal. It

is defined as the set of all elements whose images of every irreducible representation are

compact operators. Write this ideal of AðSÞ as LðsÞ. By definition, this ideal is in-

variant by the dual action hence by Theorem 3.2 we can write it as

LðsÞ ¼ KerðHullðLðsÞÞÞ:

We shall discuss a characterization of HullðLðsÞÞ. At first, for an invariant closed

set S we consider the following condition (*);

(*) For every point x in XnS the set qOðxÞ ¼ OðxÞnOðxÞ is contained in S.

Henceforth for convenience sake we sometimes call the above set the boundary

of the orbit OðxÞ. We notice that this set becomes non-empty for any aperiodic point

x by the category theorem, and the condition means S absorbes such boundaries of

those aperiodic points outside of S. On the contrary, some periodic points may spread

outside of S.

The ideal LðsÞ sits at the starting position of the structure of the C �-algebra AðSÞ.

On the other hand, in connection with the condition (*) we notice that the behavior

where an orbit absorbes another orbit is the simplest case to count nonwandering points.
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Namely, if the orbit of a point y trails to the orbit of the another point x all points in

OðxÞ become nonwandering points.

We have then the next proposition. Similar arguments are found in the proof of

[17, Lemma 2], where the space X is assumed to be metrizable and the set S contains

the center, cðsÞ.

Proposition 4.5. If the ideal KerðSÞ for an invariant closed subset S is liminal,

S satisfies the condition (*). The converse holds if X is metrizable.

Proof. Take a point x in XnS and let ~pp ¼ p� u be the irreducible representation

on a Hilbert space H induced by x. We may assume here that x is an aperiodic point.

Since then ~ppðKerðSÞÞ0 f0g, the image ~ppðAðSÞÞ contains the algebra CðHÞ. Hence by

Proposition 4.2 all points of OðxÞ are isolated points in the space Xp ¼ OðxÞ and the

characteristic function of each point becomes a one dimensional projection in H. Now

suppose there exists a point y0 in the boundary qOðxÞ which would not belong to S.

There exists then a compact neighborhood U of y0 in XnS containing infinite points of

OðxÞ. Take a positive continuous function f on X satisfying the conditions f jU ¼ 1

and f jS ¼ 0. By definition, f belongs to KerðSÞ and if we consider the induced dy-

namical system ðXp; spÞ the image pð f Þ is regarded as the restriction of f to Xp. Fur-

thermore, since ~pp is an infinite dimensional irreducible representation we can apply [13,

Theorem 5.4 (3)] by Proposition 3.4 together with [13, Corollary 5.1.A] to see that every

spectral projection of pð f Þ belongs to CðXpÞ. Therefore, pð f Þ can not be a compact

operator on H, a contradiction. Thus, S satisfies the condition (*).

Next assume that X is metrizable and suppose S satisfies the condition (*). Let

~pp ¼ p� u be an irreducible representation of AðSÞ, which is also considered as an ir-

reducible representation of KerðSÞ. We asssert that the image ~ppðKerðSÞÞ consists of

compact operators.

We may assume here that ~pp is infinite dimensional. We have then by Proposition

3.4 and 3.3,

~ppðKerðSÞÞ ¼ KerðS VXpÞ ¼ J½kðS VXpÞ�:

Hence it is enough to show that every function f in kðS VXpÞ becomes a compact

operator. Now note that there exists a point x in Xp whose orbit OðxÞ is dense in Xp.

If we assume ~pp is nonzero on KerðSÞ, x does not belong to S and by the condition (*)

qOðxÞ is contained in S VXp. Therefore f vanishes on qOðxÞ and for any positive e the

set

fy A OðxÞ j j f ðyÞjb eg

is a closed subset of OðxÞ. Hence by category theorem it must contain an isolated

point, and consequently all points of this set become isolated points. Thus the set has

to be a finite set, say fy1; y2; . . . ; yng. This is also an open set in Xp. Moreover, as in

the proof of Proposition 4.2 each characteristic function pi of fyig is a one dimensional

projection in H. Now put the function g as

gðyÞ ¼
Xn

i¼1

f ðyiÞpiðyÞ:
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Obviously, the function g is a compact operator on H and by definition k f � gk < e.

Hence the operator f is a compact operator.

This completes all proofs. r

Combining this proposition with Proposition 3.3 we have the following general-

ization of [17, Lemma 2].

Corollary 4.6. Let S1 and S2 be invariant closed subsets of X where S1 contains

S2. Then if the quotient ideal KerðS2Þ=KerðS1Þ in AðSS1
Þ becomes a liminal ideal, S2

satisfies the condition (*) in the space S1. Moreover, if S1 is metrizable the converse is

also valid.

Here in connection with the property of the ideal KerðWðsÞÞ it would be worth to re-

inforce the results in [17] in terms of Kernels, which may bring more transparent in-

sight. Throughout this argument we assume that X is a compact metric space. Then

KerðWðsÞÞ becomes a liminal ideal.

The shrinking steps of the nonwandering sets from WðsÞ down to the center cðsÞ

is described by the family fWlg0alag parametrized by countable ordinals flg such that

W0 ¼ X , Wg ¼ cðsÞ and

Wlþ1 ¼ WðsjWlÞ:

Moreover,

Wl ¼ 7
r<l

Wr if l is a limit ordinal:

Now consider the family of ideals, fKerðWlÞg. This family becomes a so-called com-

position series of the C �-algebra KerðcðsÞÞ denoted by JðsÞ in [17]. Actually this turns

out to be an ideal of KðsÞ, that is, KðsÞVKerðPerðsÞÞ. We have given there a char-

acterization of this composition series.

In this series if the gap ideals KerðWlþ1Þ=KerðWlÞ could become a C �-algebra with

continuous trace the result would be most desirable from the point of view of C �-

theory. The actual fact is however not in such a case; the ideal becomes the one similar

to a C �-algebra of continuous trace but di¤erent from such C �-algebras ([17, Proposi-

tion 1, Theorem 1]).

As for the Hull of LðsÞ, we obtain the folloing partial characterization. Consider

the set

S0 ¼ 6
x B cðsÞ

qOðxÞU cðsÞnPerðsÞ:

We have then

Theorem 4.7. HullðLðsÞÞ contains the set S0.

When X is metrizable, the equality holds, that is,

HullðLðsÞÞ ¼ 6
x B cðsÞ

qOðxÞU cðsÞnPerðsÞ:
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Proof. Write LðsÞ ¼ KerðSÞ for a closed invariant subset S. Then, by Theorem

4.3 S contains the set cðsÞnPerðsÞ and moreover by the above Proposition it absorbes

every boundary set of a non-recurrent point in its complement. For those points inside

S, this naturally holds. Hence S contains S0.

When X is metrizable, KerðS0Þ itself becomes a liminal ideal by Proposition 4.5

because S0 satisfies the condition (*). Therefore, it has to be the largest liminal ideal in

AðSÞ and S0 ¼ HullðLðsÞÞ. r

As in the case of the ideal KðsÞ, we meet here the same di‰culty of countability

assumption, which is concerned with the equivalency between topological transitivity and

the dense orbit property in metrizable case.

We notice here that HullðLðsÞÞ may contain some periodic points besides the set of

proper recurrent points. On the other hand, we see that the nonwandering set WðsÞ

satisfies the condition (*) and KerðWðsÞÞ becomes a liminal ideal provided that X is

metrizable. Hence HullðLðsÞÞ is contained in WðsÞ. The di¤erence between WðsÞ and

HullðLðsÞÞ becomes more clear if we consider the extreme case where X only consists of

periodic points (such as the case of rational rotations). In fact, in this case WðsÞ ¼ X

whereas HullðLðsÞÞ becomes empty. This last assertion holds however even if we drop

the merizability assumption for X (cf. [13, Theorem 4.6 (1)]).

Now when the set cðsÞnPerðsÞ absorbes all boundary sets of non-recurrent points

(in a metrizable sapce X ), we have the situation,

S0 ¼ cðsÞnPerðsÞ

and

LðsÞ ¼ KðsÞ ¼ KerðcðsÞnPerðsÞÞ:

This holds, for instance, in the case of Denjoy homeomorphisms on the circle. Recall

that a Denjoy homeomorphism is a homeomorphism having an irrational rotation

number but not minimal. It is then well known that s has a unique minimal invariant

set S which absorbes the boundary of every orbit of a point in the complement of S.

This means that S satisfies the condition (*) in the above theorem, and KerðSÞ becomes

a liminal ideal. On the other hand, since s does not have periodic points and S consists

of proper recurrent points, we have that

LðsÞ ¼ KðsÞ ¼ KerðSÞ:

This is a maximal ideal of AðSÞ because its quotient algebra corresponds naturally

to the simple homeomorphism algebra AðSSÞ with respect to the restricted dynamical

system SS ¼ ðS; sjSÞ. We can however assert more. Namely, KerðSÞ is the largest

ideal among those ideals in AðSÞ. In fact, let P be the kernel of an irreducible repre-

sentation ~pp. Since here all irreducible representations are infinite dimensional, we can

write it as P ¼ KerðOðxÞÞ for a point x of T . As we have mentined above, the set OðxÞ

should have nonempty intersection with S. It follows that OðxÞ contains the minimal

set S and PJKerðSÞ.

Actually the readers may find the precise structure of this ideal in the article [7].

On the other hand, if s is an orientation preserving homeomorphism with peri-

odic points there is no proper recurrent points and the set, PerðsÞ ð¼ cðsÞÞ, becomes
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closed. Moreover, because of the orbit behavior of non-recurrent points we can see that

HullðLðsÞÞ coincides really with the boundary set of PerðsÞ. Namely we have that

HullðLðsÞÞ ¼ PerðsÞnPerðsÞ�:

Thus in this case,
AðSÞ ¼ KðsÞZLðsÞ:

Next consider a trace t on AðSÞ and its left kernel,

Lt ¼ fa A AðSÞ j tða�aÞ ¼ 0g:

Let TðsÞ be the intersection of all left kernels of traces on AðSÞ. This ideal is ap-

parantly invariant by the dual action and we can write it as TðsÞ ¼ KerðHullðTðsÞÞÞ.

We have then the following

Proposition 4.8. The set HullðTðsÞÞ is the closure of the union of all supports of

invariant probability measures in X.

When X is metrizable it is contained in the center cðsÞ.

Proof. If m is an invariant probability measure on X , m � E is a trace on AðSÞ.

Hence, if a belongs to TðsÞ

mðEðaÞ�EðaÞÞa m � Eða�aÞ ¼ 0:

As EðaÞ is a continuous function, this implies that EðaÞ vanishes on the support of m.

Hence HullðTðsÞÞ contains the union of all supports of invariant probability measures.

On the other hand, a trace t on AðSÞ induces an invariant probability measure on X

by the restriction of t to CðXÞ. It follows that the set HullðTðsÞÞ coincides with the

closure of the union of all supports of invariant probability measures.

The second assertion follows from Aoki’s observation, [1, Remark 4.27], that in

a compact metric space the set cðsÞ becomes a Borel set and mðcðsÞÞ ¼ 1 for every

invariant probability measure m. r

Next let IC be the commutater ideal of AðSÞ.

Proposition 4.9. IC ¼ KerðPer1ðsÞÞ, and the quotient algebra of AðSÞ by IC is

canonically isomorphic to the tensor product CðPer1ðsÞÞnCðTÞ.

Proof. As the ideal IC is clearly invariant by the dual action, we can write it by

Theorem 3.2 that IC ¼ KerðSÞ for an invariant closed subet S. Moreover, S contains

the set of fixed points Per1ðsÞ because IC is contained in KerðPer1ðsÞÞ. On the other

hand, also by Theorem 3.2 (1) the quotient commutative algebra AðSÞ=IC is canonically

isomorphic to the homeomorphism algebra AðSSÞ. Hence the action of s on S has to

be trivial. Therefore, S ¼ Per1ðsÞ.

Once we have this identity the rest is easily seen from the fact that the quotient

algebra of AðSÞ by KerðPer1ðsÞÞ is regarded as the C �-crossed product with respect to

the trivial action. r
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